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The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the
finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton
vertex correction in this model increases by at least 2% of the overall factor by which the one-photon exchange
cross section must be multiplied. In addition, we refine the mathematical treatment, removing many of the
approximations made in the generally used expressions previously obtained by Mo and Tsai. In particular, the
contribution of soft photon emission is calculated exactly. Results are presented for some kinematics at high
momentum transfer and compared with the expressions of Mo and Tsai.

PACS numbgs): 13.40.Ks, 13.60.Fz, 25.30.Bf, 12.20.Ds

[. INTRODUCTION important question for the analysis of electron scattering ex-
periments at the 1% level. Second, to give a more refined
Electron scattering at intermediate and high energies hamathematical treatment than that presented in R&f&] and
been one of the most useful means of investigating nucleased in essentially all experimental analyses. This refinement
structure for over 40 years. With the advent of CW accelerais needed to achieve the accuracy attainable in current ex-
tors and high resolution detectors such as MAMI and TINARperiments and to get a better handle on the errors in the
it has become clear that one must have an accurate estimagpressions used for the radiative correction.
of the radiative corrections if meaningful cross sections are The present calculation differs from that of T$4i2] in
to be obtained from the experimental measurements. Dghree substantive aspects. First, we evaluate the soft brems-
pending on the experimental conditions—initial beam en-strahlung cross section without any approximation; the rel-
ergy, momentum transfer, and detector resolution or missingvant integrals have been given in closed form by 't Hooft
mass for the observed particles—the radiative correctionand Veltmar{3]. In fact, the exact expressions are simpler in
can be as large as 30% of the uncorrected cross section. Torm than the approximate ones given in R¢is2]. We note
obtain cross sections which are accurate to 1%, one mu$ particular that in the limit of the target masé— oo, cor-
then know the radiative correction to 3%. responding to a static Coulomb potential, we obtain exactly
The theoretical expression for the radiative correctionthe result first given by Schwingé4]. Second, in the evalu-
which has been used in the analysis of almost all single armtion of the contribution of the box and crossed box dia-
elastic electron scattering experiments with beam energiegrams to the elastic cross section we make a less drastic
below approximately 25 GeVfor which W andZ exchange approximation than that made ji]. Specifically, in the in-
are in general not significanis that given originally by Tsai tegrands corresponding to the relevant matrix elemewts,
[1,2] in connection with experiments at Stanford, SLAC, andandM ; [Egs.(3.20),(3.21)], we make a soft photon approxi-
CEA. That work involved approximations that were both mation (settingk=0 or k=q) in the numerator(as in Ref.
purely mathematicalmade in performing the integrations [1]), but not in the denominators. Again, the required inte-
needed to evaluate the inelastic cross segtam approxi- grals (scalar four-point functionshave been given in Ref.
mations denoted here as “soft-photon approximations” tha{3]; the resulting expressions are again considerably simpler
are directly related to the physics in that the effect of protorthan those obtained in Reffl], where the soft-photon ap-
structure was neglected; in considering the proton legs, onlproximation is also made in the denominatordvof andM 5.
the soft virtual(infrared photon contribution is calculated Finally, in evaluating the proton vertex correction, we have
exactly—approximations are made in the hard virtual photormade no soft photon approximation for the virtual photas
(noninfrared contribution. In particular, the proton structure was done in Ref.1]) and have included form factors for the
is neglected by setting the photon momentum sqkare0 proton, taking the proton current to be that indicated below
in the proton form factoF (k?), thus simplifying the calcu- in Eq. (2.1).
lation considerably. The organization of the paper is as follows. In Sec. Il we
The purpose of the present paper is twofold. First, to condiscuss questions concerning the electromagnetic nuclear
sider the contribution of the internal structure of the nucleorcurrent operator used in this analysis. In Sec. Ill we give
in the radiative correction to elastic electron-proton scatterdetails of the calculation of the matrix elements and cross
ing. For this we have considered a simple model in which thesection for elastic scattering, retaining terms of ordeela-
proton current is taken to have the usual on-shell form. Theive to the Rosenblutiione photon exchan@geross section
model dependence of the radiative correction is clearly aifor elastic scattering. Integrals needed for the evaluation of
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the various matrix elements are written explicitly and ex- n

pressed in closed form in terms of Spence functi@il®ga- Fi(g?)= Fz(q2)=(
rithms). Details are given in the Appendices.
In Sec. IV we consider the soft bremsstrahlung cross sec-

tion in detail; as with the elastic cross section given in SecVith A being a constant of the order of 1 GeVAlthough

Ill, the result is expressed in closed form in terms of Spencéhe guantitative predictions of the radiative corrections are

functions. In Sec. V we add the elastic and inelastic cros§*Pected in general to be dependent on the details of the

sections, giving both an analytic expression and a numericzsﬂuc'eo? ?odell.assufmed, one ST]OUId already b(;a Iabledto see
evaluation of the radiative correction for various values of "0St Of the salient features in the present model study. In

the pertinent parametefaitial beam energy, final electron Particular, identifying regions in phase space where the finite
detector resolution, and target nucleu&/e compare the val- size of the nucleon may play an important role in the size of

ues of the radiative correction calculated here with thosg@diative corrections can be important. In this way one may
given in Refs[1,2]. ope to get some feeling for the reliability of neglecting the

internal structure of the nucleon as is usually done. The

present study is intended as a first exploration of the sensi-
Il. ELECTROMAGNETIC NUCLEON CURRENT tivity on the nonpointlike nature of the e.m. hadronic current.

OPERATOR As in Ref. [1], although we are primarily interested in

electron-proton scattering, the radiative corrections studied
here can also be applied to electron-nucleus scattering, with
appropriate changes iy, F,, x, andM. However, even in
the case of electron-proton scattering, the faztas conve-
nient for identifying the contributions from the various dia-
grams.

2

, n=1or 2 (2.2

q2_A2

We follow in this paper the convention of Bjorken and
Drell [5]. The metric used is defined by;-p;=¢¢;
—pi-p;. Further, a=€?/47=1/137.036,m is the electron
rest massM is the target nucleus rest magsthe charge of
the target nucleuss the anomalous magnetic moment of the

proton,p, andps the initial and final electron four-momenta, ~
It should be noted that the dressed vertex functiop,

respectively,p, and p, the initial and final target nucleus with Eq. (2.1) as e.m. current operator containing the form
four-momenta, respectively, a —pP3=ps—P; is the ST Em e )
P Y, BHH=P1—Ps=Pq— P factorsF,, satisfies the identity

four-momentum transfer to the target nucleus for elastic scal
tering. In the lab system we hav@,=(€;,p1), P3 ~ P _
:(ESIpS)i p2:(M10)1 p4:(M+qu)y w:_qZ/ZM. We qMAlL:Fl(qz)[S l(p )_S l(p)]l (23)
define, in addition,p=p,+p, and x=(p+p)/(p—p1)
=(p+p1)24M?, with p2=—q? Finally, 7 is the lab
system recoil factor: Fore;>m, e;>m, n=¢;/e;=1
+(e,/M)(1—cos6) whered is the electron scattering angle.
We note, in particular, that< n=<x. w/nr X _

