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Temperature dependent relativistic mean field for highly excited hot nuclei
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The temperature dependent relativistic mean field~RMF-T! results obtained by using nonlinear Lagrangian
parameter set NL3 are presented for a few selected representative spherical and deformed nuclei. The calcu-
lated total binding energy~entropy! decrease~increase! as temperature (T) increases. The depths of the
potentials and the single particle~sp! energies change very little with temperature. The density slightly spreads
out; as a result the radius increases as temperature rises. For well deformed nuclei the shell effects disappear
at aroundT;3 MeV. This value ofT is relatively higher as compared to the corresponding value ofT
(;1.8 MeV! obtained in the Strutinsky-type calculations. This difference in the value ofT is shown to be due
to the use of the effective nucleon mass (, the bare mass! appearing in the Skyrme III interaction or emerging
from the RMF Lagrangian.

PACS number~s!: 21.10.Ft, 21.60.Jz, 21.90.1f
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I. INTRODUCTION

The study of hot or highly excited nuclei is of prime im
portance both experimentally and theoretically. The exp
mental study is based upon the fission type or heavy
reactions. The theoretical studies usually assume therm
namical equilibrium and introduce the partition function a
then calculate the relevant quantities like level density,
tropy, excitation energy, etc. Such past theoretical invest
tions @1# used the statistical model employing the spectra
independent particles moving in an average deform
nuclear potential—thereby calculating the energy surf
within the Strutinsky@2# method as a function of deforma
tion for various excitations. This approach is not se
consistent in the sense that the deformation is not calcul
self-consistently at each temperature/excitation. Theref
the temperature dependent mean field approach such as
perature dependent Hartree-Fock method with density
pendent interaction of Skyrme type@3# ~DDHF-T! is then
more appropriate. Such a self-consistent DDHF-T calcu
tion also yields @4# the average potential, single partic
states and their occupation probabilities, etc., at each t
perature. This then enables us to calculate important qua
ties like excitation energy, entropy, level density parame
etc. and also to answer the questionat what temperature the
deformation and/ shell effects disappear.The results of the
DDHF-T calculations with the Skyrme-III interaction using
finite basis~oscillator! expansion method reveal@4# that the
deformation and the shell effects disappear with increas
excitations, e.g., at aroundT;3 MeV for 168Yb, where the
minima of the free energy occurs at zero quadrup
moment/deformation. On the other hand the Strutinsky-t
calculation yields zero deformation in general at lower te
peratures, e.g.,T;1.8 MeV for 168Yb. We show here tha
this difference in the value of temperatureT perhaps is due to
the value of the effective mass, the free nucleon mas
appearing in the Skyrme-III interaction.

The relativistic mean field~RMF! @5,6# has been shown to
be very successful for the description of a variety of nucl
0556-2813/2000/62~5!/054610~8!/$15.00 62 0546
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properties even for those where the conventional n
relativistic DDHF description was deficient@6#. Therefore, it
is worthwhile to extend RMF to include temperature resu
ing in the temperature dependent RMF~RMF-T!, the relativ-
istic counterpart of DDHF-T, and to carry out explicit nu
merical calculations. Here, we present and discuss som
our temperature dependent relativistic mean field~RMF-T!
results for a few selected representative spherical@208Pb,
298GG (Z5114)] and deformed (168Er, 168Yb, 150Sm) nu-
clei, with the following objectives: To demonstrate the fe
sibility of carrying out such calculations in practice; to brin
out the salient general features; and to compare these
the corresponding temperature dependent Hartree F
~DDHF-T! results obtained with the density dependent int
action of the Skyrme type.

The essential RMF-T equations are presented in Sec
Section III contains the details of the calculation. The resu
are presented and analyzed in Sec. IV. The last section
tains the summary and the conclusion.

II. FORMULATION

The conventional temperature dependent Hartree-F
~HF-T! equations derived by the minimization of the therm
dynamical potential have been presented and discusse
various places@4,5#. These HF-T equations retain the sam
form as that of the Hartree-Fock~HF! @7,8#/RMF equations
@6# for the static case. Therefore, here we list the RMF
equations and introduce the relevant quantities of inte
without going into the details. In this mean field variation
approach the temperature dependent equations are derive
the minimization of the thermodynamical potentialV:

V5E2TS2mN. ~1!

