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We present the framework for tta initio no-core nuclear shell model and apply it to obtain properties of
12C. We derive two-body effective interactions microscopically for specific model spaces from the realistic
CD-Bonn and the Argonne V8’ nucleon-nucledd ) potentials. We then evaluate binding energies, excita-
tion spectra, radii, and electromagnetic transitions in th€ 024, and 4.Q) model spaces for the positive-
parity states and the#k), 32, and 5.0 model spaces for the negative-parity states. Dependence on the
model-space size, on the harmonic-oscillator frequency, and on the type dfNheotential, used for the
effective interaction derivation, are studied. In addition, electromagnetic and weak neutral elastic charge form
factors are calculated in the impulse approximation. Sensitivity of the form-factor ratios to the strangeness
one-body form-factor parameters and to the influence of isospin-symmetry violation is evaluated and dis-
cussed. Agreement between theory and experiment is favorable for many observables, while others require yet
larger model spaces and/or three-body forces. The limitations of the present results are easily understood by
virtue of the trends established and previous phenomenological results.

PACS numbd(s): 21.60.Cs, 21.30.Fe, 24.10.Cn, 27:26.

[. INTRODUCTION provides a subset of the exact solutions. @oleapproxima-
tion will be to treat our theoretically derived effective opera-
While various methods have been developed to solve extors at the two-body-cluster level. This single approximation
actly the three- and four-nucleon systems with realistic interresults in the dependencies on the model-space size and the
actions[1-4], few approaches are applicable for nuclei with HO frequency. For realistic nuclear Hamiltonians withN
more than four nucleons at this time. Apart from the couplednteractions fitting available data, we show that the depen-
cluster method5] applied typically to closed-shell and near- dences on the model-space size and the HO frequency
closed shell nuclei, the Green’s-function Monte Carloweaken considerably with the increasing model-space size,
method is the only approach for which exact solutions ofindicating smaller changes would arise by proceeding to
systems withA<8 interacting by realistic potentials have higher-body clusters.
been obtained4]. We have shown that the no-core shell-model approach
We evaluate the properties of more complex nuclei,can be consistently applied to solve the three-nucleon as well
treated as systems of nucleons interacting by realistia@s the four-nucleon bound-state problé®j. In particular,
nucleon-nucleonNN) interactions, with our method for the we were able to find the ground-state solution féte inter-
no-core shell modgl6—8]. At present, we formulatg9—11]  acting by the CD-BonrNN potential [10]. An equivalent
the no-core shell model as a unitary transformation of thdormulation of this approach that results in a successful de-
A-body Hamiltonian followed by a two-body cluster approxi- scription ofA=3 andA=4 systems is applied in the present
mation. That is, the unitary transformation is determinedpaper to a significantly more complex systetfC.
from a model-space decoupling condition, which is fulfiled There are important physics motivations for investigating
on the two-body cluster level. The resulting transformed*?C. The *2C nucleus plays an important role in neutrino
Hamiltonian consists of a one-body term and the two-bodystudies, as it is an ingredient of the neutrino liquid-
effective interaction. The calculation is performed in thescintillator detectors. Theoretical description and understand-
harmonic-oscillatorHO) basis, and due to the cluster ap- ing of the neutrino interactions witf’C is, therefore, crucial
proximation, we acquire dependence on two parameters. Orj¢2,13.
parameter determines the model-space size and the other isThere has been considerable interest recently in parity-
the HO frequency. The method becomes independent of théolating electron scattering from protons and light nuclei.
HO frequency and is convergent to the exact result with in-One of the main reasons for this has been to investigate the
creasing model-space size. The trend towards parameter-fregangeness content of the nuclefi4,15. The @7,T)
results is a specific focus of this investigation. =(0%,0) targets, like’?C, are of particular interest because
We emphasize that once the original many-body Hamilthey support only the isoscalar matrix element of the Cou-
tonian is defined, ouab initio no-core nuclear shell model lomb operator.
In order to describe theoretically the electron scattering or
other electroweak processes one needs, first, the appropriate
*Present address: University of California, Lawrence Livermorescattering operators. The scattering operators typically con-
National Laboratory, P.O. Box 808, Livermore, CA 94551. sist of the one-body part used in the impulse approximation
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calculations and the two-body part given by the mesonfull space such a potential has no influence on the intrinsic
exchange currentMEC’s). The computation of such opera- properties at all. However, this added and/or subtracted po-
tors has been explored thoroughly in the literature, e.g., inential facilitates the use of the convenient HO basis for
Refs. [16,17. Second, reliable nuclear many-body waveevaluating the effective interactions. The modified Hamil-
functions are needed. Our work concentrates on this secortdnian, with a pseudodependence on the HO frequéngcy
aspect. can be cast into the form

In principle, one also needs many-body effective opera-

tors, which are obtainable within our framework. However, 9 a p? 2
we will mostly neglect these effective operator contributions Ha :Z«l om + EmQ ri
at present and, instead, work in the largest feasible model
space, so as to minimize these neglected contributions. A mQ2
The no-core shell-model calculations are performed in +i<j21 V(=) — oA (rj—r*])z} 2

such a way that the center-of-ma&sm. motion and the
internal motion are completely factorized. Translational in-
variance is preserved and, for example, the form factors theH,]
depend only on the relative coordinates.

In addition to the physics motivations’C provides a
challenging technological application of our no-core shell-
model approach. The dimensions are larger than 60000
for a 57.() model space in thex scheme. Indeed, there have
been multizQ shell-model studies of?C in the pas{18—
20], but unlike our approach, phenomenological effective in-t
teractions and smaller model spaces were used in those C?jl)'u
culations.

In Sec. Il, we discuss our no-core shell-model formula-
tion, i.e., the Hamiltonian and effective interaction frame-
work together with a test for th&=3 system. Results for

the A=12 system interacting by the CD-Bonn and the Ar- the intrinsic properties of the nucleus. However, because of

tghoennt()ain\é?nNl\:ar?grteir(]at;alseicr:ia%izﬁnsme?:(targ ”é‘lewdfo?;]sacuns(;ithe two-body-cluster approximation for the effective interac-
9 gies, P ' 9 on, a dependence oft appears in our calculations. This

Esxgrgrﬁﬁe&? I?/S vv\\i”parl:si':l/lt 22?53 d?r?; ;[:r?gg(iness forrHepgndence of results an and si;e of th.e model space
' U ' provides one gauge of the severity of this approximation.
Fortunately, some important observables have signifi€ant
Il. NO-CORE SHELL-MODEL APPROACH independence and model space independence in our largest
model spaces.

Since we solve the many-body problem in a finite HO
odel space, the realistic nuclear interaction in &.will
yield pathological results unless we use it to derive a model-
space-dependent effective Hamiltonian. In general, for an

-nucleon system, aA-body effective interaction is needed.

s we discuss in detail in the next subsection, we make a
two-body cluster approximation for the effective interaction
in the present calculations. Large model spaces are desirable
minimize the role of neglected effects, which a larger
ster would include. In addition, the larger the model space
is, generally speaking, the smaller, the neglected renormal-
ization contributions to the effective operators.

