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Theoretical description of deformed proton emitters: Nonadiabatic coupled-channel method
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The newly developed nonadiabatic method based on the coupled-channel Schro¨dinger equation with Gamow
states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling
regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can
lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic
approximation corresponding to the strong coupling scheme. Calculations are performed for several experi-
mentally seen, nonspherical nuclei beyond the proton dripline. By comparing theory and experiment, we are
able to characterize the angular momentum content of the observed narrow resonance.

PACS number~s!: 23.50.1z, 24.10.Eq, 21.10.Tg, 21.10.Re
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I. INTRODUCTION

Nuclei beyond the proton dripline are unstable agai
proton emission. Although formally unbound, some of the
systems have rather long lifetimes, ranging from micros
onds to seconds, due to the confining effect of the Coulo
barrier @1,2#.

The past few years have seen an explosion of exci
discoveries in this field including new ground-state and i
meric proton emitters@3–6# and the first evidence for fine
structure in proton decay@7#. The focus of recent investiga
tions has been on well-deformed nuclei which exhibit colle
tive motion. These are of particular interest due to the in
play between proton emission and angular momentum.

The theoretical description of long-lived proton emitte
requires a detailed understanding of narrow resonances
though proton radioactivity is a complicatedA-body phe-
nomenon, much insight may be gained by considering
simplified problem of a single proton penetrating the Co
lomb barrier of the core consisting of the remainingA–1
nucleons. It has been found that this simple one-body pic
works surprisingly well. In many cases one has been abl
determine the angular momentum content of the resona
and the associated spectroscopic factor@2#. For spherical sys-
tems, there are many methods on the market which g
similarly precise descriptions and, in many cases, one
been able to determine the angular momentum content o
resonance and the associated spectroscopic factor@2,8#.

The array of theoretical tools available for deformed em
ters is not as well developed. The existing ones fall into th
general categories. The first family of calculations@3,7,9# is
based on the reaction-theoretical framework of Kadmen�
and collaborators@10#. The second suite uses the theory
Gamow ~resonance! states@5,11–13#. Finally, an approach
based on the time-dependent Schro¨dinger equation, has bee
introduced in Ref.@14#.

In all of these previous attempts, the strong coupling
proximation of the particle-plus-rotor model has been us
The core is taken to be a perfect rotor with infinite mome
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of inertia. This has the effect of~i! collapsing the rotationa
spectrum of the daughter nucleus to the ground state and~ii !
neglecting the Coriolis coupling. Recently we have intr
duced a technique based on the weak coupling scheme w
is free from these deficiencies@15#. Within this method, par-
tial proton widths from different states of the parent nucle
to various final states in the daughter system can be ca
lated in a straightforward and consistent manner.

We will begin in Sec. II by laying the theoretical frame
work for this work. Section III discusses the numerical me
ods adopted in our work. Section IV presents application
the method to the structure of deformed proton emitters
critical analysis of the adiabatic and nonadiabatic method
contained in Sec. V. Finally, conclusions are given in S
VI.

II. THEORETICAL BASIS

From a theoretical point of view, proton radioactivity
an excellent example of three-dimensional, quantu
mechanical tunneling. As such, the understanding of pro
emission is really a test of our knowledge of very narro
resonances. Since the lifetimes which can be seen exp
mentally range from microseconds to seconds, the co
sponding widths are extremely small; they vary betwe
10216 and 10222 MeV. Theoretical description of such sma
widths requires high numerical accuracy. In the followin
the coupled-channel Schro¨dinger equation method with
Gamow states is outlined, and the proton-plus-core Ham
tonian is defined.

A. Coupled-channel equations

The parent nucleus is described by the core-plus-pro
Hamiltonian

H5Hd1Hp1V, ~1!

whereHd is the Hamiltonian of the daughter nucleus,Hp is
©2000 The American Physical Society15-1
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that of the proton, andV is the proton-daughter interaction
In the weak coupling scheme, the wave function of the p
ent nucleus is written as

CJM5r 21 (
Jdl pj p

uJdl pj p

J ~r !~Yl pj p
^ FJd

!JM . ~2!

This wave function is labeled by parity, total angular m
mentumJ, and its projectionM. In Eq. ~2!, ua

J (r ) @wherea
[(Jdl pj p) completely labels the channel quantum numbe#
is the cluster radial wave function representing the rela
radial motion of the proton and the core, andYl pj pmp

is the
orbital-spin wave function of the proton. The daughter wa
function FJdMd

satisfies

HdFJdMd
5EJd

FJdMd
. ~3!

In the present formalism, the daughter’s spectrum does
have to be known explicitly. Where possible, the energ
EJd

are taken from experiment; otherwise, the spectrum
modeled theoretically. Figure 1 shows a schematic diag
illustrating the energetics of proton emission from aJp state
of an odd-Z parent nucleus to the ground-state rotatio
band of the deformed daughter nucleus.

As usual, the coupled-channel equations are obtained
inserting Eq.~2! into the Schro¨dinger equation and integra
ing over all coordinates, save the radial variabler @9,16#:

F2
\2

2m

d2

dr2
1

\2l p~ l p11!

2mr 2
1Vaa~r !2QJdGua

J ~r !

1 (
a8Þa

Va,a8
J

~r !ua8
J

~r !50. ~4!