With the aim of presenting expressions which correspond (P’ A ulp)=0. 24
to the experimental conditions of high-energy electron scatopyiously, the radiative corrections will in general be sensi-
tering, we neglect, in the final expressions given in this patjve to the choice of the e.m. nucleon current. In general,
per, terms of relative orders?/®, m*/(—q?), andm?’/M?  contact terms have to be introduced to satisfy gauge invari-
Neglect of these terms defines our high energy approximagnce. Due to our assumptio2.1) that the nucleon form
tion. No assumption is made, however, with regard to theactor is dependent only on the photon momentum square,
magnitudes oM/e;, M/e3, or M?/(—g?). gauge invariance is trivially satisfied. Although interesting in

At low momentum transfer the internal structure of theijts own right, we will not address in this paper the issue of
nucleon can SafEIy be negleCtEd in the determination of thﬁ]e Sensitivity of the predictions on the choice of e.m.
radiative corrections in electron-nucleus scattering. Hownycleon current.
ever, with increasing energies and momenta this is in general |n the study of radiative corrections we may distinguish
no longer the case. One of the objectives of this paper is tetween the elastic and inelastic contributions, the latter be-
inVeStigate th|S in a m0de| fOI’ the e.m. interaction Of a non-ing the real soft photon emission processes from both the
pointlike nucleon. The most general e.m. off-shell nucleonelectron and hadron. The elastic electron cross section can be

vertex can be characterized by six invariant functiffig].  determined immediately from the total scattering amplitude
As the most simple model we may consider a vector domi-p( through the well-known expression

nancelike model for the nucleon current, characterized by

whereSis the dressed nucleon propagator grdp’ — p. As
a direct consequence of E@.3), one gets for on-mass-shell
nucleons, the current conservation

only two form factors which depend only on the four- mM
momentum square of the photon. It is given by do= —— > i |IM|%(2m)*
V(p1-p2)2—m?M? spins
io,,q" md®p; Md®
Fu=Fi(@") 7.+ cF(q”) 2ﬂM ’ 2.1 X 5*(pa+P3—p2—P1) Ps P4 . (2.5

(2m)%€5 (2m)%ey

where the form factor§,(q?) andF,(q?) are taken to have For single-arm experiments with unpolarized electrons in
a monopole or dipole form which the final proton is not observedly must be averaged
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elastic electron electron vertex electron self-energy vacuum
i i i olarization
scattering correction diagrams p FIG. 1. Feynman diagrams for
: X X }{ % elastic amplitudes.
proton vgrtex proton self-energy box and crossed-
correction diagrams box diagrams

over initial spins, summed over final spins, and integrated 5 o —i) —
over the final proton four-momentum. Up to ordef we Mg=Z"e°u(p3) Y#U(Dl)Z—JF.U(pz;)A“(pmpz)U(Pz),
have for the total scattering amplitude Q- Tie

(3.2
6
M= Z M., 2.6 where
N A# =—je? d% ! I'7(k?
where the various terms correspond to the Feynman graph (Pa.p2)=—1e f (2m)* K>—N\>+ie (k)
contributions shown in Fig. 1. Heid ; is the matrix element
for the one-photon exchange diagram
X TH(?)
o (_ o 5 (p4_k_M+|E) (pz_k_M+|E)
M,;=Ze“u u —uUu r# u .
1 (p3)7,u (pl)q2+i6 (pA) (Q) (pZ) er(kz). (32)

@7 In Eq. (3.2), each of the thre&"s, given by Eq.(2.1), con-

M, and M are the matrix elements for the box and crossed@ins a term withy,, (which we denote bg) and a term with
box (two-photon exchangaiagrams M, is the vacuum po- @, (Which we denote bys). The proton vertex correction
larization matrix elementonly an electron-positron loop is A*(Pa,P2) then consists of eight terms, which we represent
indicated in the figure, but the contribution from higher massSymbolically byggg, gsg gss etc. As may be seen after
lepton loops can be included without difficultyM s is the ~ rationalizing the propagators, thedependence of the nu-

electron vertex correction, arid 4 is the proton vertex cor- Mmerators forggg,gsg, . .., is such that there are at most
rection. four factors of the fornk. Moreover, the terms with three or
four factorsk may, with only a minimum of algebra, be

IIl. ELASTIC CROSS SECTION written so that two of these factors are adjacent, giitg

=k?. Although the calculation can equally well be carried
To evaluate the various one-loop corrections to €6)  out with F; and F, distinct functions, we assume;=F,
some tedious algebra has to be carried out. We outline the-F, which simplifies the algebra. The termgg,gsg, . .
procedure used to evaluate the matrix elements needed fgan then be expressed in terms of the integrals
the radiative correction to the elastic cross sectibhy,
throughM. ol il wid053, 5w Kot

d*k

4
We begin with the matrix element for the proton vertex (2m)
correctionMg given by x{1;k

F2(k?)

A. Proton vertex correction = f

kMkV;kz;kMkz;kMk,,kz;(kz)z}/D()\z), (3.3

"
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where and
D(A%)=(k®—N\2+i€)(k®—2k-p,+ie)(k®—2k-p,+ie). q”
(3.4 (g+89)s(g+s)=~xF(g?) xl(q2m+x2(q2> ’”
For form factors having the form given in E@2.2), the (3.6
integrals in Eq.(3.3) could all be evaluated as indicated for
three-point functions in Ref.3], Sec. 5, and Ref8], Ap- We note in the expressions fggg, gsg, . . ., inAppen-

pendix E. However, in the interest of obtaining a relativelydix A that the infrared divergent terms are all contained
compact analytic expression in closed form, we have used asolely withinggg andgsg These are the terms with a factor
alternative procedure. As given here in Appendix A, the in-¢,(\?) in Egs. (A32),(A33). Since these are precisely the
tegrals may be expressed in terms of their moments, definggrms which are retained in the proton vertex correction in
by Egs.(A4)—(A6) and (A13). After straightforward though Ref. [1], we separate them for the purpose of comparison

somewhat tedious algebra, the tergwy,gsg, . . ., arethen  with that work, writingMg in the form
expressed in terms of these moments. Next, for form factors
of the form given in Eq(2.2), we show that all of the mo- Me=MO+MY, (3.7)

ments may be expressed in terms of three functigps

which obey a three-term inhomogenous recursion, and this ig e

used for their evaluation. Finally, we note from E¢&32)—

(A37) that the termsggg,gsg ..., may be usefully 22

grouped by writing them in the form MO = — C;_(zM 2 02) py(N2)M,. 3.9
a

,qu

_ 2 2 2
(975)9(g+5)=F(a%)| G1(a%) v, + G2(q ) The functiong,(\?), defined by Eq(A20), is simply related

(3.5  to the functionK(p,,p4) defined in Ref[1] by

2p;i- P d*k
K(pi.pj)= ’f
P i ) (K= \2+ie)(K2—2k-pi+ie)(k2—2k-pj+ie)

viz., (g+s)g(g+s)=F(q?)
=2p,- 2 el
K(pZ!p4) 2p2 p4¢1()\ ) (3-9) X (Gl(q ) 1(0))’)/#+Gz(q2) '“

In addition to Eq.(3.1) we also have to include the con- (3.12
tribution of the proton self-energy diagrams. It is given by
3" where and

1_[d3 +s)s(g+s)=«F(g?
vzl %l a1 (OFISOTS=kF(@)
9"
x| X1(9?) Y,L“‘(Xz(qz) 1(0)) M .
in which % is the lowest order self-energy contribution (3.13
o 4% 1 H has b de of the identi
E:_Iezj (k) ere use has been made of the identity
(2m)* k2= \+ie
=G1(0)
X(p_k_M +ie) (k). 319 which follows from Eq.(2.3). We then have, for the matrix
element including self-energy diagrams

