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Description of quadrupole collectivity in NÉ20 nuclei with techniques beyond the mean field

R. R. Rodrı´guez-Guzma´n, J. L. Egido, and L. M. Robledo
Departamento de Fı´sica Teo´rica C-XI, Universidad Auto´noma de Madrid, E-28049-Madrid, Spain

~Received 9 June 2000; published 23 October 2000!

Properties of the ground and several collective excited states of the light nuclei30,32,34Mg are described in
the framework of the angular momentum projected generator coordinate method using the quadrupole moment
as collective coordinate and the Gogny force as the effective interaction. The calculated excitation energies and
B(E2) transition probabilities agree reasonably well with experiment. The results clearly indicate that both the
restoration of the rotational symmetry and the quadrupole dynamics are key ingredients for the description of
the properties of the above-mentioned nuclei.

PACS number~s!: 21.60.Jz, 21.10.Re, 21.10.Ky, 27.30.1t
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I. INTRODUCTION

Nowadays, the region of neutron-rich nuclei aroundN
520 is the subject of active research both in the experim
tal and theoretical side. The reason is the strong experime
evidence towards the existence of quadrupole deform
ground states in this region. The existence of deform
ground states implies thatN520 is not a magic number fo
the nuclei considered, opening up the possibility for a be
understanding of the mechanisms behind the shell struc
in atomic nuclei. In addition, the extra binding energy co
ing from deformation can help to extend thereby the neut
drip line in this region far beyond what could be expect
from spherical ground states. Among the variety of availa
experimental data, the most convincing evidence for a
formed ground state is found in the32Mg nucleus where both
the excitation energy of the lowest lying 21 state@1# and the
B(E2,01→21) transition probability@2# have been mea
sured. Both quantities are fairly compatible with the exp
tations for a rotational state. Theoretically, from a she
model point of view, the deformed ground states are
consequence of the lower energies of some intruderp
22h neutron excitations into thef p shell as compared to th
puresd configuration@3#. In terms of the mean-field pictur
of the nucleus, a quadrupole deformed ground state only
pears after taking into account the zero-point rotational
ergy correction to the mean-field energy@4–8#.

In a previous paper@9# we have computed angular mo
mentum projected~AMP! energy landscapes, as a function
the mass quadrupole moment, for the nuclei30234Mg and
32238Si. We have found that the projection substantia
changes the conclusions extracted from a pure mean-
calculation. In all the nuclei considered, with the except
of 34Mg, two coexistent configurations~prolate and oblate!
have been found with comparable energy indicating ther
that configuration mixing of states with different quadrupo
intrinsic deformation had to be considered. The purpose
this paper is to study the effect of such configuration mix
for the nuclei 30234Mg. The Si isotopes have been disr
garded in this work as there are indications@7# that triaxiality
effects could be relevant for the description of their grou
states and, for the moment, our calculations are restricte
axially symmetric (K50) configurations. In our calculation
0556-2813/2000/62~5!/054319~8!/$15.00 62 0543
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we have used the Gogny force@10# ~with the D1S parametri-
zation@11#! which is known to provide reasonable results f
many nuclear properties such as ground-state deformati
moments of inertia, fission barrier parameters, etc., all o
the periodic table. As the results presented in this paper
show, this force is also suited for the description of quad
pole collectivity in N'20 nuclei. Additional results for
32Mg with older parametrizations of the Gogny force a
also discussed. Finally, let us mention that similar calcu
tions to the ones discussed here using the Skyrme interac
have recently been reported@12#.

II. THEORETICAL FRAMEWORK

To compute the properties of the ground and several
lective excited states of the nuclei considered in this pa
we have used the angular momentum projected gener
coordinate method~AMP-GCM! with the mass quadrupole
moment as generating coordinate. To this end, we have u
the following ansatz for theK50 wave functions of the
system:

uFs
I &5E dq20f s

I ~q20!P̂00
I uw~q20!&. ~1!