In Eq. ~4!, Vaa is the diagonal part of the proton-core pote
tial, QJd

is the energy of the emitted proton leaving t

FIG. 1. Schematic diagram illustrating the energetics of pro
decay. AJp state of an odd-Z parent nucleus~left! decays to those
members of the ground-state rotational band of the even-even
formed daughter nucleus~right! which are in theQ window. The
band members have excitation energiesEJd

relative to the ground
state, andQ0 is theQp value for the decay to the ground state. A
shown here, usually only a few channels are energetically open.
corresponding partial widths are indicated byGJd

.
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daughter nucleus in the stateJd , and Vaa8
J are the off-

diagonal coupling terms. TheQJd
values follow from the

spectrum of the daughter nucleus,QJd
5Q02EJd

, whereQ0

is theQp value for the decay to the 01 ground state~see Fig.
1!.

To illuminate the dynamics of the system, one can expa
the proton-daughter potential in multipoles@16#,

V5(
l

vl~r !~M̂l ^ Yl!00. ~5!

The matrix elementsVa,a8
J (r ) can then be written in the

simple, yet generic, form

Va,a8
J

~r !5(
l

vl~r !^JduuM̂luuJd8&

3A~ l pj pJd , l p8 j p8Jd8 , lJ!. ~6!

The factorA is purely geometric and comes from the prop
coupling of angular momentum vectors. The reduced ma
elements ofM̂l contain all of the dynamics of the core
Since we consider only rotational nuclei in this paper, th
are given by a simple expression@16#

^JduuM̂luuJd8&5A2Jd811^Jd8lK0uJdK&. ~7!

To consider other excitation modes in the daughter syst
one needs only change these reduced matrix elements.

To be a resonant state, the cluster radial wave func
must vanish at the origin and behave as an outgoing C
lomb wave Ol5Gl1 iF l beyond the range of the nuclea
interaction and the off-diagonal Coulomb interaction

uJdl pj p

J ~r ! →
large r

Ol p
~hJd

,rkJd
!

5Gl p
~hJd

,rkJd
!1 iF l p

~hJd
,rkJd

!, ~8!

where kJd

252mQJd
/\2 and hJd

kJd
5mZe2/\2. These two

conditions are only satisfied for a discrete set of comp
wave numbersk. The generalized eigenvalues of Eq.~4! cor-
respond to the poles of the scattering matrix@17,18#. The
corresponding solutions are either bound or antibound sta
E5Eb,0, with negative real energies and imaginary wa
numbersk5 ig (g.0 for bound andg,0 for antibound
states!, or resonance states,E5Q2 i (G/2), with a nonzero
imaginary partGÞ0, andk5k2 ig.

The asymptotic behavior of these solutions is determin
by k; at a very large distance the outgoing solution is p
portional toeikr . For resonance states,eikr5eikregr , i.e., the
wave function diverges exponentially. As discussed in Re
@17,18#, this seemingly unphysical feature of Gamow wa
functions has a natural explanation in the fact that Gam
states do not represent time-dependent wave packets
static sources. To illustrate the asymptotic behavior
Gamow wave functions, Fig. 2 shows three-channel w
functions corresponding to a broad neutron resonance.

n

e-

he
5-2



r
de
e

du

-
ex
ee

av
h
ic
rg
to

o

ch

n
e

t of
di-

-

d
on,
iate

ns

c-
at-
ry

ns

e

w

THEORETICAL DESCRIPTION OF DEFORMED PROTON . . . PHYSICAL REVIEW C62 054315
Due to the divergent behavior at larger, one must define
a new normalization scheme for the Gamow states. Bergg
proposed a new completeness relation, which inclu
Gamow states@19#, by generalizing the scalar product. H
introduced a bilinear basis set and a regularization proce
(reg). With this generalization, the norm is

(
a

regE
0

`

@ua
J ~r !#2 dr51. ~9!

A convenient method for regularization is to rotater into the
first quadrant of the complexr plane beyond a certain dis
tancer max. This is often referred to as the exterior compl
scaling method.~For other regularization techniques, s
Ref. @18#.!

Once we know the resonance energy and radial w
functions, there are several methods to calculate the widt
the state. The most straightforward method is to take tw
the negative of the imaginary part of the resonance ene
However, for the narrow resonances associated with pro
emitters, the numerical accuracy needed to calculate Im@E# is
difficult to achieve. Therefore, approximate methods are
ten used.

One possibility is to calculate the partial width for ea
channel from the current expression@17#

Ga~r !5 i
\2

2m

ua8* ~r !ua~r !2ua8 ~r !ua* ~r !

(
a8

E
0

r

uua8~r 8!u2dr8

, ~10!

where the sum of the partial widths

G~r !5(
a

Ga~r ! ~11!

FIG. 2. Asymptotic behavior of three-channel wave functio
corresponding to theJp53/22 neutron resonance in141Ho at en-
ergy E5(0.3782 i0.0732) MeV calculated atb250.20. The solid
line denotes thep3/2^ 01 channel. Notice the increasing envelop
for increasingr. The dashed line labels thef 5/2^ 21 channel func-
tion. The dotted line corresponds to the closed channell 19/2^ 81.
The wave function decays exponentially sinceQ,0. The magni-
tude has been scaled so all three wave functions could be sho
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gives the total decay width~see Fig. 1!. Although values of
Ga(r ) depend onr in the regionr ,r as where the coupling
potential terms are not negligible,G(r ) is strictly indepen-
dent of r by construction$G(r )522 Im@E#5G% which re-
flects the flux conservation~continuity equation!. Beyond the
asymptotic radius,r as, the partial widths,Ga(r ) have a neg-
ligible dependence on radius. We taker as'40 fm. Numeri-
cally, G(r ) varies little with distance and differs by less tha
0.1% from theG obtained from the imaginary part of th
eigenvalue.