The addition of this contribution to the lowest order vertex = —0 . =
correction modifies the expressions fay4s)g(g+s) and Me=Mg”+ Mg, (3.14
(g+s)s(g+s) given above in Eqgs(3.5),(3.6) so that we
now have where
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_ aZ? A more complete discussion of vacuum polarization
M(so):ﬁ[—K(pzyp4)+K(p2,Pz)]M1 (3.19  should include a consideration of pion structure as well as

the contribution of spin-one bosons, in particular thene-
which is the expression given in Rdfl], Eq. (I1.12). The SO A detailed discussion of the hadronic contribution to
acuum polarization may be found in connection with calcu-

infrared divergent part of these terms is cancelled exactly by < .
the infrared divergent terms in the inelastic cross section@tions of the anomalous magnetic moment of the miuc

This is in accordance with the general result found in Ref@Nd in connection with radiative corrections to high-energy
[9]. electron-positron collider experimer(ts3].

B. Electron vertex and vacuum polarization corrections C. Box and crossed-box diagrams

These contributions have been extensively studied in the The matrix elements for the box and crossed-box dia-
literature. Here for completeness give the results valid ajramsMm, andM, are
high momentum transfer. The electron vertex correction can
immediately be obtained from the previous section by retain-
ing only the termggg and taking the limitA —o. For MzZ(Zez)zf
—g?>m? we have, after adding the contribution of the elec-

d*k 1 1
(2m)4 K2—N?+ie (k+q)2—\2+ie

tron self-energy diagrams o 1
X[ U(P3) ¥, ——————»,u(py)
. 3 [—q? (Pa)y [bl—k—m+leyM (P1 ]
Ms=5— ~K(p1,pa) *K(p1,py) + 5In| — =2/ M,
m _ 1
(3.16 X u(p) T T(k+a)?J——————T*(k*)u(p,) |,
p2+ k_ M-+ie
which is the expression given in R¢l], Eq.(l1.5). We note (3.20
that the infrared divergence is contained entirely within the '
terms —K(py,p3) +K(p1,P1).
The matrix elemenM, for vacuum polarization is, after d*K 1 1
charge renormalization, related simply to the matrix element M3=(Ze2)zf
M. If we include the vacuum polarization amplitudes from (27 K2—N\2+ie (k+q)2—\2+ie
particle-antiparticle fermion loops of different masses, as has
been done in several experimental anal , then — 1
P jg@ X u(p3)7V—. ’)’Mu(pl)
pi—k—m+ie
My=M,>, TIf(q¥m?). (3.17 L
, _
X[ u(py) TH(k?)—————T"[(k+q)?Ju(p,) |.
(Pa)T( ba—k—M+ic [(k+a)“]u(p2

For a fermion loop in the photon propagatﬂf(qzlmiz) is
given in Ref.[5] in terms of an integral which can be evalu- (3.2
ated in closed fornfi10], giving

u After rationalizing the propagators, the required integrals

I (g2/m?) = il ( 1— _) 1+u can, for form factors of the forr{2.2), all be written in terms
37 2 of four-point functions; in principle they can be evaluated

using[3], Sec. 6, and8], Appendix E. In the present work,

vit+u+1 however, we have chosen to evaluate these matrix elements
XIn| ——|+u—2= (3.18 . - S )
M1+u—1 3 in an approximate manner, but one which is less drastic than

that employed in Refl1]. We note first that ifM, and M
in which m; is the mass of the fermion and=4m?/(—g?). e integrantzzis hgvg twglinfrareq divergent facfdie’—~\?
For —qZ/mi2>1 this gives +|e)((k_— g)°—A“+ie)]”~. The integrands are thus peaked
when either of the two exchanged photons is soft, and be-
2 come divergent wherk—0 or whenk—q. We therefore
(1) — _] (3.19  evaluate the numerators M, and M at these two points
mi2 but make no changes to the denominators. A simple calcula-
tion shows in fact that each of the numerators has the same
In principle, once one includes particle-antiparticle pairsvalue fork=0 as fork=q, viz., 4ip; - p,q>M, in the case of
of mass greater than the electron mass, bosons as well &, and 4p;- p,q>M; in the case oM. We then take this
fermions should be considered. The matrix elements fofactor outside of the integral and are left with a scalar four-
vacuum polarization for a pair of structureless spin zergpoint function to evaluate. The result has been give[Sin
bosons in the closed loop, first given by Feynnah|, may  Sec. 6 and Appendix B) and is expressed simply in terms
be found in a more accessible form in a paper of T&8i. of logarithms

1
famd) = 21 =
H(q/mi)—ﬂ_[:gln 5[
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aZ e [et|p - _aZ
- = My=—[K(p2,p3) +K(p4, M (3.29
M, = Tod ( ——|In N M, (3.22 3= 5 [K(P2,P3) +K(Ps,p1) My
d

an [see Ref[1], Egs.(I1.9) and(11.11)]. The infrared divergent
aZ e 5+ |psl —? terms(those with a factor I1a?) are, forM_z, the same in Eqgs.

M;=——In In > Mi. (3.23 (3.22 and(3.24), and, forM 3, the same ir{3.23 and(3.25).
™ [Pl m A However, Eqgs.(3.24),(3.25 differ significantly from Egs.

(3.22,(3.23. These latter expressions are functions of the
momentum transfeq?. The integralK (p; ,P;j), on the other
%and, are functions only of the scalar invariapfs pj2 and
pi-p;. In Egs.(3.24,(3.295, M, and M3 therefore depend
only on the initial and final electron energies, and not on the
momentum transfer fb- p1=pP4-P3=€1M; Po-P3=Ps-P1
=e3M).

By contrast, in Ref[1], in addition to the approximation
just described, a soft-photon approximation is made in th
infrared denominators: Specifically, whdn=0 the factor
(k—q)2—\? s set equal tg?>— \? and wherk= q the factor
k?>—\2 is set equal tag®?—\?, thus giving two terms and
reducing the four-point function to three-point functions

aZ
M2=—2—[K(p2,—p1)+K(p4,—p3)]M1 (3.29 -
™ D. Contribution of proton form factor

and Using our results obtained fdovl,, we find up to ordeix

[ 13 [-q?| 28 )
I+—l5ln 7 — g ~K(P1,p3) +K(p1,pa)
2aZ -q? —
|M|?= M4 |24 —%Innln()\—g) +2 RgMIME}. (3.26
aZ?
+ —[—K(p2,p4) +K(p2,p2)]
\ 77 J
|
This holds provided that g?>m?. - - - ,i0,,0"
Finally, we consider the remaining contribution Iy =Fu(@9) yut kFa(q9)— 0 (3.29

2 RMIME)} in Eq. (3.26, coming from the inclusion of
form factors for the proton and integration over the entirewith
range of four-momenta of the virtual photon in the proton

vertex correction. The terrM{" is obtained from the full F1(0®)=F(q)[(G1(a®) — G1(0))+ kX1(g?)],
proton vertex correction by subtracting the infrared divergent (3.30
matrix elementvi g°> which is independent of the proton form _

factor. We may therefore introduc®](q?) andX5(q?) to be kF(0?)=F(g?)[G2(g%) + k(X5(q% — G1(0))].

