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Radiative corrections to electron-proton scattering

L. C. Maximon
Physics Department, The George Washington University, Washington, D.C. 20052

J. A. Tjon
Institute for Theoretical Physics, University of Utrecht, 3584 CC Utrecht, The Netherlands

and KVI, University of Groningen, 9747 AA Groningen, The Netherlands
~Received 9 February 2000; published 24 October 2000!

The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the
finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton
vertex correction in this model increases by at least 2% of the overall factor by which the one-photon exchange
cross section must be multiplied. In addition, we refine the mathematical treatment, removing many of the
approximations made in the generally used expressions previously obtained by Mo and Tsai. In particular, the
contribution of soft photon emission is calculated exactly. Results are presented for some kinematics at high
momentum transfer and compared with the expressions of Mo and Tsai.

PACS number~s!: 13.40.Ks, 13.60.Fz, 25.30.Bf, 12.20.Ds
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I. INTRODUCTION

Electron scattering at intermediate and high energies
been one of the most useful means of investigating nuc
structure for over 40 years. With the advent of CW accele
tors and high resolution detectors such as MAMI and TJN
it has become clear that one must have an accurate esti
of the radiative corrections if meaningful cross sections
to be obtained from the experimental measurements.
pending on the experimental conditions—initial beam e
ergy, momentum transfer, and detector resolution or miss
mass for the observed particles—the radiative correcti
can be as large as 30% of the uncorrected cross section
obtain cross sections which are accurate to 1%, one m
then know the radiative correction to 3%.

The theoretical expression for the radiative correct
which has been used in the analysis of almost all single
elastic electron scattering experiments with beam ener
below approximately 25 GeV~for which W andZ exchange
are in general not significant! is that given originally by Tsai
@1,2# in connection with experiments at Stanford, SLAC, a
CEA. That work involved approximations that were bo
purely mathematical~made in performing the integration
needed to evaluate the inelastic cross section! and approxi-
mations denoted here as ‘‘soft-photon approximations’’ t
are directly related to the physics in that the effect of pro
structure was neglected; in considering the proton legs, o
the soft virtual~infrared! photon contribution is calculate
exactly—approximations are made in the hard virtual pho
~noninfrared! contribution. In particular, the proton structu
is neglected by setting the photon momentum squarek250
in the proton form factorF(k2), thus simplifying the calcu-
lation considerably.

The purpose of the present paper is twofold. First, to c
sider the contribution of the internal structure of the nucle
in the radiative correction to elastic electron-proton scat
ing. For this we have considered a simple model in which
proton current is taken to have the usual on-shell form. T
model dependence of the radiative correction is clearly
0556-2813/2000/62~5!/054320~17!/$15.00 62 0543
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important question for the analysis of electron scattering
periments at the 1% level. Second, to give a more refi
mathematical treatment than that presented in Refs.@1,2# and
used in essentially all experimental analyses. This refinem
is needed to achieve the accuracy attainable in current
periments and to get a better handle on the errors in
expressions used for the radiative correction.

The present calculation differs from that of Tsai@1,2# in
three substantive aspects. First, we evaluate the soft bre
strahlung cross section without any approximation; the
evant integrals have been given in closed form by ’t Ho
and Veltman@3#. In fact, the exact expressions are simpler
form than the approximate ones given in Refs.@1,2#. We note
in particular that in the limit of the target massM→`, cor-
responding to a static Coulomb potential, we obtain exac
the result first given by Schwinger@4#. Second, in the evalu
ation of the contribution of the box and crossed box d
grams to the elastic cross section we make a less dra
approximation than that made in@1#. Specifically, in the in-
tegrands corresponding to the relevant matrix elements,M2
andM3 @Eqs.~3.20!,~3.21!#, we make a soft photon approx
mation ~settingk50 or k5q) in the numerator~as in Ref.
@1#!, but not in the denominators. Again, the required in
grals ~scalar four-point functions! have been given in Ref
@3#; the resulting expressions are again considerably sim
than those obtained in Ref.@1#, where the soft-photon ap
proximation is also made in the denominators ofM2 andM3.
Finally, in evaluating the proton vertex correction, we ha
made no soft photon approximation for the virtual photon~as
was done in Ref.@1#! and have included form factors for th
proton, taking the proton current to be that indicated bel
in Eq. ~2.1!.

The organization of the paper is as follows. In Sec. II w
discuss questions concerning the electromagnetic nuc
current operator used in this analysis. In Sec. III we g
details of the calculation of the matrix elements and cr
section for elastic scattering, retaining terms of ordera rela-
tive to the Rosenbluth~one photon exchange! cross section
for elastic scattering. Integrals needed for the evaluation
©2000 The American Physical Society20-1
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the various matrix elements are written explicitly and e
pressed in closed form in terms of Spence functions~diloga-
rithms!. Details are given in the Appendices.

In Sec. IV we consider the soft bremsstrahlung cross s
tion in detail; as with the elastic cross section given in S
III, the result is expressed in closed form in terms of Spe
functions. In Sec. V we add the elastic and inelastic cr
sections, giving both an analytic expression and a numer
evaluation of the radiative correction for various values
the pertinent parameters~initial beam energy, final electron
detector resolution, and target nucleus!. We compare the val-
ues of the radiative correction calculated here with th
given in Refs.@1,2#.

II. ELECTROMAGNETIC NUCLEON CURRENT
OPERATOR

We follow in this paper the convention of Bjorken an
Drell @5#. The metric used is defined bypi•pj5e ie j
2pi•pj . Further,a5e2/4p51/137.036,m is the electron
rest mass,M is the target nucleus rest mass,Z the charge of
the target nucleus,k the anomalous magnetic moment of t
proton,p1 andp3 the initial and final electron four-momenta
respectively,p2 and p4 the initial and final target nucleu
four-momenta, respectively, andq5p12p35p42p2 is the
four-momentum transfer to the target nucleus for elastic s
tering. In the lab system we havep15(e1 ,p1), p3
5(e3 ,p3), p25(M ,0), p45(M1v,q), v52q2/2M . We
define, in addition,r5p41p2 and x5(r1r1)/(r2r1)
5(r1r1)2/4M2, with r1

252q2. Finally, h is the lab
system recoil factor: Fore1@m, e3@m, h>e1 /e3>1
1(e1 /M )(12cosu) whereu is the electron scattering angle
We note, in particular, that 1<h<x.

With the aim of presenting expressions which correspo
to the experimental conditions of high-energy electron sc
tering, we neglect, in the final expressions given in this
per, terms of relative ordersm2/e2, m2/(2q2), andm2/M2.
Neglect of these terms defines our high energy approxi
tion. No assumption is made, however, with regard to
magnitudes ofM /e1 , M /e3, or M2/(2q2).

At low momentum transfer the internal structure of t
nucleon can safely be neglected in the determination of
radiative corrections in electron-nucleus scattering. Ho
ever, with increasing energies and momenta this is in gen
no longer the case. One of the objectives of this paper i
investigate this in a model for the e.m. interaction of a no
pointlike nucleon. The most general e.m. off-shell nucle
vertex can be characterized by six invariant functions@6,7#.
As the most simple model we may consider a vector do
nancelike model for the nucleon current, characterized
only two form factors which depend only on the fou
momentum square of the photon. It is given by

Gm5F1~q2!gm1kF2~q2!
ismnqn

2M
, ~2.1!

where the form factorsF1(q2) andF2(q2) are taken to have
a monopole or dipole form
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F1~q2!5F2~q2!5S 2L2

q22L2D n

, n51 or 2 ~2.2!

with L being a constant of the order of 1 GeV/c. Although
the quantitative predictions of the radiative corrections
expected in general to be dependent on the details of
nucleon model assumed, one should already be able to
most of the salient features in the present model study
particular, identifying regions in phase space where the fin
size of the nucleon may play an important role in the size
radiative corrections can be important. In this way one m
hope to get some feeling for the reliability of neglecting t
internal structure of the nucleon as is usually done. T
present study is intended as a first exploration of the se
tivity on the nonpointlike nature of the e.m. hadronic curre
As in Ref. @1#, although we are primarily interested i
electron-proton scattering, the radiative corrections stud
here can also be applied to electron-nucleus scattering,
appropriate changes inF1 , F2 , k, andM. However, even in
the case of electron-proton scattering, the factorZ is conve-
nient for identifying the contributions from the various di
grams.

