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Large-basisab initio no-core shell model and its application to12C
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We present the framework for theab initio no-core nuclear shell model and apply it to obtain properties of
12C. We derive two-body effective interactions microscopically for specific model spaces from the realistic
CD-Bonn and the Argonne V8’ nucleon-nucleon (NN) potentials. We then evaluate binding energies, excita-
tion spectra, radii, and electromagnetic transitions in the 0\V, 2\V, and 4\V model spaces for the positive-
parity states and the 1\V, 3\V, and 5\V model spaces for the negative-parity states. Dependence on the
model-space size, on the harmonic-oscillator frequency, and on the type of theNN potential, used for the
effective interaction derivation, are studied. In addition, electromagnetic and weak neutral elastic charge form
factors are calculated in the impulse approximation. Sensitivity of the form-factor ratios to the strangeness
one-body form-factor parameters and to the influence of isospin-symmetry violation is evaluated and dis-
cussed. Agreement between theory and experiment is favorable for many observables, while others require yet
larger model spaces and/or three-body forces. The limitations of the present results are easily understood by
virtue of the trends established and previous phenomenological results.

PACS number~s!: 21.60.Cs, 21.30.Fe, 24.10.Cn, 27.20.1n
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I. INTRODUCTION

While various methods have been developed to solve
actly the three- and four-nucleon systems with realistic in
actions@1–4#, few approaches are applicable for nuclei w
more than four nucleons at this time. Apart from the coup
cluster method@5# applied typically to closed-shell and nea
closed shell nuclei, the Green’s-function Monte Ca
method is the only approach for which exact solutions
systems withA<8 interacting by realistic potentials hav
been obtained@4#.

We evaluate the properties of more complex nuc
treated as systems of nucleons interacting by reali
nucleon-nucleon (NN) interactions, with our method for th
no-core shell model@6–8#. At present, we formulate@9–11#
the no-core shell model as a unitary transformation of
A-body Hamiltonian followed by a two-body cluster approx
mation. That is, the unitary transformation is determin
from a model-space decoupling condition, which is fulfille
on the two-body cluster level. The resulting transform
Hamiltonian consists of a one-body term and the two-bo
effective interaction. The calculation is performed in t
harmonic-oscillator~HO! basis, and due to the cluster a
proximation, we acquire dependence on two parameters.
parameter determines the model-space size and the oth
the HO frequency. The method becomes independent of
HO frequency and is convergent to the exact result with
creasing model-space size. The trend towards parameter
results is a specific focus of this investigation.

We emphasize that once the original many-body Ham
tonian is defined, ourab initio no-core nuclear shell mode
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provides a subset of the exact solutions. Oursoleapproxima-
tion will be to treat our theoretically derived effective oper
tors at the two-body-cluster level. This single approximati
results in the dependencies on the model-space size an
HO frequency. For realistic nuclear Hamiltonians withNN
interactions fitting available data, we show that the dep
dences on the model-space size and the HO freque
weaken considerably with the increasing model-space s
indicating smaller changes would arise by proceeding
higher-body clusters.

We have shown that the no-core shell-model appro
can be consistently applied to solve the three-nucleon as
as the four-nucleon bound-state problem@9#. In particular,
we were able to find the ground-state solution for4He inter-
acting by the CD-BonnNN potential @10#. An equivalent
formulation of this approach that results in a successful
scription ofA53 andA54 systems is applied in the prese
paper to a significantly more complex system,12C.

There are important physics motivations for investigati
12C. The 12C nucleus plays an important role in neutrin
studies, as it is an ingredient of the neutrino liqui
scintillator detectors. Theoretical description and understa
ing of the neutrino interactions with12C is, therefore, crucial
@12,13#.

There has been considerable interest recently in pa
violating electron scattering from protons and light nucl
One of the main reasons for this has been to investigate
strangeness content of the nucleon@14,15#. The (Jp,T)
5(01,0) targets, like12C, are of particular interest becaus
they support only the isoscalar matrix element of the C
lomb operator.

In order to describe theoretically the electron scattering
other electroweak processes one needs, first, the approp
scattering operators. The scattering operators typically c
sist of the one-body part used in the impulse approximat

e
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calculations and the two-body part given by the mes
exchange currents~MEC’s!. The computation of such opera
tors has been explored thoroughly in the literature, e.g.
Refs. @16,17#. Second, reliable nuclear many-body wa
functions are needed. Our work concentrates on this sec
aspect.

In principle, one also needs many-body effective ope
tors, which are obtainable within our framework. Howev
we will mostly neglect these effective operator contributio
at present and, instead, work in the largest feasible mo
space, so as to minimize these neglected contributions.

The no-core shell-model calculations are performed
such a way that the center-of-mass~c.m.! motion and the
internal motion are completely factorized. Translational
variance is preserved and, for example, the form factors t
depend only on the relative coordinates.

In addition to the physics motivations,12C provides a
challenging technological application of our no-core she
model approach. The dimensions are larger than 6 000
for a 5\V model space in them scheme. Indeed, there hav
been multi-\V shell-model studies of12C in the past@18–
20#, but unlike our approach, phenomenological effective
teractions and smaller model spaces were used in those
culations.

In Sec. II, we discuss our no-core shell-model formu
tion, i.e., the Hamiltonian and effective interaction fram
work together with a test for theA53 system. Results fo
the A512 system interacting by the CD-Bonn and the A
gonne V8’ NN potentials are given in Sec. III. We discu
the binding energies, excitation spectra, electromagn
~EM! properties as well as EM charge and strangeness f
factors. In Sec. IV, we present concluding remarks.

II. NO-CORE SHELL-MODEL APPROACH

A. Hamiltonian

In the no-core shell-model approach we start from
purely intrinsic Hamiltonian for theA-nucleon system, i.e.,

HA5Trel1V5
1

A (
i , j

~pW i2pW j !
2

2m
1 (

i , j 51

A

VN~rW i2rW j !, ~1!

where m is the nucleon mass andVN(rW i2rW j ), is the NN
interaction. It is purely a two-body operator without a ph
nomenological single-particle potential. At present, we o
three-body potentials, which are known from other works@4#
to be necessary for high-quality fits to data. This work
intended to establish a baseline of results at the pure t
body interaction level.

We can use both coordinate-space dependentNN poten-
tials, such as the Argonne potentials@4# as well as
momentum-space dependentNN potentials, such as the CD
Bonn @21#. In the next step we modify the Hamiltonian~1!
by adding to it the center-of-mass HO HamiltonianHc.m.

5Tc.m.1Uc.m., whereUc.m.5
1
2 AmV2RW 2, RW 5(1/A)( i 51

A rW i .
This HO CM Hamiltonian will be subtracted again in th
final many-body calculation so there is no net influence
intrinsic properties of the many-body system. In fact, in t
05431
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full space such a potential has no influence on the intrin
properties at all. However, this added and/or subtracted
tential facilitates the use of the convenient HO basis
evaluating the effective interactions. The modified Ham
tonian, with a pseudodependence on the HO frequencyV,
can be cast into the form

HA
V5(

i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G
1 (

i , j 51

A FVN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G . ~2!