As the Hamiltoniandd (1) and HQ (2) differ only by a
c.m.-dependent term, no dependence(bishould exist for

A. Hamiltonian

In the no-core shell-model approach we start from the g Two-hody effective interaction and the model space

purely intrinsic Hamiltonian for thé-nucleon system, i.e., definition
1 (Pi—P:)? A In order to derive the effective interaction, we employ the
Ha=Trat V=5 2, ——2—+ > VN(Fi—Fj), (1) Lee-Suzuki similarity transformation meth§@2,23, which

A 2m <=1 yields a Hermitian effective interaction. The approach pre-

. _ sented here leads to the same two-body effective interaction
where m is the nucleon mass an\zIN(Fi—Fj), is the NN as used in our previous papéglo:l

interaction. It is purely a two-body operator without a phe- [ et us write the Hamiltoniari2) schematically as
nomenological single-particle potential. At present, we omit

three-body potentials, which are known from other wdeks 0 - A
to be necessary for high-quality fits to data. This work is HA:iZl hi+i<_§‘;1 Vij - (3
intended to establish a baseline of results at the pure two- '
body interaction level. In the spirit of Da Providencia and Shakj@4] and Lee,

_ We can use both coordinate-space depentipoten- g7 ki and Okamotf22,23, we introduce a unitary trans-
tials, such as the Argonne potentiald] as well as  f5mation of the Hamiltonian, which is able to accommodate
momentum-space dependéii potentials, such as the CD- e short-range two-body correlations in a nucleus, by choos-
Bonn[21]. In the next step we modify the Hamiltonid) ing an anti-Hermitian operatd, such that

by adding to it the center-of-mass HO Hamiltoniéh

=Tem+Ucm, WhereU, ,=3AmQO2R?, R=(1/A)S2F;. H=e SHyeS. (4

This HO CM Hamiltonian will be subtracted again in the

final many-body calculation so there is no net influence orin our approachSis determined by the requirements that
intrinsic properties of the many-body system. In fact, in theandHﬁ have the same symmetries and eigenspectra over the
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subspaceC of the full Hilbert space. In general, bothand

the transformed Hamiltonian afebody operators. Our sim-

plest, nontrivial approximation td{ is to develop a two-

body effective Hamiltonian. The next improvement is to de-
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_s@

Let us also note thzﬁa_efﬁ P.e H;’es(a)Pa1 leads to the

relation

Haei= (Pat 0'0) VAP, + P,0'Qa)HE

velop a three-body effective Hamiltonian. This approach

consists then of an approximation to a particular level of

clustering:

H=HD+H®, (5

where the one-body aratbody (a<A) pieces are given as

A
HM=2 h;, (6a)
i=1
(A
2 A
(a) = V. . :
H A\la i1<ip<...<i, V|1|2...|a: (6
aj\2
with
a
V12...a:eis(a)ngS(a)_i21 h;, (7)
whereS® is ana-body operator:
He=hy+hy+hg+---+h,+V,; (8)
and
a
Va=2 V. )

i<j

Note that there is no sum oveR” in Eq. (5).

In the above equations, it has been assumed that the basis

states are eigenstates of the one-bdily our case HQ)
Hamiltonian=1* ,h; .

If the full space is divided into a model space an@a
space, using the projecto® and Q with P+Q=1, it is
possible to determine the transformation oper&grfrom
the decoupling condition

Q.e S¥H2ep, =0, (10)
and the simultaneous restrictiofs,S®P,=Q,S¥Q,=0.
Note thata-nucleon-state projectord(,Q,) appear in Eq.

X (QawPa+ P (Pt w'w) 12 (13
If the eigensolutions of the HamiltoniaH;2 are given by
H&|k)=E,|k), then the operato® can be determined as

<01Q|w|aP>:k§C <aQ|k><F|aP>’ (14

where we denote by the tilde the inverted matrix af|k),
e, Eap<k|aP><aP|k,>:5k,k’ and  Zy(ap|k)(klap)
= 8o, apr O k,k" e K. In relation(14), |ap) and|aq) are

the model-space and th@-space basis states, respectively,
and KC denotes a set alp eigenstates, whose properties are
reproduced in the model space, with equal to the dimen-
sion of the model space. Physical and mathematical proper-
ties of Egs.(12) and(14) may be found in Ref[26].

With the help of the solution fow [Eq. (14)] we obtain a
simple expression for the matrix elements of the Hermitian
effective Hamiltonian

<aP|ﬁa—efA a(;) = kg}c

> (ap|(Patolw) Y ap)

n ua
ap %p

X(ap|k)E(k| )

X (ap|(Pat ') Y ap). (15)
For computation of the matrix elements @+ w'w) ",
we can use the relation

<ap|(Pa+wTw)|a’F’>>=kEK<ap|T<><T<|aié>- (16)

Now, we introduce our present application, in which we take
a=2. Let us write explicitly the two-nucleon Hamiltonian in
the relative and c.m. coordinates, e.g.,

o _
Ha—2=HootHoem+ Vi

=2 2
p 1 - . mQ”
= 5m +§m92r2+ HZC,m_JrVN(\/Zr)——: r2,

17

(10). Their definitions follow from the definitions of the
A-nucleon projector®, Q. This approach, introduced by Su- h HotHo =h.+h e [1p = =
zuki and Okamoto and referred to as the unitary-modelyv ere HozTHeem=Na Tz, T \/;(rl f2) and p

operator approacf25], has a solution that can be expressed= VA(B1—B,). The two-nucleon problem is then solved in a
in the following form: relative HO basis space with high precision. The c.m. motion

of the two nucleons is not affected by the transformation
S®@). The termH,., does not contribute to the effective
interaction calculation and cancels out as seen ifBqThe
Ain Eqg. (17) is set to 12 in the present application.

The relative-coordinate two-nucleon HO states used in the
calculation are characterized by quantum numbatsjt)
with the radial and orbital HO quantum numbers correspond-

S@ = arctantio— '), (11)