It should be noted that the dressed vertex functionL̃m ,
with Eq. ~2.1! as e.m. current operator containing the for
factorsFn , satisfies the identity

qmL̃m5F1~q2!@S21~p8!2S21~p!#, ~2.3!

whereS is the dressed nucleon propagator andq5p82p. As
a direct consequence of Eq.~2.3!, one gets for on-mass-she
nucleons, the current conservation

qm^p8uL̃mup&50. ~2.4!

Obviously, the radiative corrections will in general be sen
tive to the choice of the e.m. nucleon current. In gene
contact terms have to be introduced to satisfy gauge inv
ance. Due to our assumption~2.1! that the nucleon form
factor is dependent only on the photon momentum squ
gauge invariance is trivially satisfied. Although interesting
its own right, we will not address in this paper the issue
the sensitivity of the predictions on the choice of e.
nucleon current.

In the study of radiative corrections we may distingui
between the elastic and inelastic contributions, the latter
ing the real soft photon emission processes from both
electron and hadron. The elastic electron cross section ca
determined immediately from the total scattering amplitu
M through the well-known expression

ds5
mM

A~p1•p2!22m2M2 (
spins

E uMu2~2p!4

3d4~p41p32p22p1!
m d3p3

~2p!3e3

M d3p4

~2p!3e4

. ~2.5!

For single-arm experiments with unpolarized electrons
which the final proton is not observed,ds must be averaged
0-2
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FIG. 1. Feynman diagrams fo
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over initial spins, summed over final spins, and integra
over the final proton four-momentum. Up to ordera2 we
have for the total scattering amplitude

M5 (
n51

6

Mn , ~2.6!

where the various terms correspond to the Feynman g
contributions shown in Fig. 1. HereM1 is the matrix element
for the one-photon exchange diagram

M15Ze2ū~p3!gmu~p1!
~2 i !

q21 i e
ū~p4!Gm~q2!u~p2!.

~2.7!

M2 andM3 are the matrix elements for the box and cross
box ~two-photon exchange! diagrams.M4 is the vacuum po-
larization matrix element~only an electron-positron loop i
indicated in the figure, but the contribution from higher ma
lepton loops can be included without difficulty!. M5 is the
electron vertex correction, andM6 is the proton vertex cor-
rection.

III. ELASTIC CROSS SECTION

To evaluate the various one-loop corrections to Eq.~2.6!
some tedious algebra has to be carried out. We outline
procedure used to evaluate the matrix elements neede
the radiative correction to the elastic cross section,M2
throughM6.

A. Proton vertex correction

We begin with the matrix element for the proton vert
correctionM6 given by
05432
d

ph

d
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M65Z3e2ū~p3!gmu~p1!
~2 i !

q21 i e
ū~p4!Lm~p4 ,p2!u~p2!,

~3.1!

where

Lm~p4 ,p2!52 ie2E d4k

~2p!4

1

k22l21 i e
Gn~k2!

3
1

~p” 42k”2M1 i e!
Gm~q2!

1

~p” 22k”2M1 i e!

3Gn~k2!. ~3.2!

In Eq. ~3.2!, each of the threeG ’s, given by Eq.~2.1!, con-
tains a term withgm ~which we denote byg) and a term with
smn ~which we denote bys). The proton vertex correction
Lm(p4 ,p2) then consists of eight terms, which we represe
symbolically byggg, gsg, gss, etc. As may be seen afte
rationalizing the propagators, thek dependence of the nu
merators forggg,gsg, . . . , is such that there are at mos
four factors of the formk” . Moreover, the terms with three o
four factors k” may, with only a minimum of algebra, b
written so that two of these factors are adjacent, givingk”k”
5k2. Although the calculation can equally well be carrie
out with F1 and F2 distinct functions, we assumeF15F2
5F, which simplifies the algebra. The termsggg,gsg, . . . ,
can then be expressed in terms of the integrals

$I 0 ;I m ;I mn ;J0 ;Jm ;Jmn ;K0%

5E d4k

~2p!4
F2~k2!

3$1;km ;kmkn ;k2;kmk2;kmknk2;~k2!2%/D~l2!, ~3.3!
0-3
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L. C. MAXIMON AND J. A. TJON PHYSICAL REVIEW C62 054320
where

D~l2!5~k22l21 i e!~k222k•p21 i e!~k222k•p41 i e!.
~3.4!

For form factors having the form given in Eq.~2.2!, the
integrals in Eq.~3.3! could all be evaluated as indicated f
three-point functions in Ref.@3#, Sec. 5, and Ref.@8#, Ap-
pendix E. However, in the interest of obtaining a relative
compact analytic expression in closed form, we have use
alternative procedure. As given here in Appendix A, the
tegrals may be expressed in terms of their moments, defi
by Eqs.~A4!–~A6! and ~A13!. After straightforward though
somewhat tedious algebra, the termsggg,gsg, . . . , arethen
expressed in terms of these moments. Next, for form fac
of the form given in Eq.~2.2!, we show that all of the mo-
ments may be expressed in terms of three functionsfk ,
which obey a three-term inhomogenous recursion, and th
used for their evaluation. Finally, we note from Eqs.~A32!–
~A37! that the termsggg,gsg, . . . , may be usefully
grouped by writing them in the form

~g1s!g~g1s!5F~q2!FG1~q2!gm1G2~q2!
ismnqn

2M G
~3.5!
-
by

ex
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~g1s!s~g1s!5kF~q2!FX1~q2!gm1X2~q2!
ismnqn

2M G .
~3.6!

We note in the expressions forggg, gsg, . . . , in Appen-
dix A that the infrared divergent terms are all contain
solely withinggg andgsg. These are the terms with a facto
f1(l2) in Eqs. ~A32!,~A33!. Since these are precisely th
terms which are retained in the proton vertex correction
Ref. @1#, we separate them for the purpose of comparis
with that work, writingM6 in the form

M65M6
(0)1M6

(1) , ~3.7!

where

M6
(0)52

aZ2

2p
~2M22q2!f1~l2!M1 . ~3.8!

The functionf1(l2), defined by Eq.~A20!, is simply related
to the functionK(p2 ,p4) defined in Ref.@1# by
K~pi ,pj !5
2pi•pj

2 ip2 E d4k

~k22l21 i e!~k222k•pi1 i e!~k222k•pj1 i e!
,

viz.,

K~p2 ,p4!52p2•p4f1~l2!. ~3.9!

In addition to Eq.~3.1! we also have to include the con
tribution of the proton self-energy diagrams. It is given
S8 where

S85
1

4
TrF ]S

]p”
G ~3.10!

in which S is the lowest order self-energy contribution

S52 ie2E d4k

~2p!4

1

k22l21 i e
Gn~k!

3
1

~p”2k”2M1 i e!
Gn~k!. ~3.11!

The addition of this contribution to the lowest order vert
correction modifies the expressions for (g1s)g(g1s) and
(g1s)s(g1s) given above in Eqs.~3.5!,~3.6! so that we
now have
~g1s!g~g1s!5F~q2!

