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Theoretical description of deformed proton emitters: Nonadiabatic coupled-channel method

B. Barmorel?2 A. T. Kruppa?* W. NazarewicZ;>°and T. Vertsé*
IDepartment of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
2Joint Institute for Heavy lon Research, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
3Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
“4Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary
SInstitute of Theoretical Physics, Warsaw University, ul. 868, PL-00681 Warsaw, Poland
(Received 18 July 2000; published 17 October 2000

The newly developed nonadiabatic method based on the coupled-channaiSgarequation with Gamow
states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling
regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can
lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic
approximation corresponding to the strong coupling scheme. Calculations are performed for several experi-
mentally seen, nonspherical nuclei beyond the proton dripline. By comparing theory and experiment, we are
able to characterize the angular momentum content of the observed narrow resonance.

PACS numbes): 23.50+z, 24.10.Eq, 21.10.Tg, 21.10.Re

I. INTRODUCTION of inertia. This has the effect df) collapsing the rotational
spectrum of the daughter nucleus to the ground statgignd
Nuclei beyond the proton dripline are unstable againsneglecting the Coriolis coupling. Recently we have intro-
proton emission. Although formally unbound, some of theseduced a technique based on the weak coupling scheme which
systems have rather long lifetimes, ranging from microsecis free from these deficienci¢s5]. Within this method, par-
onds to seconds, due to the confining effect of the Coulomiial proton widths from different states of the parent nucleus
barrier[1,2]. to various final states in the daughter system can be calcu-
The past few years have seen an explosion of excitindated in a straightforward and consistent manner.
discoveries in this field including new ground-state and iso- We will begin in Sec. Il by laying the theoretical frame-
meric proton emitter§3—6] and the first evidence for fine Work for this work. Section Il discusses the numerical meth-
structure in proton decay7]. The focus of recent investiga- ©0ds adopted in our work. Section IV presents application of
tions has been on well-deformed nuclei which exhibit collec-the method to the structure of deformed proton emitters. A
tive motion. These are of particu|ar interest due to the inter.Cl'itiCﬁ| analysis of the adiabatic and nonadiabatic methods is
p|ay between proton emission and angu|ar momentum. contained in Sec. V. Finally, conclusions are given in Sec.
The theoretical description of long-lived proton emitters VI
requires a detailed understanding of narrow resonances. Al-
though proton ragjio_activity is a cor_nplicatefk}body phe— Il. THEORETICAL BASIS
nomenon, much insight may be gained by considering the
simplified problem of a single proton penetrating the Cou- From a theoretical point of view, proton radioactivity is
lomb barrier of the core consisting of the remainiAgl  an excellent example of three-dimensional, quantum-
nucleons. It has been found that this simple one-body picturenechanical tunneling. As such, the understanding of proton
works surprisingly well. In many cases one has been able temission is really a test of our knowledge of very narrow
determine the angular momentum content of the resonangesonances. Since the lifetimes which can be seen experi-
and the associated spectroscopic faf2drFor spherical sys- mentally range from microseconds to seconds, the corre-
tems, there are many methods on the market which giveponding widths are extremely small; they vary between
similarly precise descriptions and, in many cases, one has0 ¢ and 10 22 MeV. Theoretical description of such small
been able to determine the angular momentum content of theidths requires high numerical accuracy. In the following,
resonance and the associated spectroscopic fE&ir the coupled-channel Schtimger equation method with
The array of theoretical tools available for deformed emit-Gamow states is outlined, and the proton-plus-core Hamil-
ters is not as well developed. The existing ones fall into threeonian is defined.
general categories. The first family of calculatidBs7,9] is
based on the reaction-theoretical framework of Kadmeénski
and collaborator$10]. The second suite uses the theory of
Gamow (resonancestates[5,11-13. Finally, an approach, The parent nucleus is described by the core-plus-proton
based on the time-dependent Salinger equation, has been Hamiltonian
introduced in Ref[14].
In all of these previous attempts, the strong coupling ap-
proximation of the particle-plus-rotor model has been used.
The core is taken to be a perfect rotor with infinite momentwhereH is the Hamiltonian of the daughter nuclets, is

A. Coupled-channel equations

H=Hg+H,+V, &
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daughter nucleus in the staty, and V’ , are the off-
diagonal coupling terms. Th@Jd values follow from the
spectrum of the daughter nucle@Jd=Qo— Es, whereQ,
is theQ,, value for the decay to the'Oground statésee Fig.

1).

) To illuminate the dynamics of the system, one can expand
the proton-daughter potential in multipolgk5],

V=§ oA (N (M@ Y))g0- (5)

The matrix elementslfw,(r) can then be written in the

FIG. 1. Schematic diagram illustrating the energetics of protonSimple* yet generic, form
decay. AJ” state of an odd parent nucleusgleft) decays to those
- i — - J ~
members of the ground s_tate rotgtlonal b_and of th_e even-even de % a,(r)zz v)\(r)(JdIIMAHJé)
formed daughter nucleugight) which are in theQ window. The ' Y
band members have excitation energﬁg§ relative to the ground

state, andQ, is the Q,, value for the decay to the ground state. As XA(ij pdd; ||;j rla‘]é ' AJ). (6)
shown here, usually only a few channels are energetically open. The ) .
corresponding partial widths are indicated By,. The factorA is purely geometric and comes from the proper

coupling of angular momentum vectors. The reduced matrix

that of the proton, and/ is the proton-daughter interaction. elements of/\A/lA contain all of the dynamics of the core.
In the weak coupling scheme, the wave function of the parSince we consider only rotational nuclei in this paper, they

ent nucleus is written as are given by a simple expressifi6]
- Jal | M35y = V235 + L{INKO|I4K). 7
V=T 1J|2j ujdlpjp(r)(ylpj,)@(de)JM' ) (Jal[M\[3g) at 1(Jg |J4K) (7)
d'plp