Here E being the energy,T is the thermodynamic tempera
ture which is introduced through the statistical Fermi occ
pation probabilitiesni :
©2000 The American Physical Society10-1
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ni5F11 expS « i2m

kT D G21

, ~2!

for a single particle~sp! orbit u i & having energy« i , m de-
notes the chemical potential,k the Boltzmann constant andN
the particle number. The entropyS is obtained through

S52(
i

@ni ln ni1~12ni !ln~12ni !#. ~3!

The minimization ofV yields the temperature depende
mean field equations:

hf i5« if i , ~4!

along with the constraint

(
i

ni5N. ~5!

Here h denotes the mean field Hamiltonian and the parti
numberN is the sum of neutrons (Nn) and protons (Np) and
accordingly in Eq.~1!

mN5mpNp1mnNn , ~6!

with mp (mn) denoting the chemical potential for proton
~neutrons!. The one body mean field equations~4! and ~5!
are similar to the HF equations@7# for the static case and
therefore can be solved self-consistently for a givenT fol-
lowing the same procedure as adopted for the conventi
static HF case. This therefore leads to the self-consistent
culation of the average potential, single particle orbitals a
energies« i , occupation numbersni , density, total energyE,
etc. for each temperatureT. Using ni the entropyS can be
obtained through@Eq. ~3!# and the excitation energyE* is
given by

E* ~T!5E~T!2E~T50!, ~7!

E(T50) being the energy at zero temperature~ground
state!. It is to be pointed out that the pairing correlatio
which are to be included for the correct description of op
shell nuclei, are in fact important only at low temperatur
(T,1 MeV!. Therefore, the pairing is taken into account
the constant gap approximation@6,9#, only for T50 case and
is ignored forT.0, i.e., for high excitations.

In the RMF approach one starts with the Lagrangian
scribing the nucleons interacting with various meson fiel
The equations of motion are obtained by using the class
variational principle. Within the mean field approximatio
which amounts to treating the field operators asc numbers or
classical fields, one then ends up with a Dirac equation h
ing Lorentz scalar and vector~fourth component! potentials
for nucleons and Klein-Gordon type equations for the me
fields having sources involving various baryon densiti
This set of equations are to be solved self-consistently yi
ing quantities like single particle~sp! potentials, energies
occupation numbers, densities etc.
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We consider here the nucleon~Dirac spinor! of massM
interacting with the following meson fields in addition to th
electromagnetic fieldAm: The scalar fields describing thes
meson of massms with coupling constantgs ; the vector
field v describing thev meson of massmv with coupling
constantgv ; and the isovector vector fieldr describing ther
meson of massmr with coupling constantgr .

The Lagrangian density for this case is taken to be

L5c̄ i$ ig
m]m2M %1

1

2
]ms]ms2U~s!gsc̄ ic is

2
1

4
VmnVmn1

1

2
mv

2 vmvnu2gvc̄ ig
mc ivm2

1

4
RmnRmn

1
1

2
mr

2rmrm2grc̄ ig
mtc irm2

1

4
RmnRmn

2ec̄ ig
m

m~12tz!

2
c iAm . ~8!

The sigma meson is subjected to an additional nonlinear
tential,

U~s!5
1

2
mss21

1

3
g2s31

1

4
g3s4. ~9!

The symbolsFmn andVmn (Rmn) denote the field tensors fo
the electromagnetic and the vector~isovector! meson fields.

Employing the mean field approximation and ignoring t
antiparticle ~holes in the Dirac sea! contributions to the
source terms of the meson fields, for the static spherical c
one ends up with the following set of equations.

A coupled set of equations for the large@ f ( i )# and small
@g( i )# components of the Dirac spinor:

@M* ~r !1V~r !# f i~r !1S ] r2
k i21

r Dgi~r !5« i f i~r !,

~10!

2S ] r1
k i11

r D f i~r !2@M* ~r !2V~r !#gi~r !5« igi~r !,

~11!

where

k i56S j i1
1

2D for j i5l i7
1

2

and

M* ~r !5M1gss~r !, ~12!

V~r !5gvv0~r !1grtWrW 0~r !1e
~11t3!