3F „G1~q2!2G1~0!…gm1G2~q2!
ismnqn

2M G
~3.12!

and

~g1s!s~g1s!5kF~q2!

3FX1~q2!gm1„X2~q2!2G1~0!…
ismnqn

2M G .
~3.13!

Here use has been made of the identity

S85G1~0!

which follows from Eq.~2.3!. We then have, for the matrix
element including self-energy diagrams

M̄65M̄6
(0)1M̄6

(1) , ~3.14!

where
0-4
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M̄6
(0)5

aZ2

2p
@2K~p2 ,p4!1K~p2 ,p2!#M1 ~3.15!

which is the expression given in Ref.@1#, Eq. ~II.12!. The
infrared divergent part of these terms is cancelled exactly
the infrared divergent terms in the inelastic cross sect
This is in accordance with the general result found in R
@9#.

B. Electron vertex and vacuum polarization corrections

These contributions have been extensively studied in
literature. Here for completeness give the results valid
high momentum transfer. The electron vertex correction
immediately be obtained from the previous section by reta
ing only the termggg and taking the limitL→`. For
2q2@m2 we have, after adding the contribution of the ele
tron self-energy diagrams

M̄55
a

2p H 2K~p1 ,p3!1K~p1 ,p1!1
3

2
lnS 2q2

m2 D 22J M1

~3.16!

which is the expression given in Ref.@1#, Eq. ~II.5!. We note
that the infrared divergence is contained entirely within
terms2K(p1 ,p3)1K(p1 ,p1).

The matrix elementM4 for vacuum polarization is, afte
charge renormalization, related simply to the matrix elem
M1. If we include the vacuum polarization amplitudes fro
particle-antiparticle fermion loops of different masses, as
been done in several experimental analyses@15#, then

M45M1(
i

P f~q2/mi
2!. ~3.17!

For a fermion loop in the photon propagator,P f(q2/mi
2) is

given in Ref.@5# in terms of an integral which can be eval
ated in closed form@10#, giving

P f~q2/mi
2!5

a

3p H S 12
u

2DA11u

3 lnS A11u11

A11u21
D 1u2

5

3J ~3.18!

in which mi is the mass of the fermion andu54mi
2/(2q2).

For 2q2/mi
2@1 this gives

P f~q2/mi
2!5

a

p H 1

3
lnS 2q2

mi
2 D 2

5

9J . ~3.19!

In principle, once one includes particle-antiparticle pa
of mass greater than the electron mass, bosons as we
fermions should be considered. The matrix elements
vacuum polarization for a pair of structureless spin z
bosons in the closed loop, first given by Feynman@11#, may
be found in a more accessible form in a paper of Tsai@10#.
05432
y
n.
f.

e
t
n
-

-

e

t

s

s
as
r

o

A more complete discussion of vacuum polarizati
should include a consideration of pion structure as well
the contribution of spin-one bosons, in particular ther me-
son. A detailed discussion of the hadronic contribution
vacuum polarization may be found in connection with calc
lations of the anomalous magnetic moment of the muon@12#
and in connection with radiative corrections to high-ener
electron-positron collider experiments@13#.

C. Box and crossed-box diagrams

The matrix elements for the box and crossed-box d
gramsM2 andM3 are

M25~Ze2!2E d4k

~2p!4

1

k22l21 i e

1

~k1q!22l21 i e

3F ū~p3!gn

1

p” 12k”2m1 i e
gmu~p1!G

3F ū~p4!Gn@~k1q!2#
1

p” 21k”2M1 i e
Gm~k2!u~p2!G ,

~3.20!

M35~Ze2!2E d4k

~2p!4

1

k22l21 i e

1

~k1q!22l21 i e

3F ū~p3!gn

1

p” 12k”2m1 i e
gmu~p1!G

3F ū~p4!Gm~k2!
1

p” 42k”2M1 i e
Gn@~k1q!2#u~p2!G .

~3.21!

After rationalizing the propagators, the required integr
can, for form factors of the form~2.2!, all be written in terms
of four-point functions; in principle they can be evaluat
using @3#, Sec. 6, and@8#, Appendix E. In the present work
however, we have chosen to evaluate these matrix elem
in an approximate manner, but one which is less drastic t
that employed in Ref.@1#. We note first that inM2 andM3
the integrands have two infrared divergent factors@(k22l2

1 i e)„(k2q)22l21 i e…#21. The integrands are thus peake
when either of the two exchanged photons is soft, and
come divergent whenk→0 or when k→q. We therefore
evaluate the numerators inM2 and M3 at these two points
but make no changes to the denominators. A simple calc
tion shows in fact that each of the numerators has the s
value fork50 as fork5q, viz., 4ip1•p2q2M1 in the case of
M2 and 4ip3•p2q2M1 in the case ofM3. We then take this
factor outside of the integral and are left with a scalar fo
point function to evaluate. The result has been given in@3#,
Sec. 6 and Appendix E~b! and is expressed simply in term
of logarithms
0-5
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M252
aZ

p

e1

up1u
lnS e11up1u

m D lnS 2q2

l2 D M1 ~3.22!

and

M35
aZ

p

e3

up3u
lnS e31up3u

m D lnS 2q2

l2 D M1 . ~3.23!

By contrast, in Ref.@1#, in addition to the approximation
just described, a soft-photon approximation is made in
infrared denominators: Specifically, whenk50 the factor
(k2q)22l2 is set equal toq22l2 and whenk5q the factor
k22l2 is set equal toq22l2, thus giving two terms and
reducing the four-point function to three-point functions

M252
aZ

2p
@K~p2 ,2p1!1K~p4 ,2p3!#M1 ~3.24!

and
n

ire
on

en

05432
e

M35
aZ

2p
@K~p2 ,p3!1K~p4 ,p1!#M1 ~3.25!

†see Ref.@1#, Eqs.~II.9! and~II.11!‡. The infrared divergent
terms~those with a factor lnl2) are, forM2, the same in Eqs
~3.22! and~3.24!, and, forM3, the same in~3.23! and~3.25!.
However, Eqs.~3.24!,~3.25! differ significantly from Eqs.
~3.22!,~3.23!. These latter expressions are functions of t
momentum transfer,q2. The integralsK(pi ,pj ), on the other
hand, are functions only of the scalar invariantspi

2 , pj
2 and

pi•pj . In Eqs. ~3.24!,~3.25!, M2 and M3 therefore depend
only on the initial and final electron energies, and not on
momentum transfer (p2•p15p4•p35e1M ; p2•p35p4•p1
5e3M ).

D. Contribution of proton form factor

Using our results obtained forMn , we find up to ordera
uMu25uM1u25
11

a

p F13

6
lnS 2q2

m2 D 2
28

9
2K~p1 ,p3!1K~p1 ,p1!G

2
2aZ

p
ln h lnS 2q2

l2 D
1

aZ2

p
@2K~p2 ,p4!1K~p2 ,p2!#

6 12 Re$M1
†M̄6

(1)%. ~3.26!
ion,
This holds provided that2q2@m2.
Finally, we consider the remaining contributio

2 Re$M1
†M̄6

(1)% in Eq. ~3.26!, coming from the inclusion of
form factors for the proton and integration over the ent
range of four-momenta of the virtual photon in the prot
vertex correction. The termM6

(1) is obtained from the full
proton vertex correction by subtracting the infrared diverg
matrix elementM6

(0) which is independent of the proton form
factor. We may therefore introduceG18(q

2) andX28(q
2) to be

the expressionsG1(q2) and X2(q2) from which we have
omitted the terms with factorf1(l2). As a result we get
~apart from factors!