In this expressionuw(q20)& is the set of axially symmetric
~i.e.,K50) Hartree-Fock-Bogoliubov~HFB! wave functions
generated by constraining the mass quadrupole momen
the desired valuesq205^w(q20)uz221/2(x21y2)uw(q20)&
~please, notice that this definition is a factor of 1/2 smal
than the usual definition of the intrinsic quadrupole momen!.
The intrinsic wave functionsuw(q20)& have been expanded i
a harmonic oscillator~HO! basis containing ten major shel
and with equal oscillator lengths to make the basis clo
under rotations@13#. The rotation operator in the HO bas
has been computed using the formulas of@14#.

The operator

P̂00
I 5

2I 11

8p2 E dVd00
I ~b!e2 ia Ĵze2 ib Ĵye2 ig Ĵz ~2!

is the usual angular momentum projector with theK50 re-
striction @15# and f s

I (q20) are the ‘‘collective wave func-
tions’’ solution of the Hill-Wheeler~HW! equation
©2000 The American Physical Society19-1
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E dq208 HI~q20,q208 ! f s
I ~q208 !

5Es
I E dq208 N I~q20,q208 ! f s

I ~q208 !. ~3!

In the equation above we have introduced the projected n
N I(q20,q208 )5^w(q20)uP̂00

I uw(q208 )&, and the projected

Hamiltonian kernel HI(q20,q208 )5^w(q20)uĤ P̂00
I uw(q208 )&.

As the generating statesP̂00
I uw(q20)& are not orthogonal, the

‘‘collective amplitudes’’ f s
I (q20) cannot be easily inter

preted. This drawback can be easily overcome by introd
ing @16# the so-called ‘‘natural’’ states

ukI&5~nk
I !21/2E dq20uk

I ~q20!P̂00
I uw~q20!&,

which are defined in terms of the eigenstatesuk
I (q20) and

eigenvalues nk
I of the projected norm, i.e.

*dq208 N I(q20,q208 )uk
I (q208 )5nk

I uk
I (q20). The correlated wave

functionsuFs
I & are written in terms of the natural states a

uFs
I &5(

k
gk

s,I ukI&,

where the new amplitudesgk
s,I have been introduced. In

terms of the amplitudesgk
s,I the collective wave functions

gs
I ~q20!5(

k
gk

s,Iuk
I ~q20! ~4!

are defined. They are orthogonal and therefore their mod
squared has the meaning of a probability. The introduction
the natural states also reveals a particularity of the HW eq
tion: if the norm has eigenvalues with zero value they ha
to be removed for a proper definition of the natural sta
~i.e., linearly dependent states are removed from the ba!.
In practical cases, in addition to the zero value eigenval
also the eigenvalues smaller than a given threshold hav
be removed to ensure the numerical stability of the soluti
of the HW equation. In order to account for the fact that t
mean value of the number of particles operator^Fs

I uN̂tuFs
I &

(t5p,n) usually differs from the nucleus’ proton and ne
tron numbers, we have followed the usual recipe@17,18# of
replacing the Hamiltonian byĤ2lp(N̂p2Z)2ln(N̂n

2N), wherelp andln are chemical potentials for proton
and neutrons, respectively.

Concerning the density-dependent part of the Gogny fo
we have use the usual prescription already discussed in R
@18,9,19#. It amounts to using the density

r~rW !5
^w~q20!ur̂e2 ib Ĵyuw~q208 !&

^w~q20!ue2 ib Ĵyuw~q208 !&
~5!

in the density-dependent part of the interaction when
evaluation of ^w(q20)uĤe2 ib Ĵyuw(q208 )& is required in the
calculation of the projected Hamiltonian kernels.
05431
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It has to be kept in mind that the solution of the HW
equation for each value of the angular momentumI deter-
mines not only the ground state (s51), which corresponds
to the yrast band, but also excited states (s52,3, . . . ) that,
with the set of generating wave functions used in these
culations, could correspond to solutions with a different d
formation from the one of the ground state and/or to qu
rupole vibrational bands.