Since we solve the many-body problem in a finite H
model space, the realistic nuclear interaction in Eq.~2! will
yield pathological results unless we use it to derive a mod
space-dependent effective Hamiltonian. In general, for
A-nucleon system, anA-body effective interaction is needed
As we discuss in detail in the next subsection, we mak
two-body cluster approximation for the effective interacti
in the present calculations. Large model spaces are desir
to minimize the role of neglected effects, which a larg
cluster would include. In addition, the larger the model spa
is, generally speaking, the smaller, the neglected renorm
ization contributions to the effective operators.

As the HamiltoniansHA ~1! andHA
V ~2! differ only by a

c.m.-dependent term, no dependence onV should exist for
the intrinsic properties of the nucleus. However, because
the two-body-cluster approximation for the effective intera
tion, a dependence onV appears in our calculations. Thi
dependence of results onV and size of the model spac
provides one gauge of the severity of this approximati
Fortunately, some important observables have significanV
independence and model space independence in our la
model spaces.

B. Two-body effective interaction and the model space
definition

In order to derive the effective interaction, we employ t
Lee-Suzuki similarity transformation method@22,23#, which
yields a Hermitian effective interaction. The approach p
sented here leads to the same two-body effective interac
as used in our previous papers@9,10#.

Let us write the Hamiltonian~2! schematically as

HA
V5(

i 51

A

hi1 (
i , j 51

A

Vi j . ~3!

In the spirit of Da Providencia and Shakin@24# and Lee,
Suzuki, and Okamoto@22,23#, we introduce a unitary trans
formation of the Hamiltonian, which is able to accommoda
the short-range two-body correlations in a nucleus, by cho
ing an anti-Hermitian operatorS, such that

H5e2SHA
VeS. ~4!

In our approach,S is determined by the requirements thatH
andHA

V have the same symmetries and eigenspectra ove
1-2
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LARGE-BASIS ab initio NO-CORE SHELL MODEL . . . PHYSICAL REVIEW C 62 054311
subspaceK of the full Hilbert space. In general, bothS and
the transformed Hamiltonian areA-body operators. Our sim
plest, nontrivial approximation toH is to develop a two-
body effective Hamiltonian. The next improvement is to d
velop a three-body effective Hamiltonian. This approa
consists then of an approximation to a particular level
clustering:

H5H (1)1H (a), ~5!

where the one-body anda-body (a<A) pieces are given as

H (1)5(
i 51

A

hi , ~6a!

H (a)5

S A
2 D

S A
a D S a

2D (
i 1, i 2, . . . , i a

A

Ṽi 1i 2 . . . i a
, ~6b!

with

Ṽ12 . . .a5e2S(a)
Ha

VeS(a)
2(

i 51

a

hi , ~7!

whereS(a) is ana-body operator:

Ha
V5h11h21h31•••1ha1Va ; ~8!

and

Va5(
i , j

a

Vi j . ~9!

Note that there is no sum over ‘‘a’’ in Eq. ~5!.
In the above equations, it has been assumed that the

states are eigenstates of the one-body~in our case HO!,
Hamiltonian( i 51

A hi .
If the full space is divided into a model space and aQ

space, using the projectorsP and Q with P1Q51, it is
possible to determine the transformation operatorSa from
the decoupling condition

Qae2S(a)
Ha

VeS(a)
Pa50, ~10!

and the simultaneous restrictionsPaS(a)Pa5QaS(a)Qa50.
Note thata-nucleon-state projectors (Pa ,Qa) appear in Eq.
~10!. Their definitions follow from the definitions of the
A-nucleon projectorsP, Q. This approach, introduced by Su
zuki and Okamoto and referred to as the unitary-mod
operator approach@25#, has a solution that can be express
in the following form:

S(a)5arctanh~v2v†!, ~11!

with the operatorv satisfying v5QavPa . Let us remark
that this is the same operator, which solves the equation

Qae2vHa
VevPa50. ~12!
05431
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Let us also note thatH̄a-eff5Pae2S(a)
Ha

VeS(a)
Pa leads to the

relation

H̄a-eff5~Pa1v†v!21/2~Pa1Pav†Qa!Ha
V

3~QavPa1Pa!~Pa1v†v!21/2. ~13!

If the eigensolutions of the HamiltonianHa
V are given by

Ha
Vuk&5Ekuk&, then the operatorv can be determined as

^aQuvuaP&5 (
kPK

^aQuk&^k̃uaP&, ~14!

where we denote by the tilde the inverted matrix of^aPuk&,
i.e., (aP

^k̃uaP&^aPuk8&5dk,k8 and (k^aP8 uk̃&^kuaP&
5da

P8 ,aP
, for k,k8PK. In relation ~14!, uaP& and uaQ& are

the model-space and theQ-space basis states, respective
andK denotes a set ofdP eigenstates, whose properties a
reproduced in the model space, withdP equal to the dimen-
sion of the model space. Physical and mathematical pro
ties of Eqs.~12! and ~14! may be found in Ref.@26#.

With the help of the solution forv @Eq. ~14!# we obtain a
simple expression for the matrix elements of the Hermit
effective Hamiltonian

^aPuH̄a-effuaP8 &5 (
kPK (

aP9
(
aP-

^aPu~Pa1v†v!21/2uaP9 &

3^aP9 uk̃&Ek^ k̃uaP-&

3^aP-u~Pa1v†v!21/2uaP8 &. ~15!

For computation of the matrix elements of (Pa1v†v)21/2,
we can use the relation

^aPu~Pa1v†v!uaP9 &5 (
kPK

^aPuk̃&^k̃uaP9 &. ~16!

Now, we introduce our present application, in which we ta
a52. Let us write explicitly the two-nucleon Hamiltonian i
the relative and c.m. coordinates, e.g.,

HA52
V 5H021H2c.m.1V12

5
pW 2

2m
1

1

2
mV2rW21H2c.m.1VN~A2rW !2

mV2

A
rW 2,

~17!

where H021H2c.m.5h11h2 , rW5A1
2 (rW12rW2) and pW

5A 1
2 (pW 12pW 2). The two-nucleon problem is then solved in

relative HO basis space with high precision. The c.m. mot
of the two nucleons is not affected by the transformat
S(2). The termH2c.m. does not contribute to the effectiv
interaction calculation and cancels out as seen in Eq.~7!. The
A in Eq. ~17! is set to 12 in the present application.

The relative-coordinate two-nucleon HO states used in
calculation are characterized by quantum numbersunls jt&
with the radial and orbital HO quantum numbers correspo
1-3



ic
ca

f

th
pr
e
n

th

a
dy
c
se
d
a
u
iv

r

e
ta
n

rre
he

m

ive
e

e
el
w

r

d
m

in-
ns

is
tly
ach
in-

in

u-
rge
und

al-

ee-

ergy
r to
del
n for
en.
that
dy
ion

per

r

the
y
cal-

nce
on-

the
ee-

ence
ch a

-

P. NAVRÁTIL, J. P. VARY, AND B. R. BARRETT PHYSICAL REVIEW C62 054311
ing to coordinaterW and momentumpW , respectively. Typi-
cally, we solve the two-nucleon Hamiltonian~17! for all
two-nucleon channels up toj 56. For the channels with
higherj we takeVN to be zero. Thus, only the relative kinet
term contributes in such channels in the many-nucleon
culation.