the expression$;(g?) and X,(q?) from which we have (3.3

omitted the terms with facto;(\?). As a result we get

(apart from factors Equation(3.28 has the same form as

wZ? MiM 1= (P3| ¥’ 1P2){(PalT | p2) T({Pa| ¥ P1)(PalT .l P2))
ME=2—(pslv*IpXpalT Py (327 (332
with the exception of the replacemeli,—T",, in the right-
and hand term. Thus, in place of the Rosenbluth cross section,

obtained from= ¢y, M 1M1, we have

_ 72
2 REMIMD) = 22 ((p3lv*p2)(palT I p2)) T((pal ¥/ 1) _ o?co(0/2) | aZ?
t 2,2 RAMIMEY) = 4y sirf(012) (7){ b
X(palT .l p2)), (3.29 ! (3.33

where where
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K’Q® . a -2 m?\ 13 [—qg?| 28
— T __ 1 0 —_17 _ LI [ R R Y I I —
{ }=|FiFs 4M2F2F2 del'=— In| —-|-1]In N + 5 — 5
2 2 2 2
q - - 0 1 ,/-q T 2aZ -
—W(Fl-FKFZ)(Fl-FKFZ)taan. (3.39 —Eln - B Inzln >
azz 4 2
. Lo . L +—9 —| —Inx=1/|In| —
The purely elastic cross section, including radiative correc- T |p4l N2
tions to ordera, can thus be written as
2
+ 2 —inxin| 22 ] + Zin2x
do Pl M2/ 2
0
(d_Q (1+ 68+ 65, (3.39 2
+2L| — = +? , (3.36
where in which L(z) is defined in Eq(B9) and
|
6(1)_a22 [F1F1— (k29%14M?)F,F 51— (0212M?) (F 1+ kF ) (F 1+ kF o) tarf( 0/2) (3.37
o {[F2— (k?q2AM2)F2] — (q2/2M2)(F  + kF ) %tart( 0/2) ] '
|
IV. SOFT BREMSSTRAHLUNG CROSS SECTION Making the soft photon approximation, we rationalize the

denominators and drop terms of relative orten the nu-

mlin stlk:)li igcttr:%nr\;vdeigg\l/%ug?régﬁc::r?ngrlr?iig?onnot]; S%Z&hgfgg_merator and denominat@put not in the delta function The
emis . ’ by .-cross section, summed over photon polarizations, is then
tron and proton are included. The relevant diagrams, with

corresponding matrix elementsl,; andMy,, are shown in

2,6 2n 2
Fig. 2. These matrix elements are given by Ze mM

dO’b:_
(2m)° \(py-p2)*—m*M?
M= —iZe3(277)4§4(p3+ pstKk—pi—p2) E d3p3 d3p4 d3k .
X —(2
_ { spins €3 €4 Zw( ™
X ———————=U(P3) | Y _ _
V2weres€z€s psrk—mitie X 8%(pa+pa+ k= py—p2)|u(ps) y,u(py)U(pa)
1 _
+y, £ |u(pyu(psy)T*u(p,) , 1 (P3 P P4 P2 \?
—Kk—m+ x THu - A +Z .
Pi—k—mitie (P2)| (g?)2\ps-k  pi-k Tpgk o Tpark
1 4.3
X I 4.1
(p1—p3—Kk)“+ie The range of integration in the above expression is deter-

mined by the experimental conditions. We assume, as in Ref.
Mp,=iZ%€3(2m)*8*(p3+ patk—p1—py)

mM —

X ——U(p3) v,U(P1)

Poeeae TP
Xu(pa)| é ! r~

u _—

P4 ps+k—M+ie

r# ! £

- Po—k—M+ie U(pz)(pl_ ps)’tie inelastic amplitudes
(4.2 FIG. 2. Feynman diagrams for inelastic amplitudes.
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[1], that the final proton and emitted photon are undetected; with t=p;+p,—ps=p,+k. The succeeding integrations
different result would be obtained in the case of coincidencere simplified by transforming to the special fram (8e-

experiments. Integrating first ovePp, we obtain fined byt=0), in which the argument of the delta function in
Eq. (4.4 is independent of the direction of the emitted pho-
Z%e m2M? f d3p; d3k ton. The photon energy is then given solely by the final elec-
o= — .
b (27)° \(P1-Pa)2— M2 doits tron energy. We integrate next over the photon energy and

angles in 8. Assuming that the elastic cross section has no

significant variation over the range of photon momenta, we

may take|u(ps) v,u(P1)u(Ps)T*u(p,)|?/(a?)? outside of

1 2 the integration, settingp; and p, equal to their values for

X THu(p,)|? . 2( — _7 4712 ) purely elastic scattering. We may then transform back to the
(g?)2\p3-k  pi-k Tpsak pa-k lab frame and integrate over the angles of the final electron,

(4.4  determined by the entrance slit and spectrometer, giving

X 8((t—K)2—M?2)6(e4)[u(ps) ¥,,u(p1)U(Ps)

P3 P1 Pa p

2

a 'd3k [ ps p1 Pa P2
dop=— —d f—( -zt 47 , 4,
7 472 7o o \ps3-k pi-k Ps-K P2 K @9

wherew=\kZ+\Z2. The integration over photon energy is restrictedkies A €, whereA € is the maximum momentum of the
photon in the frames®, which is related to the final electron detector acceptance in the lab fidEnby Ae= 7AE (see
Appendix C for details It is assumed thak e is less than any of the other energies. The relevant integrals are all of the form

L _f'd_sk—l 4.6
) e (ke k) “o

in terms of which
m2L11+ m2|—33_ 2p1 p3L13
o
dop=— Fdoo +2Z(—2p1-Pol 1ot 2ps- Polaot 2P1- Pal1a—2P3- Palaa) ¢ @7
™ +Z3(M2L g+ M2L 44— 2P Palog)

These integrals have been evaluated by 't Hooft and Veltmaim which L(z) is defined in Eq(B9) and
[3], Sec. 7. We give here only their final result, rewritten

using our metric; the essential steps in the derivation are _ Di'pj+\/(Pi'pj)2—mi2mj2 = ap—b.
given in their work. As shown i3], Sec. 7, for the case in «= m2 AP R
which the momentg; andp; are all on the mass shell, the ' (4.12)

integralsL;; can, providedp; is not a multiplep; , be written

in the form Bij=pij-t+ V(pi,j't)z—miz,jtz, YijE\/(pi'pj)z_mizmjz-

(4.12
Lij= 727 {s{D+s2h, (4.8  [Note that forAe—0, S??) remains finite; the only singular-
V(i P = mim; ity is confined to the term In@®e/\), evident inS.] The
h evaluation of Eq.(4.6) for p;=p; is stralghtforward The
where result written in terms of relativistic invariants is
o0 Em?
sj=2 In( Pu Py V(P py) 7 m‘)m(ZAe) (4.9 LA |n(2AE) S S G )
mm : Cmz UM e pFmie (me) |
and (4.13
In Ref.[3], Sec. 7, the expression f6f” is evaluated in the
S= 2 Bi 2 Bj Ll 1 Bil -t frame S°. Since we want finally to express the cross section
J m\t2 m; Ji2 2y in terms of lab frame energies and momenta, we have, in Eq.