The Gamow boundary condition given by Eq.~8! is usu-
ally written in the form

ua8 ~r as!

ua~r as!
5kJd

Ol p
8 ~hJd

,r askJd
!

Ol p
~hJd

,r askJd
!
, ~12!

wherer as is the channel radius.~The off-diagonal couplings
are negligible beyond it.! Using Eq.~12!, the partial decay
widths can be written at the pointr as as

Ga~r as!5 i
\2

2m

uua~r as!u2

uOl p
~hJd

,kJd
r as!u2(

a8
E

0

r as
uua8~r 8!u2dr8

3@kJd
* Ol p

8* ~hJd
,r askJd

!Ol p
~hJd

,r askJd
!

2kJd
Ol p

8 ~hJd
,r askJd

!Ol p
* ~hJd

,r askJd
!#. ~13!

If we neglect the very small imaginary part ofkJd
, the square

bracket in Eq.~13! is equal to22i . Furthermore, if we as-
sume that for a very narrow resonance the imaginary par
ua is very small@hence the generalized normalization con
tion ~9! is roughly equivalent to the ‘‘normal’’ normalization
(a8*0

r asuua8(r 8)u2dr8'1], then we end up with the approxi
mate expression for the partial decay width

Ga~r as!'
\2kJd

m

uua~r as!u2

uOl p
~hJd

,kJd
r as!u2

. ~14!

It is to be noted that Eq.~13! and its approximate form~14!
are valid only at the pointr as. The expression~14! was used
in papers@12,13,20,21#. We emphasize that if the couple
equations are solved with the Gamow boundary conditi
then the total width can be calculated at any intermed
point using Eqs.~10! and ~11!. The expression~14! is very
similar to that of theR-matrix theory ~see below!, but it
relies on different approximations and boundary conditio
than theR-matrix formalism.

In the R-matrix theory, we also have a set of radial fun
tions, ga . These functions are regular at the origin and s
isfy the coupled equations but with the following bounda
conditions

r as

ga8 ~r as!

ga~r as!
5Ba , ~15!

n.
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whereBa are arbitrary real numbers. Due to the real boun
ary condition, theR-matrix eigenvalues are real numbers.
the R-matrix theory, the wave function is normalized insid
the sphere of radiusr as, i.e., (a*0

r asuga(r )u2dr51. Thomas
has shown@22# that in a one-level approximation with ap
propriately chosenBa , in which the level shift is ignored
the position of the Gamow resonance corresponds to
R-matrix eigenvalue, and the width of the state can be c
culated in the form given by Eq.~14! in which ua(r ) is
replaced withga(r ). This R-matrix approximation works
fairly well @23,24# for very narrow Gamow resonances co
responding to the known proton emitters. For large value
the channel radiusr as, expression~14! is generally within
2% of the values calculated explicitly from Eq.~4! or ob-
tained via the current expression~10!. A detailed comparison
of theR-matrix theory and the Gamow formalism for proto
emitters will be given in Ref.@25#.

The nonadiabatic approach allows for a straightforw
calculation of branching ratios. The partial width corr
sponding to the decay to a core stateJd is given by

GJd
5(

$ l j %
GJdl j , ~16!

whereGJdl j 5Ga is given by Eq.~10!. Once the total width is
known, the half-life for proton emission is

T1/25
\ ln 2

G
. ~17!

The use of the weak coupling scheme represented by
~2! has several advantages. First, excitations of the core
included in a straightforward manner. This enables us
study the proton decay from the rotational bands of the p
ent nucleus to the ground-state rotational band of the dau
ter nucleus. Furthermore, since the formalism is based on
laboratory-system description@Hamiltonian ~1! is rotation-
ally invariant and the wave functionCJM conserves angula
momentum#, the Coriolis coupling is automatically included

B. Strong-coupling limit

A great simplification to Eq.~4! occurs if one considers
all of the rotational states in the daughter’s ground-state b
to be degenerate~i.e., QJd

[Qp for all Jd). This is the limit
of strong coupling where the moment of inertia of the dau
ter is taken to infinity. It is also theadiabatic approximation
of Refs.@16,26#.

In this limit, the coupled-channel equations~4! reduce to
those for the intrinsic~i.e., deformed! Nilsson orbital@9#

CV5(
j pl p

uVV j pl p
~r !

r
Yl pj pV , ~18!

where

uJK jpl p
5A2~21!K1J(

Jd

^Jd0 j pKuJK&uJdl pj p

J . ~19!
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In Eq. ~18! V5K5J is the angular momentum projection o
the symmetry axis. As seen from Eq.~19!, the strongly
coupled intrinsic state contains contributions from all t
cluster wave functions corresponding todifferent core states.
Since, as discussed by Tamura@16#, there is no dynamic
coupling between the angular momentum of the proton
that of the daughter nucleus~the daughter nucleus is pe
fectly inert during the proton emission!, there exist infinitely
many solutions obtained by combiningjp andJd . Since the
core states are degenerate, all the solutions withJ>V are
degenerate as well.