The model spaceP2 is defined by the maximal number o
allowed HO excitations of theA-nucleon systemNtotmax from
the condition 2n1 l<Ntotmax2Nspsmin, where Nspsmin de-
notes the minimal possible value of the HO quanta of
spectators, i.e., nucleons not affected by the interaction
cess. For12C, Nspsmin56 as there are eight nucleons in th
0p shell in the unperturbed ground-state configuration a
e.g., Ntotmax5Nspsmin121Nmax, whereNmax represents the
maximum HO quanta of the many-body excitation above
unperturbed ground-state configuration. For12C, Ntotmax
512 for a ‘‘4\V ’’ calculation. It is possible to include the
effects of configurations, in which the spectator nucleons
excited, in the form of the so-called multivalued two-bo
interaction@7#. Doing this improved the excited-state spe
trum outside the 0\V part of the model space at the expen
of introducing a variable parameter to correct for overbin
ing the nucleus. In the present calculations we have no v
able parameters and, hence, prefer to perform our calc
tions with the single, energy-independent two-body effect
interaction, defined above.

At this stage, the many-bodyP space is defined by eithe
Ntotmaxor Nmax which then controls the configurations~Slater
determinants! of single-particle states included in the mod
space. However, only a nonredundant subset of these s
are needed to span the translationally invariant A-nucleoP
space. We isolate this subset by adding a termL(Hc.m.
2 3

2 \V) to the effective Hamiltonian withL>10. This pro-
cedure moves the states with excited c.m. motion co
spondingly higher in the calculations and away from t
physically relevant states all of which have a~passive! 0S
state of c.m. motion. It is, therefore, proper to take this co
bined process of definingNtotmax or Nmax along with the
‘‘projection’’ of the physically relevant subset of states~with
0S c.m. motion! as the definition of our many-bodyP space.
The two-nucleon effective interaction is solved for a relat
coordinateP2 space consistent with this definition of th
many-bodyP space.

In order to construct the operatorv @Eq. ~14!# we need to
select the set of eigenvectorsK. In the present application w
select the lowest states obtained in each two-body chann
turns out that these states also have the largest overlap
the model space for the range of\V we investigate and the
P spaces we select. Their number is given by the numbe
basis states satisfying 2n1 l<Ntotmax2Nspsmin.

Finally, the two-body effective interaction is determine
from the two-nucleon effective Hamiltonian, obtained fro
Eq. ~15!, asV2eff5Ṽ125H̄2eff2h12h2. Apart from being a
function of the nucleon numberA, V2eff depends on the HO
frequency V and on the parameterNtotmax, defining the
model space. It has the important property thatV2eff→V12
for Ntotmax→`, following from the fact thatv→0 for P
→1. We note thatH (1)1H (2)2Hc.m. is translationally in-
variant.
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A significant consequence of preserving translational
variance is the factorization of each of our wave functio
into a product of a c.m.32 \V wave function and a wave
function corresponding to the internal motion. Due to th
property, it is straightforward to remove c.m. effects exac
from all observables. This feature distinguishes our appro
from most phenomenological shell-model studies that
volve two or more major HO shells.

We note that the introduction of a mean-field potential,
our case the HO potential@see Eqs.~2!,~17!# and its removal
in a later phase, is crucial for the reduction of the contrib
tions from the higher-order clusters. It guarantees a la
overlap of the model space with the bound and quasibo
eigenstates of the Hamiltonian~17! that are used for the
effective-interaction calculation.

As discussed previously, we could also perform our c
culations at the three-body-cluster level for12C, instead of at
the two-body-cluster level. We have performed such thr
body-cluster level calculations for theA54 system@9,10#.
We learned from these studies as well as from theA53
results presented in the Sec. II D that the ground-state en
changes by about 10% in going from the two-body cluste
the three-body cluster. These results hold for similar mo
spaces, as those that we employ in the present calculatio
12C, when a physically reasonable HO frequency is chos

We may actually try to estimate the range of changes
will occur when we improve our approach from a two-bo
cluster approximation to a three-body cluster approximat
for nuclei beyondA54.

We base our estimate on results fromA53 and A54
with two-body cluster calculations~see Ref.@10#!, since ex-
act answers are known from other methods.

In Table I we present the change in binding energy
nucleon @D(E/A)# divided by change in\V @D(\V)# at
fixed Nmax and located around the preferred\V for CD-
Bonn in A53 and A54. We took the preferred\V
528 MeV in A 5 3 and the preferred\V540 MeV in A
54 since these results are least dependent onNmax.

Working with theNmax54 –12 results inA53 and 4, we
observe that the slope@D(E/A)#/@D(\V)# at fixedNmax and
at the preferred\V exhibits roughly an ‘‘A21’’ effect. That
is, the slope increases withA roughly asA21 especially for
the higher values ofNmax ~which have lower coefficients fo
the effect!. This would translate into anA(A21) effect in
the total binding energy and leads us to conclude that
dominant binding energy correction is following a two-bod
cluster scaling behavior rather than a three-body cluster s
ing @which would follow A(A21)(A22)].

This is quite encouraging and suggests that the differe
between two-body and three-body cluster results is reas
ably small when working around the preferred\V for 12C.

This conclusion of an estimated suppression in
changes arising from the extension of our method to thr
body clusters is tied to the fact that we have a preferred\V
where there is an approximate model space independ
and convergence to the exact result is optimal. Having su
preferred\V minimizes the ‘‘leading’’ correction@the A(A
21)(A22) effect in this case# leaving us with the subdomi
nant correction@the A(A21) effect#.
1-4
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TABLE I. The change in binding energy per nucleon,D(E/A), divided by change in\V, D(\V), at
fixed Nmax and located around the preferred\V for CD-Bonn in A53 and A54. The differences were
obtained using the\V results which bracket the ‘‘preferred\V ’’ results. The ground-state energy results f
3H correspond to those shown in Fig. 1. The4He results are taken from Ref.@10#.

3H

\V522 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 28.458 28.355 28.258 28.219 28.151

preferred\V528 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 27.760 27.890 27.902 27.977 27.970

\V532 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 27.206 27.519 27.648 27.791 27.843

D~E/A!

D~\V!
0.0417 0.0279 0.0203 0.0143 0.0103

4He

\V537 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 227.062 226.768 226.533 226.440 226.358

preferred\V540 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 226.156 226.207 226.181 226.181 226.189

\V543 MeV
Nmax 4 6 8 10 12
Egs ~MeV! 225.193 225.599 225.808 225.907 226.017

D~E/A!