2
A0~r !. ~13!

Klein-Gordon equation:

S 2
]2

]r 2 2
2

r

]

]r
1mf

2 Df~r !5sf~r !. ~14!
0-2
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mf denotes the meson mass forf 5 s, v andr and is zero for the photon.
The source term

sf~r !55
2gsrs~r !2g2s2~r !2g3s3~r ! for thes field,

gvrv~r ! for thev field,

grr3~r ! for ther field,

erp~r ! for the Coulomb field.
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The various baryon densities appearing in the source t
@Eq. ~15!# are given by

rs~r !5(
i

ni~2 j i11!„u f i~r !u22ugi~r !u2
…, ~16!

rv~r !5(
i

ni~2 j i11!„u f i~r !u21ugi~r !u2…, ~17!

r3~r !5(
i

ni2t i~2 j i11!„u f i~r !u21ugi~r !u2…, ~18!

rc~r !5(
i

ni S 1

2
2t i D ~2 j i11!„u f i~r !u21ugi~r !u2….

~19!

The quantitiesni are the occupation numbers. In the simp
case with no pairing~magic nuclei! at T50

ni5H 1 for the occupied levels,

0 for the unoccupied levels.
~20!

For open shell nuclei with pairing theni can be obtained
in the constant gap approximation as described in Ref.@6#.
For high excitationsT.0, ni is given by Eq.~2! in which
the chemical potentialm is to be replaced by the correspon
ing Fermi energy. The Fermi energy is obtained through
constraint

( ni5number of neutrons/protons. ~21!

To incorporate the finite size of the proton, the calcula
point proton density is folded with the proton charge dis
bution of rms-radius 0.8 fermi having a Gaussian shape. T
folded density can then be directly compared with the exp
mental charge density. Similarly, the charge radiir c obtained
from the calculated point proton rms radii through

r c5Ar p
210.64

can be compared with the corresponding experimental va

III. DETAILS OF THE CALCULATION

The RMF equations for the spherical~deformed! systems,
are solved by expanding separately the large„f ( i )… and the
small „g( i )… component of the Dirac spinor and so also t
05461
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Bose ~meson and electromagnetic! fields and the various
densities in terms of isotropic~anisotropic! harmonic oscil-
lator basis as described in Ref.@6#. The expansion is trun-
cated so as to include for fermions~mesons! all the states
having major oscillator quantum number@NFmax

(NBmax
)#.

We fix the basis parameters: The size:\v541A21/3, the
deformation b50 ~close to the experimental value! for
spherical~deformed! nuclei andNFmax

5NBmax
520(14) for

spherical~deformed! systems, in accordance with our earli
work ~@6#!. The parameters appearing in the Lagrangian
taken to be the most up to date set NL3@10#.

The parameters of this NL3 set@10# are as follows:
Masses~MeV!: M5939.0, ms5508.194,mv5782.501,

mr5763.0.
Coupling constants: gs510.217, gv512.868, gr

54.474,g25210.431 fm21, andg35228.885.
First a systematic set of self-consistent RMF-T calcu

tions are carried out for spherical nucleus208Pb and the hy-
pothetical nucleus298GG (Z5114) for temperatures rangin
from 0 to 5 MeV. Some of these results, e.g., the mean fi
potential, effective mass, densities, etc. are presented
discussed in the next section.

Next, RMF-T calculations for deformed nuclei are carri
out. In the next section we present and discuss some of
temperature dependent relativistic mean field~RMF-T! re-
sults for a few selected representative deformed (168Er,
168Yb, and 150Sm) nuclei. As stated earlier, pairing is in
cluded in the constant gap approximation for the ground s
(T50) only for these open shell deformed nuclei. The g
parameters for neutrons~protons! Dn (Dp) required in the
calculation of the respective occupation probabilities are
tracted from the odd even mass differences obtained from
published@11# mass tables. The calculated values ofDn (Dp)
for 168Er, 168Yb, and 150Sm are 1.034~1.176!, 1.041
~1.165!, and 1.079~1.213! MeV, respectively. Initially the
calculations have been carried out withNFmax

512, NBmax

520 for 168Er, then the same have been repeated w
NFmax

514, NBmax
520. Practically no change in the calcu

lated results have been noticed, indicating thereby the
quired convergence. Thus the results withNFmax

512, NBmax

520 may be reasonable and reliable. For the rest of
calculations presented here we therefore, fixNFmax

512,

NBmax
520.