with the operatorew satisfyingw=Q,wP,. Let us remark
that this is the same operator, which solves the equation
Q.e “Hile“P,=0. (12)
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ing to coordinater and momentunp, respectively. Typi- A significant consequence of preserving translational in-
cally, we solve the two-nucleon Hamiltoniaid7) for all  variance is the factorization of each of our wave functions
two-nucleon channels up tp=6. For the channels with into a product of a c.m3#() wave function and a wave
higherj we takeV to be zero. Thus, only the relative kinetic function corresponding to the internal motion. Due to this
term contributes in such channels in the many-nucleon calroperty, it is straightforward to remove c.m. effects exactly
culation. from all observables. This feature distinguishes our approach
The model spac®; is defined by the maximal number of from most phenomenological shell-model studies that in-
allowed HO excitations of thA-nucleon systen;yymaxfrom volve two or more major HO shells.
the condition 21+ 1<Niomax— Nspsminn  Where Ngpsmin de- We note that the introduction of a mean-field potential, in
notes the minimal possible value of the HO quanta of thepur case the HO potentifgee Eqs(2),(17)] and its removal
spectators, i.e., nucleons not affected by the interaction pran a later phase, is crucial for the reduction of the contribu-
cess. For'”C, Ngsmi=6 as there are eight nucleons in the tions from the higher-order clusters. It guarantees a large
Op shell in the unperturbed ground-state configuration andgverlap of the model space with the bound and quasibound
€.9., Nigtmax= Nspsmirit 2+ Nmax, Where N, represents the eigenstates of the Hamiltoniafl7) that are used for the
maximum HO quanta of the many-body excitation above theeffective-interaction calculation.
unperturbed ground-state configuration. FHC, Nigmax As discussed previously, we could also perform our cal-
=12 for a “42Q)" calculation. It is possible to include the culations at the three-body-cluster level f3€, instead of at
effects of configurations, in which the spectator nucleons arehe two-body-cluster level. We have performed such three-
excited, in the form of the so-called multivalued two-body body-cluster level calculations for the=4 system[9,10].
interaction[7]. Doing this improved the excited-state spec-\We learned from these studies as well as from &3
trum outside the B() part of the model space at the expenseresults presented in the Sec. Il D that the ground-state energy
of introducing a variable parameter to correct for overbind-changes by about 10% in going from the two-body cluster to
ing the nucleus. In the present calculations we have no varthe three-body cluster. These results hold for similar model
able parameters and, hence, prefer to perform our calculapaces, as those that we employ in the present calculation for
tions with the single, energy-independent two-body effectivel’C, when a physically reasonable HO frequency is chosen.
interaction, defined above. We may actually try to estimate the range of changes that
At this stage, the many-body space is defined by either will occur when we improve our approach from a two-body
Niotmax OF Nmax Which then controls the configuratiofSlater  cluster approximation to a three-body cluster approximation
determinantsof single-particle states included in the model for nuclei beyondA=4.
space. However, only a nonredundant subset of these statesS\Wwe base our estimate on results froh=3 and A=4
are needed to span the translationally invariant A-nuclon with two-body cluster calculationsee Ref[10]), since ex-
space. We isolate this subset by adding a tekifH.,,  act answers are known from other methods.
—324Q) to the effective Hamiltonian witih =10. This pro- In Table | we present the change in binding energy per
cedure moves the states with excited c.m. motion correnucleon[A(E/A)] divided by change imiQ) [A(2Q)] at
spondingly higher in the calculations and away from thefixed N, and located around the preferréd) for CD-
physically relevant states all of which have(jgassiveé 0S  Bonn in A=3 and A=4. We took the preferredi()
state of c.m. motion. It is, therefore, proper to take this com—=28 MeV in A = 3 and the preferred Q=40 MeV in A
bined process of definin®oimax O Niax @long with the =4 since these results are least dependerit,gg,.
“projection” of the physically relevant subset of stat@gth Working with theN,,,,=4—12 results ilA=3 and 4, we
0S c.m. motiohas the definition of our many-body space. gpserve that the sloge\ (E/A) J/[A(£Q)] at fixedN,,, and
The two-nucleon effective interaction is solved for a relativegt the preferred Q) exhibits roughly an ‘A— 1" effect. That
coordinateP, space consistent with this definition of the js the slope increases withroughly asA— 1 especially for
many-bodyP space. the higher values oN,,., (which have lower coefficients for
In order to construct the operator[Eq. (14)] we need to  the effect. This would translate into aA(A—1) effect in
select the set of eigenvectdts In the present application we the total binding energy and leads us to conclude that the
select the lowest states obtained in each two-body channel. fominant binding energy correction is following a two-body
turns out that these states also have the largest overlap witlyster scaling behavior rather than a three-body cluster scal-
the model space for the range fof) we investigate and the  jng [which would follow A(A—1)(A— 2)].
P spaces we select. Their number is given by the number of Thjs is quite encouraging and suggests that the difference
basis states satisfyingn2- 1< Nioimax— Nspsmin between two-body and three-body cluster results is reason-
Finally, the two-body effective interaction is determined ably small when working around the preferr&€ for *°C.
from the two-nucleon eﬁective Hamiltonian, obtained from  This conclusion of an estimated suppression in the
Eq. (15), as Vo= V1o=Hoe— hy—h,. Apart from being a changes arising from the extension of our method to three-
function of the nucleon numbe, V,.; depends on the HO body clusters is tied to the fact that we have a prefefr@d
frequency Q2 and on the parameteNmax:. defining the  where there is an approximate model space independence
model space. It has the important property that+—V,,  and convergence to the exact result is optimal. Having such a
for Nigtmax—, following from the fact thatw—0 for P preferreds ) minimizes the “leading” correctiorithe A(A
—1. We note that{ M+ @) —H_, is translationally in- —1)(A—2) effect in this caspleaving us with the subdomi-
variant. nant correctiorithe A(A—1) effect.
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TABLE I. The change in binding energy per nucledn(E/A), divided by change ik, A(%Q), at
fixed N,a @nd located around the preferréd) for CD-Bonn in A=3 and A=4. The differences were
obtained using thé ) results which bracket the “preferréd)” results. The ground-state energy results for
3H correspond to those shown in Fig. 1. Tfide results are taken from RéfLO].

*H
Q=22 MeV
N max 4 6 8 10 12
Egs (MeV) —8.458 —8.355 —8.258 —8.219 —8.151
preferredi () =28 MeV
N max 4 6 8 10 12
Egs (MeV) —7.760 —7.890 —7.902 —7.977 —7.970
hQ)=32 MeV
N max 4 6 8 10 12
Egs (MeV) —7.206 —7.519 —7.648 —-7.791 —7.843
AEA 0.0417 0.0279 0.0203 0.0143 0.0103
A(hQ)
“He
hQ =37 MeV
N max 4 6 8 10 12
Egs (MeV) —27.062 —26.768 —26.533 —26.440 —26.358
preferredi () =40 MeV
N max 4 6 8 10 12
Egs (MeV) —26.156 —26.207 —26.181 —26.181 —26.189
Q=43 MeV
N max 4 6 8 10 12
Egs (MeV) —25.193 —25.599 —25.808 —25.907 —26.017
M 0.0779 0.0487 0.0301 0.0222 0.0143
AhQ)
(A=4)/(A=3) 1.86 1.75 1.48 1.55 1.39
C. Renormalization of other operators we choose to study initially the lowest-order renormalization

It is straightforward to formulate the procedure for afor a two-body operatoO==12,_, 0y, depending on the
renormalization of general operators within our formalism. Arelative position of two nucleons as, e.g., the point-nucleon

two-body correction to a one-body opera@e=3=A ,0, is  'Ms radius operator. Here,
obtained using

A
A A - _s@A g2
. . A 4 POgiP=P e 570;e°P. 19
POGP=P>, OP+P > {e 7(0,+0,e” eff i<j2:1 L (19
i=1 i<j=1
_(@i+c‘)j)}p. (18  We computed this term for the point-proton rms radius op-

erator and discuss the results in the next section.
In general, to compute such a two-body correction to a one- In any case, it should be realized that the operator renor-
body operator in our formalism is more involved than themalization is dependent on the model-space size and also on
evaluation of the effective interaction. This complexity arisesthe HO frequency employed. As discussed in the next sec-
because the transformation from relative plus c.m. coordition, our “preferred” HO frequency occurs where the energy
nates to single-particle coordinates is needed in a sufficientlgf the low-lying states in our largest spaces is approximately
large two-nucleon space, typically comprising excitations ugndependent of the HO frequency. Sensibly, this preferred
to several hundred (). However, for a two-body operator HO frequency is very close to the HO frequency obtained by
depending on the relative position of two nucleons, the transphenomenological shell-model formulas. With that fre-
formation is needed only in the model space typically com-quency we are able to obtain reasonably converged results
prising excitations of a fewk (). It is for this simple reason even without operator renormalization.
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errors less than 100 keV/nucleon and the errors decrease rap-

72 3 ] exact idly with N4 for these “sensible” choices of}.
74r H 1 ——hQ=32 MeV
3 of 1 ——ha- ll. RESULTS FOR '2C
% :;z_n\ﬂ—ﬂ\_,k . hQ=28 MeV .
woor 1 ——hQ=22MeV The calculations for'’C were performed using the same
_8,4'_/F ] approach that proved to be convergent for e 3 system.
s6F CD-Bonn However, it is more efficient to perform the calculations in a
S8 ] single-particle HO basis, rather than in the Jacobi-coordinate
4 6 8101214161820 2224 26 28 30 32 34 36 HO basis used foA=3. We emphasize that our results are
Nnax translationally invariant, because we employ a complete