To consider other excitation modes in the daughter system,
This wave function is labeled by parity, total angular mo-one needs only change these reduced matrix elements.
mentumJ, and its projectiorM. In Eq. (2), ul(r) [wherea To be a resonant state, the cluster radial wave function
=(Jdlpip) completely labels the channel quantum numbers must vanish at the origin and behave as an outgoing Cou-
is the cluster radial wave function representing the relativdomb wave O,=G,+iF, beyond the range of the nuclear
radial motion of the proton and the core, ay%j o is the interaction and the off-diagonal Coulomb interaction

orbital-spin wave function of the proton. The daughter wave

. . g |
function @, , satisfies ager

ujdlpjp(r) = Oy (73,7ky,)

Ha® = Es,Pa,m, 3 =Gy (mpTKy) +iF (m3,7Ky),  (8)

In the present formalism, the daughter’s spectrum does ”%h 2 2 2
: . rek; c=2 k< an ky,=pZelhs. Th w
have to be known explicitly. Where possible, the energies € _e_ Jq Q! g d 7134534~ M e/ ese two
E,. are taken from experiment; otherwise, the spectrum iconditions are only satisfied for a discrete set of complex
d

. . . wave numberg. The generalized eigenvalues of Ed) cor-
modeled theoretically. Figure 1 shows a schematic dlagrarpespond to the poles of the scattering mafil7,18. The
illustrating the energetics of proton emission frond"astate i

¢ 4dz ; | o th d-stat ai Icorresponding solutions are either bound or antibound states,
ofan o parent nucieus fo the ground-state rotationale_ Ep<0, with negative real energies and imaginary wave
band of the deformed daughter nucleus.

) . numbersk=iy (y>0 for bound andy<0 for antibound
As usual, the coupled-channel equations are obtained b hates, or resonance state€=Q—i(I'/2), with a nonzero

o o o SLalon 220 19 magnary part #0.andh—c 15,
' Bl The asymptotic behavior of these solutions is determined
B2 A2 B2+ 1) by k; at a ve_IEy large distance the oulEgoin_g solution is pro-
- = pUp V(N —Qy. [ul(r) portional toe'". For resonance states;"=¢'“"e”", i.e., the
2u dr? 2ur? d| -« wave function diverges exponentially. As discussed in Refs.
[17,18, this seemingly unphysical feature of Gamow wave
+ 3 V(0 (n=o. 4) functions has a natural explanation in the fact that Gamow
wa @ states do not represent time-dependent wave packets but
static sources. To illustrate the asymptotic behavior of
In Eq.(4), V,, Is the diagonal part of the proton-core poten- Gamow wave functions, Fig. 2 shows three-channel wave
tial, Qs is the energy of the emitted proton leaving the functions corresponding to a broad neutron resonance.

!
a' Fa
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0.4

gives the total decay widtfsee Fig. 1L Although values of
I' ,(r) depend orr in the regionr <r s where the coupling
potential terms are not negligibl&,(r) is strictly indepen-
dent ofr by construction{I'(r)=—2 Im[£]=TI"} which re-
flects the flux conservatioftontinuity equation Beyond the
asymptotic radiuss 5, the partial widths]",(r) have a neg-
ligible dependence on radius. We takg~40 fm. Numeri-
cally, I'(r) varies little with distance and differs by less than
0.1% from thel’ obtained from the imaginary part of the

0.2 |t

0.0

uy; (r) (arbitrary units)

0.2 :
eigenvalue.
The Gamow boundary condition given by E§) is usu-
04 ‘ . ally written in the form
0 50 100 150

r (fm) Wirad O (mulaky,)

FIG. 2. Asymptotic behavior of three-channel wave functions U (T 29 =Ky O, (73.,Tak3)’ (12)
corresponding to thd™=3/2" neutron resonance if**Ho at en- “ prod d

ergy £=(0.378-i0.0732) MeV calculated gB,=0.20. The solid . . . .
line denotes the,,®0* channel. Notice the increasing envelope Wherer osis the channel radiugThe off-diagonal couplings
for increasingr. The dashed line labels tHg,®2* channel func- are negligible beyond it.Using Eq.(12), the partial decay
tion. The dotted line corresponds to the closed chahpglrg*.  Widths can be written at the points as

The wave function decays exponentially sinf@e<0. The magni-

tude has been scaled so all three wave functions could be shown. h? |Ua(ragl?
Lo(rag =iz~
r
Due to the divergent behavior at largeone must define K |0 (md,deraS)|22 J aljua,(r')|2dr’
a new normalization scheme for the Gamow states. Berggren P o’ J0

proposed a new completeness relation, which includes Y Tk* O'*

Gamow state$19], by generalizing the scalar product. He (K301 (737 adks) Or (7357 aks)
introduced a bilinear basis set and a regularization procedure ey . OF . 13
(reg). With this generalization, the norm is 301, (73725, OF (73T a5, )] 3

= i If we neglect the very small imaginary part Iojd, the square

; regfo [ux(r)]dr=1. (9 bracket in Eq(13) is equal to—2i. Furthermore, if we as-
sume that for a very narrow resonance the imaginary part of
. o . u, is very smalllhence the generalized normalization condi-

A convenient method for regularization is to rotatato the : . ; o " o

. .~ tion (9) is roughly equivalent to the “normal” normalization

first quadrant of the complex plane beyond a certain dis- fa N2 . .

tancer .. This is often referred to as the exterior complex >a'J 0'1Uar(r")[*dr"~1], then we end up with the approxi-

scaling method.(For other regularization techniques, seeMate expression for the partial decay width

Ref.[18].)