M̄6
(1)5

aZ2

2p
^p3ugmup1&^p4uG̃mup2& ~3.27!

and

2 Re$M1
†M̄6

(1)%5
aZ2

p
„^p3ugnup1&^p4uGnup2&)

†~^p3ugmup1&

3^p4uG̃mup2&!, ~3.28!

where
t

G̃m[F̃1~q2!gm1kF̃2~q2!
ismnqn

2M
~3.29!

with

F̃1~q2![F~q2!@„G18~q2!2G18~0!…1kX1~q2!#,
~3.30!

kF̃2~q2![F~q2!@G2~q2!1k„X28~q2%2G18~0!…#.
~3.31!

Equation~3.28! has the same form as

M1
†M15~^p3ugnup1&^p4uGnup2&!†~^p3ugmup1&^p4uGmup2&!

~3.32!

with the exception of the replacementGm→G̃m in the right-
hand term. Thus, in place of the Rosenbluth cross sect
obtained from(spinsM1

†M1, we have

(
spins

2 Re$M1
†M̄6

(1)%5
a2 cos2~u/2!

4e1
2h sin4~u/2!

S aZ2

p D $ % ,

~3.33!

where
0-6
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$ %5S F1F̃12
k2q2

4M2
F2F̃2D

2
q2

2M2
~F11kF2!~ F̃11kF̃2!tan2

u

2
. ~3.34!

The purely elastic cross section, including radiative corr
tions to ordera, can thus be written as

S ds0

dV D ~11del
(0)1del

(1)!, ~3.35!

where
on
ec
it

05432
-

del
(0)5

a

p H 2F lnS 2q2

m2 D 21G lnS m2

l2 D 1
13

6
lnS 2q2

m2 D 2
28

9

2
1

2
ln2S 2q2

m2 D 1
p2

6 J 2
2aZ

p
ln h lnS 2q2

l2 D
1

aZ2

p H 2S e4

up4u
ln x21D lnS M2

l2 D
1

e4

up4u F2 ln x lnS r2

M2D 1
1

2
ln2x

12LS 2
1

xD1
p2

6 G J , ~3.36!

in which L(z) is defined in Eq.~B9! and
del
(1)5

aZ2

p H @F1F̃12~k2q2/4M2!F2F̃2#2~q2/2M2!~F11kF2!~ F̃11kF̃2!tan2~u/2!

$@F1
22~k2q2/4M2!F2

2#2~q2/2M2!~F11kF2!2tan2~u/2!#
J . ~3.37!
he

ter-
ef.
IV. SOFT BREMSSTRAHLUNG CROSS SECTION

In this section we calculate the contribution of soft phot
emission to the radiative correction; emission by both el
tron and proton are included. The relevant diagrams, w
corresponding matrix elements,Mb1 andMb2, are shown in
Fig. 2. These matrix elements are given by

Mb152 iZe3~2p!4d4~p31p41k2p12p2!

3
mM

A2ve1e3e2e4

ū~p3!F e”
1

p” 31k”2m1 i e
gm

1gm

1

p” 12k”2m1 i e
e” Gu~p1!ū~p4!Gmu~p2!

3
1

~p12p32k!21 i e
, ~4.1!

Mb25 iZ2e3~2p!4d4~p31p41k2p12p2!

3
mM

A2ve1e3e2e4

ū~p3!gmu~p1!

3ū~p4!F e”
1

p” 41k”2M1 i e
Gm

1Gm
1

p” 22k”2M1 i e
e” Gu~p2!

1

~p12p3!21 i e
.

~4.2!
-
h

Making the soft photon approximation, we rationalize t
denominators and drop terms of relative orderk in the nu-
merator and denominator~but not in the delta function!. The
cross section, summed over photon polarizations, is then

dsb52
Z2e6

~2p!9

m2M2

A~p1•p2!22m2M2

3 (
spins

E d3p3

e3

d3p4

e4

d3k

2v
~2p!4

3d4~p31p41k2p12p2!uū~p3!gmu~p1!ū~p4!

3Gmu~p2!u2
1

~q2!2 S p3

p3•k
2

p1

p1•k
2Z

p4

p4•k
1Z

p2

p2•kD 2

.

~4.3!

The range of integration in the above expression is de
mined by the experimental conditions. We assume, as in R

FIG. 2. Feynman diagrams for inelastic amplitudes.
0-7
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@1#, that the final proton and emitted photon are undetecte
different result would be obtained in the case of coincide
experiments. Integrating first overd3p4 we obtain

dsb52
Z2e6

~2p!5

m2M2

A~p1•p2!22m2M2 (
spins

E d3p3

e3
E d3k

v

3d„~ t2k!22M2
…u~e4!uū~p3!gmu~p1!ū~p4!

3Gmu~p2!u2
1

~q2!2 S p3

p3•k
2

p1

p1•k
2Z

p4

p4•k
1Z

p2

p2•kD 2

~4.4!
a
en
a

e

05432
a
e
with t[p11p22p35p41k. The succeeding integration
are simplified by transforming to the special frame S0 ~de-
fined byt50), in which the argument of the delta function
Eq. ~4.4! is independent of the direction of the emitted ph
ton. The photon energy is then given solely by the final el
tron energy. We integrate next over the photon energy
angles in S0. Assuming that the elastic cross section has
significant variation over the range of photon momenta,
may takeuū(p3)gmu(p1)ū(p4)Gmu(p2)u2/(q2)2 outside of
the integration, settingp3 and p4 equal to their values for
purely elastic scattering. We may then transform back to
lab frame and integrate over the angles of the final electr
determined by the entrance slit and spectrometer, giving
e

form
dsb52
a

4p2
ds0E 8d3k

v S p3

p3•k
2

p1

p1•k
2Z

p4

p4•k
1Z

p2

p2•kD 2

, ~4.5!

wherev5Ak21l2. The integration over photon energy is restricted touku<De, whereDe is the maximum momentum of th
photon in the frameS0, which is related to the final electron detector acceptance in the lab frameDE by De5hDE ~see
Appendix C for details!. It is assumed thatDe is less than any of the other energies. The relevant integrals are all of the

Li j 5E 8d3k

v

1

~pi•k!~pj•k!
, ~4.6!

in terms of which

dsb52
a

4p2
ds0H m2L111m2L3322p1•p3L13

1Z~22p1•p2L1212p3•p2L3212p1•p4L1422p3•p4L34!

1Z2~M2L221M2L4422p2•p4L24!
J . ~4.7!
-

ion
Eq.
These integrals have been evaluated by ’t Hooft and Veltm
@3#, Sec. 7. We give here only their final result, rewritt
using our metric; the essential steps in the derivation
given in their work. As shown in@3#, Sec. 7, for the case in
which the momentapi and pj are all on the mass shell, th
integralsLi j can, providedpi is not a multiplepj , be written
in the form

Li j 5
2p

A~pi•pj !
22mi

2mj
2 $Si j

(1)1Si j
(2)%, ~4.8!

where

Si j
(1)52 lnS pi•pj1A~pi•pj !

22mi
2mj

2

mimj
D lnS 2De

l D ~4.9!

and

Si j
(2)5 ln2S b i

miAt2D 2 ln2S b j

mjAt2D 1LS 12
b i l •t

t2g i j
D

1LS 12
mi

2l •t

b ig i j
D 2LS 12

b j l •t

at2g i j
D 2LS 12

mj
2l •t

ab jg i j
D ,

~4.10!
n

re

in which L(z) is defined in Eq.~B9! and

a5
pi•pj1A~pi•pj !