N7# ) model space and our effective interactions are transla-
tionally invariant. As mentioned above, we separate states
with excited c.m. motion from those with the&s@.m. motion
by adding a termA (H.,— 34Q) to the Hamiltonian with
A=10. However, our observable results are exactly cor-
rected for the c.m. contributions and do not depend\orn
particular, for the form factors we use the correction dis-
cussed in Ref[27]. Our calculations can, in principle, be
redone in the relative-coordinate basis, producing the same
results with a given effective Hamiltonian. Test calculations
Before we proceed to apply the above approach to a conhave been performed iM=3,4 systems with both the
plex system like'®C, we first test it for the simplest non- Jacobi-coordinate HO basis and the single-particle HO basis
trivial case, theA=3 system. In that case, we can study theWith the sameH¢;; to confirm the above statement.
detailed convergence properties of the method, as we are To study the influence of differe™N potentials, we per-
able to move up to very large model spaces. To perform thérmed calculations using the CD-BordiN potential [21]
A=3 calculations we employ the Jacobi-coordinate basi@nd the Argonne V8NN potential, defined in Ref4]. The
that is antisymmetrized according to the procedure introCD-Bonn potential takes into account isospin-symmetry vio-
duced in Ref[9]. lations by both the strong and the electromagnetic interac-
The only parameters are the model space size, charactdions. The Argonne V8’ potential is an isospin-invariant re-
ized by N, and the HO frequenc§), appearing explicitty ~duction of the Argonne V18N potential. We, therefore,
in the Hamiltonian(in terms that cancel algebraically, but are add the Coulomb interaction to the Argonne V8'. The calcu-
treated with separate methodmd in the basis. We investi- lations were performed in the proton-neutron formalism with
gate the dependence of our results on these two quantities B isospin breaking explicitly included, apart from the
a measure of the validity of the two-body cluster approxima-nucleon mass set equal targm,/(my+m,). For the calcu-
tion. lations with the CD-BonrNN potential we compute three
Let us considerH interacting by the CD-BontNN po- different effective interactions/55, Vhey, and V.
tential [21]. In Fig. 1 we show the’H ground-state energy We employ the many-fermion dynamics shell-model code
dependence on the model-space size in the rangd,gf [28] to perform the Hamiltonian computation and diagonal-
=4 to 34. Different full lines connect results obtained with aization. Due to the increasing multiparticle model space size
specified HO frequency. The dotted line represents the CDwe are presently only able to use model spaces up through
Bonn 34-channel Faddeev equation result-e8.00 MeV ~ 5.
[21]. It is apparent that our results converge to the Faddeev As pointed out in the Sec. Il D, there are only two param-
equation result adl,,, increases. As stated earlier, the fun- eters in our calculations, the model-space sig4) and the
damental approximation used in our approach is to workdO frequency() on which the effective interaction depends.
only to the two-body-cluster level. As in the A=3 test case, we investigate the dependence of
Our method is not a variational treatment. Therefore, wehe results orf) and the model-space size to the accessible
cannot expect a monotonic convergence from above. Thredimit. The N,,,=0, 2, and 4 model spaces for the positive-
body-cluster results for the ground-state energy could be eparity states and thK,,,=1, 3, and 5 model spaces for the
ther above or below the results at the two-body-cluster levelnegative-parity states are considered. Let us remark that the
As seen from Fig. 1 our results converge with increasingn-scheme dimensions grow from 51 in thét@ model
Nmax DOth from above or below, with some oscillations pos-space, 1320 in the#l) model space, 17 725 in thei®)
sible, depending on the HO frequency employed. Furthermodel space, 160084 in theA8 model space up to
more, we note that () =28 MeV provides results remark- 1118926 in the #Q model space, and reach 6 488 004 in
ably independent ol Starting at rather low values of the 5 () model space. For reference, the® model space
N max= 10. dimension is 32598 920.
We note that even for the7d) model space, i.eNyax In order to observe the dependence on the HO frequency
=4, the binding energy is within 10% of the exact result for ) we performed calculations using the above model spaces
a wide range of HO frequencies. R¥f,,,=6 we see binding for a very wide range of). In Figs. 2 and 3, we present the

FIG. 1. The dependence of thél ground-state energy, in MeV,
on the maximal number of HO excitations allowed in the model
space in the range froM ;=4 to N,.= 34. The two-body effec-
tive interaction utilized was derived from the CD-BoNfMN poten-
tial. Results forh () =22, 28 and 32 MeV are presented. The dotted
line represents the exact result ©8.00 MeV from a 34-channel
Faddeev-equation calculati¢@l].

D. Test of the method for theA=3 system

054311-6



LARGE-BASIS ab initio NO-CORE SHELL MODE . . . PHYSICAL REVIEW C 62 054311

-65[ ] minimum shifts to lower frequencies. Clearly, the difference
-70F 1 ——an0 betweenN,.,=2(3) and 45) results is much smaller than
:gg; 1 -~—2%hQ betweenN,,,,=0(1) and 23), results suggesting a conver-

% 85[ 1 . ona gence trend with increasing model space reminiscent of the

E 90F Ny 3 trends shown irA=3 calculationgFig. 1).

w _1-335 i ] Our positive-parity state results, obtained with the pre-
-1050 . CD-Bonn ferred HO frequencyi () =15 MeV, are presented in Table
110 070 e . Il and in Fig. 4, and the negative-parity state results, obtained
-5 ] using the same HO frequency, are given in Table Ill and Fig.
T T R 5. We discuss below results for the binding energies, point-

hQ [MeV] proton rms radii, £-state quadrupole moments, and EM
transitions.

FIG. 2. **C ground-state energy dependence on the HO fre- From the observed trends in Table Il and Fig. 2, we ex-
quency for the 4€), 240, and 0.} model spaces calculated us- pect that our calculated binding energy of about 88 MeV for
ing the effective interaction derived from the CD-BoNiN poten- the preferred frequency in theid) space will decrease with
tial. a further model-space enlargement. As discussed in Sec.

round-state enerav dependencies on the frequency for bo{ D, we estimate that our #Q result should be within 10%
g gy dep q Y of the exact solution for the two-bodyN potential utilized.

the positive and the negative parity states, respectively, ob- o
tained using the CD-Bonn potential. The results for AV8’ areAISO’ the 4. binding-energy values are probably more re-

very similar, although they exhibit a bit stronger dependenct;aIIStIC than those obtained in the: 0 or Z_hQ Space, as one

on Q) most likely due to a stronger tensor force. In the sub-6XPeCts roughly a 10-20 % underbinding compared to the

sequent calculations, we utiliZeQ =15 MeV which lies in  €XxPerimental value when a realistic two-bddil interaction

the range where the largest model space resilts, & 5) is used alone. This is the trend found in lighter nuclei. In

are least sensitive thQ). order to fit the expgrimenta_nl binding energy, it is likely that a
Let us remark that our preferred value of the HO fre-Tue three-bodyNN interaction is necessafyt].

quency,#Q =15 MeV, is close to the suggested value for We note that we obtain a stronger binding for the CD-

A=12 given by the phenomenological relatig®] (in units Bonn NN potential in agreement with observations for light
of MeV): nuclei, e.g., the*'He CD-Bonn binding energy is 26.3 MeV

[10,32 while that of AV8' is 25.2 MeV[33]. On the other
AQ=45A"13_25A-23.14.9 MeV. (20) hand, based on theste results one would expect a larger
difference in'?C between the binding energies from the two

In the next subsections we will investigate how several 0b_dlfferent interactions. Most likely, a different rate of conver-

servables depend upon the HO frequency and model spa@@n.ce with increasing m_odel space for th_e two utilized po-
size. tentials may be responsible for smaller binding energy dif-

ferences. Based on owk=3,4 calculations, we expect a
faster convergence for the CD-Bonn potential, which we at-
tribute to its weaker tensor force.