Once we know the resonance energy and radial wave ﬁZKJd [, (ra9l?
functions, there are several methods to calculate the width of L o(rad=~ %10 (makor P (14)
the state. The most straightforward method is to take twice o\ Mg 34" &

the negative of the imaginary part of the resonance energy.

However, for the narrow resonances associated with protol is to be noted that E¢13) and its approximate forrfiL4)
emitters, the numerical accuracy needed to calculaf€]ns ~ are valid only at the point,s. The expressiokil4) was used
difficult to achieve. Therefore, approximate methods are ofin papers[12,13,20,2] We emphasize that if the coupled

ten used. equations are solved with the Gamow boundary condition,
One possibility is to calculate the partial width for eachthen the total width can be calculated at any intermediate
channel from the current expressigiv] point using Eqs(10) and (11). The expressioil4) is very
similar to that of theR-matrix theory(see below, but it
2 % oy * relies on different approximations and boundary conditions
Fa(r)ziﬁ— Ua™ (NUa(T) ua(r)ua(r)’ (100  than theR-matrix formalism.
2p 2 fr|u A(r')[2dr” In the R-matrix theory, we also have a set of radial func-
7 Jo tions, g, . These functions are regular at the origin and sat-
isfy the coupled equations but with the following boundary
where the sum of the partial widths conditions
9ol a9
T(r)=23 Tu(r) (11) Fas =B, (15
a JalTad
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whereB,, are arbitrary real numbers. Due to the real bounddn Eq. (18) () =K =J is the angular momentum projection on
ary condition, theR-matrix eigenvalues are real numbers. Inthe symmetry axis. As seen from E@L9), the strongly
the R-matrix theory, the wave function is normalized inside coupled intrinsic state contains contributions from all the
the sphere of radius,g, i.e., zafgaﬁga(r)ﬁdr: 1. Thomas cl_uster wave functions correspondingdirﬁfere_nt core state_s.
has showr{22] that in a one-level approximation with ap- Since, as discussed by Tamure6], there is no dynamic
propriately choserB,,, in which the level shift is ignored, COUPling between the angular momentum of the proton and
the position of the Gamow resonance corresponds to thiat of the daughter nucleusne daughter nucleus is per-
R-matrix eigenvalue, and the width of the state can be calf€ctly inert during the proton emissigrthere exist infinitely
culated in the form given by Eq14) in which u,(r) is  Many solutions obtained by combinifigandJgy. Since the
replaced withg,(r). This R-matrix approximation works COre states are degenerate, all the solutions uA{) are
fairly well [23,24 for very narrow Gamow resonances cor- dégenerate as well.
responding to the known proton emitters. For large values of
the channel radius,,, expression(14) is generally within
2% of the values calculated explicitly from E}) or ob-
tained via the current expressi@tD). A detailed comparison In this work, we assume that the average single-particle
of the R-matrix theory and the Gamow formalism for proton potential is approximated by the sum of a Woods-Saxon
emitters will be given in Ref{25]. (WS) potential, a spin-orbit term, and a Coulomb potential.
The nonadiabatic approach allows for a straightforwardThe axially deformed WS potential is defined according to
calculation of branching ratios. The partial width corre- Ref.[27]. We employ the Chepurnov parametrizat|@8]; it

C. Model parameters

sponding to the decay to a core stdtgis given by is in good agreement with the proton single-particle energy
levels given in the systematic studig9]. Aberg et al. [8]

r=Sr,, (16 discussed the effect of the optical model parameters on

Jd {7 Jali spherical proton emitters. They concluded that the uncertain-

ties in the parameters affect the half-lives by, at most, a
wherel'; ;=T is given by Eq(10). Once the total width is factor of 3. For spherical proton emitters, they concluded that
d'l a .

known, the half-life for proton emission is _the Becc_:heth—GreenIees WS potenlﬁaQ], commonly used
in spherical calculations for proton emitters, was better than

Aln2 the universal parameter 4&1] (excellent for the description

Typ= T (17) of structure properties of deformed rare-earth nud@ej but

having too large a radius to give a quantitative description of

e tunneling rate Since, for the description of spherical

The use of the weak coupling scheme represented by Eg. . . X ;
(2) has several advantages. First, excitations of the core a oton emitters, the nodal behavior of radial wave functions
: ' ays a minor rolg 8], the actual order of spherical shells

included in a straightforward manner. This enables us td
does not really matter.

study the proton decay from the rotational bands of the par= However, in the case of deformed proton emitters the situ-

ent nucleus to the ground-state rotational band of the daugh-. ~."~". ) . . ;
ter nucleus. Furthermore, since the formalism is based on griion Is difierent. While the radial properties of the optical

laboratory-system descriptigiHamiltonian (1) is rotation- mode! potential are still importan'g, the_ proper ordering of
ally invariant and the wave functiolir ,,, conserves angular spherical shells becomes crucial since it affects the fragmen-
IM

oo S : . tation of orbital angular momentum caused by deformation.
momentunj, the Coriolis coupling is automatically included. In this context, as illustrated in Fig. 3, the Becchetti-

o Greenlees parameter set performs rather poorly, while the
B. Strong-coupling limit Chepurnov parametrization offers a compromise between

A great simplification to Eq(4) occurs if one considers good radial properties and proper level ordering.
all of the rotational states in the daughter’s ground-state band Since within any mean-field theory the resonance energy
to be degeneraté.e., Q; =Q, for all J). This is the limit cannot be predicted with sufficient accuracy, following Refs.
of strong coupling where the moment of inertia of the daugh{>:8l: the depth of the WS potential is adjusted to give the

ter is taken to infinity. It is also thadiabatic approximation ~€xPerimentakQ, value. The deformed part of the spin-orbit
of Refs.[16,26. interaction is neglected; we do not expect this to have a

noticeable effect on the resulf82]. The off-diagonal cou-
pling in Eq. (4) appears thanks to the nonspherical parts of
the WS and Coulomb potentials.