D~\V!
0.0779 0.0487 0.0301 0.0222 0.0143

(A54)/(A53) 1.86 1.75 1.48 1.55 1.39
a
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C. Renormalization of other operators

It is straightforward to formulate the procedure for
renormalization of general operators within our formalism
two-body correction to a one-body operatorÔ5( i 51

A Ôi is
obtained using

PÔeffP5P(
i 51

A

Ôi P1P (
i , j 51

A

$e2S(2)
~Ôi1Ôj !e

S(2)

2~Ôi1Ôj !%P. ~18!

In general, to compute such a two-body correction to a o
body operator in our formalism is more involved than t
evaluation of the effective interaction. This complexity aris
because the transformation from relative plus c.m. coo
nates to single-particle coordinates is needed in a sufficie
large two-nucleon space, typically comprising excitations
to several hundred\V. However, for a two-body operato
depending on the relative position of two nucleons, the tra
formation is needed only in the model space typically co
prising excitations of a few\V. It is for this simple reason
05431
e-

s
i-
ly
p

s-
-

we choose to study initially the lowest-order renormalizati
for a two-body operatorÔ5( i , j 51

A Ôi j depending on the
relative position of two nucleons as, e.g., the point-nucle
rms radius operator. Here,

PÔeffP5P (
i , j 51

A

e2S(2)
Ôi j e

S(2)
P. ~19!

We computed this term for the point-proton rms radius o
erator and discuss the results in the next section.

In any case, it should be realized that the operator ren
malization is dependent on the model-space size and als
the HO frequency employed. As discussed in the next s
tion, our ‘‘preferred’’ HO frequency occurs where the ener
of the low-lying states in our largest spaces is approxima
independent of the HO frequency. Sensibly, this prefer
HO frequency is very close to the HO frequency obtained
phenomenological shell-model formulas. With that fr
quency we are able to obtain reasonably converged res
even without operator renormalization.
1-5
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D. Test of the method for theAÄ3 system

Before we proceed to apply the above approach to a c
plex system like12C, we first test it for the simplest non
trivial case, theA53 system. In that case, we can study t
detailed convergence properties of the method, as we
able to move up to very large model spaces. To perform
A53 calculations we employ the Jacobi-coordinate ba
that is antisymmetrized according to the procedure in
duced in Ref.@9#.

The only parameters are the model space size, chara
ized byNmax and the HO frequencyV, appearing explicitly
in the Hamiltonian~in terms that cancel algebraically, but a
treated with separate methods! and in the basis. We investi
gate the dependence of our results on these two quantitie
a measure of the validity of the two-body cluster approxim
tion.

Let us consider3H interacting by the CD-BonnNN po-
tential @21#. In Fig. 1 we show the3H ground-state energy
dependence on the model-space size in the range ofNmax
54 to 34. Different full lines connect results obtained with
specified HO frequency. The dotted line represents the C
Bonn 34-channel Faddeev equation result of28.00 MeV
@21#. It is apparent that our results converge to the Fadd
equation result asNmax increases. As stated earlier, the fu
damental approximation used in our approach is to w
only to the two-body-cluster level.

Our method is not a variational treatment. Therefore,
cannot expect a monotonic convergence from above. Th
body-cluster results for the ground-state energy could be
ther above or below the results at the two-body-cluster le
As seen from Fig. 1 our results converge with increas
Nmax both from above or below, with some oscillations po
sible, depending on the HO frequency employed. Furth
more, we note that\V528 MeV provides results remark
ably independent ofNmax starting at rather low values o
Nmax.10.

We note that even for the 4\V model space, i.e.,Nmax
54, the binding energy is within 10% of the exact result f
a wide range of HO frequencies. ForNmax>6 we see binding

FIG. 1. The dependence of the3H ground-state energy, in MeV
on the maximal number of HO excitations allowed in the mo
space in the range fromNmax54 to Nmax534. The two-body effec-
tive interaction utilized was derived from the CD-BonnNN poten-
tial. Results for\V522, 28 and 32 MeV are presented. The dott
line represents the exact result of28.00 MeV from a 34-channe
Faddeev-equation calculation@21#.
05431
-

re
e

is
-

er-

as
-

-

v

k

e
e-
i-
l.
g
-
r-

r

errors less than 100 keV/nucleon and the errors decrease
idly with Nmax for these ‘‘sensible’’ choices ofV.

III. RESULTS FOR 12C

The calculations for12C were performed using the sam
approach that proved to be convergent for theA53 system.
However, it is more efficient to perform the calculations in
single-particle HO basis, rather than in the Jacobi-coordin
HO basis used forA53. We emphasize that our results a
translationally invariant, because we employ a compl
N\V model space and our effective interactions are tran
tionally invariant. As mentioned above, we separate sta
with excited c.m. motion from those with the 0S c.m. motion
by adding a termL(Hc.m.2

3
2 \V) to the Hamiltonian with

L510. However, our observable results are exactly c
rected for the c.m. contributions and do not depend onL. In
particular, for the form factors we use the correction d
cussed in Ref.@27#. Our calculations can, in principle, b
redone in the relative-coordinate basis, producing the sa
results with a given effective Hamiltonian. Test calculatio
have been performed inA53,4 systems with both the
Jacobi-coordinate HO basis and the single-particle HO b
with the sameHeff to confirm the above statement.

To study the influence of differentNN potentials, we per-
formed calculations using the CD-BonnNN potential @21#
and the Argonne V8’NN potential, defined in Ref.@4#. The
CD-Bonn potential takes into account isospin-symmetry v
lations by both the strong and the electromagnetic inter
tions. The Argonne V8’ potential is an isospin-invariant r
duction of the Argonne V18NN potential. We, therefore
add the Coulomb interaction to the Argonne V8’. The calc
lations were performed in the proton-neutron formalism w
the isospin breaking explicitly included, apart from th
nucleon mass set equal to 2mpmn /(mp1mn). For the calcu-
lations with the CD-BonnNN potential we compute three
different effective interactions,V2eff

np , V2eff
pp , andV2eff

nn .
We employ the many-fermion dynamics shell-model co

@28# to perform the Hamiltonian computation and diagon
ization. Due to the increasing multiparticle model space s
we are presently only able to use model spaces up thro
5\V.

As pointed out in the Sec. II D, there are only two para
eters in our calculations, the model-space size (Nmax) and the
HO frequencyV on which the effective interaction depend
As in the A53 test case, we investigate the dependence
the results onV and the model-space size to the access
limit. The Nmax50, 2, and 4 model spaces for the positiv
parity states and theNmax51, 3, and 5 model spaces for th
negative-parity states are considered. Let us remark tha
m-scheme dimensions grow from 51 in the 0\V model
space, 1320 in the 1\V model space, 17 725 in the 2\V
model space, 160 084 in the 3\V model space up to
1 118 926 in the 4\V model space, and reach 6 488 004
the 5\V model space. For reference, the 6\V model space
dimension is 32 598 920.

In order to observe the dependence on the HO freque
V we performed calculations using the above model spa
for a very wide range ofV. In Figs. 2 and 3, we present th

l
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ground-state energy dependencies on the frequency for
the positive and the negative parity states, respectively,
tained using the CD-Bonn potential. The results for AV8’ a
very similar, although they exhibit a bit stronger depende
on V most likely due to a stronger tensor force. In the su
sequent calculations, we utilize\V515 MeV which lies in
the range where the largest model space results (Nmax55)
are least sensitive to\V.