Before closing this section we would like to point out th
the contribution due to the evaporation of nucleons wh
0-3
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starts becoming relevant with increasing temperature, is
nored in the present work. Boncheet al. @12# incorporated
this contribution in an approximate manner. In the corr
description this contribution should be taken into acco
accurately. However, this problem still awaits a satisfact
solution. Therefore, in the present context our results
reliable for temperaturesT up to say 3 MeV, above which
uncertainties may start creeping in. Therefore, to be on
conservative side, we present and discuss the rest of
results~i.e., for deformed systems! only for temperaturesT
<3 MeV.

IV. RESULTS AND DISCUSSION

First we analyze our self-consistent RMF-T results for
nucleus208Pb, celebrated representative of spherical nuc
arranged in Table I. Similar results for a hypothetical sup
heavy spherical nucleus298GG (Z5114) are also arrange
in the same table. The corresponding experimental value
the ground state (T50), where available, are shown~in pa-
rentheses!. The ground state properties are well reproduc
as was found earlier. With the increase in temperatureT the
higher lying levels start getting partially occupied, resulti
in the decrease in binding energy and slight increase in ra
The increase in radii asT increases, is very slow in the be
ginning and later becomes relatively fast. These features
as expected and are consistent with those found in the
responding nonrelativistic~DDHF-T! calculations@4# with
Skyrme-type interaction. The single particle level energ
(« i) vary only slightly with temperature. In general the low
est levels very slightly increase with temperature whereas
high-lying levels decrease. The maximum variation is;1.5

TABLE I. The calculated self-consistent RMF-T total bindin
energyE, point neutron radiusr n , charge radiusr c , the root mean
square radiusr rms, and the entropyS for the various values of the
temperatureT obtained by using the Lagrangian parameter set N
The experimental ground state (T50) values are give in the paren
thesis.

208Pb
T E rn r c r rms S

0.0 1639.5 5.74 5.52 5.63
~1636.5! ~5.50!

1.0 1626.6 5.75 5.54 5.65 17.70
2.0 1567.7 5.83 5.57 5.70 57.01
3.0 1469.2 5.98 5.61 5.82 96.35
3.5 1401.8 6.09 5.65 5.90 117.07
4.0 1320.4 6.22 5.72 6.00 138.75

298GG(Z5114)

0.0 2123.9 6.51 6.26 6.39
1.0 2100.6 6.52 6.29 6.41 40.95
2.0 2026.1 6.58 6.31 6.46 90.40
3.0 1888.2 6.73 6.35 6.57 145.29
3.5 1789.4 6.84 6.39 6.65 175.64
4.0 1667.6 6.96 6.45 6.75 208.04
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MeV for temperatures betweenT5025 MeV. This obser-
vation holds true both for proton and neutron levels. To u
derstand this remarkable constancy of« i we examine the
variation of the calculated effective mass, local potenti
and the density distributions. This is because these quant
are interlinked in this self-consistent mean field approa
These are shown in Figs. 1–4, respectively. The calcula
proton local potential~Fig. 1! oscillates in the interior. The
magnitude of oscillation decrease with the increase in te
perature. This oscillatory behavior is purely a manifestat
of coulomb effect and is therefore absent in the neutron
tential ~Fig. 1!. The potential increases~less attractive! and
vanish at the surface but at a slightly larger radius as
temperature rises, both for neutrons and protons. This fea

.

FIG. 1. The calculated RMF-T effective potential as a functi
of the radial distancer for protons and neutrons for the spheric
nucleus208Pb at temperaturesT50, 1.5, and 3.0 MeV.

FIG. 2. The calculated RMF-T ratio (M* /M ) of the effective
mass to the bare mass as a function of the radial distancer for the
spherical nucleus208Pb at temperaturesT50, 1.5, and 3.0 MeV.
0-4
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is expected to directly manifest in the calculated effect
mass~Fig. 2!. We see that with the increase in temperatu
the effective mass~Fig. 2! slightly increases in the interio
and approaches to the bare value at the surface but
slightly larger value ofr. This behavior of the potentials an
the effective mass is directly linked with the decrease in
density in the interior, as is expected. The calculated p
proton and neutron densities are shown in Figs. 3 an
respectively for various values of temperatureT. These show
oscillations in the interior which are relatively larger for th
point proton densities. These oscillations reduce in mag
tude with increase inT and eventually expected to disappe
at largerT (;5 MeV!. Thus the heating of the system resu
in smoothening of the oscillations. Further, the central d
sity is clearly lowered~decreases in the interior! and the

FIG. 3. The calculated RMF-T vector density (rv) and the dif-
ference between the vector density and the scalar densityrv2rs as
a function of the radial distancer for protons in the spherica
nucleus208Pb at temperaturesT50, 1.5, and 3.0 MeV.