In this limit, the coupled-channel equatio® reduce to
those for the intrinsidi.e., deformed Nilsson orbital[9]

Uqaj (1) Great care was taken to ensure that enough channels were
111022 :p i (18)  considered in solving Eq4) for proper convergence in the
Iplp eigenvalues. As seen in the lower panel of Fig. 4, expanding

the WS in spherical multipoles to order 8 is sufficient for
convergence. However, to be on the safe side, a value of

Amax= 12 in Eq.(5) was used in all calculations. The number
Uskj = \/§(_1)K+JE <Jd0ij|J K>ujd| . (19 of partial waves that were _needec_i in the decomposition of
Jd PP the proton radial wave function varies from system to system

where
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Becchetti-Greenlees Chepurnov Universal
2| | 1 _
S
0 - 4 -+ -
3
=
i3
21 - J- J
-4 \‘a L 1 L I “l 1 1 1
02 -01 0.0 01 02 02 -01 00 01 02 02 -01 0.0 01 02
B2

FIG. 3. Comparison of deformed single-proton levelsZer63N =68 predicted in three WS parametrizations. The left panel shows the
Nilsson diagram calculated with the Becchetti-Greenlees set which yields poor ordering of the single-particle levels but good radial
properties. The right panel is obtained with the “universal” set which yields good ordering of Nilsson levels but poor radial properties of
wave functions. The center panel was obtained with the Chepurnov parameter set used in this work. This latter parametrization gives a very
reasonable compromise between the radial and spectroscopic properties.

depending mainly on the angular momentum of the protons separated into two parts. The first segment lies along the
state. In general, all partial waves with<10—13 are real axis,|;=[0al- The other interval extends along the
needed. Since, in the nonadiabatic approach, the maximuegomplex ray,l,=[rnax asl, Wherer s is complex and far
proton angular momentum and the maximum daughter spienough away that at,sthe asymptotic series of the outgoing
considered are closely related, the above condition correEoulomb waveD (7, ), is a good approximation. For
sponds to J4)max=10 which was used for all calculations 3 resonant state, the second integration region must be com-
(see upper panel of Fig)4Since the high-spin channels are plex for our regularization scheme given by E§). The

energetically forbidden, their exact placement is of minoryotation angle of in I, should satisfy the condition
importance. Only the energy of the" 2evel and, occasion-

ally, the 4" level have a profound effect on the resonance m—argk; )>argr,>—argk; ) (20)
energy and other observable quantiti#r more discussion ¢ ¢
concerning this point, see Sec.)V. so that the solution converges along the complex ray.

Itis important in this work that we have a good represen-  or axially deformedv, the set of coupled-channel equa-
tation of the ground-state rotational band in the daughtefions (4) must be solved numerically. The piecewise pertur-
nucleus. In a few of the systems studied in this work, suchation method36] has been generalized for the coupled-
spectra exists fod;=<10, which is enough for adequate con- channels casf87]. A large value off 5is used, which is far
vergence. However, for the most highly deformed systemsgnough away that the off-diagonal terms of the coupling ma-
the spectroscopic information does not exist. For these Nuyix vanish and the asymptotic series for the Coulomb func-
clei, we parametrize the ground-state rotational ban&gs tions are accurate. At this point the coupled-channels equa-
=kJy(Jgt+1), wherex is adjusted to theée,+ energy. In  tions decouple. For an initidd;  value, one has to calculate
**'Eu, where fine structure has been seenBheenergy is  the components of a “left” solutioni, which vanish at the
known. In oth(_er cases, systematic trends must be used. igin. These are integrated outwards to a matching ragjus
actual calculations, we have used tgN, scheme{33] to  ; regionl ;. The components of the “right” solutions; are
estimatet, . integrated inwards fromr,g along the complex ray,. At
rmax, the integration path turns along the real axis to the
matching radiusr,,. All components of the “left” and

For realistic potentials, the radial Sédinger equation “right” solutio_ns are Iinear_ combinations of _Iinearly inde-
cannot be solved analytically but must be integrated numeriP€ndent solutions of Eq4) in the corresponding regions.
cally. For spherical potentials, one deals with a single radial "€ two solutions and their derivatives with respectrto
equation instead of the full sét). In Ref. [34] the code Should match at the matching radius and form a set of func-
GAMOW was introduced, which uses the Fox-Goodwintions which are continuous in Thls condition gives a ho-
method for solving the radial equation. A more powerful Mogeneous set of IlTear equJeatlons for the unknown expan-
method, the piecewise perturbation, is used for the same pupion coefficients ofu, and u,. Nontrivial solutions exist
pose in Ref[35]. The main features are similar in the two only for the generalized;  eigenvalues where the determi-
codes. The totat domain of coupled-channel equatio@s nant of the set of linear equations is equal to zero. For the

Ill. NUMERICAL IMPLEMENTATION
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S 120 ; ; ; 10" ]
) <
= 115 g/ S &
= 110 < 2972 / -97/2
5 = 2 | 109 Laz
s s = | | | 117
= 1.05 | =N =l ® e | La