22mi
2mj

2

mi
2

, l 5api2pj ,

~4.11!

b i , j[pi , j•t1A~pi , j•t !22mi , j
2 t2, g i j [A~pi•pj !

22mi
2mj

2.

~4.12!
@Note that forDe→0, Si j

(2) remains finite; the only singular
ity is confined to the term ln(2De/l), evident inSi j

(1) .# The
evaluation of Eq.~4.6! for pi5pj is straightforward. The
result written in terms of relativistic invariants is

Lii 5
4p

mi
2 F lnS 2De

l D2
pi•t

A~pi•t !22mi
2t2

lnS b i

miAt2D G .

~4.13!

In Ref. @3#, Sec. 7, the expression forSi j
(2) is evaluated in the

frameS0. Since we want finally to express the cross sect
in terms of lab frame energies and momenta, we have, in
~4.10!, written Si j

(2) in terms of relativistic invariants. The
terms of leading order in lnl are apparent in Eqs.~4.9! and
~4.13!. Substituting these in Eq.~4.7! gives the infrared di-
vergent terms indsb . They are cancelled exactly by the lnl
terms in the elastic cross section.
0-8
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TABLE I. Contributions to the radiative correctiond for electron-proton scattering as given in this pap
~MTj ! and in Mo and Tsai@2# ~MoTsai! for three initial electron energies and four-momentum transf
Values in the rows markedZ0, Z1, andZ2 refer to contributions from terms with these factors in Eq.~5.2!.

e154.4 GeV e1512 GeV e1521.5 GeV
Q256 (GeV/c)2 Q2516 (GeV/c)2 Q2531.3 (GeV/c)2

MTj MoTsai MTj MoTsai MTj MoTsai

Z0 20.2187 20.2171 20.2330 20.2322 20.2323 20.2317
Z1 20.0569 20.0506 20.0517 20.0479 20.0625 20.0571
Z2 20.0242 20.0232 20.0359 20.0347 20.0452 20.0440
del

(1) 10.0068 10.0116 10.0185
d 20.2930 20.2908 20.3090 20.3149 20.3214 20.3328
ve
xi-
in
In writing the explicit expressions for the terms inLi j , we
choosei and j such thatLi j simplifies readily for lab frame
electron energies and momentum transfers which are
large compared to the electron rest mass. WhenmiÞmj , this
en
al

05432
ry

is achieved by choosingi and j such thatmi5m and mj
5M . dsb can now be calculated in the high-energy appro
mation as defined in Sec. II. Using the results as given
Appendix D, we obtain for the inelastic cross section
dsb5
a

p
ds05

F lnS 2q2

m2 D 21G lnS ~hmDE!2

e1e3l2 D 1
1

2
ln2S 2q2

m2 D 2
1

2
ln2 h1LS cos2

1

2
u D2

1

3
p2

12ZF ln h lnS ~2hDE!2

xl2 D 1LS 12
h

x D2LS 12
1

hxD G
1Z2F S e4

up4u
ln x21D lnS ~2hDE!2

l2 D 2
e4

up4u F ln2 x2 ln x1LS 12
1

x2D G21G 6 , ~4.14!
en
ton
where h is the lab system recoil factor andx5(r
1r1)/4M2, introduced in Sec. II.

V. RADIATIVE CORRECTIONS TO ELASTIC
ELECTRON-PROTON SCATTERING

The results given in Eqs.~3.36!,~3.37!, and~4.14! may be
added to give the radiative correctiond. The analytic expres-
sion is given below in Eqs.~5.1!,~5.2!. Numerical evaluation
of the radiative correction for various values of the pertin
parameters~initial beam energy, momentum transfer, fin
t

electron detector resolution, and target nucleus! are given in
Tables I–III. We note that the infrared (lnl) terms, which
appear in both the purely elastic~3.36! and inelastic~4.14!
contributions to the radiative correction, cancel exactly wh
added to give the cross section for elastic electron-pro
scattering with radiative corrections to first order ina:

ds5ds0~11d!, ~5.1!

where
TABLE II. Contributions to the radiative correctiond as given in this paper~MTj ! and in Mo and Tsai@2#
~MoTsai! for several nuclei, withe154.4 GeV,Q256 ~GeV/c)2; other symbols as in Table I.

2H 4He 12C 40Ca
MTj MoTsai MTj MoTsai MTj MoTsai MTj MoTsai

Z0 20.2476 20.2467 20.2535 20.2532 20.2615 20.2609 20.2632 20.2625
Z1 20.0187 20.0183 20.0066 20.0077 20.0151 20.0168 20.0147 20.0173
Z2 20.0094 20.0088 20.0077 20.0071 20.0156 20.0145 20.0188 20.0178
del

(1) 10.0010 10.0002 10.0001 10.0001
d 20.2747 20.2739 20.2677 20.2680 20.2920 20.2922 20.2966 20.2975
0-9



L. C. MAXIMON AND J. A. TJON PHYSICAL REVIEW C62 054320
d5
a

p F13

6
lnS 2q2

m2 D 2
28

9
2F lnS 2q2

m2 D 21G lnS 4e1e3

~2hDE!2D 2
1

2
ln2h1LS cos2

1

2
u D2

p2

6 G
1

2aZ

p F2 ln h lnS 2q2x

~2hDE!2D 1LS 12
h

x D2LS 12
1

hxD G

1
aZ2

p F e4

up4u S 2
1

2
ln2 x2 ln x lnS r2

M2D 1 ln xD 2S e4

up4u
ln x21D lnS M2

~2hDE!2D 11

1
e4

up4u X2LS 12
1

x2D 12LS 2
1

xD1
p2

6
C G1del

(1) . ~5.2!

TABLE III. Contributions to the radiative correctiond as given in this paper~MTj ! and in Mo and Tsai
@2# ~MoTsai! for several nuclei, withe1521.5 GeV,Q2531.3 (GeV/c)2; other symbols as in Table I.

2H 4He 12C 40Ca
MTj MoTsai MTj MoTsai MTj MoTsai MTj MoTsai

Z0 20.2707 20.2704 20.2817 20.2814 20.2876 20.2875 20.2896 20.2894
Z1 20.0182 20.0189 20.0149 20.0166 20.0134 20.0164 20.0123 20.0173
Z2 20.0231 20.0221 20.0379 20.0352 20.0583 20.0535 20.0761 20.0708
del

(1) 10.0045 10.0026 10.0006 10.0001
d 20.3076 20.3114 20.3319 20.3333 20.3587 20.3573 20.3786 20.3775
f
ire
on
e
on
a

ve

a
r

a
b

h
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e
on
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e
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-
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ef-

al
Here,del
(1) is the contribution coming from the inclusion o

form factors for the proton and integration over the ent
range of four-momenta of the virtual photon in the prot
vertex correction; it is thus not included in the analysis giv
in Refs.@1,2#, denoted here as the soft photon approximati
Moreover,del

(1) has no infrared divergent terms; these are
included in the soft photon approximation.

In Tables I–III we compare the values of the radiati
correction,d, calculated in this paper~denoted by MTj! with
those given by Mo and Tsai in Ref.@2# for various kinemat-
ics. The initial beam energies and momentum transfers h
been chosen to correspond to experiments proposed o
ready performed at Jefferson Lab@14# and SLAC@15#. The
final electron detector acceptanceDE has been taken
throughout to be one percent of the final electron energye3.
In the form factors@see Eq.~2.2!#, the parameterL has been
chosen to be 700 MeV/c throughout. The contribution of the
terms in Eq.~5.2! are grouped according to the power ofZ
which appears there as a factor. The numerical value of e
of these groups of terms is given in the rows denoted
Z0,Z1,Z2. Values given in the column MTj in the rowZ2 do
not include the contribution of the proton form factor~which
are contained indel

(1)); they are given for comparison wit
the values in Ref.@2#. In the range of energies and mome
tum transfers considered here, the correctiondel

(1) , due to the
finite size of the nucleon~and integration over the entir
range of four-momenta of the virtual photon in the prot
vertex correction!, is found in general to be much smalle
than the other contributions with factorZ2, labeled explicitly
in Eq. ~5.2! and in Tables I–III. The values given in thes
05432
n
.

ll

ve
al-

ch
y

tables include only the contribution of electron-positron pa
in the vacuum polarization; the contribution of muon and t
pairs is given by Eqs.~3.17!,~3.18!.