FIG. 4. The calculated RMF-T vector density (rv) and the dif-
ference between the vector density and the scalar densityrv2rs as
a function of the radial distancer for protons in the spherica
nucleus208Pb at temperaturesT50, 1.5, and 3.0 MeV.
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surface region is broadened~extends further out! with in-
crease inT, resulting an increase in the rms radii. This
expected as with the heating of the system more and m
high lying levels start getting partially occupied.

Now we consider the effect of these variations on t
single particle spectrum: An increase in the effective m
raises the deep lying levels but lowers the high lying leve
On the other hand, an increase in the radius lowers the e
spectrum. Thus these two effects cancel in the lower par
the spectrum while they go in the same direction for the h
lying states. The net effect is that the lowest levels incre
very slightly with T whereas high lying levels decreas
Overall there is only a small variation in the single partic
level spectrum.

For deformed systems we expect more changes in
average field with the increase in temperatureT. This is be-
cause the melting of shell effects at higher excitations w
make the nucleus spherical. Therefore, we next analyze
representative results of deformed nuclei. We select168Er
and 168Yb, both are well studied and are well deformed sy
tems. The calculated RMF-T results for various temperatu
T are arranged in Table II against the label NL3. Clearly,
calculated ground state (T50) total binding energy, charge
radiusr c and the deformationb compare very well with the
corresponding experimental values~given in parentheses!, as
found in earlier studies. The total binding energyE decreases
while the entropyS increases asT increases. The deforma
tion b ~so also the quadrupole momentq2 and hexadecupole
momenth4) slowly decrease with the rise in temperatureT.
At temperature close toT;3 MeV the deformation vanishe
and the nucleus becomes spherical. The charge and the
radii are minimum at this temperature corresponding to
spherical shape. Beyond this critical temperature (T;3
MeV! the calculatedE ~S! decrease~increase! and the radii
increase asT increases similar to that observed for th
spherical systems.

We also consider the nucleus150Sm a relatively less de
formed system. Similar observations also hold for the cal
lated RMF-T results~presented in Table II! for 150Sm. Here
the deformationb vanishes at temperature close to 2 Me
relatively earlier as compared to that for the well deform
nuclei.

The disappearance of shell effects can also be seen
studying the variation of entropySas a function of excitation
energy. At highT which is sufficient to wipe out the she
effects, the entropySand excitation energyE* are expected
to be related by the asymptotic formulas@13#:

S;2Aa~E* 1DE0!,

E* 5aT22DE0 . ~22!

HereDE0 (!E* ) is the ground state shell correction anda

the level density parameter which is related toḡ(m) the av-
erage density of single particle states« i at the Fermi energy,
through a factorp2/6.

One can check these asymptotic relations by examinin
0-5
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TABLE II. The calculated self-consistent RMF-T results~marked NL3!: total binding energyE, point
neutron radiusr n , charge radiusr c , the root mean square radiusr rms, the deformationb, the quadrupole
momentq2, hexadecupole momenth4, the entropySandS/2T for the various values of the temperatureT for
deformed representative nuclei. The experimental ground state (T50) values are give in the parenthesis. T
corresponding DDHF results with Skyrme~SK-III and SKP! interactions are also listed.

168Er
T E rn r c r rms b q2 h4 S S/2T

0.0 NL3 1365.6 5.45 5.28 5.36 0.35 19.3 0.67
SK-III 1358.9 5.41 5.37 5.37 0.36 19.9 0.90
SKP 1361.6 5.38 5.32 5.33 0.35 19.4 0.71
Expt. ~1365.8! ~5.31! ~0.34!

