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Temperature dependent relativistic mean field for highly excited hot nuclei
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The temperature dependent relativistic mean fi&MF-T) results obtained by using nonlinear Lagrangian
parameter set NL3 are presented for a few selected representative spherical and deformed nuclei. The calcu-
lated total binding energyentropy decrease(increasg as temperatureT() increases. The depths of the
potentials and the single partidlsp energies change very little with temperature. The density slightly spreads
out; as a result the radius increases as temperature rises. For well deformed nuclei the shell effects disappear
at aroundT~3 MeV. This value ofT is relatively higher as compared to the corresponding valu& of
(~1.8 MeV) obtained in the Strutinsky-type calculations. This difference in the valdei®shown to be due
to the use of the effective nucleon mass the bare massppearing in the Skyrme Il interaction or emerging
from the RMF Lagrangian.

PACS numbe(s): 21.10.Ft, 21.60.Jz, 21.96f

[. INTRODUCTION properties even for those where the conventional non-
relativistic DDHF description was deficief@]. Therefore, it
The study of hot or highly excited nuclei is of prime im- is worthwhile to extend RMF to include temperature result-
portance both experimentally and theoretically. The experiing in the temperature dependent RMRMF-T), the relativ-
mental study is based upon the fission type or heavy iostic counterpart of DDHF-T, and to carry out explicit nu-
reactions. The theoretical studies usually assume thermodyRerical calculations. Here, we present and discuss some of
namical equilibrium and introduce the partition function andour temperature dependent relativistic mean fi@WF-T)
then calculate the relevant quantities like level density, entesults for a few selected representative spherié&ib,
tropy, excitation energy, etc. Such past theoretical investiga?°*GG (Z=114)] and deformed'%r, ***b, *°Sm) nu-
tions[1] used the statistical model employing the spectra oflei, with the following objectives: To demonstrate the fea-
independent particles moving in an average deformeg@ibility of carrying out such calculations in practice; to bring
nuclear potential—thereby calculating the energy surfac®ut the salient general features; and to compare these with
within the Strutinsky[2] method as a function of deforma- the corresponding temperature dependent Hartree Fock
tion for various excitations. This approach is not self-(DDHF-T) results obtained with the density dependent inter-
consistent in the sense that the deformation is not calculate@ction of the Skyrme type.
self-consistently at each temperature/excitation. Therefore, The essential RMF-T equations are presented in Sec. II.
the temperature dependent mean field approach such as tefsection Ill contains the details of the calculation. The results
perature dependent Hartree-Fock method with density deare presented and analyzed in Sec. IV. The last section con-
pendent interaction of Skyrme tyd8] (DDHF-T) is then  tains the summary and the conclusion.
more appropriate. Such a self-consistent DDHF-T calcula-
tion also yields[4] the average potential, single particle
states and their occupation probabilities, etc., at each tem-
perature. This then enables us to calculate important quanti- The conventional temperature dependent Hartree-Fock
ties like excitation energy, entropy, level density parameter(HF-T) equations derived by the minimization of the thermo-
etc. and also to answer the questairwhat temperature the dynamical potential have been presented and discussed at
deformation and/ shell effects disappedhe results of the various place$4,5]. These HF-T equations retain the same
DDHF-T calculations with the Skyrme-Ill interaction using a form as that of the Hartree-FodkF) [7,8//RMF equations
finite basis(oscillatop expansion method revepd] that the  [6] for the static case. Therefore, here we list the RMF-T
deformation and the shell effects disappear with increasingquations and introduce the relevant quantities of interest
excitations, e.g., at arouri~3 MeV for '%®b, where the without going into the details. In this mean field variational
minima of the free energy occurs at zero quadrupoleapproach the temperature dependent equations are derived by
moment/deformation. On the other hand the Strutinsky-typghe minimization of the thermodynamical potentfal
calculation yields zero deformation in general at lower tem-
peratures, e.gT~1.8 MeV for %8yb. We show here that
this difference in the value of temperatur@erhaps is due to
the value of the effective mass the free nucleon mass
appearing in the Skyrme-Ill interaction. Here E being the energyT is the thermodynamic tempera-
The relativistic mean fieldRMF) [5,6] has been shown to ture which is introduced through the statistical Fermi occu-
be very successful for the description of a variety of nucleapation probabilities; :

Il. FORMULATION

Q=E—TS—uN. (1)
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ni= (2 interacting with the following meson fields in addition to the

giT M

1+ exr{ KT
electromagnetic field*: The scalar fieldr describing ther
for a single particle(sp orbit |i) having energys;, u de- ~ Meson of massn, with coupling constang,,; the vector

notes the chemical potentiathe Boltzmann constant adi ~ field  describing thew meson of massn, with coupling
the particle number. The entro[®/is obtained through constang,, ; and the isovector vector fiejeldescribing the
meson of massn, with coupling constang,, .