Finally, let us mention that, as the intrinsic wave fun
tions uw(q20)& are determined before the projection onto a
gular momentum, the procedure described above is of
‘‘projection after variation’’ ~PAV! type. It is well known
@16# that the PAV method yields the wrong moments of i
ertia, at least in the translational case, and a way to cure
deficiency is to consider a ‘‘projection before variation
~PBV! which is much more difficult to implement becaus
the intrinsic wave functions have to be determined for ea
value of the angular momentumI using the Ritz variational
principle on the projected energy~see@20# for the application
of PBV with small configuration spaces!. To illustrate the
consequences of the PBV method it is convenient to cons
a strongly deformed intrinsic configurationuw(q20)&, as in
this case it is possible to obtain@16# an approximate expres
sion for the~PAV! projected energy

EPAV~ I !5^H&2
^JW2&
2JY

1
\2I ~ I 11!

2JY
,

whereJY is the Yoccoz~Y! moment of inertia. In this ex-
pression we recognize the rotational energy correct

^JW2&/2JY and the usual rotorlike expression for the energy
the band\2I (I 11)/2JY . It was shown in@21# ~see also
@22#! that starting from the projected energy and making
approximate projection before variation~PBV! one obtains
for the energy of the rotational band the following expre
sion:

EPBV~ I !5^H&2
^JW2&
2JY

1
\2I ~ I 11!

2JTV
,

whereJTV is the Thouless-Valatin moment of inertia. Th
implies that for the determination of the zero-point rotation
energy correction~which is very important as it can dramat
cally change the energy landscape as a function of the q
rupole moment!, one has to use the Yoccoz moment of ine
tia ~i.e., PAV is good! but for the moment of inertia of the
band, one has to use the Thouless-Valatin expression
carry out a full PBV calculation.

Taking into account that, in the limit of strong deform
tion the PBV for the restoration of the rotational symme
yields to the well-known self-consistent cranking~SCC!
method, a possible way to improve the AMP-GCM would
to consider for the intrinsic states a set of wave functio
uw I(q20)& as the solution of the SCC-HFB equations for ea
spin I. However, this would lead to a triaxial projectio
which is extremely time consuming and also to the issue
how to handle configurations withq20 values close to sphe
ricity where the SCC-HFB is no longer a good approxim
tion to the PBV theory.
9-2
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DESCRIPTION OF QUADRUPOLE COLLECTIVITY IN . . . PHYSICAL REVIEW C62 054319
FIG. 1. The HFB~dashed line!
and angular momentum-projecte
energies (I 50\,2\, . . . ,8\) for
the nuclei considered. See text fo
further comments.
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In order to explore the effect of the PBV in our calcul
tions we will restrict ourselves to performing SCC-HFB ca
culations for selected configurations and compare the res
with those of an AMP calculation on those configurations
order to extract the SCC and Yoccoz moments of inertia. T
result of the comparison is that the AMPg-ray energies are
typically a factor of 1.4 bigger than the self-consistent on
and therefore a way to incorporate the effects of PBV wo
be to quench the bands generated by the AMP-GCM b
factor 1/1.4'0.7. From a physical point of view it is rathe
simple to understand why the AMP rotational band energ
are higher than the SCC ones. For the sake of simplicity
will concentrate on the 01 and 21 states. The effect of the
PBV on the 01 state is to incorporate into the correspondi
intrinsic state admixtures of two, four, etc., quasiparti
configurations coupled toK50. For the 21 state we can also
mix K51 and K52 multiquasiparticle configurations tha
make the variational space bigger and therefore leads
higher energy gain for the 21 state as compared to the e
ergy gain of the 01 state reducing thereby the correspondi
21 g ray energy.

III. DISCUSSION OF THE RESULTS

A. Mean-field and angular momentum-projected energies

In Fig. 1 we have plotted theI 50\, 2\, 4\, 6\, and 8\
projected energiesEI(q20)5HI(q20,q20)/N I(q20,q20) as a
function of q20 for the nuclei 30,32,34Mg. The HFB energies
have also been plotted for comparison. The projected en
curves can be regarded as the potential energies felt by
quadrupole collective motion and therefore give us indi
tions of where the collective wave functions will be conce
trated.