1.0 NL3 1352.4 5.44 5.28 5.35 0.33 18.5 0.63 21.99 10.9
SK-III 1332.3 5.39 5.35 5.35 0.34 18.8 0.76 24.48 12.2
SKP 1338.0 5.36 5.29 5.31 0.32 17.9 0.61 32.59 16.3

2.0 NL3 1309.3 5.43 5.25 5.34 0.23 12.8 0.28 50.50 12.6
SK-III 1278.9 5.36 5.30 5.31 0.20 10.9 0.22 55.54 13.8
SKP 1282.8 5.31 5.22 5.25 0.07 4.1 0.04 69.08 17.2

3.0 NL3 1245.2 5.45 5.24 5.34 0.00 0.2 0.03 76.39 12.7
SK-III 1210.4 5.38 5.29 5.32 0.06 3.5 0.04 85.01 14.1
SKP 1204.4 5.38 5.26 5.31 0.05 2.6 0.05 103.76 17.2

3.5 NL3 1208.3 5.48 5.25 5.36 0.01 2.3 0.02 87.74 12.5
SK-III 1168.2 5.42 5.30 5.35 0.06 3.1 0.04 100.61 14.3

168Yb
0.0 NL3 1363.4 5.41 5.29 5.33 0.32 17.8 0.75

SK-III 1357.9 5.40 5.38 5.37 0.35 19.3 0.99
SKP 1361.5 5.36 5.33 5.33 0.34 18.9 0.74
Expt. ~1362.8! ~5.28! ~0.33!

1.0 NL3 1349.9 5.40 5.29 5.33 0.31 17.4 0.64 22.73 11.3
SK-III 1329.7 5.38 5.36 5.34 0.32 18.0 0.78 25.34 12.6
SKP 1334.0 5.34 5.30 5.29 0.30 16.6 0.55 33.27 16.6

2.0 NL3 1308.5 5.40 5.26 5.32 0.21 11.7 0.25 50.08 12.5
SK-III 1277.2 5.34 5.31 5.30 0.17 9.7 0.18 55.45 13.8
SKP 1282.8 5.30 5.24 5.25 0.07 3.7 0.04 68.43 17.1

3.0 NL3 1246.0 5.41 5.26 5.32 0.07 3.9 0.04 75.25 12.5
SK-III 1211.6 5.36 5.31 5.31 0.06 3.6 0.04 84.36 14.0
SKP 1205.9 5.35 5.29 5.30 0.05 2.8 0.06 103.22 17.2

3.5 NL3 1208.7 5.44 5.27 5.35 0.06 3.2 0.03 86.76 12.3
SK-III 1171.0 5.39 5.33 5.34 0.06 3.4 0.05 100.01 14.2

150Sm
0.0 NL3 1239.3 5.19 5.05 5.10 0.20 9.2 0.60

SK-III 1226.6 5.16 5.14 5.12 0.22 10.2 0.67
SKP 1236.3 5.11 5.06 5.07 0.16 7.2 0.13
Expt. ~1236.2! ~5.05! ~0.19!

1.0 NL3 1226.0 5.18 5.04 5.10 0.19 8.6 0.48 21.70 10.8
SK-III 1201.1 5.14 5.11 5.11 0.20 9.3 0.50 24.86 12.4
SKP 1211.6 5.10 5.04 5.05 0.13 6.1 0.11 31.19 15.6

1.5 NL3 1210.5 5.17 5.03 5.09 0.11 5.0 0.16 34.11 11.3
SK-III 1182.0 5.13 5.09 5.09 0.11 5.1 0.13 37.79 12.6
SKP 1193.1 5.10 5.03 5.04 0.04 1.9 0.02 46.10 15.3

2.0 NL3 1190.8 5.18 5.02 5.09 20.02 20.7 20.02 45.41 11.36
SK-III 1161.2 5.13 5.09 5.09 0.03 1.6 0.01 49.84 12.4
SKP 1168.0 5.11 5.05 5.06 0.02 1.1 0.01 61.09 15.2
054610-6
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1

4 S dS2

dE* D5
S

2T

and

dE*

dT2 ,

which can be evaluated numerically from the finite diffe
ences obtained at different temperatures. We include som
these results in Table II. The tables show thatS/2T ap-
proaches almost a constant value close to the tempera
where the deformation vanishes~disappearance of shell e
fects!. This holds for the results of all the three deform
cases, listed in the tables.