The Lagrangian density for this case is taken to be

}—1 We consider here the nucled@Birac spinoj of massM

S=-2 [njInnj+(1—n)in(1—n)]. (3)

_ 1 _
L=yliy*d,—M}+ Er?“a'(?ﬂcr— U(o)go o
The minimization of() yields the temperature dependent
mean field equations: 1 1 o 1
- _Q”VQ/.LV_‘_ _mfuwanu_gw¢i 'yﬂlﬂiwu_ ZRMVR;LV

hei=zi¢;, 4 4 2
along with the constraint 1o © A 1 uv
g +§mpp pp,_gpwiy T¢iPM_ZR RMV
n;=N. 5 —  m(l-1)
Zn O e A, ®

Hereh denotes the mean field Hamiltonian and the particlerpe sigma meson is subjected to an additional nonlinear po-
numberN is the sum of neutrons\(,) and protons ) and  tentjal,

accordingly in Eq(1)
1 2 1 3 1 4
uN= N+ unNp, (6) U(o)= > M0 + 3920 + 7930 (9)

with wp (4n) denoting the chemical potential for protons The symbolg=#* and** (R**) denote the field tensors for
(neutrong. The one body mean field equatio® and (5  the electromagnetic and the vect@ovectoy meson fields.

are similar to the HF equatior{§] for the static case and  Employing the mean field approximation and ignoring the
therefore can be solved self-consistently for a giiefol-  antiparticle (holes in the Dirac sgacontributions to the
lowing the same procedure as adopted for the conventionalprce terms of the meson fields, for the static spherical case
static HF case. This therefore leads to the self-consistent cale ends up with the following set of equations.

culation of the average potential, single particle orbitals and A coupled set of equations for the larf&i)] and small

energies:;, occupation numbers;, density, total energé,  [4(i)] components of the Dirac spinor:
etc. for each temperature Using n; the entropyS can be

obtained throughEq. (3)] and the excitation energl* is
given by [M*(r)+V(r)]fi(r)+

Ki_l
ar—T>9i(f)=t‘3ifi(r),

E*(T)=E(T)—E(T=0), (7) 19

E(T=0) being the energy at zero temperatuground -

statg. It is to be pointed out that the pairing correlations

which are to be included for the correct description of open

shell nuclei, are in fact important only at low temperaturesyhere

(T<1 MeV). Therefore, the pairing is taken into account in

the constant gap approximatie®,9], only for T=0 case and

is ignored forT>0, i.e., for high excitations. Ki
In the RMF approach one starts with the Lagrangian de-

scribing the nucleons interacting with various meson fieldsand

The equations of motion are obtained by using the classical

variational principle. Within the mean field approximation M*(r)=M+g,o(r), (12)

which amounts to treating the field operatorsasimbers or

classical fields, one then ends up with a Dirac equation hav-

ing Lorentz scalar and vectdfourth componentpotentials

for nucleons and Klein-Gordon type equations for the meson

fields having sources involving various baryon densities. Klein-Gordon equation:

This set of equations are to be solved self-consistently yield- )

ing quantities like single particlésp) potentials, energies, _a__EiJr 2 _ 14

occupation numbers, densities etc. a2 "7 ar M| A1) =Sy(r). (14

Ki+1
I+ T)fi(f)—[M*(f)—V(f)]gi(f)=8i9i(f),
(11)

o1
=E ity

R
for Ji:/’/i"‘i

V(r)=gww°(r)+gp;ﬁo(r)Jre@Ao(r). (13
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m, denotes the meson mass ir= o, o andp and is zero for the photon.

The source term

—0ups(r)—0202(r) —gz0(r)

Jupy(r)
gpp3(r)
epp(r)

Sy(r)=

for the o field,
for thew field,
for thep field, (19

for the Coulomb field.