Let us remark that our preferred value of the HO fr
quency,\V515 MeV, is close to the suggested value f
A512 given by the phenomenological relation@29# ~in units
of MeV!:

\V545A21/3225A22/3'14.9 MeV. ~20!

In the next subsections we will investigate how several
servables depend upon the HO frequency and model s
size.

A. Binding energy, excitation spectra, and EM transitions

From Figs. 2 and 3, we observe that, at fixed\V, the
energy of the lowest eigenstate of each parity increases~i.e.,
becomes less negative! with increasing model space in mo
of the frequency range examined and the position of

FIG. 2. 12C ground-state energy dependence on the HO
quency for the 4\V, 2\V, and 0\V model spaces calculated u
ing the effective interaction derived from the CD-BonnNN poten-
tial.

FIG. 3. 12C 320 -state energy dependence on the HO freque
for the 5\V, 3\V, and 1\V model spaces calculated using th
effective interaction derived from the CD-BonnNN potential.
05431
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minimum shifts to lower frequencies. Clearly, the differen
betweenNmax52(3) and 4~5! results is much smaller tha
betweenNmax50(1) and 2~3!, results suggesting a conve
gence trend with increasing model space reminiscent of
trends shown inA53 calculations~Fig. 1!.

Our positive-parity state results, obtained with the p
ferred HO frequency\V515 MeV, are presented in Tabl
II and in Fig. 4, and the negative-parity state results, obtai
using the same HO frequency, are given in Table III and F
5. We discuss below results for the binding energies, po
proton rms radii, 21

1-state quadrupole moments, and E
transitions.

From the observed trends in Table II and Fig. 2, we e
pect that our calculated binding energy of about 88 MeV
the preferred frequency in the 4\V space will decrease with
a further model-space enlargement. As discussed in
II D, we estimate that our 4\V result should be within 10%
of the exact solution for the two-bodyNN potential utilized.
Also, the 4\V binding-energy values are probably more r
alistic than those obtained in the 0\V or 2\V space, as one
expects roughly a 10–20 % underbinding compared to
experimental value when a realistic two-bodyNN interaction
is used alone. This is the trend found in lighter nuclei.
order to fit the experimental binding energy, it is likely that
true three-bodyNN interaction is necessary@4#.

We note that we obtain a stronger binding for the C
Bonn NN potential in agreement with observations for lig
nuclei, e.g., the4He CD-Bonn binding energy is 26.3 MeV
@10,32# while that of AV8’ is 25.2 MeV@33#. On the other
hand, based on these4He results one would expect a larg
difference in12C between the binding energies from the tw
different interactions. Most likely, a different rate of conve
gence with increasing model space for the two utilized p
tentials may be responsible for smaller binding energy d
ferences. Based on ourA53,4 calculations, we expect
faster convergence for the CD-Bonn potential, which we
tribute to its weaker tensor force.

In general, we obtain a reasonable agreement of the s
dominated by 0\V and 1\V configurations with experi-
mental levels. We also observe a general trend of impro
ment with increasing model space size, in particular, for
T51 states. While the energy of the lowest eigenstate
each parity increases with increasing model space, the r
tive level spacings are less dependent on the model s
size.

As a gauge of trends with increasing model space s
consider the rms changes in excitation energies of the
seven excited states of each parity in the CD-Bonn case.
positive parity states, the rms changes are 1.31~0.22! MeV
in going from 0 to 2~2 to 4!\V. For negative parity states
the rms changes are 0.87~0.20! MeV in going from 1 to 3~3
to 5!\V. The difference between theNmax52(3) and 4~5!
results is significantly smaller than that between theNmax
50(1) and 2~3! results which is similar to the convergenc
trends we saw in lighter systems@6,9,10#. Our computedT
50 01,21,41 band has a reasonable splitting. We obtain
reasonable set of excitation energies for theT51 states rela-
tive to the lowestT50 state of each parity. In addition, ou

-

y
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TABLE II. Experimental and calculated binding energies, ground-state point-proton rms radi
21

1-state quadrupole moments, as well asE2 transitions, ine2 fm4, and M1 transitions, inmN
2 , of 12C.

Results obtained in different model spaces, i.e.,Nmax54,2,0, and using effective interactions derived fro
the CD-Bonn and the Argonne V8’NN potentials are compared. A HO frequency of\V515 MeV was
employed. The experimental values are from Refs.@30,31#.

12C CD-Bonn AV8’
Model space 4\V 2\V 0\V 4\V 2\V 0\V

uEg.s.u ~MeV! 92.162 88.518 92.353 104.947 87.675 92.195 104.75
r p ~fm! 2.35~2! 2.199 2.228 2.376 2.202 2.228 2.376
Q21 (e fm2) 16~3! 4.533 4.430 4.253 4.536 4.427 4.250

Ex(0
10) ~MeV! 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ex(2
10) ~MeV! 4.439 3.697 3.837 3.734 3.584 3.766 3.699

Ex(1
10) ~MeV! 12.710 14.141 14.525 13.866 14.044 14.549 13.93

Ex(4
10) ~MeV! 14.083 13.355 13.636 12.406 12.848 13.255 12.19

Ex(1
11) ~MeV! 15.110 16.165 16.291 15.290 16.295 16.515 15.48

Ex(2
11) ~MeV! 16.106 17.717 17.945 15.970 17.945 17.823 15.92

Ex(0
11) ~MeV! 17.760 16.618 16.493 14.698 16.205 16.208 14.57

B(E2;210→010) 7.59~42! 4.625 4.412 4.092 4.612 4.397 4.091
B(M1;110→010) 0.0145~21! 0.0042 0.0032 0.0013 0.0026 0.0019 0.000
B(M1;110→210) 0.0081~14! 0.0017 0.0013 0.0008 0.0013 0.0012 0.000
B(M1;111→010) 0.951~20! 0.355 0.280 0.158 0.316 0.252 0.147
B(M1;111→210) 0.068~9! 0.0002 0.0028 0.0115 0.0023 0.0078 0.016
B(E2;211→010) 0.65~13! 0.283 0.015 0.0018 0.104 0.000 0.002
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lowest 01 T52 state lies between 27 and 29 MeV, depen
ing on theNN potential and the model space, in good agr
ment with the experimental 012 state at 27.595 MeV.

We note that the favorable comparison with available d
is a consequence of the underlyingNN interaction rather
than a phenomenological fit.

Our ground-state wave function in the 4\V calculation
consists of 61% of 0\V configurations. The occupancy o
the 0p3/2 level is about 5.74 nucleons, while the occupan
of the 0p1/2 level is about 1.90 nucleons.