C. Model parameters

In this work, we assume that the average single-part
potential is approximated by the sum of a Woods-Sax
~WS! potential, a spin-orbit term, and a Coulomb potenti
The axially deformed WS potential is defined according
Ref. @27#. We employ the Chepurnov parametrization@28#; it
is in good agreement with the proton single-particle ene
levels given in the systematic study@29#. Åberg et al. @8#
discussed the effect of the optical model parameters
spherical proton emitters. They concluded that the uncert
ties in the parameters affect the half-lives by, at most
factor of 3. For spherical proton emitters, they concluded t
the Becchetti-Greenlees WS potential@30#, commonly used
in spherical calculations for proton emitters, was better th
the universal parameter set@31# ~excellent for the description
of structure properties of deformed rare-earth nuclei@29# but
having too large a radius to give a quantitative description
the tunneling rate!. Since, for the description of spherica
proton emitters, the nodal behavior of radial wave functio
plays a minor role@8#, the actual order of spherical shel
does not really matter.

However, in the case of deformed proton emitters the s
ation is different. While the radial properties of the optic
model potential are still important, the proper ordering
spherical shells becomes crucial since it affects the fragm
tation of orbital angular momentum caused by deformati
In this context, as illustrated in Fig. 3, the Becchet
Greenlees parameter set performs rather poorly, while
Chepurnov parametrization offers a compromise betw
good radial properties and proper level ordering.

Since within any mean-field theory the resonance ene
cannot be predicted with sufficient accuracy, following Re
@5,8#, the depth of the WS potential is adjusted to give t
experimentalQ0 value. The deformed part of the spin-orb
interaction is neglected; we do not expect this to have
noticeable effect on the results@32#. The off-diagonal cou-
pling in Eq. ~4! appears thanks to the nonspherical parts
the WS and Coulomb potentials.

Great care was taken to ensure that enough channels
considered in solving Eq.~4! for proper convergence in th
eigenvalues. As seen in the lower panel of Fig. 4, expand
the WS in spherical multipoles to order 8 is sufficient f
convergence. However, to be on the safe side, a value
lmax512 in Eq.~5! was used in all calculations. The numb
of partial waves that were needed in the decomposition
the proton radial wave function varies from system to syst
5-4
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FIG. 3. Comparison of deformed single-proton levels forZ563,N568 predicted in three WS parametrizations. The left panel shows
Nilsson diagram calculated with the Becchetti-Greenlees set which yields poor ordering of the single-particle levels but goo
properties. The right panel is obtained with the ‘‘universal’’ set which yields good ordering of Nilsson levels but poor radial prope
wave functions. The center panel was obtained with the Chepurnov parameter set used in this work. This latter parametrization gi
reasonable compromise between the radial and spectroscopic properties.
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depending mainly on the angular momentum of the pro
state. In general, all partial waves withl ,10213 are
needed. Since, in the nonadiabatic approach, the maxim
proton angular momentum and the maximum daughter s
considered are closely related, the above condition co
sponds to (Jd)max510 which was used for all calculation
~see upper panel of Fig. 4!. Since the high-spin channels a
energetically forbidden, their exact placement is of min
importance. Only the energy of the 21 level and, occasion-
ally, the 41 level have a profound effect on the resonan
energy and other observable quantities.~For more discussion
concerning this point, see Sec. V.!

It is important in this work that we have a good represe
tation of the ground-state rotational band in the daugh
nucleus. In a few of the systems studied in this work, su
spectra exists forJd<10, which is enough for adequate co
vergence. However, for the most highly deformed syste
the spectroscopic information does not exist. For these
clei, we parametrize the ground-state rotational band asEJd

5kJd(Jd11), wherek is adjusted to theE21 energy. In
131Eu, where fine structure has been seen, theE21 energy is
known. In other cases, systematic trends must be used
actual calculations, we have used theNpNn scheme@33# to
estimateE21.

III. NUMERICAL IMPLEMENTATION

For realistic potentials, the radial Schro¨dinger equation
cannot be solved analytically but must be integrated num
cally. For spherical potentials, one deals with a single ra
equation instead of the full set~4!. In Ref. @34# the code
GAMOW was introduced, which uses the Fox-Goodw
method for solving the radial equation. A more power
method, the piecewise perturbation, is used for the same
pose in Ref.@35#. The main features are similar in the tw
codes. The totalr domain of coupled-channel equations~4!
05431
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is separated into two parts. The first segment lies along
real axis,I 15@0,r max#. The other interval extends along th
complex ray,I 25@r max,r as#, where r as is complex and far
enough away that atr as the asymptotic series of the outgoin
Coulomb wave,Ol(hJd

,r askJd
), is a good approximation. Fo

a resonant state, the second integration region must be c
plex for our regularization scheme given by Eq.~9!. The
rotation angle ofr in I 2 should satisfy the condition

p2arg~kJd
!.arg~r as!.2arg~kJd

! ~20!

so that the solution converges along the complex ray.
For axially deformedV, the set of coupled-channel equ

tions ~4! must be solved numerically. The piecewise pert
bation method@36# has been generalized for the couple
channels case@37#. A large value ofr as is used, which is far
enough away that the off-diagonal terms of the coupling m
trix vanish and the asymptotic series for the Coulomb fu
tions are accurate. At this point the coupled-channels eq
tions decouple. For an initialkJd

value, one has to calculat

the components of a ‘‘left’’ solutionua
L which vanish at the

origin. These are integrated outwards to a matching radiusr m

in regionI 1. The components of the ‘‘right’’ solutionsua
R are

integrated inwards fromr as along the complex rayI 2. At
r max, the integration path turns along the real axis to t
matching radiusr m . All components of the ‘‘left’’ and
‘‘right’’ solutions are linear combinations of linearly inde
pendent solutions of Eq.~4! in the correspondingr regions.
The two solutions and their derivatives with respect tor
should match at the matching radius and form a set of fu
tions which are continuous inr. This condition gives a ho-
mogeneous set of linear equations for the unknown exp
sion coefficients ofua

L and ua
R . Nontrivial solutions exist

only for the generalizedkJd
eigenvalues where the determ

nant of the set of linear equations is equal to zero. For
5-5
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initial value ofkJd
, the determinant is not zero; however, it

possible to find the zero of the determinant by iteration, e
using the Newton-Raphson method. For the known pro
emitters, the width of the resonance is so small that
tremely high numerical accuracy is needed to calculate
generalized complex energy eigenvalueE. We have found
that extended precision arithmetic must be employed to
culate the imaginary part ofE accurately. The width calcu
lated directly in this manner matches well with the curre
expression~10!.