The various baryon densities appearing in the source terBose (meson and electromagnetifields and the various

[Eq. (15)] are given by

ps<r>:Zni<21i+1)<|fi<r>|2—|gi<r>|2>, (16)

7

densities in terms of isotropi@nisotropi¢ harmonic oscil-
lator basis as described in R¢€]. The expansion is trun-
cated so as to include for fermiorimesons all the states
having major oscillator quantum numbENFmax(NBma)].

We fix the basis parameters: The sizev=41A"3 the
deformation =0 (close to the experimental valudor

p,,<r>=2i ni(2j;+ 1) (fi(n)|2+]gi(r)]?),

spherical(deformed nuclei andN,:maszBmaxz 20(14) for

p3<r>=2nizti<2ji+1><|fi<r>|2+|gi<r>|2>, (18)

1
Pc(r):Zi ni(z_ti)(zji+1)(|fi(r)|2+|gi(r)|2)-
(19

for the occupied levels, )
for the unoccupied levels. 20

> n,=number of neutrons/protons. (21

taken to be the most up to date set NB)].
m,=763.0.
case with no pairingmagic nuclej at T=0 First a systematic set of self-consistent RMF-T calcula-
from 0 to 5 MeV. Some of these results, e.g., the mean field
in the constant gap approximation as described in F&f. Next, RMF-T calculations for deformed nuclei are carried
ing Fermi energy. The Fermi energy is obtained through thesults for a few selected representative deformé®feg,
(T=0) only for these open shell deformed nuclei. The gap
To incorporate the finite size of the proton, the calculate racted from the odd even mass differences obtained from the
folded density can then be directly compared with the experi-(lllesy and 1.079(1.213 MeV, respectively. Initially the
M= \/m Ng, =14, Ng__=20. Practically no change in the calcu-
=20 may be reasonable and reliable. For the rest of the
I1l. DETAILS OF THE CALCULATION
The RMF equations for the spheridaleformed systems, max

spherical(deformed systems, in accordance with our earlier
work ([6]). The parameters appearing in the Lagrangian are
The parameters of this NL3 sgt0Q] are as follows:
MassesMeV): M =939.0, m,=508.194,m,=782.501,
Coupling constants: g,=10.217, ¢,=12.868, g,
The quantities; are the occupation numbers. In the simple =4.474,9,=—10.431 fm'*, andg,= —28.885.
tions are carried out for spherical nuclet®Pb and the hy-
. ‘ 1 pothetical nucleug®GG (z=114) for temperatures ranging
=
0
potential, effective mass, densities, etc. are presented and
For open shell nuclei with pairing thg can be obtained discussed in the next section.
For high excitationsT>0, n; is given by Eq.(2) in which  out. In the next section we present and discuss some of our
the chemical potentigk is to be replaced by the correspond- temperature dependent relativistic mean fi6RMF-T) re-
constraint 188y, and °%Sm) nuclei. As stated earlier, pairing is in-
cluded in the constant gap approximation for the ground state
parameters for neutrongrotons A, (A,) required in the
alculation of the respective occupation probabilities are ex-
oint proton density is folded with the proton charge distri- -
Eutionpof rms—radiuZ 0.8 fermi having a gaussian sr?ape Thi ublished 11] mass tables. The calculated valued\gi(A,)
: - or 168%er, 1%8yp, and °%Sm are 1.034(1.176, 1.041
mental charge densny..SlmllarIy, the char_ge radiobtained calculations have been carried out with: =12, Ng
from the calculated point proton rms radii through 16 max max
=20 for °Er, then the same have been repeated with
lated results have been noticed, indicating thereby the re-
can be compared with the corresponding experimental valuguired convergence. Thus the results with =12, Ng
max max
calculations presented here we therefore, Nx =12,
Ng  =20.
are solved by expanding separately the lafffg¢)) and the Before closing this section we would like to point out that
small (g(i)) component of the Dirac spinor and so also thethe contribution due to the evaporation of nucleons which
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TABLE I. The calculated self-consistent RMF-T total binding ' ' '
energyE, point neutron radius,, charge radius., the root mean
square radius,,s, and the entropys for the various values of the
temperaturd obtained by using the Lagrangian parameter set NL3.
The experimental ground stat&£ 0) values are give in the paren-
thesis.
208, = 20
T E M re M ms S %
0.0 1639.5 5.74 5.52 5.63