(4.10, written S??) in terms of relativistic invariants. The
mizl -t Bjl-t mjzl -t terms of leading order in INn are apparent in Eq$4.9 and
e 1- —L{1- By (4.13. Substituting these in Eq4.7) gives the infrared di-

vergent terms irdo, . They are cancelled exactly by theNn
(4.10 terms in the elastic cross section.

+L|1-

atzyij
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TABLE I. Contributions to the radiative correctiohfor electron-proton scattering as given in this paper
(MTj) and in Mo and Tsa[2] (MoTsaj for three initial electron energies and four-momentum transfers.
Values in the rows marked®, Z?, andZ? refer to contributions from terms with these factors in Ex2).

€,=4.4 GeV =12 GeV €,=21.5 GeV
Q?=6 (GeVic)? Q?=16 (GeVk)? Q?=31.3(GeVt)?
MTj MoTsai MT]j MoTsai MT]j MoTsai

z° -0.2187 -0.2171 —0.2330 —-0.2322 —-0.2323 —0.2317
zt —0.0569 —0.0506 —0.0517 —0.0479 —0.0625 —0.0571
z? —0.0242 —0.0232 —0.0359 —0.0347 —0.0452 —0.0440
s +0.0068 +0.0116 +0.0185
) —0.2930 —0.2908 —0.3090 —0.3149 —0.3214 —0.3328

In writing the explicit expressions for the termslif), we  is achieved by choosing and j such thatm;=m and m;
choosei andj such thatL;; simplifies readily for lab frame =M. do, can now be calculated in the high-energy approxi-
electron energies and momentum transfers which are vempation as defined in Sec. Il. Using the results as given in
large compared to the electron rest mass. WhgaAm;, this  Appendix D, we obtain for the inelastic cross section

\

( 2 2 2
—q (7mAE) 1 —q 1 1 1
Inf —|—=21|In| ——— |+ =In?| — | = =In? p+L| cof=0| — = =2
{ ( m? ) ( €1€3N 2 m? 20 7 2 3
@ (29AE)? 7 1
da—b:;da-0< +2Z InMn(T +L 1—; —L 1—& } ) (414)
€ 279AE)? € 1

172 —4Inx—1)ln (nAE)) € |2 gL 1——) 1

| |4l A2 |4l X2 )

where 7 is the lab system recoil factor and=(p  electron detector resolution, and target nuclere given in

+p1)/4M?, introduced in Sec. II. Tables I-Ill. We note that the infrared (A) terms, which
appear in both the purely elasti8.36) and inelastic(4.14)
V. RADIATIVE CORRECTIONS TO ELASTIC contributions to the radiative correction, cancel exactly when
ELECTRON-PROTON SCATTERING added to give the cross section for elastic electron-proton

) ) scattering with radiative corrections to first orderan
The results given in Eq$3.36),(3.37), and(4.14) may be
added to give the radiative correctionThe analytic expres-
sion is given below in Eqg5.1),(5.2). Numerical evaluation do=dao(1+9), (5.3)
of the radiative correction for various values of the pertinent
parameterginitial beam energy, momentum transfer, final where

TABLE Il. Contributions to the radiative correctiahas given in this papeiMTj) and in Mo and Tsdi2]
(MoTsaij for several nuclei, withe;=4.4 GeV,Q?=6 (GeV/c)?; other symbols as in Table I.

2 “He 12c “Ca
MT] MoTsai MT] MoTsai MT] MoTsai MT] MoTsai
Z° —0.2476 —0.2467 -0.2535 —-0.2532 -—0.2615 —0.2609 —0.2632 —0.2625
zt —0.0187 -0.0183 -—-0.0066 —0.0077 -—0.0151 -—0.0168 —0.0147 -0.0173
z? —0.0094 -0.0088 -—0.0077 -—0.0071 —0.0156 —0.0145 -—0.0188 -—0.0178
s +0.0010 +0.0002 +0.0001 +0.0001
) —-0.2747 —-0.2739 -0.2677 —0.2680 —0.2920 —0.2922 -0.2966 —0.2975
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TABLE lll. Contributions to the radiative correctiofi as given in this papeiMTj) and in Mo and Tsai
[2] (MoTsaij for several nuclei, withe;=21.5 GeV,Q?=31.3 (GeVk)?; other symbols as in Table I.

24 “He 12c “Ca
MTj MoTsai MTj MoTsai MTj MoTsai MTj MoTsai
Z° —-0.2707 —0.2704 —0.2817 —-0.2814 —0.2876 —0.2875 —0.2896 —0.2894
z! —-0.0182 -0.0189 -0.0149 -0.0166 —0.0134 -0.0164 -—0.0123 -0.0173
Z? —0.0231 -0.0221 -0.0379 -—-0.0352 —0.0583 -—0.0535 -—-0.0761 —0.0708
s +0.0045 +0.0026 +0.0006 +0.0001
) -0.3076 —0.3114 -0.3319 -0.3333 -0.3587 —-0.3573 —0.3786 —0.3775
|13 [ —q%| 28 -q° 4ere 1 1 ?
=—|—In ) P In —9 —1|in| —=2_ —=In’p+L| cog= 6| — —
m| 6 2 9 m> (29AE)? 2 2 6
2aZ -9 1
— | —=Inxln a 5| tL —2)—L<1——>
™ (27AE) X 77X
[ € 1 2 € M?
—2| — ZI?x—InxIn p—2 +Inx —(—4Inx—1>ln — +1
az2| Ipall 2 M |Pal (27AE) .
+— +68. (5.2)
™ €4 1 1 ’772
tr—|-L| 1= |+2L| - 7|+ =
|4l X X 6

Here, &) is the contribution coming from the inclusion of tables include only the contribution of electron-positron pairs
form factors for the proton and integration over the entirein the vacuum polarization; the contribution of muon and tau
range of four-momenta of the virtual photon in the protonpairs is given by Eqs(3.17),(3.18.

vertex correction; it is thus not included in the analysis given The curves in Figs. 3 and 4 illustrate the two aspects of

in Refs.[1,2], denoted here as the soft photon approximationthe present work(1) the contribution of nucleonic size ef-
Moreover,s) has no infrared divergent terms; these are allf€Cts tO the radiative correction, aii@) the improvement of
included in ?he soft photon approximation the mathematical treatment of the integrations given in the

In Tables I-Ill we compare the values of the radiative
correction,§, calculated in this papddenoted by MT) with
those given by Mo and Tsai in Rd®2] for various kinemat-
ics. The initial beam energies and momentum transfers have,
been chosen to correspond to experiments proposed or a
ready performed at Jefferson Lab4] and SLAC[15]. The 0
final electron detector acceptanc®E has been taken
throughout to be one percent of the final electron energy
In the form factorgsee Eq(2.2)], the parameteA has been
chosen to be 700 Me¥/throughout. The contribution of the
terms in Eq.(5.2) are grouped according to the powerdf
which appears there as a factor. The numerical value of eacl
of these groups of terms is given in the rows denoted by-
Z0 7,72 Values given in the column MTj in the ro&? do
not include the contribution of the proton form facterhich
are contained irﬁfj’); they are given for comparison with
the values in Ref{2]. In the range of energies and momen-
tum tra_nsfers considered here, _the Corr_ecﬁﬁﬁ, due to th? FIG. 3. The curves show the contribution of nucleonic size ef-
finite size of the nucleorand integration over the entire fects (VTX, dashed curve mathematical refinemerD0, dotted
range of four-momenta of the virtual photon in the protoncyrve, and the resulting differencéd, solid curvé between the
vertex correctioy is found in general to be much smaller radiative correction given by Mo and Tg4] and that given in this
than the other contributions with fact@rf, labeled explicitly paperdyr; as a function of four-momentum transfer for an initial
in Eq. (5.2 and in Tables I-lIl. The values given in these electron energy of 6 GeMVTX, DO, and D are defined in Sec. V.