IV. APPLICATIONS OF THE METHOD

This section contains applications of the formalism
measured deformed proton emitters. For an easy orienta
Figs. 5 and 6 show the proton Nilsson diagrams characte
tic of Z'55 andZ'67 nuclei, respectively. In our theoret
cal analysis, all Nilsson levels close to the Fermi level w
investigated. The potential depth was always adjusted at e
deformation so as to reproduce the experimentalQp value.
Table I lists theQp values, the energy of the 21 states, and
deformation parameters for all the nuclei investigated in t
paper.

FIG. 4. Dependence of the resonance eigenstate on variou

pansion parameters. Calculations were done for the@411# 3
2 level in

131Eu at a deformation ofb250.37. The upper panel shows th
resonance energy~solid line with squares and left scale! and the
lifetime ~dashed line with triangles and right scale! as a function of
the number of included states in the ground-state band of the da
ter nucleus. The lower panel shows the same except as a functi
the number of spherical multipoles used in expanding the defor
single-particle potential.
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A. Description of rotational bands built upon deformed
resonances

As has been previously mentioned, a significant benefi
working in the nonadiabatic formalism is the proper tre
ment of the ground-state rotational band in the daugh
nucleus. This makes it possible to easily calculate the
structure in the proton emission. The presence of the r
tional band in the daughter nucleus also gives rise to ro
tional bands built uponJ5V band heads in the paren
nucleus. In a previous work@15#, we discussed a rotationa
band in 131Eu built upon theJ5 3

2
1 level associated with the

@411# 3
2 Nilsson orbital. The spacing of the levels in the pa

ent nucleus follow nicely the expectedJ(J11) spacing with
the same moment of inertia parameter as assumed for
daughter nucleus. Small deviations from theJ(J11) spacing
result from the Coriolis coupling.

To verify that the calculated band structure indeed
longs to the sameintrinsic Nilsson configuration, one can
inspect theK decomposition of each rotational level. This
done by using Eq.~19! to project the nonadiabatic wav
functions onto adiabatic states with goodK. For theJ5 3

2
1

ex-

h-
of
d

FIG. 5. Single-proton levels representative of odd-Z rare-earth
nuclei with Z'55 plotted as functions of the quadrupole deform
tion b2. The hexadecapole deformationb4 was assumed to be pro
portional tob2 to give both the spherical and ground-state def
mations. The Nilsson orbitals studied for109I, 113Cs, and117La are
marked by thick solid lines.

FIG. 6. Same as in Fig. 5 except for131Eu and141Ho.
5-6
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THEORETICAL DESCRIPTION OF DEFORMED PROTON . . . PHYSICAL REVIEW C62 054315
orbital in 131Eu, theK decomposition is shown in Table II. I
is seen that theK5 3

2 dominates, although there appear sm
admixtures of otherK components due to the Coriolis cou
pling. Note the presence of theK5 1

2 which is forbidden in
the strong coupling limit.

A very different picture arises for theJ5 1
2

1 band built

upon the@411# 1
2 Nilsson orbital in141Ho. Its low-lying band

members, throughJ5 7
2 , are shown in Fig. 7. In this case, w

do not see the development of a strongly coupled band a
131Eu, but rather two nearly degenerate decoupled signa
partners. This comes about due to the large decoupling
rameter for this orbital. Since141Ho is well deformed, we
can consider the Coriolis interaction as a perturbation in
strong coupling approximation. For aK5 1

2 band, first-order
perturbation theory gives@32#

E1/2
J 5E1/2

0 1
1

2J H J~J11!2
1

4
1ad~2 !J11/2S J1

1

2D J ,

~21!

wheread is the decoupling parameter. For a nonzero dec
pling parameter, theJ1 1

2 odd levels are shifted against th
J1 1

2 even levels with a degeneracy setting in foruadu51.
From studies of well-deformed and superdeformed band

odd-Z rare-earth nuclei, bands built on the@411# 1
2 level are

known to have a decoupling parameter near21 @38,39#.
This nicely explains our predictions and gives yet anot
verification that the weak coupling formalism properly inco
porates the Coriolis interaction. It needs to be noted that
branchings shown in Fig. 7 correspond to the proton em
sion only. In reality, the low-lying levels in these bands ra
idly decay by gamma radiation (Gg@Gp); that is, the life-
times of these states are much shorter.

TABLE I. List of Qp values, 21 state energies, and deformatio
parameters for nuclei investigated.E21 energies without a referenc
were estimated using theNpNn scheme of Ref.@33#.