The curves in Figs. 3 and 4 illustrate the two aspects
the present work:~1! the contribution of nucleonic size ef
fects to the radiative correction, and~2! the improvement of
the mathematical treatment of the integrations given in

FIG. 3. The curves show the contribution of nucleonic size
fects ~VTX, dashed curve!, mathematical refinement~D0, dotted
curve!, and the resulting difference~D, solid curve! between the
radiative correction given by Mo and Tsai@2# and that given in this
paperdMTj as a function of four-momentum transfer for an initi
electron energy of 6 GeV.~VTX, D0, and D are defined in Sec. V.!
0-10
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work of Mo and Tsai@1,2#. The nucleonic size effects are a
contained in the termdel

(1) @Eq. ~3.37!#; its contribution rela-
tive to the overall radiative correction factor (11dMTj) is
given by the dashed curves marked VTX, where VT
51003del

(1)/(11dMTj). The dotted curve shows D
51003(dMTj

(0) 2dTsai)/(11dMTj), which is that part of the
difference between the radiative correction given by Mo a
Tsai @2# and the one given in this paper due solely to t
improvement of the mathematical treatment of the integ
tions. Here,dMTj

(0) is the radiative correction given in Eq
~5.2!, excludingthe termdel

(1) . It will be noticed that VTX is
always positive, and that for most of the range of allow
momentum transfersD0 is negative. Thus their sum, whic
is the difference between the radiative correctiondMTj given
in this paper in Eq.~5.2!, and dTsai, given in Ref. @2#, is
rather small except for the region corresponding to la
scattering angles. This sum is given by the solid cur
marked D, where D5D01VTX51003(dMTj2dTsai)/(1
1dMTj).

VI. CONCLUSION

We have calculated the radiative correction to elas
electron-proton scattering to lowest order ina using a had-
ronic model which includes the finite size of the nucleo
The contribution from the emission of real soft photons
the electron and the proton is calculated exactly. The con
butions of the box and crossed-box~two-photon exchange!
diagrams are calculated in a soft photon approximat
which is less drastic than that employed in Ref.@1#. A num-
ber of observations may be made from the values given
Tables I–III. First, the contributions of the electron vert
correction, vacuum polarization, and real soft photon em
sion by the electron@the terms in Eq.~5.2! with factor a/p#
dominate the radiative correctiond. Since our expression fo
these terms differs from that given by Mo and Tsai@2# solely

in that they have omitted the term (a/p)@L(cos21
2u)2p2/6#

in Eq. ~5.2!, we find values ford which differ from theirs by
at most 2% for the initial energies and momentum trans
considered here. Further, we note that, except for the pro

FIG. 4. As in Fig. 3, but with an initial electron energy of 16 Ge
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and at the higher energies considered here, the contribu
of del

(1) is negligible. However, for the two highest energie
del

(1) is between 2% and 3% of the factor (11d) by which
the uncorrected cross section must be multiplied, and he
should be considered in precision measurements for elect
proton scattering at energies above 8 GeV. As an empir
guide, we find thatdel

(1)50.02(11d) for initial energies and
scattering angles satisfyinge1sinu'8 for beam energies be
tween 8 and 16 GeV. Finally, we note that a considera
simplification of the expression in Eq.~5.2! occurs if, in
addition to the last two terms multiplyinga/p, we neglect
the last two terms multiplying 2aZ/p as well as the last
three terms multiplyingaZ2/p, each of these sets of term
being always less thanp2/6 in magnitude. From this study
we see that at the energies and momentum transfers co
ered here, the nucleonic finite size effects are rather smal
are expected to become more important at higher energ
The corrections due to the improvement of the high-ene
behavior of the radiative corrections as described in this
per are not negligible and need to be taken into accoun
the energies and momentum transfers we have consider
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APPENDIX A: PROTON VERTEX CORRECTION

As noted in Sec. III A, the termsggg,gsg, . . . , can be
expressed in terms of the integrals given in Eq.~3.1!. There,
the integralsI 0 , J0, andK0 are scalars and hence are fun
tions of the scalarsp2

2 , p4
2, andp2•p4 ~and, of course,l2 and

L2). Since we have on-shell particles in the initial and fin
states (p2

25p4
25M2), these integrals are functions ofM2 and

q2. The integralsI m andJm are vectors and hence in princ
pal can be written in the form

I m5ap2m1bp4m ~A1!

with a similar equation forJm , wherea andb are functions
of M2 andq2. However, the calculation is simplified great
if we expressI m in terms of the four vectorsr5p41p2
~which is symmetric inp4 andp2) andq5p42p2 ~which is
antisymmetric inp4 and p2), i.e., I m5Arm1Bqm . HereA
andB are functions ofM2 andq2 and hence are symmetri
in p4 andp2. Further, since the integrands for the vectorsI m
andJm are symmetric inp4 andp2, it follows thatB50. We
thus have

I m5Arm ~A2!

and a similar equation forJm . These same considerations
symmetry allow for the simplification of the tensorsI mn and
Jmn , which are also symmetric functions ofp4 and p2. We
can therefore write

I mn5a1rmrn1a2qmqn1a3gmn ~A3!
0-11
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and a similar equation forJmn . That the termsrmqn and
qmrn are absent follows directly by multiplyingI mn succes-
sively by rmqn and qmrn, using r•q50 and the fact that
I mnrmqn and I mnqmrn are antisymmetric inp2 andp4. Mul-
tiplying I m (Jm) by rm, andI mn (Jmn) successively byrmrn,
qmqn, and gmn, the coefficients in the expressions forI m ,
Jm , I mn and Jmn may be expressed in terms of their m
ments, defined by

g15
1

r2
I mrm, h15

1

r2
Jmrm, ~A4!

g115
1

r4
I mnrmrn, h115

1

r4
Jmnrmrn, ~A5!
05432
g225
1

r4
I mnqmqn, h225

1

r4
Jmnqmqn. ~A6!