€1=6GeV

2

-

_~7"VTX

P

LI L
A

-
-

-1

l L l L l L | L | L
20 4.0 6.0 8.0 10.0

5 L

0.0 120

four-momentum squared, -qz, [(GeV/c)z]
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€1 =16 GeV

6.0 —

Do

-8.0
0.0

50

10.0 15.0 20.0

four-momentum squared, -q2, [(GeV/c)z]

250

300
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and at the higher energies considered here, the contribution
of 8{}) is negligible. However, for the two highest energies,
s is between 2% and 3% of the factor {15) by which

the uncorrected cross section must be multiplied, and hence
should be considered in precision measurements for electron-
proton scattering at energies above 8 GeV. As an empirical
guide, we find tha®{}’=0.02(1+ 8) for initial energies and
scattering angles satisfying sin #~8 for beam energies be-
tween 8 and 16 GeV. Finally, we note that a considerable
simplification of the expression in Eq5.2) occurs if, in
addition to the last two terms multiplying/ 7, we neglect

the last two terms multiplying @Z/# as well as the last
three terms multiplyingrZ?/ 7, each of these sets of terms
being always less tham?/6 in magnitude. From this study
we see that at the energies and momentum transfers consid-
ered here, the nucleonic finite size effects are rather small but

FIG. 4. As in Fig. 3, but with an initial electron energy of 16 Gev. &€ €xpected to become more important at higher energies.
The corrections due to the improvement of the high-energy

behavior of the radiative corrections as described in this pa-
per are not negligible and need to be taken into account at
the energies and momentum transfers we have considered.

work of Mo and Tsa[1,2]. The nucleonic size effects are all
contained in the terna'}) [Eq. (3.37)]; its contribution rela-
tive to the overall radiative correction factor tWyy;) is
given by the dashed curves marked VTX, where VTX
=100x 6§/(1+ 8yr). The dotted curve shows DO
= 100X (8@} — Srsa)/ (14 Sy;), which is that part of the
difference between the radiative correction given by Mo an
Tsai[2] and the one given in this paper due solely to the
improvement of the mathematical treatment of the integra-
tions. Here,&ﬁj’%j is the radiative correction given in Eq.
(5.2), excludingthe terms} . It will be noticed that VTX is As noted in Sec. Il A, the termggg,gsg, . . ., can be
always positive, and that for most of the range of allowedexpressed in terms of the integrals given in Ej1). There,
momentum transferB0 is negative. Thus their sum, which the integrals,, Jo, andK, are scalars and hence are func-
@s th(_a differenqe between the radiativg corr.ecm}j given tions of the scalarp%, pﬁ, andp,- p, (and, of course\2 and

in this paper in Eq(5.2), and &rsy, given in Ref.[2], is  A2) since we have on-shell particles in the initial and final
rather small except for the region corresponding to largeiaieg p§=pﬁ=M2), these integrals are functions M and

scattering angles. This sum is given by the solid curveﬁz The inte ; oA
. grald , andJ, are vectors and hence in princi-
marked D, Where B DO+ VTX=100x (6MTj_ 51'339/(1 pal can be erttel’# in theﬂform

+ Surj) -
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APPENDIX A: PROTON VERTEX CORRECTION

| ,=ap,,+bps, (A1)

VI. CONCLUSION

We have calculated the radiative correction to elasticVith a SImI|621I’ equation fod,,, wherea andb are functions
electron-proton scattering to lowest orderdnusing a had- ©f M~ andq”. However, the calculation is simplified greatly
ronic model which includes the finite size of the nucleon.if We expressl, in terms of the four vectorp=p,+p,
The contribution from the emission of real soft photons by(Which is symmetric irp, andp,) andq=p,—p, (which is
the electron and the proton is calculated exactly. The contridntisymmetric inp, andp,), i.e.,1,=Ap,+Bq,. HereA
butions of the box and crossed-béxvo-photon exchange —andB are functions ONZ andqzl and hence are symmetric
diagrams are calculated in a soft photon approximatiod P4 @ndp,. Further, since the integrands for the vectrs
which is less drastic than that employed in H&f. A num- ~ andJ, are symmetric irp, andp,, it follows thatB=0. We
ber of observations may be made from the values given ithus have
Tables I-lIl. First, the contributions of the electron vertex
correction, vacuum polarization, and real soft photon emis-
sion by the electrofithe terms in Eq(5.2) with factor a/ 7]
dominate the radiative correctiah Since our expression for and a similar equation fal, . These same considerations of
these terms differs from that given by Mo and Tiisolely ~ symmetry allow for the simplification of the tensdrg, and
in that they have omitted the terna{m)[L(cosi6)— 6]  Ju». Which are also symmetric functions pf andp,. We
in Eq. (5.2), we find values for which differ from theirs by ~ can therefore write
at most 2% for the initial energies and momentum transfers
considered here. Further, we note that, except for the proton,

|,=Ap, (A2)

luv:alp,upv—i_an,uqv—i_aSg,uv (A3)
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and a similar equation fod,,. That the terms,q, and
q.p, are absent follows directly by multiplying,, succes-
sively by p*g” and g#p”, using p-q=0 and the fact that
| .,p*q" andl ,,g“p" are antisymmetric ip, andp,. Mul-
tiplying I, (J,,) by p*, andIW(JW) successively by*p”,
g“q”, and g’” the coefficients in the expressions fioy,
J,. 1, andJ,, may be expressed in terms of their mo-
ments, defined by

1
1= Ip,p ’ hlz_z‘],up'uu (A4)
p
1 v 1 v
gll:EI;LVpMp ’ hll:l?‘],u,vp#p ’ (A5)

PHYSICAL REVIEW C62 054320

1
gzz—p 100" Npp=—3,,0q". (A6)

Conversely, from Eqgs(A2) and (A3) the integrals in Eq.
(3.3) may be written in terms of the moments. The terms
ggg, .. .,ssscan then be expressed in terms of these mo-
ments. Substituting Eq$2.1) and(2.2) in the expression for
the proton vertex correction, E(B.2), the integrals are all of
the form given in Eq(3.3), which are in turn expressed in
terms of the moments. In so doing we find

2(2M?-g%)go— 4(2M?~q?)g;
—2(8M?+0%)g11—2(q* p?) g2+ 8(M?/p?) hg

ggg=—ie’F(q?)

+[—8M?g; +24M?gy;+8M?(G%/ p?) g 8(M2/P2)ho]

sg=—ie’kF(qg?
gsg «kF(q°) T [2(2M2—

a%)do— 4(2M2—q2)gl]

: (A7)
,u.vq

[—20d%01]y,

,uvq ) (A8)

[—12M%g11— (g% p?) 920+ 2(1+2M?/ p*)ho—3hy ]y,

ggs+sgg= —2ie’«xF(q?) N (16M*=0?)g11+ (9% p?)(8M*~0°) gy,
—4(1+M?/p?)hy+3h,

(9%/4m?)
gsstssg=—2ie?k’F(g?)