Qp ~keV! E21 ~keV! b2 b4

109I 829~4! @45# 625 @46# 0.09 0.03
113Cs 977~4! @47# 466 @48# 0.16 0.04
117La 800~10! @40# 150 0.30 0.10
131Eu 950~7! @7# 121~3! @7# 0.32 0.00
141Ho 1.190~10! @5# 160 0.29 -0.06
141mHo 1.251~20! @5# 160 0.29 -0.06

TABLE II. K decomposition of the calculated band members

the @411# 3
2 band in 131Eu. TheKÞ 3

2 components arise from th
Coriolis coupling.

spin(J) K5
1
2 K5

3
2 K5

5
2 K5

7
2

3/2 0.0017 0.9972
5/2 0.0040 0.9894 0.0056
7/2 0.0095 0.9770 0.0013 1.7731025
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It is interesting to look in detail at the make-up of th
cluster radial wave function and the partial widths. In t
partial wave decomposition, the dominant components
those of the originating spherical state. For example,
117La, the @422# 3

2 Nilsson orbital originates from ag7/2

spherical state. At a deformation ofb250.33, the wave func-
tion still contains 60% ofg7/2 distributed between the 21 and
41 daughter states. However, due to deformation, other p
tial waves with j > 3

2 also contribute: d3/2 (9.6%),
d5/2 (9.0%), g9/2 (14.2%), andi 11/2(3.5%). Coriolis cou-
pling introduces thes1/2 partial wave with an amplitude o
4.2%. Although the radial wave function is a combination
components having different angular momentum, the de
branches are easy to understand. The total width is gove
by the high penetrability of low-l partial waves. In fact, 97%
of the width of this resonance is in thed3/2^ 01 channel. The
remaining part comes from thed3/2^ 21(0.6%) and thes1/2
^ 21(2.3%) channels.

The majority of decays investigated in this work ha
small branching ratios, less than 10%. However, a few h
quite large branching ratios to 21 states, including the pos

sible decay out of the@532# 5
2 Nilsson orbital in131Eu which

is predicted in this work to have the branching ratio of 52

f

FIG. 7. Rotational bands in131Eu ~bottom; built upon the
@411#3/2 Nilsson level! and 141Ho ~top; built upon the@411#1/2
Nilsson level!. For 131Eu, the strongly coupled rotational band
predicted. For141Ho, the two decoupled, almost degenerate,
quences are calculated. Proton lifetimes and strongest branc
ratios are indicated.
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B. BARMORE, A. T. KRUPPA, W. NAZAREWICZ, AND T. VERTSE PHYSICAL REVIEW C62 054315
The circumstances that lead to such large branching ra

are worthy of investigation. The@532# 5
2 orbital originates

from an h11/2 spherical orbital. At a deformation ofb2

50.32, the@532# 5
2 orbital consists mainly ofh11/2(75%),

f 7/2(18%) and only 1.9% off 5/2. There is an additiona
0.8% of theK-forbiddenp3/2 component. The decay to th
ground state can proceed only via thef 5/2 component. Mean-
while, the decay to the 21 state proceeds mainly through th
p3/2 and f 7/2 waves; the former due to the lower angul
momentum and the latter due to the larger make-up in
total wave function. The combination of a low-lying excite
state, a lower angular momentum channel, and suppre
amplitude of thef 5/2 wave leads to the very high branchin
ratio this state would exhibit.

B. Branching ratios

The main impetus behind this work has been the rece
observed fine structure in the proton decay of131Eu @7#. The
nonadiabatic formalism offers great advantages over
strong-coupling approximation in calculating fine structu
The proper placement of the daughter states are expli
included and the channels are now labeled with the proto
orbital and total angular momentum,l j , and the angular mo
mentum of the daughter nucleusJd . In one fell swoop, both
the lifetime and partial widths are calculated.

As was shown previously in Refs.@5,15#, for large defor-
mations our calculations show little sensitivity tob2 andb4.
This is because the spherical decomposition of the co
sponding Nilsson orbitals varies little in this regime, pr
vided that there are no crossings between the Nilsson orb
of interest. The uncertainty due to nuclear deformation
usually smaller than that due to experimental uncertainty
the proton energy. In the less-deformed cases, there
greater dependence ofb2 andb4. In the 1/21 level in 109I,
shown in Fig. 8, we see the effect of a level crossing n
b2'0.05. ~This effect has been noted earlier in Ref@13#.!

Table III shows predicted half-lives, theoretical spect
scopic factors, and branching ratios. The spectroscopic

FIG. 8. Predicted lifetimes in109I for the @422#3/2 and@420#1/2
orbitals. The experimental lifetime is 110(5)ms @45#.
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tors have been estimated in the independent-quasi-par
picture. Note that the 1/(V1 1

2 ) factor present in the strong
coupling approximation is no longer needed. Our predictio
for 131Eu and the ground and isomeric states in141Ho are
unchanged from Ref.@15#. The ground state of131Eu is con-

sistent with the@411# 3
2 assignment. This is the same concl

sion as in Refs.@7,21# but differs from the assignment o

@413# 5
2 of Ref. @13#.

In 141Ho, the assignments are straightforward:@523# 7
2 for

the ground state and@411# 1
2 for the isomeric state. Thes

match the assignments of Refs.@3,13#. In 109I we find agree-

ment with the@420# 1
2 with a deformation nearb250.10.

This agrees with suggestions of Refs.@9,13#. In 113Cs we see
a large admixture ofK51/2 in the J53/2 wave function.
Therefore, the asymptotic Nilsson labeling is inappropria
and only the total angular momentum is used to label
state in Table III. The two orbitals near the Fermi level

TABLE III. Table showing the various orbitals for each syste
investigated in this work. Except for the weakly deformed syste
of 109I and 113Cs, the deformation dependence is much weaker t
the uncertainty due to the experimentalQp value. The theoretical
spectroscopic factor, half-life, and branching ratio to the 21 states
are shown. Experimental results~where available! are shown in
bold type.