From Figs. 2 and 3, we observe that, at fixef, the In general, we obtain a reasonable agreement of the states
energy of the lowest eigenstate of each parity increéises  dominated by @) and 14 () configurations with experi-
becomes less negativeith increasing model space in most mental levels. We also observe a general trend of improve-
of the frequency range examined and the position of thénent with increasing model space size, in particular, for the

T=1 states. While the energy of the lowest eigenstate of

A. Binding energy, excitation spectra, and EM transitions

-50 each parity increases with increasing model space, the rela-
550 1 - 1hQ tive level spacings are less dependent on the model space
6ol 1 =32  size.
NP ——5hQ As a gauge of trends with increasing model space size,
w 57 ] consider the rms changes in excitation energies of the first
E. 70 ] seven excited states of each parity in the CD-Bonn case. For
W sl . positive parity states, the rms changes are 1822 MeV
.ok ] in going from 0 to 2(2 to 4% (). For negative parity states,
85l ] the rms changes are 0.87.20 MeV in going from 1 to 3(3
. . . . to 5. The difference between the,,,=2(3) and 45)
T T results is significantly smaller than that between Mg,
h$ [MeV] =0(1) and 23) results which is similar to the convergence

trends we saw in lighter systen§,9,10. Our computedl’
FIG. 3. 12C 370 -state energy dependence on the HO frequency=0 0",2",4" band has a reasonable splitting. We obtain a
for the 5.0, 340, and % model spaces calculated using the reasonable set of excitation energies for el states rela-
effective interaction derived from the CD-BoNN potential. tive to the lowesfT=0 state of each parity. In addition, our

054311-7



P. NAVRATIL, J. P. VARY, AND B. R. BARRETT PHYSICAL REVIEW C62 054311

TABLE Il. Experimental and calculated binding energies, ground-state point-proton rms radii, the
2. -state quadrupole moments, as well B2 transitions, ine? fm*, and M1 transitions, inu?, of *%C.
Results obtained in different model spaces, N, =4,2,0, and using effective interactions derived from
the CD-Bonn and the Argonne V&IN potentials are compared. A HO frequency/df =15 MeV was
employed. The experimental values are from RES6,31].

2c CD-Bonn AVE'

Model space aQ 2hQ 01 Q) 440 2hQ 04O

|Eqs| (MeV) 92.162 88.518 92.353 104.947 87.675 92.195  104.753
rp (fm) 2.352) 2.199 2.228 2.376 2.202 2.228 2.376
Q,+ (e fm?) +6(3) 4533 4.430 4.253 4.536 4.427 4.250
E(070) (MeV) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E.(270) (MeV) 4.439 3.697 3.837 3.734 3.584 3.766 3.699
E(170) (MeV) 12.710 14.141 14.525 13.866  14.044  14.549 13.935
E(470) (MeV) 14.083 13.355 13.636 12.406 12.848  13.255 12.192
E(171) (MeV) 15.110 16.165 16.291 15290 16.295 16.515 15.488
E(271) (MeV) 16.106 17.717 17.945 15970 17.945  17.823 15.920
E(071) (MeV) 17.760 16.618 16.493 14.698 16.205  16.208 14.574
B(E2;270—070) 7.5942) 4.625 4.412 4.092 4.612 4.397 4.091

B(M1;170—0%0) 0.014%21)  0.0042 0.0032 0.0013 0.0026  0.0019 0.0008
B(M1;170—2%0) 0.008114)  0.0017 0.0013 0.0008 0.0013  0.0012 0.0008

B(M1;1"1—-0%0) 0.95120) 0.355 0.280 0.158 0.316 0.252 0.147
B(M1;171—-2%0) 0.0689) 0.0002 0.0028 0.0115 0.0023 0.0078 0.0167
B(E2;271—-070) 0.6513 0.283 0.015 0.0018 0.104 0.000 0.002

lowest 0" T=2 state lies between 27 and 29 MeV, depend-The ordering of theT=1 states improves with the model-
ing on theNN potential and the model space, in good agreesspace increase. In the calculation, we se€ @ @nd a second

ment with the experimental @ state at 27.595 MeV. 370 state below 8 MeV excitation relative to the lowest03
~ We note that the favorable comparison with available datatate. Such states are not presently known experimentally.
is a consequence of the underlyifgN interaction rather In Fig. 6 we present the evolution of the lowest positive

than a phenomenological fit. and negative parity states of a given isospin with the model-

consists of 61% of A configurations. The occupancy of hile the position of the 11 is fairly stable, it is clear that
the Op3/2 level is about 5.74 nucleons, while the occupancyne excitation energies of the negative-parity states relative

of the Op1/2 level is about 1.90 nucleons. to the positive-parity states decrease rapidly with the model-
For theT=0 negative-parity states we obtain the correctspace size enlargement. Still, even in our largest spaces the

sequence of the excited states compared to the experiment- state is more than 5 MeV too high compared to the
experimental excitation energy.

20fo*1\12C M=ISMeV 00 The spectra obtained in theif) space using the CD-
187 1 = 2111 Bonn and Argonne V8NN potentials are compared in Fig.
PEo ot 1 . There is remarka ittle difference between the results
6@ 0. —— 7. Th kably little diff bet th It
140 Lo e —— rom the two interactions, althoug e overall agree-
oo _ N from the twoNN interact Ilthough th I
DS Igl1ro” — ment with experiment is sli etter for the -Bo
N o t with exp t is slightly better for the CD-BoNMN
S ;o[ @0 potential, in particular for th& =1 states. This also is true
8 107 000 . ;
; sl fﬂ)) CD-Bonn for the negative-parity states. It should be noted, however,
o that the position and ordering of the=1 states improves
ér oo ”o with the enlargement of the model space for both potentials.
4 g In order to achieve a more converged excitation spectra a
ar still larger model space is needed, especially for states with
oloo_ - - - 0" 0 significant cluster structure. The two- and highe®- domi-

Exp 4 20 0nQ nated states, such as the 7.65 MeV00Ostate that is known

FIG. 4. Experimental and theoretical positive-parity excitationt0 be a threex cluster resonancgs4], are not seen in the
spectra of!2C. Results obtained in74), 240, and 0:Q model  low-lying part of our calculated spectra. In general, the con-
spaces are compared. The effective interaction was derived from théergence rate of the/X) dominated states is quite different
CD-Bonn NN potential in a HO basis witthQ)=15 MeV. The than that of the ground state, as we observedHe calcu-
experimental values are from R¢80]. lations performed in the present formalid®,10]. Also, a
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TABLE Ill. Experimental and calculated negative-parity state energies, ftiestate point-proton rms
radii, and quadrupole moments are shown. Results obtained in different model spadds.i*5,3,1, and
using effective interactions derived from the CD-Bonn and the ArgonneNi8’potentials are compared.
The calculated excitation energy of the @ state is obtained by comparing its energy in g} space with
the ground state in the\(— 1)% () space. A HO frequency @f{) =15 MeV was employed. The experimental
values are taken from Ref30].