+[30°g11+4MZ(0%/ p?) 92— (9% p?)ho— 1]

—(8M2+0%) 911~ (g% p*) g2+ (2+0%/ p®) hg
— (8M2+?)hy/4M2— (g p?)h, M2+ (— 1+ g2/ p?)ko/aM? | T

sgs= —ie?k’F(q?) [

p
(q2/4M2){

sss=—ie?k°F(g?)

12M?g,,+4M2(9%/p?)go— 2(1+ 2M?/ p?)h,
+3hy3+4(9%/ p?)hyp—ko/ p?

—12M?gy;—
—4h;+3hy1+ (g% p?)ho— ko p?
2(2M?+0?)g11+ 4M?(q%/p?) g2
—(4M?/p2+g?%12M?)hy+ (g%/M?)h,
—2(2M2+g?)h/AM2+ 2(9%/ p?) (2M?— g?) h,,/4M 2
\ + (g% p?)kolAM? )

10,9 () (A9)

2M

—(8M2+0%) 911~ (a*p*) g2
+(—24+4M?/p?)hg+h,

Yu

, (A10)
qu

. , (Al11)
IO'MVC]V
2M

4AM?(0?/ p?)gppt2(1+2M?%/p?)hg )

Yu

. (A12)
io,,q"
2M
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For convenience of notation, we have defined 101 x¥dxdy
W [ RS g
H(A7) 0 Jo pix?+A%(1-x)
go=lo, ho=Jdo, ko=Ko. (A13)
; . \We obtain
These expressions do not depend on the particular form of
the form factors; we have assumed only tikgt=F,=F. 1
However, for form factors of the form given in E.2), the Co=—im?py(A?), C,=-i WZEPM(ﬁz(AZ),
moments may all be expressed more simply in terms of the
functionsC(A?): (A20)
2 2 2 4 2 )1 . 1p? )
{Co(A%);CL(A%);CL (AN} = | dK{LiK, K, }/D(A). Cpuv=—17 7Pupr¢3(A%) = 7 50,0,¢3(A)
(A14) q
; 0 4.9,
For the choice of form factor€.2) we readily find — “—2A2[¢1(A2)— d2(A?)]
C(A?)—C(\?
{I}=N/ (AZ)mTm-1 % ,  (A15) 1 5 , 1 5
A=\ +§g,uvA Ph1(A )_§¢2(A (- (A21)

with m=2n, T=d/d(A?) and where N/,;=(—1)™/(m _ _
—1)I(2m)* In Eq. (A15) | and C denote any one of We now describe the procedure for calculating the func-

lo,l,,,1,, andCy,C,,C,,, respectively. We see from Eq. tions ¢, . As shown in Appendix B¢, obey a three-term

(A15) that terms irC(AéL) which are independent of2 do inhomogeneous recursion, which can be used to calcgflate
not appear in the expression forln particular, this applies for k>1:

to CW(Az), which may be evaluated using either dimen- 5 5 5 5

sional regularization or a convergence factor. The infinities (KT 1)p“12(A%) —2(2k+1) A%y (A7)

in C,,(A% are indeed independent df?, thus giving a L AKAZ (A2

finite result forl ,, as it should. In similar fashion, we have k

2p [ptp1
o[ ATC(A)-N2C(N?) =—In( —— |+ 207 ¢D1(AD) —2¢{7(AY)]
{I}=N(AZ™T™ — (A16) L APTPL
AS=A (A22)
in which J and C denote any one of,,J,,J,, and ith 02=—a2 and wh
Co.C,,C,,, respectively. We see from E¢A16) that any Wit p1=—q" and where
terms inC(A?) which are independent of? do not appear ) & dx
in the expression fod providedm=>1. Finally, for Ko we O(A2)= bu(A2)] 2 :f
have P (A=Al g2=0 0 M2x2+(1—x)A2’
(A23)

A4Co(A?)—N4CH(N?)
AZ_ )\2

— NI’ 2 -1
Ko=Np(AHTT™ The functionsg{”(A?) may in turn be calculated from the

(A17) recursion

We note that, apart from trivial factors, the integrals in 0 0 0 1
Eq. (A14) are the three-point functions defined in RES], MZ{o(A%) = A2p1(A%) + A2 (A?)= K+1°
Eqg. (5.1, and Ref[8], Eq. (E.1); Cy has been evaluated in (A24)
terms of Spence functions in Rdf3]. The details of the

algebra in Refd3,8] being rather lengthy, we choose instead To implement the recursior(&22) and (A24) we need

to evaluate the integrals in EGA14) using Feynman param-

eters, writing ¢(°)(A2)= Lln &
1 101 xdx dy O M AT
D(AZ):Zfo Jo[k2—2xk-py—A2(1—X)+i€]3’ 1| M> A [A+A
(A18) A= '”F+A_1'n(A—Ai) (A25)

where py=p,oy+ps(l—-y)=p/2+q(1—-2y)/2. Using Eq.
(A18) and neglecting terms which are independenf\ofve  which follow from Eq. (A23), and ¢;(A?), which can be
may expres£,, C,, andC,, in terms of the functions expressed in terms of dilogarithnisee Appendix B
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ISTCRNS PR TR P o0~ L
. - 5 y @ (A)Xﬁowny, (A29)
1
—21In(x)In 1+§ ] (A26)  _nd fork>1
where

_ Q)= — —

e Pren_(pren® o AtAL (ATAYT PO G Tpp, ™ A O T
p—p1  4M? ' A=A, am? (A30)

(A27)

Consequentlyg, is the only moment which is infrared di-

2_A2_ 2
andAf{=A“—4M~. vergent. We have

In view of Egs.(A15)—(A17) we also want to take the
limit A\—0. Neglecting all terms which vanish in this limit,

we find 1
go=—N11(A?)+ Nm(Az)me_l[ —2¢1(A2)] ,
1 1) #* 1 A (A31)
2 SN SV 1 A D 2
d1(N )XHO ZL( x) 6 2In X
) whereN = —im?N/,.
+Inx In(—) , (A28) Using the above results, the termgg, . . . ssscan now
\? be expressed in terms of the functiofg. We get
|
( —2(2M?=0?)N11(\?) )
2 2 m—1 1 2 m—1 1 2
] r20eMP=gd)| ST S gi(AR) | ST [ a(A?) — 62(0)]
9g9g=—ie*F(a?) A A l Vi

1
+ Sm_1{¢z(/\2)}—4'\/|23m_1[ P[fbs(/\z) - ¢3(0)]}

\ J

+4M2g" !

i0,,9"
] oM (A32)

1 1
—iezF(qz)[—4M23m1[P[¢2(A2)— $2(0)] P[¢3(A2)_ #3(0)]

1
gsg=— iesz(qz)l - qzsm_l[PMz(Az) - ¢2(0)]} ]m

1
—Nyp1(N?)+ Sml{ Pﬁbl(/\z)

—ie2kF(g){ 2(2M2—qg?) . 'Uz“l\jlqv, (A33)
-snt P[d’z(Az)—d’z(o)]]
( q2 2|l em-1 1 2
Z_3M )S P[sba(/\ )= #3(0)]
ggs+sgg=—2ie’kF(q?) 2 L Yo
+§3m1[ ¢1(A2)—§¢2(A2)}
( 1
2M28m1‘P[¢3(A2)—¢3(0)] o g
—2ie?kF(g?) 1 ﬁ, (A34)
- 4Sm_l( $1(A?)— §¢2(A2)}