Orbital u2 t1/2 B

109I @420# 1
2

0.99 94.8ms 0%

@422# 3
2

0.99 7.86 ms 0%

110„5… ms @45#

113Cs @420# 1
2

0.52 0.66ms 0%

J53/21 0.56 34.7ms 0%
18.3„3… ms @49#

117La @420# 1
2

0.32 1.27 ms 0%

@422# 3
2

0.33 103 ms 3%

@541# 3
2

0.61 293 ms 4%

20„5… ms @40#

131Eu @411# 3
2

0.71 34.0 ms 39%

@413# 5
2

0.52 184 ms 7%

@532# 5
2

0.48 3.90 s 52%

17.8„19… ms 24„5…% @7#

141Ho @411# 1
2

0.70 14.6ms 0.8%

@523# 7
2

0.84 19.1 ms 6%

3.9„5… ms @5#

141mHo @411# 1
2

0.70 3.3ms 1%

@523# 7
2

0.84 4.6 ms 9%

8„3… ms @5#
5-8
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THEORETICAL DESCRIPTION OF DEFORMED PROTON . . . PHYSICAL REVIEW C62 054315
113Cs correspond to a pseudospin doublet; hence, strong
riolis mixing of these levels. In the newly discovered prot
emitter 117La, the experimental lifetime is 20~5! ms @40#. It

appears that the@422# 3
2 assignment is best with a lifetime o

100 ms at a deformation ofb250.30, b450.11.
There is currently a proposal@41# to search for proton

emission from137Tb. Being in the region between131Eu and
141Ho, this nucleus is expected to be well deformed w
b2'0.28. Using the Grodzins formula@42,43#, we estimate
the energy of the 21 state in136Gd to be 165 keV. Figure 9
shows the expected half-life as a function ofQp . It is ex-
pected that for lifetimes longer than the limit marked by t
gray line,b decay will dominate@41#.

C. Theoretical uncertainties

It should be emphasized that our method contains noad-
justableparameters; there are a few parameters which are
by experiment. These includeQp and the placement of th
lowest few levels in the ground-state band of the daugh
nucleus. Since the higher levels are energetically forbidd
even if they are needed in the calculation to ensure pro
convergence, the half-lives and branching ratios are fa
insensitive to their placement. We shall now discuss the s
sitivity of the calculated half-lives and branching ratios
various quantities used in the calculations. For concreten

we will focus on the@411# 3
2 level in 131Eu. All other levels

studied show similar sensitivities.
The largest effect on the lifetime comes from theQp

value. TheQp value for 131Eu is currently taken as 950~7!
keV @7#. The uncertainty of 7 keV leads to an uncertainty
the calculated lifetime of27.5/19.8 ms. This is a difference
of roughly222/130%. Since a change in theQp value also
affects the energies of excited states, the change in branc

ratio is much smaller. For the@411# 3
2 orbital, the effect is

61.3%.

FIG. 9. Predicted half-lives for137Tb as a function of protonQp

value. The assumed deformation isb250.28 and the estimated
value ofE21 is 165 keV. This figure is meant to identify the region
of Qp andT1/2 to look for this yet-unseen proton emitter. For long
lifetimes, serious competition from beta decay is expected. Ab
the gray line, the branching ratio for proton decay is predicted to
less than 10%@50#.
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On the other hand, the placement of the 21 level has a
smaller effect on the lifetime but greatly influences t
branching ratio. Based on Ref.@7#, the 21 level in 130Sm is
placed at 121~7! keV. This 7 keV uncertainty changes th
lifetime by 64.0 ms (612%). For the branching ratio, th
corresponding error is66.7%.

In the nuclei with significant branching ratios, little t
nothing is known about the level structure in the daugh
system; hence, we had to assume a perfect rotor to as
energies to the states above the 21. To check for the sensi-
tivity to this assumption, we repeated some calculations
suming EJd

5k8Jd(Jd11)2B@Jd(Jd11)#2. The anharmo-

nicity factor, B, has typical values aroundk8/200'100 eV
@44#. This introduces a 1.0 ms shortening of the lifetime a
a reduction of the branching ratio of 1.2%. Both are mu
smaller than the influence of theQp value orE21. So as long
as the properQp value is used along with a good estimate
the first excited state, the remaining part of the spectr
needs only to be reasonably placed.

Additional uncertainties can arise from the optical mod
potentials. As discussed in Sec. II C, we believe that
Chepurnov parametrization is the best current comprom
~It is noted here that better agreement between theory
experiment could, in principle, be achieved by fitting t
optical model parameters to the properties, including pro
decay data, of these dripline nuclei.! As discussed in Ref.@8#,
the lifetime of spherical proton emitters depends weakly
the nuclear structure details. Reasonable variations in ra
and diffuseness parameters affect the lifetimes by less th
factor of about 3.

V. ASSESSMENT OF THE ADIABATIC APPROXIMATION

As discussed in Sec II, all previous work on deform
proton emitters have made the adiabatic~ad! approximation
@3,5,7,9,11–14,20,21#. The use of the nonadiabatic forma
ism for proton emission was first used by us in the rec
Ref. @15#. The power of the nonadiabatic approach is app
ent in several areas. First, due to the fact that the wave fu
tion is in the laboratory frame, the Coriolis coupling is im
plicitly included. This allows for the inclusion of all the
partial waves withj ,J in the proton’s wave function. In
particular, the Coriolis coupling can admix states w
smallerl values, and consequently lower centrifugal barrie
into the proton wave function. Low-l components, howeve
small, can substantially affect the lifetime. Figure 10 sho

this effect for the@532# 5
2 deformed resonance in131Eu. Note

that thep3/2 partial wave contributes only 0.3% to the tot
wave function, yet accounts for 15% of the decay width.