Conversely, from Eqs.~A2! and ~A3! the integrals in Eq.
~3.3! may be written in terms of the moments. The term
ggg, . . . ,sss can then be expressed in terms of these m
ments. Substituting Eqs.~2.1! and~2.2! in the expression for
the proton vertex correction, Eq.~3.2!, the integrals are all of
the form given in Eq.~3.3!, which are in turn expressed i
terms of the moments. In so doing we find
ggg52 ie2F~q2!H F 2~2M22q2!g024~2M22q2!g1

22~8M21q2!g1122~q4/r2!g2218~M2/r2!h0
Ggm

1@28M2g1124M2g1118M2~q2/r2!g2228~M2/r2!h0#
ismnqn

2M

J , ~A7!

gsg52 ie2kF~q2!H @22q2g1#gm

1@2~2M22q2!g024~2M22q2!g1#
ismnqn

2M
J , ~A8!

ggs1sgg522ie2kF~q2!H @212M2g112~q4/r2!g2212~112M2/r2!h023h1#gm

1F ~16M22q2!g111~q2/r2!~8M22q2!g22

24~11M2/r2!h013h1
G ismnqn

2M
J , ~A9!

gss1ssg522ie2k2F~q2!H ~q2/4M2!F2~8M21q2!g112~q4/r2!g22

1~2214M2/r2!h01h1
Ggm

1@3q2g1114M2~q2/r2!g222~q2/r2!h02h1#
ismnqn

2M

J , ~A10!

sgs52 ie2k2F~q2!5 F 2~8M21q2!g112~q4/r2!g221~21q2/r2!h0

2~8M21q2!h11/4M22~q4/r2!h22/4M21~211q2/r2!k0/4M2Ggm

1F12M2g1114M2~q2/r2!g2222~112M2/r2!h0

13h1114~q2/r2!h222k0 /r2 G ismnqn

2M
6 , ~A11!

sss52 ie2k3F~q2!5
~q2/4M2!F212M2g1124M2~q2/r2!g2212~112M2/r2!h0

24h113h111~q2/r2!h222k0 /r2 Ggm

1F 2~2M21q2!g1114M2~q2/r2!g22

2~4M2/r21q2/2M2!h01~q2/M2!h1

22~2M21q2!h11/4M212~q2/r2!~2M22q2!h22/4M2

1~q2/r2!k0/4M2

G ismnqn

2M 6 . ~A12!
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For convenience of notation, we have defined

g05I 0 , h05J0 , k05K0 . ~A13!

These expressions do not depend on the particular form
the form factors; we have assumed only thatF15F25F.
However, for form factors of the form given in Eq.~2.2!, the
moments may all be expressed more simply in terms of
functionsC(L2):

$C0~L2!;Cm~L2!;Cmn~L2!%5E d4k$1;km ;kmn%/D~L2!.

~A14!

For the choice of form factors~2.2! we readily find

$I %5Nm8 ~L2!mTm21H C~L2!2C~l2!

L22l2 J , ~A15!

with m52n, T[]/](L2) and where Nm8 5(21)m/(m
21)!(2p)4. In Eq. ~A15! I and C denote any one o
I 0 ,I m ,I mn and C0 ,Cm ,Cmn, respectively. We see from Eq
~A15! that terms inC(L2) which are independent ofL2 do
not appear in the expression forI. In particular, this applies
to Cmn(L2), which may be evaluated using either dime
sional regularization or a convergence factor. The infinit
in Cmn(L2) are indeed independent ofL2, thus giving a
finite result forI mn as it should. In similar fashion, we hav

$J%5Nm8 ~L2!mTm21H L2C~L2!2l2C~l2!

L22l2 J ~A16!

in which J and C denote any one ofJ0 ,Jm ,Jmn and
C0 ,Cm ,Cmn, respectively. We see from Eq.~A16! that any
terms inC(L2) which are independent ofL2 do not appear
in the expression forJ providedm.1. Finally, for K0 we
have

K05Nm8 ~L2!mTm21H L4C0~L2!2l4C0~l2!

L22l2 J .

~A17!

We note that, apart from trivial factors, the integrals
Eq. ~A14! are the three-point functions defined in Ref.@3#,
Eq. ~5.1!, and Ref.@8#, Eq. ~E.1!; C0 has been evaluated i
terms of Spence functions in Ref.@3#. The details of the
algebra in Refs.@3,8# being rather lengthy, we choose inste
to evaluate the integrals in Eq.~A14! using Feynman param
eters, writing

1

D~L2!
52E

0

1E
0

1 x dx dy

@k222xk•py2L2~12x!1 i e#3
,

~A18!

where py5p2y1p4(12y)5r/21q(122y)/2. Using Eq.
~A18! and neglecting terms which are independent ofL, we
may expressC0 , Cm , andCmn in terms of the functions
05432
of

e

-
s

fk~L2![E
0

1E
0

1 xk dx dy

py
2x21L2~12x!

. ~A19!

We obtain

C052 ip2f1~L2!, Cm52 ip2
1

2
rmf2~L2!,

~A20!

Cmn52 ip2H 1

4
rmrnf3~L2!2

1

4

r2

q2
qmqnf3~L2!

2
qmqn

q2
L2@f1~L2!2f2~L2!#

1
1

2
gmnL2Ff1~L2!2

1

2
f2~L2!G J . ~A21!

We now describe the procedure for calculating the fu
tions fk . As shown in Appendix B,fk obey a three-term
inhomogeneous recursion, which can be used to calculatefk
for k.1:

~k11!r2fk12~L2!22~2k11!L2fk11~L2!

14kL2fk~L2!

5
2r

r1
lnS r1r1

r2r1
D12L2@fk11

(0) ~L2!22fk
(0)~L2!#

~A22!

with r1
252q2 and where

fk
(0)~L2![fk~L2!uq2505E

0

1 xk dx

M2x21~12x!L2
.

~A23!

The functionsfk
(0)(L2) may in turn be calculated from th

recursion

M2fk12
(0) ~L2!2L2fk11

(0) ~L2!1L2fk
(0)~L2!5

1

k11
.

~A24!

To implement the recursions~A22! and ~A24! we need

f0
(0)~L2!5

1

LL1
lnS L1L1

L2L1
D ,

f1
(0)~L2!5

1

2M2 F ln
M2

L2
1

L

L1
lnS L1L1

L2L1
D G ~A25!

which follow from Eq. ~A23!, and f1(L2), which can be
expressed in terms of dilogarithms~see Appendix B!
0-13
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f1~L2!5
1

rr1
H LS 12

1

xyD2LS 12
x

yD
22 ln~x!lnS 11

1

yD J , ~A26!

where

x5
r1r1

r2r1
5

~r1r1!2

4M2
, y5

L1L1

L2L1
5

~L1L1!2

4M2
,

~A27!

andL1
25L224M2.

In view of Eqs. ~A15!–~A17! we also want to take the
limit l→0. Neglecting all terms which vanish in this limi
we find

f1~l2! →
lW →0

1

rr1
H 22LS 2

1

xD2
p2

6
2

1

2
ln2x

1 ln x lnS r2

l2D J , ~A28!
05432
f1
(0)~l2! →

lW →0

1

M2
lnS M

l D , ~A29!

and fork.1

fk~0!5
2

~k21!rr1
ln x, fk

(0)~0!5
1

~k21!M2
.

~A30!

Consequently,g0 is the only moment which is infrared di
vergent. We have

g052N1f1~l2!1Nm~L2!mTm21H 1

L2
f1~L2!J ,

~A31!

whereNm52 ip2Nm8 .
Using the above results, the termsggg, . . . ,ssscan now

be expressed in terms of the functionsfk . We get
ggg52 ie2F~q2!5
22~2M22q2!N1f1~l2!