® Z°[ 1130 —0
S 100! 8 o S || B
£ S |B=025B,
g 0.95 ¢ w,t
[7/]
S 090 Yor2 9

SO s 03 B 5" 01 62 03 04 05

- 0.10 2
5 10.08 ; .
Q 0.955 I " FIG. 5. Single-proton levels representative of afldare-earth
é - I ox 10.06 nuclei with Z~55 plotted as functions of the quadrupole deforma-
a 0.950 | tion B,. The hexadecapole deformatigy was assumed to be pro-
e 10.04 :.q portional to 3, to give both the spherical and ground-state defor-
£ 0.945% = mations. The Nilsson orbitals studied f§#1, **Cs, and'*"La are
= . s — 8 marked by thick solid lines.
g 0.940 | b _‘0.02
= A. Description of rotational bands built upon deformed
§ 0293 resonances
Q . . N .
~ 0'9304 6 3 10 120‘01 As has been previously mentioned, a significant benefit of

working in the nonadiabatic formalism is the proper treat-

FIG. 4. Dependence of the resonance eigenstate on various efient of the ground-state rotational band in the daughter
pansion parameters. Calculations were done fof #1d]3 level in ~ hucleus. This makes it possible to easily calculate the fine
By at a deformation of3,=0.37. The upper panel shows the Structure in the proton emission. The presence of the rota-
resonance energgsolid line with squares and left scaland the t?ona| band in th? daughter nucleus also giYeS rise to rota-
lifetime (dashed line with triangles and right scaées a function of ~ tional bands built uponJ=() band heads in the parent
the number of included states in the ground-state band of the daughucleus. In a previous workl5], we discussed a rotational
ter nucleus. The lower panel shows the same except as a function band in***Eu built upon thel= 2" level associated with the

the numbe.r of spherigal multipoles used in expanding the deformeEl411]§ Nilsson orbital. The spacing of the levels in the par-
single-particle potential. ent nucleus follow nicely the expectd@J+ 1) spacing with

the same moment of inertia parameter as assumed for the
initial value ofk; , the determinant is not zero; however, itis daughter nucleus. Small deviations from f{é+ 1) spacing
possible to find the zero of the determinant by iteration, e.g.result from the Coriolis coupling.
using the Newton-Raphson method. For the known proton To verify that the calculated band structure indeed be-
emitters, the width of the resonance is so small that exiongs to the saméntrinsic Nilsson configuration, one can
tremely high numerical accuracy is needed to calculate théspect theK decomposition of each rotational level. This is
generalized complex energy eigenvalfieWe have found done by using Eq(19) to project the nonadiabatic wave
that extended precision arithmetic must be employed to caffunctions onto adiabatic states with gokd For theJ=3"
culate the imaginary part of accurately. The width calcu-
lated directly in this manner matches well with the current
expression(10). il \

IV. APPLICATIONS OF THE METHOD

MeV)

This section contains applications of the formalism to o
measured deformed proton emitters. For an easy orientatior 2
Figs. 5 and 6 show the proton Nilsson diagrams characteris &
tic of Z~55 andZ~67 nuclei, respectively. In our theoreti- Y ,
cal analysis, all Nilsson levels close to the Fermi level were
investigated. The potential depth was always adjusted at eac
deformation so as to reproduce the experime@glvalue.

0.0 04 02 03 04

Table | lists theQ,, values, the energy of the'2states, and 02 03 04 B, 00 01
deformation parameters for all the nuclei investigated in this
paper. FIG. 6. Same as in Fig. 5 except f6t'Eu and ***Ho.
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TABLE I. List of Q, values, 2 state energies, and deformation 2.0 +
parameters for nuclei investigatds,+ energies without a reference I
were estimated using thé,N, scheme of Ref{33]. —_ 72+ 290ns

% 15F 5ot
Qp (keV) Eo- (keV) B2 Ba s ig:
A
109 829(4) [45] 625[46] 0.09  0.03 B2 1o}
1cs 9774) [47] 466 48] 0.16  0.04 =
"l a 800(10) [40] 150 0.30 0.10 é
1B1Ey 95Q7) [7] 121(3) [7] 0.32  0.00 0.5
1440 1.19G10) [5] 160 0.29 -0.06
14Impo 1.25120) [5] 160 0.29 -0.06 0.0

orbital in *'Eu, theK decomposition is shown in Table II. It
is seen that th& =3 dominates, although there appear small
admixtures of otheK components due to the Coriolis cou-
pling. Note the presence of thé=3 which is forbidden in
the strong coupling limit.

A very different picture arises for thé=3" band built

upon the[ 411]% Nilsson orbital in***Ho. Its low-lying band
members, throughi= %, are shown in Fig. 7. In this case, we
do not see the development of a strongly coupled band as in
131Ey, but rather two nearly degenerate decoupled signature
partners. This comes about due to the large decoupling pa-
rameter for this orbital. Sincé*Ho is well deformed, we

Energy (MeV)

can consider the Coriolis interaction as a perturbation in the 131Eu 13OSm
strong coupling approximation. Forka= 3 band, first-order
perturbation theory givef32] FIG. 7. Rotational bands int*'Eu (bottom; built upon the
1 1 1 [411]3/2 Nilsson level and *Ho (top; built upon the[411]1/2
J _p0 T 2 \J+1/2 < Nilsson leve). For *Eu, the strongly coupled rotational band is
E12=Eaot 27 JO+1) 4+ad( ) I+ 2/ predicted. For'*™Ho, the two decoupled, almost degenerate, se-

(21 quences are calculated. Proton lifetimes and strongest branching
ratios are indicated.