Before commenting on the physical contents of the cur
we have to mention that, except for theI 50\ curves, severa
values aroundq2050 are omitted. They correspond to intrin
sic configurations with a very small value of the nor
N I(q20,q20), that is, to configurations whoseI
52\,4\, . . . contents are very small. As a consequence,
evaluation of the projected energies in these cases is vu
able to strong numerical inaccuracies. Fortunately, the sm
ness of their projected norms guarantees that these con
rations do not play a role in the configuration mixin
05431
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calculation ~the associated norm eigenvaluesnk
I are very

small! and therefore can be safely omitted.
Coming back to the projected energy surfaces, we obse

that for I 50\ and 2\ a prolate and an oblate minima appe
with almost the same energy for the nucleus30Mg whereas
the prolate minimum becomes deeper than the oblate one
32,34Mg. For increasing spins either the prolate minimu
becomes significantly deeper than the oblate one or the
late minimum is washed out. The prolate minima are locat
for all nuclei and spin values, aroundq2051b which corre-
sponds to ab deformation parameter of 0.4. On the oth
hand, the HFB energy curves show a behavior rather dif
ent from the I 50\ projected curves showing a spheric
minimum for 30,32Mg and a prolate one for34Mg.

To disentangle the relevant configurations of the intrin
wave functions we have computed their spherical orbit oc
pancies which are given by

n~nl j !5^w~q20!u(
m

cnl jm
1 cnl jmuw~q20!&, ~6!

wherecnl jm are the annihilation operators corresponding
spherical harmonic oscillator wave functions. In the nucle
32Mg the neutronn(1 f 7/2) occupancy is zero forq2050
whereas it is almost 2 at the minimum of the projected
ergy ~i.e., q2051b). The conclusion is clear, the zero-poi
energy associated with the restoration of the rotational s
metry favors the configuration in which a couple of neutro
have been promoted from thesd shell to thef 7/2 orbit. This
is in good agreement with the shell-model picture of def
mation in these nuclei@3#.

Through exhaustive mean-field studies of the nucle
32Mg with several parametrizations of the Skyrme intera
tion @8# it has become clear that the occurrence of deform
tion in this nucleus is correlated to the relative position b
tween thef 7/2 and d3/2 neutron orbitals. In our case~D1S
parametrization of the Gogny interaction! the so-calledsd
2p f spherical shell gap for neutrons in the nucleus32Mg,
which is given byDe f 7/22d3/2

5e f 7/2
2ed3/2

~with e being the
single-particle energies of the spherical configuration!, takes
the value 5.4 MeV. This value is compatible with the resu
of @8# and also with the value given in@23#. Furthermore, the
f 7/22p3/2 spherical energy gap is only 1.8 MeV and ther
9-3
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fore we expect strong quadrupole correlations between th
two orbits. The values for other parametrizations of t
Gogny force will be discussed in the last subsection. Fina
let us mention that the quantityDe f 7/22d3/2

is not well defined

for the 30Mg and 34Mg nuclei as in these two cases we ha
appreciable neutron pairing correlations and only the qu
particle energies are meaningful.

B. Angular momentum-projected generator coordinate
calculations

In Fig. 2 the collective wave functions squaredugs
I (q20)u2

@see Eq.~4!# for the two lowest solutionss51 and 2 ob-
tained in the AMP-GCM calculations are depicted. We a
show in each panel the projected energy for the correspo
ing spin. We observe that the 01

1 ground-state wave func
tions of the30Mg and 32Mg nuclei contain significant admix
tures of the prolate and oblate configurations whereas
34Mg the wave function is almost completely located insi
the prolate well. At higher spins, however, the ground-st
wave functions are located inside the prolate well in all
nuclei studied. Concerning the first excited states (s52) we
notice that in the nucleus34Mg and for spins higher than
zero the collective wave functions show a behavior remin
cent of a b vibrational band: they are located inside t
prolate wells and have a node at aq20 value near the poin
where the ground-state collective wave functions attain th
maximum values. Contrary to the case of a pureb band, the
collective wave functions of Fig. 2 are not symmetric arou
the node and therefore cannot be considered as harm
vibrations. On the other hand, the 02

1 state of 34Mg is an
admixture of prolate and oblate configurations and canno
considered as ab vibrational state. The same pattern is al
seen in the other two nuclei but with slight differences: t
b-like bands appear at spins 4 and 6 for32Mg and 30Mg,
respectively.