The corresponding DDHF-T results with Skyrme III in
teraction for168Er, 168Yb, and 150Sm are also listed in Table
II against the label SK-III. These SK-III results show iden
cal trends as those observed for the respective RMF-T
sults. It is now known that fully self-consistent mean fie
calculations like the DDHF-T with the Skyrme-III interac
tion or RMF-T reveal that the deformation and the shell
fects disappear with increasing excitations at aroundT;3
MeV for well deformed nuclei like168Yb. On the other hand
the Strutinsky-type calculation yields zero deformation,
general, at lower temperatures, e.g.,T;1.8 MeV for 168Yb.
This difference in the value of temperatureT may be either
due to the lack of self-consistency in the Strutinsky-type c
culations and/or due to the use of the value of the nucl
effective mass@M* , the bare mass (M )] appearing in
Skyrme-III interaction or resulting from the RMF Lagran
ian. To examine the problem of the self-consistency we fi
carried out the self-consistent RMF calculations for differe
deformationsb generating energy~E! versus deformation
(b) curve for the ground state (T50) of 168Er. It is ob-
served that the lowest energy~maximum binding! occurs at
theb value equal to that listed in Table II forT50. Then we
carried out the self-consistent RMF-T constraint~on the de-
formationb: fixed to the ground state value! calculations for
various temperatures (T). It is observed that this constrain
does not change the total energyE and so also the single
particle energies (« i). These observations then indicate th
the lack of self-consistency is not the origin of the differen
in the value of temperatureT where the deformation an
shell-effects disappear, obtained in the self-consistent m
field approach and the Strutinsky approach. Therefore,
then considered the problem related to the effective mass
repeated the self-consistent DDHF-T calculations using
Skyrme interaction SKP@14# and the same values of th
pairing gapsDn and Dp as before. These results for168Er,
168Yb, and 150Sm are also listed in Table II. The interactio
M
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SKP has the effective mass (M* ) equal to the bare mas
(M ). The ground state DDHF-T results with SKP interacti
are almost identical to those of SK-III, as expected beca
that was the criterion used in generating these SK-III a
SKP interaction parameters. The calculations reveal that
deformation (b) now disappears at lower temperatureT
;2 MeV! for both 168Er and 168Yb. This value is very close
to that obtained in the Strutinsky calculation for these nuc

The DDHF-T results with SKP interaction for150Sm in-
dicate that the temperatureT where the deformationb dis-
appears is;1.5 MeV, slightly lower as compared to that fo
well deformed systems~e.g., 168Er and 168Yb). This value
~1.5 MeV! is also close to the value expected from t
Strutinsky approximation.

Based on this analysis, one may therefore, conclude
the above mentioned difference in the value of the tempe
ture ~T! where the shell effects disappear in the se
consistent mean field approach and the Strutinsky appro
is due to the use of the value of the effective mass less t
the bare mass in the former.

V. SUMMARY AND CONCLUSION

We have carried out self-consistent temperature dep
dent relativistic mean field~RMF-T! calculations for some
sample spherical and deformed nuclei, demonstra
thereby the feasibility of carrying out such temperature
pendent calculations in practice. The analysis of the res
reveal systematics very similar to those observed in the
responding nonrelativistic temperature dependent Hart
Fock~DDHF-T! studies with density dependent Skyrme-ty
interactions~SK-III and SKP!. The energy decreases~less
negative! while the size~radii! increases as temperature i
creases. The deformed systems tend to become spheric
temperature rises. Shell effects wash out at high excitatio
i.e., with rising temperatures (T). The melting away of shell
effects for well deformed nuclei is at temperatureT;3 MeV
while it is at a lower temperature~aroundT;2 MeV! for
moderately deformed systems. The Strutinsky calculati
yield relatively less value of the temperature~T! at which the
deformation vanishes (b→0) as compared to that obtaine
in the self-consistent mean field approaches like DDHF
with Skyrme III ~SK-III ! interaction or RMF-T. On the othe
hand the DDHF-T results~SKP! with Skyrme Interaction
SKP ~having effective nucleon mass the same as the b
mass! yield this value of temperatureT close to the value
obtained in the Strutinsky type calculations. This differen
in the value of the temperature is therefore, expected to
due to the lower value (, the bare mass! of the nucleon
effective mass resulting in the SK-III interaction or from th
RMF Lagrangian.
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