whereay is the decoupling parameter. For a nonzero decou-
. l . .
pling parameter, tha+ 3 odd levels are shifted against the cluster radial wave function and the partial widths. In the

b ) L = _ Ct _
‘|J:+ 2 e\;eg. Ievefls Wl'ltr:jaf degednera(;:y settlggfm fag| blld .partial wave decomposition, the dominant components are
rom studies of well-deformed and superdeformed bands Ify s of the originating spherical state. For example, in

odd-Z rare-earth nuclei, bands built on thé11]3 level are 117 5, the [422]3 Nilsson orbital originates from @y,

known to have a decoupling parameter neat [38,39. spherical state. At a deformation 8= 0.33, the wave func-

Th'.s. nlqely explains our predl_ctlons anq gives yet a.nOthet[ion still contains 60% ofj;, distributed between the*2and
verification that '.[h? V\_/eak co_upllng formalism properly incor- 4% daughter states. However, due to deformation, other par-
porates the Coriolis interaction. It needs to be noted that thﬁal waves  with .j>§ alsé contribute: d (9’ 6%)

=2 + M32\ I ’

branchings shown in Fig. 7 correspond to the proton emis- N 0 . o s i
sion only. In reality, the low-lying levels in these bands rap-d5’2(9'0/°)‘ 99/2(14.2%), andiyyx(3.5%). Coriolis cou

) . < . . < pling introduces thes,;, partial wave with an amplitude of
L?gegeo(;%ebgegs?gggaaﬁdrﬁg;:r éyhi:;g)r’ that is, the life 4.2%. Although the radial wave function is a combination of

components having different angular momentum, the decay
branches are easy to understand. The total width is governed
TABLE II. K decomposition of the calculated band members ofby the high penetrability of low-partial waves. In fact, 97%
the [411]3 band in *'Eu. TheK# 3 components arise from the of the width of this resonance is in tig,,® 0" channel. The
Coriolis coupling. remaining part comes from thi;,®2*(0.6%) and thes,,,
®27(2.3%) channels.

It is interesting to look in detail at the make-up of the

spin@) K=3 K=3 K=3 K=3% The majority of decays investigated in this work have
32 0.0017 0.9972 small branching ratios, less than 10%. However, a few have
5/2 0'0040 0'9894 0.0056 quite large branching ratios to"2states, including the pos-
7/ 00095 09770 00013  1.¥A0°5 sible decay out of thg532]3 Nilsson orbital in**'Eu which

is predicted in this work to have the branching ratio of 52%.
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E T T j T j TABLE lll. Table showing the various orbitals for each system
i : investigated in this work. Except for the weakly deformed systems
10"k 1091 . of 199 and 1%Cs, the deformation dependence is much weaker than
the uncertainty due to the experimen@), value. The theoretical
10-2 | i spectroscopic factor, half-life, and branching ratio to tHe<ates
are shown. Experimental resultashere availablg are shown in
~ F )\ s bold type.
2 10°} [0
>~ L E Ol‘bltal u2 T1/2 B
Q4
- 10 -
= experiment
s 1 109 [420]l 0.99 94.8us 0%
10k [42213/2 3 :
E E [4223 0.99 7.86 ms 0%
10'6 [ N 1 N 1 . 1 N ] 11“5) [LS [45]
0 0.05 0.10 0.15 0.20
Bz s [4205  0.52 0.66us 0%
=3/2" 0,
FIG. 8. Predicted lifetimes ift®¥ for the [422]3/2 and[420]1/2 J=312 0.56 34.7us 0%
orbitals. The experimental lifetime is 110(5)s [45]. 18.33) ps[49]
117,
The circumstances that lead to such large branching ratios La [420]7 032 1.27 ms 0%
are worthy of investigation. Thg532]3 orbital originates [4225 033 103 ms 3%
from an hy,, spherical orbital. At a deformation 0B, 54113 061 293 ms 4%
=0.32, the[532]3 orbital consists mainly ohy;{75%), 20(5) ms [40]
f72(18%) and only 1.9% offs,. There is an additional s
0.8% of theK-forbidden pa;, component. The decay to the ‘*'Eu (41772 071 34.0 ms 39%
ground state can proceed only via thg component. Mean- [4133 052 184 ms 7%
while, th; decay to thteh*z s%tate prodceeqts Thainlly through t?e (5372 0.48 3.90 s 5204
ps» and f,, waves; the former due to the lower angular
momentum and the latter due to the larger make-up in the 17.819 ms 245)% [7]
total wave function. The combination of a low-lying excited , ) .
state, a lower angular momentum channel, and suppressed™® (4113 070 14.6us 0.8%
amplitude of thefs;, wave leads to the very high branching 5232 084 19.1 ms 6%
ratio this state would exhibit. 3.95) ms[5]
i i 14ImHg 1 070 3.3us 1%
B. Branching ratios [411]3 1
The main impetus behind this work has been the recently [5235 084 4.6 ms 9%
observed fine structure in the proton decay*8€u[7]. The 8(3) ms[5]

nonadiabatic formalism offers great advantages over the
strong-coupling approximation in calculating fine structure.
The proper placement of the daughter states are explicitl
included and the channels are now labeled with the proton’
orbital and total angular momentumj, and the angular mo-
mentum of the daughter nucledg. In one fell swoop, both
the lifetime and partial widths are calculated.

tors have been estimated in the independent-quasi-particle
ﬁicture. Note that the 16§+ 1) factor present in the strong-
coupling approximation is no longer needed. Our predictions
for ¥¥Eu and the ground and isomeric states'ffHo are
unchanged from Ref15]. The ground state of*'Eu is con-