12~2M22q2!FSm21H 1

L2
f1~L2!J 2Sm21H 1

L2
@f2~L2!2f2~0!#J G

1Sm21$f2~L2!%24M2Sm21H 1

L2
@f3~L2!2f3~0!#J 6 gm

2 ie2F~q2!H24M2Sm21H 1

L2
@f2~L2!2f2~0!#J 14M2Sm21H 1

L2
@f3~L2!2f3~0!#J J ismnqn

2M
, ~A32!

gsg52 ie2kF~q2!H 2q2Sm21H 1

L2
@f2~L2!2f2~0!#J Jgm

2 ie2kF~q2!5 2~2M22q2!F 2N1f1~l2!1Sm21H 1

L2
f1~L2!J

2Sm21H 1

L2
@f2~L2!2f2~0!#J G 6 ismnqn

2M
, ~A33!

ggs1sgg522ie2kF~q2!5 S q2

4
23M2DSm21H 1

L2
@f3~L2!2f3~0!#J

1
3

2
Sm21H f1~L2!2

1

2
f2~L2!J 6 gm

22ie2kF~q2!5 2M2Sm21H 1

L2
@f3~L2!2f3~0!#J

24Sm21H f1~L2!2
1

2
f2~L2!J 6 ismnqn

2M
, ~A34!
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gss1ssg522ie2k2F~q2!
q2

4M2 5 22M2Sm21H 1

L2
@f3~L2!2f3~0!#J

22Sm21H f1~L2!2
1

2
f2~L2!J 6 gm

22ie2k2F~q2!5 S 3

4
q22M2DSm21H 1

L2
@f3~L2!2f3~0!#J

2
1

2
Sm21H f1~L2!2

1

2
f2~L2!J 6 ismnqn

2M
, ~A35!

sgs52 ie2k2F~q2!5
22M2Sm21H 1

L2
@f3~L2!2f3~0!#J 2

1

2
Sm21$f3~L2!%

1Sm21$f1~L2!%1
1

2
Sm21$f2~L2!%

2
1

2M2
Sm21H L2Ff1~L2!2

1

4
f2~L2!G J 6 gm

2 ie2k2F~q2!5 2M2Sm21H 1

L2
@f3~L2!2f3~0!#J

22Sm21$f1~L2!%1
1

2
Sm21$f3~L2!%6 ismnqn

2M
, ~A36!

sss52 ie2k3F~q2!
q2

4M2 H 22M2Sm21H 1

L2
@f3~L2!2f3~0!#J 1

1

2
Sm21$f3~L2!%

12Sm21$f1~L2!2f2~L2!%
J gm

2 ie2k3F~q2!5
1

2
q2Sm21H 1

L2
@f3~L2!2f3~0!#J 2S 11

q2

2M2D Sm21$f1~L2!%

2
1

2
Sm21$f3~L2!%

1
1

2 S 11
q2

M2D Sm21$f2~L2!%2
1

4M2
Sm21$L2@f1~L2!2f2~L2!#%

6 ismnqn

2M
, ~A37!
d
in

e
rm
o

ie

re
whereSm215Nm(L2)mTm21.
It should be noted that the terms withf1(l2) appear only

in ggg and gsg. They constitute the well-known infrare
divergence. They are, apart from the hard-photon proton
teraction~2.1! independent of the proton form factor~in this
case independent ofL andM ). This is to be expected, sinc
this term is cancelled by a similar infrared divergent te
coming from the cross section for the emission of a real s
photon, which is given by the elastic cross section multipl
by a factor independent of the proton form factor.

APPENDIX B: THE FUNCTIONS fk„L2
…

In this Appendix we derive the three-term recurrence
lation for the functionfk(L

2) given in Eq.~A22! as well as
05432
-

ft
d

-

the expression for the functionf1(L2), defined in Eq.~A19!
and given in terms of Spence functions in Eq.~A26!. Inte-
grating first overy in Eq. ~A19! we have

fk~L2!5
1

r1
E

0

1xk21

R
lnH R1xr1

R2xr1
J dx, ~B1!

where R25r2x214(12x)L2, r1
252q2.0, and x5(r

1r1)2/4M2. Noting that

d

dx
$xkR%5xk21$kR21r2x222xL2%R21, ~B2!

we obtain
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~k11!r2fk1222~2k11!L2fk1114kL2fk

5
2

r1
E

0

1

lnH R1xr1

R2xr1
J d~xkR!. ~B3!

Integration by parts then gives

~k11!r2fk1222~2k11!L2fk1114kL2fk

5
2r

r1
lnS r1r1

r2r1
D22L2E

0

1 xk~22x!

M2x21~12x!L2

~B4!

from which the recursion~A22! follows at once, using Eq
~A23!.

From Eq.~B4! it is clear thatf2 andf3 follow once we
have evaluatedf1. Settingk51 in Eq.~A19! and integrating
first overx gives

E
0

1 x dx

py
2x21L2~12x!

5
1

2py
2 F lnS py

2

L2D 1
L

D
lnS L1D

L2D D G ,

~B5!

whereD25L224py
2 . We next make the change of variab

y5(11v)/2, which gives D25r1
2v21L22r2, and then

make the further change of variableD5r1v1s, from which

v5
L22r22s2

2r1s
, D5

L22r21s2

2s
. ~B6!

Integrating Eq.~A19! over y gives

f1~L2!5
2

r1
E

s2

s1 ds

r22~L2s!2
lnF ~L1s!22r2

4sL G
2

2

r1
E

s2

s1 ds

~L1s!22r2
lnFr22~L2s!2

4sL G ,
~B7!

where s65L16r1 , L1
25L224M2. Factoring the expres

sions which appear as factors to the logarithms as well a
their arguments,f1 can be further reduced to partial fra
tions. Performing explicitly some of the occurring integra
we obtain

f1~L2!5
1

rr1
H lnS a2

a1
D lnS 4s1s2

~12a1
2 !~12a2

2 !
D

22 lnS a2

a1
D ln~2L!1L~12a1

2 !2L~12a2
2 !J ,

~B8!

wheres65L6r and a65(r7r1)/(L1L1). In Eq. ~B8!
L is the dilogarithm~Spence! function, defined as
05432
in

L~z!52E
0

z ln~12t !

t
dt. ~B9!

APPENDIX C: FINAL ELECTRON DETECTOR
ACCEPTANCE

In this Appendix, we expressDe, the maximum momen-
tum of the photon in the frameS0, in terms of the final
electron detector acceptance in the lab frameDE. In S0 (p4
1k50), if uku5De!M , we have, from (p11p22p3)2

5(p41k)2, neglecting terms of order (De/M )2 and
(m/M )2,

p2•~p12p3!2p1•p35MDe. ~C1!

Writing this in terms of lab frame energies, we have, for hi
energies

M ~e12e3!2e1e3~12cosu!5MDe. ~C2!

For elastic scattering in the lab frame, we have

M ~e12e3
el!2e1e3

el~12cosu!50. ~C3!

Subtracting gives

DES 11
e1

M
~12cosu! D5De, ~C4!

where

DE5e3
el2e3 . ~C5!

Thus, in terms of lab frame quantities we have

De5hDE. ~C6!

APPENDIX D: HIGH-ENERGY APPROXIMATION
FOR Sij

„2…

In this Appendix we give the high-energy approximatio
of the termsSi j

(2) defined in Eq.~4.10!, in which we note in
particular that for i 51 or 3 we havel •t5(api2pj )•t
'api•t. Using transformations of the Spence functions@3#,
p. 389~B.3!,

L~z!52LS 1

zD2
1

6
p22

1

2
ln2~2z!, ~D1!

L~z!52LS z

z21D2
1

2
ln2~12z!, ~D2!

the terms inSi j
(2) simplify considerably. We then obtain
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S12
(2)52 ln2S 2e3

m D2 ln2 x1
1

2
ln2S x

h D2
1

6
p2

2LS 12
1

xh D1LS 12
h

x D , ~D3!

S32
(2)52 ln2S 2e1

m D2 ln2~x!1
1

2
ln2~xh!2

1

6
p2

1LS 12
1

xh D2LS 12
h

x D , ~D4!

S14
(2)52 ln2S 2e3

m D2
1

6
p2, ~D5!
s

iv
in

05432
S34
(2)52 ln2S 2e1

m D2
1

6
p2, ~D6!

S13
(2)52 ln2S 2e1

m D2 ln2S 2e3

m D2
1

3
p21

1

2
ln2S cos2

1

2
u D

1LS cos2
1

2
u D , ~D7!

S24
(2)5

1

2
ln2~x!1

1

2
LS 12

1

x2D . ~D8!
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