It is also worth pointing out that from the position of th
tails of the collective wave functions relative to the project
energies~see figure caption!, we can read the energy ga
due to considering the quadrupole fluctuations. The ene
gain is maximal atI 50\ ~0.9, 1, and 0.7 MeV for30Mg,
32Mg, and 34Mg, respectively! and quickly decreases wit
increasing spin reflecting the narrowing of the projec
wells with spin. TheS(2n) separation energies are now 7
and 6.13 MeV for32Mg and 34Mg, respectively, to be com
pared to the values obtained with the angular momen
projection @9# alone ~7.65 and 6.39 MeV! and with the ex-
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perimental values of 8.056 and 6.896 MeV.
In order to understand in a more quantitative way t

collective wave functions just discussed it is convenient
analyze the quantities

~ q̄20!s
I 5E dq20ugs

I ~q20!u2q20, ~7!

FIG. 2. The collective amplitudesugs
I (q20)u2 ~thick lines! for

s51 ~full ! and 2~dashed! and spin values ofI 50\, . . . ,8\ for the
nuclei 30Mg, 32Mg, and 34Mg. The projected energy curve for eac
spin is also plotted~thin line!. They-axis scales are in energy unit
and always span an energy interval of 13 MeV~minor ticks are 0.5
MeV apart!. The collective wave functionsugs

I (q20)u2 have also
been plotted against the energy scale after a proper scaling
shifting, that is, the quantityEs

I 1153ugs
I (q20)u2 is the one actually

plotted. With this choice of scales we can read from the figure
energy gain due to the quadrupole fluctuations by considering
position of the wave functions’ tail relative to the projected curv
.723

.658

.573

.528

.560
TABLE I. The average intrinsic quadrupole moment (q̄20)s
I and fluctuationsSs

I 5A(q̄20
2 )s

I in barns for the
three nuclei considered.

30Mg 32Mg 34Mg

I (q̄20)1
I S1

I
(q̄20)2

I S2
I

(q̄20)1
I S1

I
(q̄20)2

I S2
I

(q̄20)1
I S1

I
(q̄20)2

I S2
I

0 0.091 0.558 0.626 0.685 0.436 0.692 0.396 0.601 0.788 0.691 0.440 0
2 0.579 0.588 0.092 0.750 0.885 0.482 0.393 0.859 1.052 0.455 0.644 0
4 0.962 0.387 0.215 0.716 1.012 0.388 1.041 0.723 1.136 0.387 0.819 0
6 1.087 0.300 0.581 0.557 1.084 0.363 1.264 0.554 1.188 0.354 0.860 0
8 1.131 0.289 1.470 0.562 1.151 0.368 1.293 0.515 1.226 0.332 0.926 0
9-4
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TABLE II. Spectroscopic quadrupole moments ine fm2 for I 52\, 4\, 6\, and 8\ ands51 and 2 for
the three nuclei considered in this paper.

s51 s52
2 4 6 8 2 4 6 8

30Mg 213.79 227.01 232.43 235.36 23.11 210.07 221.48 238.35
32Mg 219.15 226.31 230.09 231.75 28.63 223.07 227.22 229.01
34Mg 220.78 227.59 231.27 233.70 215.16 221.58 225.34 226.1
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which gives us a measure of the average deformation of
underlying intrinsic states, and

~ q̄20
2 !s

I 5E dq20ugs
I ~q20!u2q20

2 2@~ q̄20!s
I #2, ~8!

which serves as an estimation of the wave functions’ spre
ing. The values of (q̄20)s

I andSs
I 5@(q̄20

2 )s
I #1/2 corresponding

to the collective wave functions of Fig. 2 are given in Tab
I. We observe that the 01

1 and 22
1states of30Mg are spherical

~but with strong fluctuations in theq20 degree of freedom!
whereas the 21

1 state is deformed (b50.25). On the other
hand, the 01

1 states of32Mg and 34Mg are deformed withb
values of 0.16 and 0.3, respectively and have aS1

I value
rather high, possibly due to the small oblate hump. For sp
higher thanI 50\ in 32,34Mg andI 54\ in 30Mg the ground-
state band is strongly deformed. The spreading of the w
functions gets smaller for increasing spins as expected.
excited bands also get more deformed for increasing s
but their b values never coincide with that of the groun
state band. Obviously, their spreadings are bigger than
the ground-state band.