As was shown previously in RefE5,15], for large defor- sistent with thg 411]3 assignment. This is the same conclu-
mations our calculations show little sensitivity # and8,.  Sion as in Refs[7,21] but differs from the assignment of
This is because the spherical decomposition of the corrg-413]2 of Ref.[13].
s_ponding Nilsson orbitals varies little in this rggime, Pro- 1 1410 the assignments are straightforwdis23]3 for
vided that there are no crossings between the Nilsson orbitals N ] )
of interest. The uncertainty due to nuclear deformation idh€ ground state anf411]; for the isomeric state. These
usually smaller than that due to experimental uncertainty ifhatch the assignments of Ref8,13]. In **} we find agree-
the proton energy. In the less-deformed cases, there is ment with the[420]3 with a deformation neag,=0.10.
greater dependence @ and 3,. In the 1/2" level in 1, This agrees with suggestions of Re,13]. In 113Cs we see
shown in Fig. 8, we see the effect of a level crossing neas large admixture oK=1/2 in the J=3/2 wave function.
B,~0.05.(This effect has been noted earlier in R&8].) Therefore, the asymptotic Nilsson labeling is inappropriate,

Table 1l shows predicted half-lives, theoretical spectro-and only the total angular momentum is used to label the
scopic factors, and branching ratios. The spectroscopic fagtate in Table Ill. The two orbitals near the Fermi level in
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On the other hand, the placement of thé Rvel has a
10’ \\ 137 smaller effect on the lifetime but greatly influences the
10° \ Tb branching ratio. Based on Réf7], the 2" level in *%Sm is
= 5 placed at 12@7) keV. This 7 keV uncertainty changes the
210 lifetime by +4.0 ms (+12%). For the branching ratio, the
":]101 corresponding error is 6.7%.
- ~ In the nuclei with significant branching ratios, little to
B 10 _[ﬂ;]g’/g nothing is known about the level structure in the daughter
10° E532%5§2 system:; hence, we had to assume a perfect rotor to assign
10 | | | energies to the states above the. Zo check for the sensi-
0.5 0.7 0.9 1.1 1.3 tivity to this assumption, we repeated some calculations as-

Q, (MeV) suming E; = ' J4(Jg+ 1)~ B[Ja(Jg+1)]%. The anharmo-
p nicity factor, B, has typical values around’/200~100 eV
FIG. 9. Predicted half-lives fot*’Tb as a function of proto, [44]. This introduces a 1.0 ms shortening of the lifetime and
value. The assumed deformation fl5=0.28 and the estimated @ reduction of the branching ratio of 1.2%. Both are much
value ofE,+ is 165 keV. This figure is meant to identify the regions Smaller than the influence of tt@, value orE,+. So as long
of Q, and Ty, to look for this yet-unseen proton emitter. For longer as the prope@, value is used along with a good estimate of
lifetimes, serious competition from beta decay is expected. Abovéhe first excited state, the remaining part of the spectrum
the gray line, the branching ratio for proton decay is predicted to bareeds only to be reasonably placed.
less than 10%450]. Additional uncertainties can arise from the optical model
potentials. As discussed in Sec. Il C, we believe that the
Chepurnov parametrization is the best current compromise.
AN . ?I't is noted here that better agreement between theory and
”0"_5 m'ﬁ'?g of these Ieyels. In the newl_y discovered prOtonexperiment could, in principle, be achieved by fitting the
emitter 'La, the experimental lifetime is 28) ms[40. It gptical model parameters to the properties, including proton
appears that the422]3 assignment is best with a lifetime of decay data, of these dripline nucjehs discussed in Ref8],
100 ms at a deformation g8,=0.30, 8,=0.11. the lifetime of spherical proton emitters depends weakly on
There is currently a propos&#il] to search for proton the nuclear structure details. Reasonable variations in radius
emission from*3'Tb. Being in the region betweel#'Eu and and diffuseness parameters affect the lifetimes by less than a
14140, this nucleus is expected to be well deformed withfactor of about 3.
B,~0.28. Using the Grodzins formul@2,43, we estimate
the energy of the D state in3%Gd to be 165 keV. Figure 9 V. ASSESSMENT OF THE ADIABATIC APPROXIMATION
shows the expected half-life as a function@f. It is ex-

i . As discussed in Sec I, all previous work on deformed
pected that for lifetimes longer than the limit marked by the

proton emitters have made the adiab#&d) approximation

gray line, 8 decay will dominatg41]. [3,5,7,9,11-14,20,91 The use of the nonadiabatic formal-
_ o ism for proton emission was first used by us in the recent
C. Theoretical uncertainties Ref.[15]. The power of the nonadiabatic approach is appar-

justableparameters; there are a few parameters which are séfn is in the laboratory frame, the Coriolis coupling is im-
by experiment. These includ@, and the placement of the pI|C|FIy mcluded._ T_h|s gllows for the inclusion of _aII the
lowest few levels in the ground-state band of the daughtePartial waves withj<J in the proton’s wave function. In
nucleus. Since the higher levels are energetically forbidderParticular, the Coriolis coupling can admix states with
even if they are needed in the calculation to ensure propémallerl values, and consequently lower centrifugal barriers,
convergence, the half-lives and branching ratios are fairlynto the proton wave function. Low-components, however
insensitive to their placement. We shall now discuss the serimall, can substantially affect the lifetime. Figure 10 shows
sitivity of the calculated half-lives and branching ratios to this effect for th 532]3 deformed resonance itt*Eu. Note
various quantities used in the calculations. For concretenesthat thep,, partial wave contributes only 0.3% to the total
we will focus on theg411]3 level in **Eu. All other levels  wave function, yet accounts for 15% of the decay width.
studied show similar sensitivities. In order to calculate the branching ratio in the adiabatic
The |argest effect on the lifetime comes from t% approximation, some ansatz must be used. FiI’St, the pal’tial
value. Ther value for 131Eu is Current'y taken as 950 width tO. the ground state is apprOIXi-rT.]ated by the width for
keV [7]. The uncertainty of 7 keV leads to an uncertainty inthe partial wave that matches the initial state
the calculated lifetime of- 7.5/ 9.8 ms. This is a difference
of roughly —22/+30%. Since a change in tig, value also
affects the energies of excited states, the change in branching