(1636.5 (5.50
1.0 1626.6 5.75 5.54 5.65 17.70
2.0 1567.7 5.83 5.57 5.70 57.01
3.0 1469.2 5.98 5.61 582 96.35
35 1401.8 6.09 565 590 117.07 L
4.0 1320.4 622 572 6.00 13875 0 4 8 12 16
r (fm)
28GG(Z=114) ) . i
FIG. 1. The calculated RMF-T effective potential as a function

0.0 2123.9 6.51 6.26 6.39 of the radial distance for protons and neutrons for the spherical
1.0 21006 6.52 629 6.41 4095 nucleus?*®b at temperatureb=0, 1.5, and 3.0 MeV.
2.0 2026.1 6.58 6.31 6.46  90.40
3.0 1888.2 6.73 6.35 6.57 14529 MeV for temperatures betweeh=0—5 MeV. This obser-
3.5 1789.4 6.84 639 6.65 175.64 vation holds true both for proton and neutron levels. To un-
4.0 1667.6 696 645 6.75 208.04 derstand this remarkable constancy &pfwe examine the

variation of the calculated effective mass, local potentials
and the density distributions. This is because these quantities

starts becoming relevant with increasing temperature, is idare interlinked in this self-consistent mean field approach.
nored in the present work. Boncle al. [12] incorporated  These are shown in Figs. 1-4, respectively. The calculated
this contribution in an approximate manner. In the correcproton local potentialFig. 1) oscillates in the interior. The
description this contribution should be taken into aCCOUnﬁnagnitude of oscillation decrease with the increase in tem-
accurately. However, this problem still awaits a satisfactoryperature. This oscillatory behavior is purely a manifestation
solution. Therefore, in the present context our results argf coulomb effect and is therefore absent in the neutron po-
reliable for temperature$ up to say 3 MeV, above which tential (Fig. 1). The potential increasegess attractiveand
uncertainties may start creeping in. Therefore, to be on th@anish at the surface but at a slightly larger radius as the

conservative side, we present and discuss the rest of owmperature rises, both for neutrons and protons. This feature
results(i.e., for deformed system®nly for temperatured

<3 MeV.

1.05

IV. RESULTS AND DISCUSSION

First we analyze our self-consistent RMF-T results for the
nucleus?°®Pb, celebrated representative of spherical nuclei,
arranged in Table I. Similar results for a hypothetical super-
heavy spherical nucleu$®GG (Z=114) are also arranged
in the same table. The corresponding experimental values for
the ground stateT(=0), where available, are showim pa-
rentheses The ground state properties are well reproduced
as was found earlier. With the increase in temperaiutiee
higher lying levels start getting partially occupied, resulting
in the decrease in binding energy and slight increase in radii.
The increase in radii a§ increases, is very slow in the be-
ginning and later becomes relatively fast. These features are
as expected and are consistent with those found in the cor-
responding nonrelativisti€ODDHF-T) calculations[4] with
Skyrme-type interaction. The single particle level energies
(&;) vary only slightly with temperature. In general the low-

FIG. 2. The calculated RMF-T ratioM*/M) of the effective

est levels very slightly increase with temperature whereas thgass to the bare mass as a function of the radial distafmethe
high-lying levels decrease. The maximum variation-i&.5

spherical nucleug®Pb at temperatures=0, 1.5, and 3.0 MeV.
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20'8 L surface region is broadendéxtends further oytwith in-
0.08 + “"Pb Proton . crease inT, resulting an increase in the rms radii. This is
expected as with the heating of the system more and more

0.07 high lying levels start getting partially occupied.

0.06 K. Now we consider the effect of these variations on the

0.05 . single particle spectrum: An increase in the effective mass
® 0.04 4 raises the deep lying levels but lowers the high lying levels.
g On the other hand, an increase in the radius lowers the entire

=0.03
0.02
0.01

spectrum. Thus these two effects cancel in the lower part of
the spectrum while they go in the same direction for the high
s lying states. The net effect is that the lowest levels increase
very slightly with T whereas high lying levels decrease.