\
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—om2sm 2 L1 (A2) - g0
o A2[¢3( )= $3(0)]
gss+ssg=—2ie2K2F(q2)m Yo

1
—zsm—l[ $a(A?) - §¢2(A2>]

§ 2_ 2) m—1 i 2\
(4q M“|S |A2[¢3(A) $3(0)] 0"

_9in2,.2 2
2ie‘k“F(q9) oM

L L (A35)
- 55’“1( $1(AD) - §¢2<A2>]

( \

1 1
—2M25m1[P[¢3(A2)— <;/>3(0)]] - ESm’l{sbs(Az)}
1
sgs= —ie?k?F(q?) +SM Ny (A} + Esm_l{%(/\z)} Y YV

1 1
- msml( AZ[ $1(A?)— Z¢2(A2)“

—

2M ZSm—l

= A?)— ¢3(0
12l #a(AD) = ¢3(0)] 00"

_in2,.2 2
ie“k“F(g°) oM

(A36)

1
=28 H ey (AP} + 53m7 Hes(A?)}

\

q® | —2m?s"t i[d’ (A%) = p3(0)] +35m71{¢ (A%}
sss=—ie21<3F(q2)—2 AR : 2 ° Vi
4M

+2SM Y py(A%) — (AP}
r 1 2cm—1 1 2 q2 m—1 2 \
4 S P[%(A )—¢3(0)] — 1+_2M2 S H (A}

. 1 io,,9"
- €2k (o) ~ S (M) el ()

qZ

_ 1 m—
* ”W) ST Hpa( A2} = 45 ST HA $(AD) =~ 6(A)])

N| -

\ J

whereS" =N, (A2)™TM" L, the expression for the functiaf;(A?), defined in Eq(A19)
It should be noted that the terms wigh (\2) appear only and given in terms of Spence functions in E426). Inte-

in ggg and gsg. They constitute the well-known infrared grating first overy in Eq. (A19) we have

divergence. They are, apart from the hard-photon proton in-

teraction(2.1) independent of the proton form fact@n this , 1 1xk—1

case independent & andM). This is to be expected, since (A7) = p1 T'”
: ) Lo . 1Jo

this term is cancelled by a similar infrared divergent term

coming from the cross section for the emission of a real soft

photon, which is given by the elastic cross section multipliedWherg szp2X2.+4(l—X)A2, p§= —a*>0, and x=(p

by a factor independent of the proton form factor. +p1)7/4M?. Noting that

R+x
ledX,

— (B1)

d k k—1 2 2,2 2 -1
APPENDIX B: THE FUNCTIONS ¢, (A?) Ty R =XCHKR 4 p2XP—2xAZIRTY (BD)

In this Appendix we derive the three-term recurrence re-
lation for the functiong,(A?) given in Eq.(A22) as well as  we obtain
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k+1)p? —2(2k+1)A2 +4kA2 zIn(1—t
( )P Pri2—2( JA“ D1 o L(Z)=—J ( t )dt. B9)
2 (M) REXP1l i) (B3)
=—1| In X‘R).
piJo [R—Xp1
APPENDIX C: FINAL ELECTRON DETECTOR
Integration by parts then gives ACCEPTANCE
K+1)p2 —2(2k+1)A2 +AKA2 In this Appendix, we expresAe, the maximum momen-
(ktDp i 2( VA r P tum of the photon in the fram&°, in terms of the final
2p (p+ps 1 xK2-x) electron detector acceptance in the lab frakie In S°(p,
:—In( — -2 2f 55 5 +k=0), if |[k|=Ae<M, we have, from p,+p,—ps)?
Pr PP 0 M+ (1-x)A =(ps+Kk)?, neglecting terms of order Ae/M)? and
(B4)  (M/M)?,
from which the recursioriA22) follows at once, using Eq. Po-(P1—P3)— P1-P3=MAeE. (C1

(A23).

From Eq.(B4) it is clear that¢, and ¢5 follow once we
have evaluated;. Settingk=1 in Eq.(A19) and integrating
first overx gives

Writing this in terms of lab frame energies, we have, for high
energies

A+A M(€e,— €3)— €1€3(1—cosh)=MAe. (C2

A—A

Py
" A2

A|
+Kn

(B5)

fl X dx 1
0 p§X2+A2(1—X) 2pf, For elastic scattering in the lab frame, we have

_ el _ elrq _
whereA?=A?—4p;. We next make the change of variable M(e1~e5) ~ €1€5(1~c0s6)=0. €3

y=(1+w)/2, which givesA?=p3w?+A%—p? and then o
make the further change of variable= p,w+s, from which ~ Subtracting gives

A2—p?—¢? A2—p?+¢? €1 )
= = AE| 1+ —(1—cosf) | =Ake, C4
w 2prs A s . (B6) M( ) € (C4
Integrating Eq.(A19) overy gives where
$1(A?)= EF = Mo AE=€f—es. (C5)
p1ls p?—(A—s)? 4sA

Thus, in terms of lab frame quantities we have

2 (st ds [pz—(A—S)2
In

P1ls_ (A+s)2—p? 4sh | Ae=pAE. (C6)
(B7)
2 ) APPENDIX D: HIGH-ENERGY APPROXIMATION
wheres.=A,*+p;, A2=A2—4M?. Factoring the expres- FOR S
sions which appear as factors to the logarithms as well as in . _ _ : . o
their argumentsg, can be further reduced to partial frac-  In this App(%ndm we give the high-energy approximation
tions. Performing explicitly some of the occurring integrals of the termsS;”’ defined in Eq.(4.10, in which we note in
we obtain particular that fori=1 or 3 we havel-t=(ap;—pj)-t
~ ap;-t. Using transformations of the Spence functi¢8}
1 fa 4.0 p. 389(B.3),
P (A?)=— In(—)ln 5 5
pp1 . (1-a})(1—a%) 1 1 1
L(z)=—L(E>—gw2—§In2(—z), (D1)
o _
~2 |n(a—)|n(2A)+L(1—ai)—L(1—a2)}.
+
(B8) L)=—L| -2 1| 2(1 D2
(2)= =1 3" (1-2), (D2)
whereg.=A*p anda~=(pFp)/(A+A;). In Eq. (B8)
L is the dilogarithm(Spenceg function, defined as the terms inS(jZ) simplify considerably. We then obtain
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2€ 1 X 1 2€ 1
(2)— _1n2| Z58) 24 Zin2| 2 - = 2 (2)— _p2[ Z5L) = 2
Si% In(m) In x+2In<77) 57 Sy In(m) 5™ (D6)
1 Ui
-L{1——|+L|1——], (D3)
X7 X

2e 2e 1 1 1
) 12l 222 Zin2l 222 = Z 524 Zn2 -
S5 In(m) In(m) 37 +2In(cos’-29>

2€ 1 1
)= _ 02| 22 — |2 —In? 2
Sy In ( ) In“(x)+ 2In (Xm) 67

1
+L coszze , (D7)
1
+L{1-— —L(l—z), (D4)
X7 X
¢ 1 1 1 1
2 _|n2[ £3| - = 2 (D="In?(x)+=L| 1—-=]|. D
SP= In(m) 5 (D5) 2 =5+ 35 ) (D8)
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