. . § . . 1
ratio is much smaller. For thp411]5 orbital, the effect is Fgg: - Fﬁdzﬂ_ (22)
+1.3%. OQ+3
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systems where the agreement is good, there is no admixture

107 | Non-Adiabatic _ | = Adiabatic 1 of lowerd partial waves in the nonadiabatic formalism.
5 It is also worth noting that lifetimes calculated in the full
v 107 r 1 |  adiabatic method are usually shorter by a factor of up to 4 as
R — T ] 1  compared to the ADC method. However, for fh1]3 or-
10* | + . bital of **Eu, there is a factor of 56 difference. This results
] from the largel]=2% component in the corresponding Nil-
10 sson model function.

In about half of the cases studied, the adiabatic approxi-
mation, particularly with angular momentum conservation
= enforced by hand, gives results similar to the nonadiabatic

10° H T ] method. In the rest, the difference can be large.

2
10 ¢

5/2 f

f

52 f7p VI. CONCLUSIONS

P12 P3p2 7/2 P12 P32

FIG. 10. Comparison of partial widths and wave function am-  The state-of-the-art coupled-channel formalism has been
plitudes obtained in the nonadiabatieft) and adiabati¢right) cal-  extended to include excitation modes in the daughter system.
culations for the[532]2 deformed resonance ifEu. Only the | he weak-coupling scheme applied allows us to work in the
lowest few partial waves are shown. The upper panels show thiaboratory reference frame. The exact treatment of excitation
spherical amplitudekc,|?. Notice the presence of tHéforbidden ~ spectrum in the daughter nucleus also allows a consistent
p-wave components in the nonadiabatic approach. The lower panealculation of branching ratios.
shows the normalized partial widthg,=I",/I'y,;. In the nonadia- As could be expected, significant branching ratios are ex-
batic case we have summed over all possible daughter states.  pected only for well-deformed nuclei where the first excited

) . , state of the daughter nucleus lies low in energy. The Coriolis
For the excited states, a weighted sum over the possible pafsiying of states with lower orbital angular momentum can

tial wave components is used: enhance the decay to the excited state, e.g., the decay of the

ag 2Jgt1 S 1301210020 - [532]3 orbital in ***Eu where the branching ratio to thé 2
Ja— Q+i T (340 Q| ) lj Q‘]d)’ (23 state is predicted to be as large as 52%.

In the case of spherical proton emitters, the proton sepa-
where the partial widths have been calculated witiQa ration energy and orbital angullar momentum have the largest
value adjusted to that of th&; state. This reduces to Eq. effect on lifetimedq8]. The detailed nuclear structure plays a
(22) for J4=0. This procedure will be referred to as the Minor role. In the deformed case, the placement of the
adiabatic correcteADC) method. single-particle levels also has a significant effect. This is true

As can be seen in Table IV, in some instances the adiah both the adiabatic formalism, where mixing occurs with
batic and nonadiabatic predictions are very close, as fohigheri states, and in the nonadiabatic formalism where the
14Imyo and La. However, in other cases the differencesCoriolis coupling can mix states with lowéralso.
are striking, like the factor of 5 difference iH3Cs. In those We have been able to calculate the placement and decay

properties of excited levels in the ground-state band of the

TABLE IV. A calculation of the proton lifetimes using the adia- parent nucleus. As shown in Fig. 7, both strongly coupled
batic formalism of Sec. Il B._AII Ii_fetimes are in_ seconds_. Thg Iab_el and nearly degenerate decoupled bands are predicted, de-
(ad) corresponds to calculations in the adiabatic approximation, "e'pending on the nature of the band head. While we have cal-

it includes all degenerate final states. The column ADC correspond(?ulated the proton decay half-lives of the excited band mem-

h . ) imation. in which it i h d b
to the corrected adiabatic approximation, in which it is assumed t agers, they are all much too slow to compete with in-band

the decay goes only to the ground state of the daughter nucleus, Eq. ) . . .
(22). The branching ratiéB) is calculated using Eq&22) and (23). ecay. In all cases investigated, by comparing theoretical

For the nonadiabatic model predictions, see Table IIl. predictions .with experimental half-lives and pranching ratios
(where availablg we have been able to identify the Nilsson
Nucleus Orbital 7112 (ad) 7112 (ADC) B orbital which the proton occupies. We have also been able to
discern the angular momentum components of the proton
9 [420F  9.85x10°°  24.1x10°° 0% wave function.
s J=3/2" 1.98x10°¢  7.02x10°® 0% The results shown in Table IIl are in good agreement with
Wia [422]3 20.5x10°%  90.3x10°%  0.3% the current experimental numbers. We remind the reader that
131, [411)2 868x10-%  48.7x10°3 37% we have not made any attempt to adjust the WS model pa-
. 5 4 ., . rameters to reproduce the experimental data but take our cal-
0 [523]3 5.95¢10 6.66x<10 3% culations as independent predictions; the choice of param-
14MHo [417F  1.94x107°  3.43x10° 1% etrization was based on physical reasoning. Considering this,

and also other model uncertainties discussed in our paper,
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