0.00 | . oh Iy . |
S R Overall there is only a small variation in the single particle
0 4 8 12 16 level spectrum. |
r (fm) For deformed systems we expect more changes in the

average field with the increase in temperattird&his is be-

FIG. 3. The calculated RMF-T vector density,} and the dif- cause the melting of shell effects at higher excitations will
ference between the vector density and the scalar demsitysas  make the nucleus spherical. Therefore, we next analyze the
a function of the radial distance for protons in the spherical representative results of deformed nuclei. We selS&Er
nucleus®*®Pb at temperature=0, 1.5, and 3.0 MeV. and 1%8yb, both are well studied and are well deformed sys-

tems. The calculated RMF-T results for various temperatures
is expected to directly manifest in the calculated effectiveT are arranged in Table Il against the label NL3. Clearly, the
mass(Fig. 2. We see that with the increase in temperaturecaiculated ground statel & 0) total binding energy, charge
the effective massFig. 2) slightly increases in the interior radiusr, and the deformatio compare very well with the
and approaches to the bare value at the surface but at@rresponding experimental valu@gven in parenthesgsas
slightly larger value of. This behavior of the potentials and found in earlier studies. The total binding enefdecreases
the effeCtiVe mass iS direCtly I|nked W|th the decrease in thQNh”e the entropys increases as increases_ The deforma_
density in the interior, as _i; expected. The. cal_culated PoiNfion B (so also the quadrupole moment and hexadecupole
proton and neutron densities are shown in Figs. 3 and fhomenth,) slowly decrease with the rise in temperatie
respectively for various values of temperatlitéThese show  a¢ temperature close t6~3 MeV the deformation vanishes
oscillations in the interior which are relatively larger for the 53nd the nucleus becomes spherical. The charge and the rms
point proton densities. These oscillations reduce in magniadii are minimum at this temperature corresponding to the
tude with increase il and eventually expected to disappearspherica| shape. Beyond this critical temperatufe~@
at largerT (~5 MeV). Thus the heating of the system results MeV) the calculatecE (S) decreasdincreasg and the radii

in smoothening of the oscillations. Further, the central denicrease asT increases similar to that observed for the
sity is clearly lowered(decreases in the interioand the  gpnerical systems.

We also consider the nucleds’Sm a relatively less de-
formed system. Similar observations also hold for the calcu-

0.10 - ?%pp Neutron 7 lated RMF-T resultgpresented in Table lifor 1°°Sm. Here

0.09 s the deformationB vanishes at temperature close to 2 MeV,

008 o= i relatively earlier as compared to that for the well deformed

' nuclei.

0.07 ] The disappearance of shell effects can also be seen by

0.06 . studying the variation of entrop§as a function of excitation
¢ 0.05 i energy. At highT which is sufficient to wipe out the shell
Eooa | effects, the entrops and excitation energig* are expected
~ to be related by the asymptotic formuligk3]:

0.03 a

0.0 I S~2\a(E* + AE,),

0.01 a

0.00 1

. . . . E*=aT?— AE,. (22)
0 4 8 12 16
r (fm)

Here AE, (<E*) is the ground state shell correction aad

FIG. 4. The calculated RMF-T vector density,j and the dif-  the level density parameter which is relatedy(q:) the av-
ference between the vector density and the scalar demsity; as ~ erage density of single particle statgsat the Fermi energy,
a function of the radial distance for protons in the spherical through a factorr?/6.
nucleus?®Pb at temperature=0, 1.5, and 3.0 MeV. One can check these asymptotic relations by examining
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TABLE II. The calculated self-consistent RMF-T resuftsarked NL3: total binding energyE, point
neutron radius ,, charge radius., the root mean square radiug,s, the deformation3, the quadrupole
momentq,, hexadecupole momehy, the entropySandS/2T for the various values of the temperatdréor
deformed representative nuclei. The experimental ground stat®{ values are give in the parenthesis. The
corresponding DDHF results with Skyrn8K-11l and SKP interactions are also listed.