In order to calculate the branching ratio in the adiaba
approximation, some ansatz must be used. First, the pa
width to the ground state is approximated by the width
the partial wave that matches the initial state

G01
ad

5
1

V1 1
2

G l j 5V
ad . ~22!

e
e
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For the excited states, a weighted sum over the possible
tial wave components is used:

GJd

ad5
2Jd11

V1 1
2

(
l j

u^Jd0 j VuVV&u2G l j
ad~QJd

!, ~23!

where the partial widths have been calculated with aQp

value adjusted to that of theJd
1 state. This reduces to Eq

~22! for Jd50. This procedure will be referred to as th
adiabatic corrected~ADC! method.

As can be seen in Table IV, in some instances the a
batic and nonadiabatic predictions are very close, as
141mHo and 117La. However, in other cases the differenc
are striking, like the factor of 5 difference in113Cs. In those

FIG. 10. Comparison of partial widths and wave function a
plitudes obtained in the nonadiabatic~left! and adiabatic~right! cal-

culations for the@532# 5
2 deformed resonance in131Eu. Only the

lowest few partial waves are shown. The upper panels show
spherical amplitudesucau2. Notice the presence of theK-forbidden
p-wave components in the nonadiabatic approach. The lower p
shows the normalized partial widthsga[Ga /G tot . In the nonadia-
batic case we have summed over all possible daughter states.

TABLE IV. A calculation of the proton lifetimes using the adia
batic formalism of Sec. II B. All lifetimes are in seconds. The lab
~ad! corresponds to calculations in the adiabatic approximation,
it includes all degenerate final states. The column ADC correspo
to the corrected adiabatic approximation, in which it is assumed
the decay goes only to the ground state of the daughter nucleus
~22!. The branching ratio~B! is calculated using Eqs.~22! and~23!.
For the nonadiabatic model predictions, see Table III.

Nucleus Orbital t1/2 ~ad! t1/2 ~ADC! B

109I @420# 1
2

9.8531026 24.131026 0%
113Cs J53/21 1.9831026 7.0231026 0%
117La @422# 3

2
20.531023 90.331023 0.3%

131Eu @411# 3
2

868.31026 48.731023 37%
141Ho @523# 7

2
5.9531023 6.6631023 3%

141mHo @411# 1
2

1.9431026 3.4331026 1%
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systems where the agreement is good, there is no admix
of lower-l partial waves in the nonadiabatic formalism.

It is also worth noting that lifetimes calculated in the fu
adiabatic method are usually shorter by a factor of up to 4

compared to the ADC method. However, for the@411# 3
2 or-

bital of 131Eu, there is a factor of 56 difference. This resu
from the largeJd

p521 component in the corresponding Ni
sson model function.

In about half of the cases studied, the adiabatic appro
mation, particularly with angular momentum conservati
enforced by hand, gives results similar to the nonadiab
method. In the rest, the difference can be large.

VI. CONCLUSIONS

The state-of-the-art coupled-channel formalism has b
extended to include excitation modes in the daughter syst
The weak-coupling scheme applied allows us to work in
laboratory reference frame. The exact treatment of excita
spectrum in the daughter nucleus also allows a consis
calculation of branching ratios.

As could be expected, significant branching ratios are
pected only for well-deformed nuclei where the first excit
state of the daughter nucleus lies low in energy. The Cori
mixing of states with lower orbital angular momentum c
enhance the decay to the excited state, e.g., the decay o

@532# 5
2 orbital in 131Eu where the branching ratio to the 21

state is predicted to be as large as 52%.
In the case of spherical proton emitters, the proton se

ration energy and orbital angular momentum have the larg
effect on lifetimes@8#. The detailed nuclear structure plays
minor role. In the deformed case, the placement of
single-particle levels also has a significant effect. This is t
in both the adiabatic formalism, where mixing occurs w
higher-l states, and in the nonadiabatic formalism where
Coriolis coupling can mix states with lower-l also.

We have been able to calculate the placement and de
properties of excited levels in the ground-state band of
parent nucleus. As shown in Fig. 7, both strongly coup
and nearly degenerate decoupled bands are predicted
pending on the nature of the band head. While we have
culated the proton decay half-lives of the excited band me
bers, they are all much too slow to compete with in-bandg
decay. In all cases investigated, by comparing theoret
predictions with experimental half-lives and branching rat
~where available!, we have been able to identify the Nilsso
orbital which the proton occupies. We have also been abl
discern the angular momentum components of the pro
wave function.

The results shown in Table III are in good agreement w
the current experimental numbers. We remind the reader
we have not made any attempt to adjust the WS model
rameters to reproduce the experimental data but take our
culations as independent predictions; the choice of par
etrization was based on physical reasoning. Considering
and also other model uncertainties discussed in our pa
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at
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the factor-of-4 discrepancy obtained for, e.g.,117La and
141Ho, is within the accuracy of our approach. It is very w
possible that by taking different single-particle model, o
could improve agreement in some cases. However, it was
our intention to fit the data.

While our calculations for well-deformed nuclei give
quantitative agreement with experiment, it would not
proper to apply the present model to vibrational or tran
tional nuclei such as151Lu. For this, one needs to redefin
the coupling matrix elements in Eq.~6!. Calculations along
these lines are in progress.
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