A more precise definition of the quadrupole moment
protons for each of the AMP-GCM states can be obtain
from the results of the exact spectroscopic quadrupole
mentsQs(I ) for protons~no effective charge has been use!.
The values obtained for each of the wave functionsuFs

I & are
given in Table II for the three nuclei studied ands51 and 2.
All the spectroscopic moments are negative indicating p
late intrinsic deformations.

We can also compute the total intrinsic quadrupole m
ments from the spectroscopic ones through the form
(q20

int)s
I 52@(2I 13)/2I #Qs(I )A/Z where theK50 restric-

tion has been taken into account and also the fact that ouq20
values are, by definition, a factor 0.5 smaller thanQ0 . The
05431
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factorA/Z is used to take into account the fact that the sp
troscopic quadrupole moments are given in term of the p
ton mass distribution whereas the intrinsic quadrupole m
ments are the total ones. As can be readily observed f
Table II the intrinsic quadrupole moments obtained from
spectroscopic ones agree rather well with the correspon
average (q̄20)s

I for low spins and deviate up to a 20% fo
spin 8\.

In Table III the energy splittings between different stat
and theE2 transition probabilities among them are compar
with the available experimental data. Concerning t
B(E2,01

1→21
1) transition probabilities we find a very goo

agreement with the only known experimental value and w
the theoretical predictions of Utsumoet al. @23# using the
Monte Carlo shell model~MCSM!. The 21

1 excitation ener-
gies rather nicely follow the isotopic trend but they are larg
than the experimental values by a factor of roughly 1.5. T
discrepancy could be the result of using angular momen
projection after variation~PAV! instead of the more com
plete projection before variation~PBV! that will require for
each value of the angular momentum the calculation of
generating states from the variational principle on the p
jected energy~see Sec. II!. Usually, the PBV method yields
to rotational bands with moments of inertia larger than
PAV ones@17,20#.

A full PBV is, unfortunately, extremely costly to imple
ment with large configuration spaces. Therefore, to estim
the effect of PBV in our results, we have resorted to t
self-consistent cranking method which is an approximat
to PBV in the limit of large deformations. We have chos
the intrinsic state withq2051b as the most representativ
configuration ~it approximately corresponds to the prola
minima in all the nuclei considered! and computed the pro
jected energies. In addition, self-consistent cranking calc
tions with the constraintsq2051b in the quadrupole momen
aken
m

TABLE III. Calculated and experimental results for excitation energies andB(E2,0s1

1 →2s2

1 ) transition
probabilities. In the experimental data columns values marked with an~* ! correspond to Monte Carlo
shell-model results taken from Ref.@23#. The experimental data for the excitation energies have been t
from @1# for the 32Mg nucleus and from@25# for 30Mg. TheB(E2) transition probability has been taken fro
@2#.

Calc. energies~MeV! Expt. Calc.B(E2)e2 fm4 Expt.
01

1221
1 01

1202
1 21

1222
1 01

1221
1 01

1→21
1 01

1→22
1 02

1→22
1 01

1→21
1

30Mg 2.15 2.30 1.60 1.482 229 3 218 300~* !
32Mg 1.46 1.77 3.35 0.885 395 3.4 199 454678
34Mg 1.02 2.35 3.31 0.75~* ! 525 0 290 580~* !
9-5
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FIG. 3. Collective bands for
the three nuclei studied. Bands~a!
and ~b! correspond to the AMP-
GCM results for the ground and
first excited band.~c! is the ex-
perimental band~in the case of
34Mg the MCSM prediction of
@23# has been used!. Finally,
bands~d! and ~e! are the AMP-
GCM results quenched by the fac
tor 0.7 discussed in the text.
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ect
and ^Jx&5AI (I 11) in the angular momentum have be
performed. The cranking results for the excitation energie
the 21 state are 0.548, 0.591, and 0.571 MeV for34Mg,
32Mg, and 30Mg, respectively, whereas the correspondi
projected quantities are 0.753, 0.873, and 0.895 MeV.
cranking excitation energies of the 21 state are a factor o
0.7 smaller than the projected ones and therefore, the e
of PBV is to increase the moment of inertia as compared
the PAV method. If we consider the reduction factor as s
nificative ~the q20 value chosen roughly corresponds to t
position of the maxima of the collective wave functions! and
apply it to our GCM results for the 01