168y
T E n re I ms B d. h, S S2T
0.0 NL3 1365.6 5.45 5.28 5.36 0.35 19.3 0.67
SK-III 1358.9 5.41 5.37 5.37 0.36 19.9 0.90
SKP 1361.6 5.38 5.32 5.33 0.35 194 0.71
Expt.  (1365.8 (5.3) (0.39
1.0 NL3 1352.4 5.44 5.28 5.35 0.33 18.5 0.63 21.99 10.99
SK-III 1332.3 5.39 5.35 5.35 0.34 18.8 0.76 24.48 12.24
SKP 1338.0 5.36 5.29 5.31 0.32 17.9 0.61 32.59 16.30
2.0 NL3 1309.3 5.43 5.25 5.34 0.23 12.8 0.28 50.50 12.63
SK-III 1278.9 5.36 5.30 5.31 0.20 10.9 0.22 55.54 13.89
SKP 1282.8 5.31 5.22 5.25 0.07 4.1 0.04 69.08 17.27
3.0 NL3 1245.2 5.45 5.24 5.34 0.00 0.2 0.03 76.39 12.73
SK-III 1210.4 5.38 5.29 5.32 0.06 3.5 0.04 85.01 14.17
SKP 1204.4 5.38 5.26 5.31 0.05 2.6 0.05 103.76  17.29
35 NL3 1208.3 5.48 5.25 5.36 0.01 2.3 0.02 87.74 12.53
SK-II 1168.2 5.42 5.30 5.35 0.06 3.1 0.04 100.61  14.37
168Yb
0.0 NL3 1363.4 5.41 5.29 5.33 0.32 17.8 0.75
SK-III 1357.9 5.40 5.38 5.37 0.35 19.3 0.99
SKP 1361.5 5.36 5.33 5.33 0.34 18.9 0.74
Expt. (1362.8 (5.28 (0.33
1.0 NL3 1349.9 5.40 5.29 5.33 0.31 17.4 0.64 22.73 11.36
SK-III 1329.7 5.38 5.36 5.34 0.32 18.0 0.78 25.34 12.67
SKP 1334.0 5.34 5.30 5.29 0.30 16.6 0.55 33.27 16.64
2.0 NL3 1308.5 5.40 5.26 5.32 0.21 11.7 0.25 50.08 12.52
SK-III 1277.2 5.34 5.31 5.30 0.17 9.7 0.18 55.45 13.86
SKP 1282.8 5.30 5.24 5.25 0.07 3.7 0.04 68.43 17.11
3.0 NL3 1246.0 5.41 5.26 5.32 0.07 3.9 0.04 75.25 12.54
SK-III 1211.6 5.36 5.31 5.31 0.06 3.6 0.04 84.36 14.09
SKP 1205.9 5.35 5.29 5.30 0.05 2.8 0.06 103.22 17.24
3.5 NL3 1208.7 5.44 5.27 5.35 0.06 3.2 0.03 86.76 12.39
SK-III 1171.0 5.39 5.33 5.34 0.06 3.4 0.05 100.01 14.29
1505
0.0 NL3 1239.3 5.19 5.05 5.10 0.20 9.2 0.60
SK-III 1226.6 5.16 5.14 5.12 0.22 10.2 0.67
SKP 1236.3 5.11 5.06 5.07 0.16 7.2 0.13
Expt. (1236.2 (5.0 (0.19
1.0 NL3 1226.0 5.18 5.04 5.10 0.19 8.6 0.48 21.70 10.85
SK-III 1201.1 5.14 5.11 5.11 0.20 9.3 0.50 24.86 12.43
SKP 1211.6 5.10 5.04 5.05 0.13 6.1 0.11 31.19 15.60
15 NL3 12105 5.17 5.03 5.09 0.11 5.0 0.16 34.11 11.37
SK-III 1182.0 5.13 5.09 5.09 0.11 5.1 0.13 37.79 12.60
SKP 1193.1 5.10 5.03 5.04 0.04 1.9 0.02 46.10 15.37
2.0 NL3 1190.8 5.18 5.02 509 -0.02 -0.7 -0.02 45.41 11.36
SK-III 1161.2 5.13 5.09 5.09 0.03 1.6 0.01 49.84 12.46

SKP 1168.0 5.11 5.05 5.06 0.02 11 0.01 61.09 15.29
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1/d<? S SKP has the effective mas#() equal to the bare mass
Z(d?) o7 (M). The ground state DDHF-T results with SKP interaction
are almost identical to those of SK-Ill, as expected because
and that was the criterion used in generating these SK-Ill and
SKP interaction parameters. The calculations reveal that the
dE* deformation 8) now disappears at lower temperaturgé (

~ 2 MeV) for both %8r and 18yb. This value is very close
to that obtained in the Strutinsky calculation for these nuclei.