For theT50 negative-parity states we obtain the corre
sequence of the excited states compared to the experim

FIG. 4. Experimental and theoretical positive-parity excitati
spectra of12C. Results obtained in 4\V, 2\V, and 0\V model
spaces are compared. The effective interaction was derived from
CD-Bonn NN potential in a HO basis with\V515 MeV. The
experimental values are from Ref.@30#.
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The ordering of theT51 states improves with the mode
space increase. In the calculation, we see a 020 and a second
320 state below 8 MeV excitation relative to the lowest 320
state. Such states are not presently known experimental

In Fig. 6 we present the evolution of the lowest positi
and negative parity states of a given isospin with the mod
space change computed using the same\V515 MeV.
While the position of the 111 is fairly stable, it is clear that
the excitation energies of the negative-parity states rela
to the positive-parity states decrease rapidly with the mod
space size enlargement. Still, even in our largest spaces
320 state is more than 5 MeV too high compared to t
experimental excitation energy.

The spectra obtained in the 4\V space using the CD
Bonn and Argonne V8’NN potentials are compared in Fig
7. There is remarkably little difference between the resu
from the two NN interactions, although the overall agre
ment with experiment is slightly better for the CD-BonnNN
potential, in particular for theT51 states. This also is true
for the negative-parity states. It should be noted, howev
that the position and ordering of theT51 states improves
with the enlargement of the model space for both potenti

In order to achieve a more converged excitation spect
still larger model space is needed, especially for states w
significant cluster structure. The two- and higher-\V domi-
nated states, such as the 7.65 MeV 010 state that is known
to be a three-a cluster resonance@34#, are not seen in the
low-lying part of our calculated spectra. In general, the co
vergence rate of the 2\V dominated states is quite differen
than that of the ground state, as we observed in4He calcu-
lations performed in the present formalism@9,10#. Also, a

he
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TABLE III. Experimental and calculated negative-parity state energies, the 320-state point-proton rms
radii, and quadrupole moments are shown. Results obtained in different model spaces, i.e.,Nmax55,3,1, and
using effective interactions derived from the CD-Bonn and the Argonne V8’NN potentials are compared
The calculated excitation energy of the 320 state is obtained by comparing its energy in theN\V space with
the ground state in the (N21)\V space. A HO frequency of\V515 MeV was employed. The experiment
values are taken from Ref.@30#.

12C CD-Bonn AV8’
Model space 5\V 3\V 1\V 5\V 3\V 1\V

uE(320)u ~MeV! 82.521 72.952 75.331 83.390 72.300 75.360 83.45
r p ~fm! 2.309 2.316 2.425 2.310 2.315 2.425
Q32 (e fm2) 27.942 27.596 26.936 27.920 27.575 26.933
E(320)2Egs ~MeV! 9.641 15.566 17.022 21.557 15.375 16.835 21.29

Ex(3
20) ~MeV! 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ex(1
20) ~MeV! 1.203 2.093 2.256 1.561 2.112 2.274 1.55

Ex(2
20) ~MeV! 2.187 3.722 4.051 3.582 3.722 4.057 3.56

Ex(4
20) ~MeV! 3.711 4.866 5.084 4.768 4.741 4.993 4.71

Ex(0
20) ~MeV! 7.148 7.062 5.712 7.148 7.156 5.777

Ex(2
21) ~MeV! 6.929 7.671 7.783 7.340 7.949 8.237 7.57

Ex(3
20) ~MeV! 7.877 8.151 6.886 7.651 7.983 6.745

Ex(1
21) ~MeV! 7.589 8.048 7.951 7.042 8.117 8.096 7.18
n
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preferred HO frequency for the convergence of the grou
state will differ from the preferred frequency for the 2\V
states.

We investigated the position of the lowest 2\V domi-
nated states and the giant-quadrupole resonance~GQR! E2
distribution. Our lowest 2\V 01 state lies at about 40 MeV
excitation energy and the GQRE2 strength is distributed
between 43 to 50 MeV in the 2\V calculation. In the 4\V
model space the excitation energy of the lowest 2\V 01

state drops by 5 MeV to about 35 MeV and, similarly, t
GQR strength is lowered to 37–47 MeV. We present o
calculatedE2 strength obtained in the 4\V model space
using the CD-Bonn potential and\V514 MeV in Fig. 8.
We note that the experimental GQR strength is observe
the range 18–28 MeV@35#. Our trends indicate the probab
need for several more major shells to hope to achieve a
vorable description of theE2 strength distribution.

FIG. 5. Experimental and theoretical negative-parity spectra
12C. Results obtained in 5\V, 3\V, and 1\V model spaces are
compared. Other factors are the same as in Fig. 4.
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Our radius andE2 results, based on the bare radius o
erator and bare nucleon charges, are smaller than the ex
mental values. The underestimation of the rms radius,
quadrupole moment and theE2 transitions is linked with the
overestimation of the position of the GQR strength and s
gests that even in theNmax54 space we still miss significan
a clustering effects. We also observe a strong model sp
dependence of theM1 transitions, 111→010. Clearly,
there is still a need for effective operators, which are cal
lable within our theoretical framework, as discussed
Sec. II C.

We computed the two-body-cluster term~19! for the
point-proton rms radius operator and found that the ren
malization leads to an increase of the radius and that the
of this increase drops as the model space size increase
particular, ther p results presented in Table II that were o

f
FIG. 6. Experimental and theoretical excitation spectra of12C.

Results for the lowest states of given isospin and of both posi
and negative parity obtained in the model spaces from 0\V to 5\V
are shown. All other factors are the same as in Fig. 4.
1-9
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tained without renormalization should be increased due
the renormalization by about 0.06, 0.02, and 0.01 fm for
Nmax50, 2, and 4 model spaces, respectively. This does
imply that the renormalization of other operators, e.g.,
E2 operator, cannot be substantially higher. Also, we n
that the renormalization is HO frequency dependent. Si
larly, as observed in our3H calculations, e.g., compare Fig
1 and 4 in Ref.@10#, we anticipate that, in contrast with th
eigenenergies, the other observables will change more
nificantly as we move to larger model spaces and/or lar
clusters in the effective Hamiltionian and other operators

A brief examination of the radius andB(E2) to the
ground state proves instructive. If one takes the 4\V results
for CD-Bonn from Table I and scales the calculatedB(E2)
(4.625e2 fm4) by the fourth power of the ratio of the exper
mental point-proton radius to the calculated point-proton
dius (2.35/2.199), we diminish the discrepancy betwe
theory and experiment by more than 50%. This indicates
when we find the source of improvement in the point-pro
radius, it is also likely to improve the value for theB(E2).

The sensitivity of observables to the HO frequency can
judged from Table IV. There, we present selected obse
ables obtained in calculations with the CD-BonnNN poten-

FIG. 7. Experimental and calculated excitation spectra of12C.
Results obtained using the effective interactions derived from
CD-Bonn NN potential and the Argonne V8’NN potential are
compared. A 4\V model space and a HO frequency of\V
515 MeV were used. The experimental values are taken fr
Ref. @30#.