1221
1 energy differ-

ences we obtain the values 0.71, 1.02 and 1.50 MeV
34Mg, 32Mg, and 30Mg, respectively. The new energy di
ferences are in much better agreement with the experime
values and the MCSM results than the uncorrected o
Also the corrected energy obtained for the 41

1 state of32Mg
is in good agreement with the excitation energy of 2.3 M
of a state of this nucleus which is a firm candidate to be
41 state belonging to the yrast ‘‘rotational band’’@24#.

Although the previous estimation can be criticized
many ways we think it may serve as an indication that a
PBV will improve the results obtained here. Concerning
B(E2) transition probabilities, the main effect of the PB
will be to shift down theI 52\, . . . projected energy curve
keeping its shape mostly unaffected. Therefore, we do
05431
of

e
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r
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e

ll
e

ot

expect big changes both in the collective wave functio
gs

I (q20) and in theB(E2) transition probabilities that depen
on them.

Finally, the band energy diagrams for the three nuc
considered are shown in Fig. 3 for states with excitat
energies smaller than 10 MeV. For each nuclei, the ba
labeled~a! and ~b! correspond to the AMP-GCM result fo
the yrast and excited bands, the band labeled~c! accounts for
the experimental data in30Mg and 32Mg and for the MCSM
result in 34Mg and finally, bands~d! and ~e! stand for the
GCM bands quenched by the factor of 0.7 previously d
cussed.

C. Results for other parametrizations of the Gogny force

The occurrence of quadrupole deformation in atomic n
clei is the result of the competition between two effec
namely, the surface energy which prevents deformation
the quantal shell effects which, depending on the nucle
favor quadrupole deformation. It is therefore highly intere
ing to analyze the effect of these two aspects in the res
we have obtained for the nucleus32Mg. To this end we have
carried out calculations with two old parametrizations of t
Gogny force; namely, the D1 and D18 parametrizations@10#.
The D1 parametrization was the one originally proposed
Gogny and the only difference with D18 is the spin-orbit
strength which is smaller for D1. As a result one can exp
-

r

y

FIG. 4. HFB ~right panel! and
angular momentum-projected en
ergy curves (I 50\ middle panel,
I 52\ left panel! as a function of
the mass quadrupole moment fo
the nucleus32Mg and the three
parametrizations of the Gogn
force considered.
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TABLE IV. Results of the AMP-GCM calculations for32Mg and the parametrizations D1, D18, and D1S

of the Gogny interaction. The average quadrupole moments (q̄20)s
I for the ground-state band and spins 0 a

2 are given, in barns, in the first two columns. In the third column theB(E2) transition probabilities in
e2 fm4 are given. In the fourth column the excitation energy of the 21

1 state with respect to the ground sta
is given in MeV. Finally, in the last two columns the energy gapsDef 7/22d3/2

andDe f 7/22p3/2
are given in MeV.