zc CD-Bonn AVS’
Model space BQ 3r0 12Q 50 3n0 120
|E(370)| (MeV) 82.521 72.952 75.331 83.390 72.300 75.360 83.459
rp (fm) 2.309 2.316 2.425 2.310 2.315 2.425
Q;- (e fm?) —7.942 —7.596 —-6.936 —7.920 -7.575 —6.933
E(370)— Egs (MeV) 9.641 15.566 17.022 21.557 15.375 16.835 21.294
E,(370) (MeV) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E,(170) (MeV) 1.203 2.093 2.256 1.561 2112 2.274 1.552
E,(270) (MeV) 2.187 3.722 4.051 3.582 3.722 4.057 3.567
E,(470) (MeV) 3.711 4.866 5.084 4.768 4741 4.993 4,710
E,(070) (MeV) 7.148 7.062 5.712 7.148 7.156 5.777
Ex(271) (MeV) 6.929 7.671 7.783 7.340 7.949 8.237 7.574
E,(370) (MeV) 7.877 8.151 6.886 7.651 7.983 6.745
E.(171) (MeV) 7.589 8.048 7.951 7.042 8.117 8.096 7.184

preferred HO frequency for the convergence of the ground Our radius andE2 results, based on the bare radius op-
state will differ from the preferred frequency for thé&Q erator and bare nucleon charges, are smaller than the experi-
states. mental values. The underestimation of the rms radius, the
We investigated the position of the lowest @ domi-  quadrupole moment and ti€2 transitions is linked with the
nated states and the giant-quadrupole reson&BGR) E2 overestimation of the position of the GQR strength and sug-
distribution. Our lowest 2Q 0™ state lies at about 40 MeV gests that even in the,,,= 4 space we still miss significant
excitation energy and the GQR2 strength is distributed « clustering effects. We also observe a strong model space
between 43 to 50 MeV in the/X) calculation. In the 4Q)  dependence of théV1 transitions, £1—0%0. Clearly,
model space the excitation energy of the lowest(20* there is still a need for effective operators, which are calcu-
state drops by 5 MeV to about 35 MeV and, similarly, thelable within our theoretical framework, as discussed in
GOR strength is lowered to 37-47 MeV. We present ourSec. Il C.
calculatedE2 strength obtained in the#4) model space We computed the two-body-cluster terfd9) for the
using the CD-Bonn potential anli=14 MeV in Fig. 8.  point-proton rms radius operator and found that the renor-
We note that the experimental GQR strength is observed imalization leads to an increase of the radius and that the size
the range 18—-28 MeY35]. Our trends indicate the probable of this increase drops as the model space size increases. In
need for several more major shells to hope to achieve a fgparticular, ther , results presented in Table Il that were ob-
vorable description of th&2 strength distribution.

30 r 12 .
I W=15MeV . 1
12 o-15Mev gl C
8r 11— =_ 71 24 _ ‘ —
o —— ———/—— P— BB ; 30
; ~3 0 201 ‘ 4
61 CD-Bonn'—___, R I8Fy —_
B —_— S 16F - T ’ 1
§ I — —4 0 Q14
Sogt — R 12F
Ry 40— — Fa— -2 0 1030 ———
: 8t CD-Bonn
S ot
ro——— e 2t
oloo— .. .. .. ot o
olro— 30 Exp 4-5%Q  2-38Q  0-1nQ

Bxp 50  3»Q  11Q _ _ L
FIG. 6. Experimental and theoretical excitation spectra.

FIG. 5. Experimental and theoretical negative-parity spectra oResults for the lowest states of given isospin and of both positive
12C. Results obtained in7A), 3%, and % model spaces are and negative parity obtained in the model spaces fréf} @o 5%
compared. Other factors are the same as in Fig. 4. are shown. All other factors are the same as in Fig. 4.
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20T 12C 30=15 MeV /0*‘1) o IZC =21 15 14MeV ,
18F ., ™~ . i * [ - ' 0" 0
2t 1 S 18 X b
L o2 o e L EEOON 171 | 21 .
16 r (2+ 0) L=l Jot 1 16k @ Oh = \(1)7 }
14,11/ ...... PARY] -1+1/— \2+0
- I ‘11:3?_ I N1+ 0 Mo — T 5 N
3 ! enes 40 R i1grroe” \s o
10| Q F@29Ho0-
3 190 oo/ CD-Bonn V8 S 10} .0
| gpoe 5 sl CD-Bonn
B 8roo_ -
6 |
[ 2 + 6r
2} 70— - Ao Llzo- "o
2 [
2 -
gloo_— . .. —0v0
Exp mQ 4hQ oloo . - . ot 0
Exp 47Q HQ 40

FIG. 7. Experimental and calculated excitation spectrdaf.
Results obtained using the effective interactions derived from th(?:ze

CD-Bonn NN potential and the Argonne V8NN potential are N . .
compared. A 4Q model space and a HO frequency b compared. The effective interaction was derived from the CD-Bonn

=15 MeV were used. The experimental values are taken fron{\‘N potential. A model space of@ above the unperturbed
Ref. [30] ground state was used. The experimantal values are taken from
' ' Ref. [30].

FIG. 9. Experimental and calculated excitation spectra?af.
sults obtained using the HO frequendi€¥= 14,15, 21 MeV are

tained without renormalization should be increased due tdial for three different HO frequencie$() =14, 15, and 21

the renormalization by about 0.06, 0.02, and 0.01 fm for théMleV and for theN,,=0, 2, and 4 model spaces. We ob-
Nma=0, 2, and 4 model spaces, respectively. This does ndterve that, indeed, the dependence of the result§) afe-
imply that the renormalization of other operators, e.g., thecreases as the model space is enlarged. This is true, in par-
E2 operator, cannot be substantially higher. Also, we notdicular, for the binding energies, radii, and the quadrupole
that the renormalization is HO frequency dependent. Siminoments. On the other hand, it is obvious that the04
larly, as observed in outH calculations, e.g., compare Figs. Model space is not sufficient to obtain fully convergent re-

1 and 4 in Ref[10], we anticipate that, in contrast with the sults. The corresponding excitation spectra dependence on

. : : .the HO frequency is presented in Fig. 9, where we show
eigenenergies, the other observables will change more sig- ! ;
nificantly as we move to larger model spaces and/or Iargeresults obtained in thetA) model space for the above three

clusters in the effective Hamiltionian and other operators values of(). It appears that the overall agreement with ex-
) o . P " periment is the most favorable for our preferred HO fre-
A brief examination of the radius anB8(E2) to the

. . uencyh Q=15 MeV.
ground state proves instructive. If one takes th&results g y

From Table IV, we also note a strong dependence of the
for CD-Bonn from Table | and scales the calculai®(E?2) M1 transitions, e.g., 11070, onQ. This dependence is