FIG. 8. CalculatedE2 strength obtained in the 4\V model
space using the CD-Bonn potential and\V514 MeV.
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tial for three different HO frequencies,\V514, 15, and 21
MeV and for theNmax50, 2, and 4 model spaces. We o
serve that, indeed, the dependence of the results onV de-
creases as the model space is enlarged. This is true, in
ticular, for the binding energies, radii, and the quadrup
moments. On the other hand, it is obvious that the 4\V
model space is not sufficient to obtain fully convergent
sults. The corresponding excitation spectra dependence
the HO frequency is presented in Fig. 9, where we sh
results obtained in the 4\V model space for the above thre
values ofV. It appears that the overall agreement with e
periment is the most favorable for our preferred HO fr
quency\V515 MeV.

From Table IV, we also note a strong dependence of
M1 transitions, e.g., 111→010, on V. This dependence is
stronger than the dependence on the particular chang
model-space size, displayed in Table II. Overall, theM1
transitions are closer to experiment for largerV, while just
the opposite trend is seen for theE2 transitions. This trend in
results correlates with the change of relative occupation
the 0p3/2 and the 0p1/2 levels. With largerV more nucle-
ons tend to occupy the 0p3/2 level and the rate of theM1
transition increases.

Let us further comment on theE2 transition 211→010.
In Table II we present the transitions from the lowest calc
lated 211 state. There is a level crossing, however, so tha
the 2\V and 0\V model spaces, the calculated 211 state
with a strongE2 transition to the ground state is the seco
211 state.

B. Elastic charge form factors

Parity-violating elastic electron scattering experiments
even-even,N5Z nuclei, like 12C, provide a test of the neu
tral current sector of the standard model. The observabl
interest is the parity-violating asymmetry

A5
ds12ds2

ds11ds2
52

Gmq2

4paA2
S F̃C~q!

FC~q!
2

FC
(s)~q!

FC~q!
1••• D ,

~21!

e FIG. 9. Experimental and calculated excitation spectra of12C.
Results obtained using the HO frequencies\V514,15, 21 MeV are
compared. The effective interaction was derived from the CD-Bo
NN potential. A model space of 4\V above the unperturbed
ground state was used. The experimantal values are taken
Ref. @30#.
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TABLE IV. Calculated ground-state point-proton rms radii, the 21
1-state quadrupole moments, as well

E2 transitions, ine2 fm4, andM1 transitions, inmN
2 , of 12C. Results obtained in different model spaces, i.

4\V, 2\V, and 0\V, using different HO frequencies, i.e.,\V521, 15, and 14 MeV, are compared. Th
effective interactions used were derived from the CD-BonnNN potential. The corresponding experiment
values are presented in Table II.

Model space 4\V 2\V 0\V

\V ~MeV! 21 15 14 21 15 14 21 15 14

uEg.s.u ~MeV! 85.054 88.518 87.145 94.006 92.353 90.110 117.744 104.947 101
r p ~fm! 1.978 2.199 2.260 1.932 2.228 2.301 2.008 2.376 2.4
Q21 (e fm2) 3.587 4.533 4.792 3.318 4.430 4.718 2.970 4.253 4.5
B(E2;210→010) 2.917 4.625 5.178 2.488 4.412 5.016 1.994 4.092 4.7
B(M1;111→010) 0.683 0.355 0.305 0.657 0.280 0.237 0.357 0.158 0.1
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where1(2) refers to electrons polarized parallel~antipar-
allel! to their momenta. In Eq.~21!, FC(q) denotes the EM
charge form factor, while the weak neutral form factor
split into two components, the strangeness charge form
tor FC

(s)(q) and the form factorF̃C(q), given by combination
of the EM isoscalar and isovector form factors, as discus
in Refs. @14,36#. For an isospin invariant system, the rat
F̃C(q)/FC(q) is equal to24 sin2uW. Isospin-symmetry vio-
lation leads to a correctionG to this value, defined by the
relation

F̃C~q!

FC~q!
524 sin2 uW~11G!. ~22!

The evaluation of form factors with unrenormalized o
erators is a sensitive test of theP-space wave functions ob
tained in our calculations. Using the formalism of Ref.@17#,
we calculated the elastic charge EM and weak neutral fo
factors in the impulse approximation. The one-body con
bution to the charge operator is given by Eq.~15! in Ref.
@17#, e.g.,

M̂00
(a)~q! [1]5

1

2Ap
(
k51

A

Ôk
(a)H GE

(a)~t!

A11t
j 0~qrk!

1@GE
(a)~t!22GM

(a)~t!#2t
j 1~qrk!

qrk
sk•L kJ ,

~23!

wheret5q2/4mN
2 , L k is thekth nucleon orbital momentum

andGE
(a)(t) andGM

(a)(t) are the one-body electric and ma
netic form factors, respectively. The superscript~a! refers to
~p! and ~n! for proton and neutron EM form factors, respe
tively, or to ~s! for the strangeness form factor. The opera

Ô(a) is equal to (12 1tz) @( 1
2 2tz)# for a[p(a[n) and it is

equal to 1 fora[s. The one-body form factorsG̃E,M
(p,n)(q),

needed for evaluatingF̃C(q), are obtained as combination
of the EM one-body form factors@14,36#. The charge form
factors are given asFC

(a)(q)52Ap^01uM̂00
(a)(q) [1] u01&. We

use the parametrization of the one-body form factors, as
cussed in Ref.@17#.
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We note that the one-body strangeness form factors
pend on the strangeness radiusrs and on the strangenes
magnetic momentms . Limits on these parameters are to b
determined in experiments at the Thomas Jefferson Ac
erator Facility. The first strangeness magnetic-moment m
surements were reported recently@37#. In our calculations we
investigate the sensitivity of the12C form factor ratios to
these parameters.

The elastic EM charge form factors of12C are presented
in Figs. 10 and 11. Note that the squared longitudinal fo
factor FL

25(FC /Z)2 is displayed in Fig. 10, where we com
pare our calculated form factor, obtained in the impulse
proximation, with the experimental data. The wave functi
used was obtained in the 4\V calculation with the effective
interaction derived from the CD-BonnNN potential and with
\V514 MeV. Note that, as seen in Table IV, the 4\V re-
sult for the 12C charge radius is closer to the experimen
result of 2.309 fm with\V514 MeV (r p52.260 fm) than
with \V515 MeV (r p52.199 fm). We miss the experi
mental minimum slightly and underestimate the seco
maximum. This may be due in part to the omission of t
MEC, but, more likely, are due to an incomplete conve

FIG. 10. The experimental and calculated values of the ela
EM charge form factor of12C are presented. The calculation, do
in the impulse approximation, was performed using the two-bo
effective interaction derived from the CD-BonnNN potential in a
model space of 4\V excitations above the unperturbed grou
state. A HO frequency\V514 MeV was used. The experimanta
values are taken from Ref.@38#.
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gence of our wave function and the need for three-bo
forces. A separate issue to be addressed in the future, i
renormalization of the operator~23! due to the space trunca
tion, as discussed in Sec. II C.

The sensitivity of the form factor on the model-space s
and on the HO frequency can be judged from Fig. 11. R
sults obtained in the 2\V and 4\V model spaces are com
pared. In addition, calculations using our preferred HO f
quency \V515 MeV and the frequency\V514 MeV
employed in Fig. 10 are shown. The curves differ forq
.1.4 fm21, as a result of incomplete convergence of t
wave functions since converged results should be indep
dent of\V. The trend of moving the dip to smallerq with
decreasing\V and fixedNmax may be understood easily i
terms of the charge radius trend with decreasing\V men-
tioned above. A similar correspondence of trends w
changingNmax is observed in Fig. 11.