The DDHF-T results with SKP interaction fd*°Sm in-
g}cate that the temperatufiewhere the deformatio dis-
appears is- 1.5 MeV, slightly lower as compared to that for

Il deformed systemee.g., %Er and '%8vb). This value
(I.5 MeV) is also close to the value expected from the
dStrutinsky approximation.

Based on this analysis, one may therefore, conclude that
The corresponding DDHF-T results with Skyrme Il in- the above mentioned difference in thg value of_the tempera-
teraction for16%r, 168vb. and 5%Sm are also listed in Table e (T) where the shell effects disappear in the self-

’ ’ consistent mean field approach and the Strutinsky approach,

Il against the label SK-IIl. These SK-IIl results show identi- . .
cal trends as those observed for the respective RMF-T réS due to the use of the value of the effective mass less than

sults. It is now known that fully self-consistent mean fieIdthe bare mass in the former.

calculations like the DDHF-T with the Skyrme-Ill interac-

tion or RMF-T reveal that the deformation and the shell ef-

fects disappear with increasing excitations at aroline3

MeV for well deformed nuclei like'®®b. On the other hand We have carried out self-consistent temperature depen-
the Strutinsky-type calculation yields zero deformation, indent relativistic mean fieldRMF-T) calculations for some
general, at lower temperatures, e 1.8 MeV for 1%8yh. sample spherical and deformed nuclei, demonstrating
This difference in the value of temperaturemay be either thereby the feasibility of carrying out such temperature de-
due to the lack of self-consistency in the Strutinsky-type calpendent calculations in practice. The analysis of the results
culations and/or due to the use of the value of the nucleomeveal systematics very similar to those observed in the cor-
effective masg M* < the bare massM)] appearing in responding nonrelativistic temperature dependent Hartree-
Skyrme-IIl interaction or resulting from the RMF Lagrang- Fock (DDHF-T) studies with density dependent Skyrme-type
ian. To examine the problem of the self-consistency we firsinteractions(SK-1ll and SKB. The energy decreasékess
carried out the self-consistent RMF calculations for differentnegative while the size(radii) increases as temperature in-
deformations generating energyE) versus deformation creases. The deformed systems tend to become spherical as
(B) curve for the ground stateTE&0) of 1°%Er. It is ob-  temperature rises. Shell effects wash out at high excitations,
served that the lowest energmaximum binding occurs at  i.e., with rising temperaturesl. The melting away of shell
the B value equal to that listed in Table Il far=0. Then we effects for well deformed nuclei is at temperatiire 3 MeV
carried out the self-consistent RMF-T constrdion the de-  while it is at a lower temperatur@roundT~2 MeV) for
formation B: fixed to the ground state valuealculations for moderately deformed systems. The Strutinsky calculations
various temperaturesTj. It is observed that this constraint yield relatively less value of the temperatfi@ at which the
does not change the total enerfyand so also the single deformation vanishesd—0) as compared to that obtained
particle energiess;). These observations then indicate thatin the self-consistent mean field approaches like DDHF-T
the lack of self-consistency is not the origin of the differencewith Skyrme Il (SK-I) interaction or RMF-T. On the other

in the value of temperatur& where the deformation and hand the DDHF-T result$SKP) with Skyrme Interaction
shell-effects disappear, obtained in the self-consistent mea®KP (having effective nucleon mass the same as the bare
field approach and the Strutinsky approach. Therefore, wenass yield this value of temperatur@ close to the value
then considered the problem related to the effective mass ambtained in the Strutinsky type calculations. This difference
repeated the self-consistent DDHF-T calculations using thén the value of the temperature is therefore, expected to be
Skyrme interaction SKH14] and the same values of the due to the lower value< the bare magsof the nucleon
pairing gapsA, and A, as before. These results foPeEr, effective mass resulting in the SK-IIl interaction or from the
168y, and 1°%Sm are also listed in Table II. The interaction RMF Lagrangian.

ar

which can be evaluated numerically from the finite differ-
ences obtained at different temperatures. We include some
these results in Table Il. The tables show tIS42T ap-
proaches almost a constant value close to the temperatu
where the deformation vanishédisappearance of shell ef-
fecty. This holds for the results of all the three deforme
cases, listed in the tables.

V. SUMMARY AND CONCLUSION
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