(4.62%2fm*) by the fourth power of the ratio of the experi- stronger than the dependence on the particular change in
mental point-proton radius to the calculated point-proton ramodel-space size, displayed in Table Il. Overall, td
dius (2.35/2.199), we diminish the discrepancy betweenransitions are closer to experiment for larger while just
theory and experiment by more than 50%. This indicates thahe opposite trend is seen for tB€ transitions. This trend in
when we find the source of improvement in the point-protonresults correlates with the change of relative occupation of
radius, it is also likely to improve the value for tB{E?2). the Op3/2 and the P1/2 levels. With largef) more nucle-
The sensitivity of observables to the HO frequency can bens tend to occupy thepB/2 level and the rate of thiell
judged from Table IV. There, we present selected observtransition increases.
ables obtained in calculations with the CD-BoNIN poten- Let us further comment on tHe2 transition 2°1—070.
In Table Il we present the transitions from the lowest calcu-
lated 2" 1 state. There is a level crossing, however, so that in

30 1 1 1 1 1 1 1 1 1 1
12 the 22.Q and 022 model spaces, the calculated P state
< 251 r with a strongE2 transition to the ground state is the second
£, C CD-Bonn 2%1 state.
"o,
<c_’: 159 4hQ i B. Elastic charge form factors
'% 104 hQ=14 MeV i Parity-violating elastic electron scattering experiments on

wn
1

0

0

FIG. 8. CalculatedE2 strength obtained in the#4) model

5 10 15 20 25 30 35 40
Ex(2") [MeV]

W

45 50

space using the CD-Bonn potential affl =14 MeV.

even-evenN=2Z nuclei, like *°C, provide a test of the neu-
tral current sector of the standard model. The observable of
interest is the parity-violating asymmetry

do,—do.  G,q* (Fe(a) FE(a)

A Go do.  amaya\Fo@  Fo@ )
21
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TABLE IV. Calculated ground-state point-proton
E2 transitions, ire? fm*, andM 1 transitions, inu2, of

PHYSICAL REVIEW C 62 054311

rms radii, tHe-@tate quadrupole moments, as well as
12C. Results obtained in different model spaces, i.e.,

4410, 200, and (), using different HO frequencies, i..{)=21, 15, and 14 MeV, are compared. The
effective interactions used were derived from the CD-BbX potential. The corresponding experimental

values are presented in Table Il.

Model space AQ 21 Q) 02.Q

7Q (MeV) 21 15 14 21 15 14 21 15 14

|Eg.S] (MeV) 85.054 88.518 87.145 94.006 92.353 90.110 117.744 104.947 101.275
rp (fm) 1978 2199 2260 1.932 2228 2301 2.008 2.376 2.459
Q,+ (e fm?) 3.587 4533 4.792 3.318 4430 4.718 2.970 4.253 4.568
B(E2;2"0—0%0) 2917 4.625 5178 2488 4412 5.016 1.994 4.092 4.722
B(M1;1*1—0"0) 0.683 0.355 0.305 0.657 0.280 0.237 0.357 0.158 0.137

where +(—) refers to electrons polarized parali@ntipar-
allel) to their momenta. In Eq21), F(q) denotes the EM
charge form factor, while the weak neutral form factor is

We note that the one-body strangeness form factors de-
pend on the strangeness radjus and on the strangeness
magnetic momeni. Limits on these parameters are to be

split into two components, the strangeness charge form fadetermined in experiments at the Thomas Jefferson Accel-

tor F$)(q) and the form factoF ¢(q), given by combination

erator Facility. The first strangeness magnetic-moment mea-

of the EM isoscalar and isovector form factors, as discussegurements were reported recer@y]. In our calculations we

in Refs.[14,36. For an isospin invariant system, the ratio
Fc(a)/Fc(q) is equal to—4 sirf4,. Isospin-symmetry vio-
lation leads to a correctioh to this value, defined by the
relation

ﬁc(Q)

—4 Sirf Oy (1+T).

(22
Fc(a)

The evaluation of form factors with unrenormalized op-
erators is a sensitive test of tiRespace wave functions ob-
tained in our calculations. Using the formalism of Ref7],
we calculated the elastic charge EM and weak neutral for
factors in the impulse approximation. The one-body contr
bution to the charge operator is given by Ef5) in Ref.
[17], e.qg.,

j2(qre)

+[GP(1)—2G@ () 127 oLyt

(23

wherer=q?/4m?,, L, is thekth nucleon orbital momentum
andG® () andG{?(7) are the one-body electric and mag-
netic form factors, respectively. The supersctiptrefers to
(p) and(n) for proton and neutron EM form factors, respec-
tively, or to (s) for the strangeness form factor. The operator
0@ is equal to & +t,) [(1—t,)] for a=p(a=n) and it is
equal to 1 fora=s. The one-body form factor&®;(q),
needed for evaluatingc(q), are obtained as combinations
of the EM one-body form factorgl4,36. The charge form
factors are given a(q)=2ym(0" M@ (q)[*|0"). We

investigate the sensitivity of thé’C form factor ratios to
these parameters.

The elastic EM charge form factors éfC are presented
in Figs. 10 and 11. Note that the squared longitudinal form
factor FE=(FC/Z)2 is displayed in Fig. 10, where we com-
pare our calculated form factor, obtained in the impulse ap-
proximation, with the experimental data. The wave function
used was obtained in thei4) calculation with the effective
interaction derived from the CD-BordN potential and with
hQ =14 MeV. Note that, as seen in Table IV, thé @ re-
sult for the 2C charge radius is closer to the experimental
result of 2.309 fm witha (=14 MeV (r,=2.260 fm) than

mvith Q=15 MeV (r,=2.199 fm). We miss the experi-

mental minimum slightly and underestimate the second
maximum. This may be due in part to the omission of the
MEC, but, more likely, are due to an incomplete conver-

10°,

107 12 C
CD-Bonn

107

F|_2

107
10*

10t hQ=14 MeV

109k
0

FIG. 10. The experimental and calculated values of the elastic
EM charge form factor of?C are presented. The calculation, done
in the impulse approximation, was performed using the two-body

effective interaction derived from the CD-BoiN potential in a

model space of #() excitations above the unperturbed ground

use the parametrization of the one-body form factors, as disstate. A HO frequencyiQ =14 MeV was used. The experimantal

cussed in Ref[17].

values are taken from Ref38].
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100 10"
i 12
10! w0 L |17 C
102 10t ] CD-Bonn
to? 102 1
i 40
10+ 10_3 E3
i 17Q=15 MeV
10° 4 " " " 104 1 ; : "
0 1 2 3 4 0 1 2 3 4
g [fm] g [fm]
FIG. 11. The elastic EM charge form factor HC calculated in FIG. 12. The isospin breaking correctidh depending on the

the impulse approximation. The calculations were performed usingatio of elastic weak and EM charge form factors '6€ is pre-

the two-body effective interaction derived from the CD-Bddil sented. The calculations done in the impulse approximation were

potential. Results obtained in model spaces bf2and 4. Q) ex- performed using the two-body effective interaction derived from the

citations above the unperturbed ground state and with different H&D-BonnNN potential in a model space ofi4) excitations above

frequencies ofi () =14 and 15 MeV are compared. the unperturbed ground state. A HO frequeridy =15 MeV was
used.