(q̄20)1
0 (q̄20)1

2 B(E2,01
1→21

1) E0
1
122

1
1 De f 7/22d3/2

De f 7/22p3/2

D1 0.185 0.785 138 2.25 6.37 1.56
D18 0.381 0.869 299 1.67 5.37 1.91
D1S 0.436 0.885 385 1.46 5.37 1.80
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that D1 will lead to a higherDe f 7/22d3/2
5e f 7/2

2ed3/2
energy

gap than D18 as it turns out to be the case: the value
De f 7/22d3/2

is 6.37 MeV for D1 and 5.37 MeV for D18. On

the contrary, the value ofDe f 7/22p3/2
for D1 gets reduced from

the 1.91 MeV we obtain for D18 to the value 1.56 MeV. On
the other hand, D1S has the same spin-orbit strength as8
~the values ofDe f 7/22d3/2

andDe f 7/22p3/2
given in the previ-

ous paragraph for D18 are very close to those of D1S give
in a previous subsection! but its surface energy coefficient
smaller than in D18. The need for a reduction of the surfac
energy coefficient in D18 was evident when the fission ba
riers for 240Pu @11# were computed with the Gogny force
they came out too high and the new D1S parametriza
was proposed to cure this deficiency of the former D18 pa-
rametrization.

In Fig. 4 we have plotted the HFB energy curves~left
panel! and the AMP energies forI 50\ ~middle panel! and
I 52\ ~right panel! for the three parametrizations of th
Gogny force just mentioned. We observe that the results
tained for D1S and D18 are, apart from the overall 4 MeV
shift, very similar. This similarity is a clear indication tha
the value of the surface energy parameter has no influenc
the results. The HFB result for D1 shows a shoulder atq20
51b which is located much higher in energy than the c
responding shoulder for D1S and D18. As a consequence, th
I 50\ projected energy curve obtained with D1 shows
very shallow minimum atq2050.5b. However, theI 52\
projected energy curves are very similar for the three par
etrizations. The differences found between the D1 results
the ones with the two other parametrizations clearly indic
the sensitivity of the quadrupole properties of32Mg to the
relative position of the orbits involved.

Finally, we have carried out the AMP-GCM calculatio
for the D1 and D18 parametrizations of the force and th
most important quantities obtained are summarized in Ta
IV. As expected from the projected energy curves of Fig
we obtain a rather small average quadrupole moment (q̄20)s

I

for s51 andI 50\ with the D1 parametrization and bigge
ones for the two other parametrizations. However, the (q̄20)s

I

for s51 andI 52\ are rather similar in the three cases. T
smaller value of (q̄20)1

0 for the D1 parameters gets reflecte
in a much smallerB(E2) transition probabilities than for th
two other parametrizations. Finally, the excitation energy
the 21

1 state with respect to the ground state turns out to
significantly bigger for D1 than for the other parameter se
05431
f

1

n

b-

on
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-
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e
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e
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being the results of D18 and D1S in reasonable agreeme
The final conclusion of this comparison is that the ene
gapDe f 7/22d3/2

seems to be a relevant parameter in order

reproduce the properties of32Mg.

IV. CONCLUSIONS

In conclusion, we have performed angular moment
projected generator coordinate method calculations with
Gogny interaction D1S and the mass quadrupole momen
generating coordinate in order to describe rotational l
states in the nuclei30Mg, 32Mg, and 34Mg. We obtain a
very well deformed ground state in34Mg, a fairly deformed
ground state in32Mg and a spherical ground state in30Mg.
In the three nuclei, states with spins higher or equalI 54\
are deformed. The intrabandB(E2) transition probabilities
agree well with the available experimental data and res
from shell-model-like calculations. The 21 excitation ener-
gies follow the isotopic trend but come out a factor of 1.5 t
high as compared with the experiment. We attribute the d
crepancy to the well-known deficiency of projection aft
variation calculations of providing small moments of inert
However, we consider the agreement with experiment to
remarkable taking into account that the same force use
this calculation is also able to give reasonable values
such different quantities as fission barrier heights, mome
of inertia of superdeformed bands, the energy of octup
vibrations, etc., in heavy nuclei. The sensitivity of the resu
to other parametrizations of the Gogny interaction is a
analyzed and the conclusion is that the D1 parameter set
to reproduce the properties of32Mg the spin-orbit strength
being responsible for such failure.

Note added in proof.Upon completion of this work, new
experimental results from RIKEN concerning the nucle
34Mg have become available@26#. The measured 21 and 41

excitation energies are 0.67 MeV and 2.13 MeV, resp
tively, and our predictions are in good agreement with the
We would like to thank Professor A. Poves for pointing o
to us the results of Ref.@26#.
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