gence of our wave function and the need for three-body
forces. A separate issue to be addressed in the future, is therized electrons from &°C target. The sensitivity tau is
renormalization of the operaté23) due to the space trunca- the strongest in the vicinity of the second maximum. How-
tion, as discussed in Sec. Il C. ever, it is weaker int?C than in“He, as seen by comparing
The sensitivity of the form factor on the model-space sizethe results presented in RdfL7]. On the other hand, the
and on the HO frequency can be judged from Fig. 11. Resensitivity top is substantial also if%C, in particular, be-
sults obtained in the/2Q) and 4:() model spaces are com- yond the minimum.
pared. In addition, calculations using our preferred HO fre-
quency £Q)=15 MeV and the frequencyi()=14 MeV
employed in Fig. 10 are shown. The curves differ fpr
>1.4 fm %, as a result of incomplete convergence of the We introduced thab initio no-core shell model and per-
wave functions since converged results should be indeperiermed large-basis calculations fofC in the model spaces
dent of (). The trend of moving the dip to smallgrwith up to 44 for the positive-parity states and ug 8 for the
decreasing:() and fixedN,,, may be understood easily in negative-parity states. The two-body effective interactions
terms of the charge radius trend with decreasifyy men-  for each model space were derived microscopically from
tioned above. A similar correspondence of trends withmodernNN potentials using a unitary transformation of the

IV. CONCLUSIONS

changingN ., IS observed in Fig. 11. Hamiltonian and the model-space decoupling condition,
The calculated isospin-breaking correctibris shown in
Fig. 12. Our result, obtained again in the impulse approxi- 100
mation using the #Q model space with the effective inter-
action derived from the CD-BonftNN potential andz() 10!
=15 MeV, compares very well up tq=~3 fm~! with that
calculated by OrmanfB6] using the Hartree-Fock approach. 10?2
In Fig. 13, we present the elastic strangeness charge form
factor, obtained in the impulse approximation using th&X4 10
model space and()=15 MeV. To study the sensitivity to - CD-Bonn
the NN potential, we performed the calculations with the 10+ :
CD-BonnNN potential and the Argonne V&IN potential. . h=15 MeV
We observe only a very weak dependence onNiepoten- 10° ' - :
tial, unlike for light nuclei withA=3,4[10]. Such a weak 0 1 2 3 4
dependence is obtained not only for the strangeness form g [fm1]

factor, but also for the EM form factor c_’lfzc' FIG. 13. The elastic strangeness charge form facto@fcal-

In Figs. 14 and 15 we present the ratio of tﬁ@ strange-  cylated in the impulse approximation. The calculations were per-
ness and EM charge form factors calculated in the impulSgymed in a model space ofi4) excitations above the unperturbed
approximation using the CD-BonNN potential. As dis-  ground state and with a HO frequency &) =15 MeV. Results
cussed in the beginning of this subsection, the ratio of theptained using the two-body effective interaction derived from the
elastic charge form factors is particularly interesting, as itCD-Bonn (full line) and Argonne V8'(dotted lin@ NN potentials
can be experimentally obtained from the measurement of there compared. The values of the strangeness ragias- 2.0 and
parity-violating left-right asymmetry for the scattering of po- of the strangeness magnetic momgnt=0.23 were employed.
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gested by phenomenological shell-model formulas.

0.00 1 Using results folA=3 and 4, we analyzed the deviations

T in binding energy per nucleon at the preferred valué Of
010 7 FC /Fe and found a suppression of the changes that arise at the

1 § three-body or four-body cluster level. Overall, we estimate
020 T that the uncertainty in our74Q binding energy for?C due

1 to truncation at the two-body cluster level is less than 10%.
030 1 410 ; The 2C results that we obtained are not fully convergent

1hQ=15Mev || CD-Bonn with respect to increasing model-space size. In spite of this,
-0.40 0 1’ 2 3 4 we expect that we have obtained a reasonable approximation

to the exact results for the@)- and % ()-dominated states.
In fact, we also obtained a reasonable agreement of the states
FIG. 14. The ratio of elastic strangeness and EM charge fornrtdominated by @Q and 1) configurations with experi-
factors of *°C calculated in the impulse approximation. The value mental levels. We note that the favorable comparison with
of the strangeness radiyg=—2.0 was employed. The different 5yjilable data is a consequence of the underlyinginter-
curves correspond to different strangeness magnetic moments, €.9ution rather than a phenomenological fit. The positive-parity
#s=—0.2,0.0, and.0'2.3' The.calcu@t'ons were performed USInqow-lying states of'“C that are dominated by the higher-
the two-body effective interaction derived from the CD-Bddil than-0s O t t ob d low-
potential in the model space ofi4) excitations above the unper- an components were not observed among our low
turbed ground state. A HO frequenéyf) = 15 MeV was used. Iylng calculate_d stz_;\tes. Convergence pf s_uch stat_es in the HO
basis expansion is much slower with increrasing model-
which is fulfilled at the two-body cluster level. This method, space size. Our computed negative-parity states were shifted
which we also applied in our earlier studies, converges to théo higher energies by only a few MeV compared with experi-
exact solution for increasing size of the model space, as waent and were generally in the correct order.
demonstrated for th&=3 and 4 systems. Apart from the binding and excitation energies, we also
We note that we performed no-core shell-model calculastudied the EM properties and the point-proton rms radii. In
tions for the @-shell nuclei in the pag6—8] using a similar  addition, we computed elastic charge form factors in the im-
approach as that discussed here. In those calculations, howtlse approximation that are relevant to parity-violating elec-
ever, an additional adjustable parameter was present, i.e., th&n scattering studies. We presented results for the EM and
“starting energy” of the two-bodyG matrix. Thus, in gen-  weak neutral form factors of?C. We observed that the de-
eral, convergence to the exact solutions would have beegendence of the form factor ratif¥)/F ¢ on the strangeness

d'ﬁl'Cl‘;lrt] to demo?stra:_e. i wo-body clust ___magnetic moment is weaker fdfC than for “He. On the
__'n the present application, a two-body CIUSIEr approximasg ner pang, the dependence on the strangeness radius re-
tion results in a dependence on the size of the model-spa

S
ains strong also fof?C.
and on the HO frequency. We selected a preferred HO fre We demonstrated that the multiconfiguration no-core

guency by examining where the ground-state energy is Ieas‘%

dependent on the frequency in our largest model spaces. TH ell-model approach combined with the use of microscopic

resulting valueiQ~15 MeV is in accord with values sug- © fective mteragﬂons is well suited for the description of
electron scattering or other electroweak processes from com-

plex light nuclei, like 12C. In particular, we treat the c.m.
IZC motion properly, so that our calculated form factors do not
depend on the c.m. motion. In addition, the utilization of
large model spaces improves the justification for the employ-
=1 ment of unrenormalized transition operators. In the present
study we performed our calculations in the impulse approxi-
T | p=2 mation. The MEC contributions can also be included in our
030 +  4nQ approach and will be the subject of a subsequent study.
1hQ=15MeV | CD-Bonn Our wave functions along with the one-body and two-
= = body densities can also be used for evaluating the neutrino
0 1 2 3 4 and muon reactions with’C. Such studies will be a subject
q [fm"] of future investigations. It is challenging, but not impossible,
FIG. 15. The ratio of elastic strangeness and EM charge formi© extend the pres.ent calculapons to even larger model
factors of 2C calculated in the impulse approximation. The value SPaC€S, e.g.,7/). This would be important, as we noted that
of the strangeness magnetic moment=0.23 was employed. The OUr results were not fully converged, even in the case of the
different curves correspond to different strangeness radii, g,g., 072{}-dominated states. In addition, the positive-parity
=—1.0 and—2.0. The calculations were performed using the two- higher#.()-dominated states were not observed in the low-
body effective interaction derived from the CD-BoNM potential  lying part of our calculated spectra. A further increase of the
in the model space of 74 excitations above the unperturbed model-space size should result in the lowering of their en-
ground state. A HO frequendyQ) =15 MeV was used. ergy. This investigation is in progress.
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