The calculated isospin-breaking correctionG is shown in
Fig. 12. Our result, obtained again in the impulse appro
mation using the 4\V model space with the effective inte
action derived from the CD-BonnNN potential and\V
515 MeV, compares very well up toq'3 fm21 with that
calculated by Ormand@36# using the Hartree-Fock approac

In Fig. 13, we present the elastic strangeness charge
factor, obtained in the impulse approximation using the 4\V
model space and\V515 MeV. To study the sensitivity to
the NN potential, we performed the calculations with th
CD-BonnNN potential and the Argonne V8’NN potential.
We observe only a very weak dependence on theNN poten-
tial, unlike for light nuclei withA53,4 @10#. Such a weak
dependence is obtained not only for the strangeness f
factor, but also for the EM form factor of12C.

In Figs. 14 and 15 we present the ratio of the12C strange-
ness and EM charge form factors calculated in the impu
approximation using the CD-BonnNN potential. As dis-
cussed in the beginning of this subsection, the ratio of
elastic charge form factors is particularly interesting, as
can be experimentally obtained from the measurement of
parity-violating left-right asymmetry for the scattering of p

FIG. 11. The elastic EM charge form factor of12C calculated in
the impulse approximation. The calculations were performed us
the two-body effective interaction derived from the CD-BonnNN
potential. Results obtained in model spaces of 2\V and 4\V ex-
citations above the unperturbed ground state and with different
frequencies of\V514 and 15 MeV are compared.
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larized electrons from a12C target. The sensitivity toms is
the strongest in the vicinity of the second maximum. Ho
ever, it is weaker in12C than in 4He, as seen by comparin
the results presented in Ref.@17#. On the other hand, the
sensitivity tors is substantial also in12C, in particular, be-
yond the minimum.

IV. CONCLUSIONS

We introduced theab initio no-core shell model and per
formed large-basis calculations for12C in the model spaces
up to 4\V for the positive-parity states and up 5\V for the
negative-parity states. The two-body effective interactio
for each model space were derived microscopically fr
modernNN potentials using a unitary transformation of th
Hamiltonian and the model-space decoupling conditi

g

O

FIG. 12. The isospin breaking correctionG depending on the
ratio of elastic weak and EM charge form factors of12C is pre-
sented. The calculations done in the impulse approximation w
performed using the two-body effective interaction derived from
CD-BonnNN potential in a model space of 4\V excitations above
the unperturbed ground state. A HO frequency\V515 MeV was
used.

FIG. 13. The elastic strangeness charge form factor of12C cal-
culated in the impulse approximation. The calculations were p
formed in a model space of 4\V excitations above the unperturbe
ground state and with a HO frequency of\V515 MeV. Results
obtained using the two-body effective interaction derived from
CD-Bonn ~full line! and Argonne V8’~dotted line! NN potentials
are compared. The values of the strangeness radiusrs522.0 and
of the strangeness magnetic momentms50.23 were employed.
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which is fulfilled at the two-body cluster level. This metho
which we also applied in our earlier studies, converges to
exact solution for increasing size of the model space, as
demonstrated for theA53 and 4 systems.

We note that we performed no-core shell-model calcu
tions for the 0p-shell nuclei in the past@6–8# using a similar
approach as that discussed here. In those calculations,
ever, an additional adjustable parameter was present, i.e
‘‘starting energy’’ of the two-bodyG matrix. Thus, in gen-
eral, convergence to the exact solutions would have b
difficult to demonstrate.

In the present application, a two-body cluster approxim
tion results in a dependence on the size of the model-sp
and on the HO frequency. We selected a preferred HO
quency by examining where the ground-state energy is l
dependent on the frequency in our largest model spaces.
resulting value\V'15 MeV is in accord with values sug

FIG. 14. The ratio of elastic strangeness and EM charge f
factors of 12C calculated in the impulse approximation. The val
of the strangeness radiusrs522.0 was employed. The differen
curves correspond to different strangeness magnetic moments,
ms520.2, 0.0, and 0.23. The calculations were performed us
the two-body effective interaction derived from the CD-BonnNN
potential in the model space of 4\V excitations above the unper
turbed ground state. A HO frequency\V515 MeV was used.

FIG. 15. The ratio of elastic strangeness and EM charge f
factors of 12C calculated in the impulse approximation. The val
of the strangeness magnetic momentms50.23 was employed. The
different curves correspond to different strangeness radii, e.grs

521.0 and22.0. The calculations were performed using the tw
body effective interaction derived from the CD-BonnNN potential
in the model space of 4\V excitations above the unperturbe
ground state. A HO frequency\V515 MeV was used.
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gested by phenomenological shell-model formulas.
Using results forA53 and 4, we analyzed the deviation

in binding energy per nucleon at the preferred value of\V
and found a suppression of the changes that arise at
three-body or four-body cluster level. Overall, we estima
that the uncertainty in our 4\V binding energy for12C due
to truncation at the two-body cluster level is less than 10

The 12C results that we obtained are not fully converge
with respect to increasing model-space size. In spite of t
we expect that we have obtained a reasonable approxima
to the exact results for the 0\V- and 1\V-dominated states
In fact, we also obtained a reasonable agreement of the s
dominated by 0\V and 1\V configurations with experi-
mental levels. We note that the favorable comparison w
available data is a consequence of the underlyingNN inter-
action rather than a phenomenological fit. The positive-pa
low-lying states of 12C that are dominated by the highe
than-0\V components were not observed among our lo
lying calculated states. Convergence of such states in the
basis expansion is much slower with increrasing mod
space size. Our computed negative-parity states were sh
to higher energies by only a few MeV compared with expe
ment and were generally in the correct order.

Apart from the binding and excitation energies, we a
studied the EM properties and the point-proton rms radii.
addition, we computed elastic charge form factors in the
pulse approximation that are relevant to parity-violating el
tron scattering studies. We presented results for the EM
weak neutral form factors of12C. We observed that the de
pendence of the form factor ratioFC

(s)/FC on the strangenes
magnetic moment is weaker for12C than for 4He. On the
other hand, the dependence on the strangeness radiu
mains strong also for12C.

We demonstrated that the multiconfiguration no-co
shell-model approach combined with the use of microsco
effective interactions is well suited for the description
electron scattering or other electroweak processes from c
plex light nuclei, like 12C. In particular, we treat the c.m
motion properly, so that our calculated form factors do n
depend on the c.m. motion. In addition, the utilization
large model spaces improves the justification for the empl
ment of unrenormalized transition operators. In the pres
study we performed our calculations in the impulse appro
mation. The MEC contributions can also be included in o
approach and will be the subject of a subsequent study.

Our wave functions along with the one-body and tw
body densities can also be used for evaluating the neut
and muon reactions with12C. Such studies will be a subjec
of future investigations. It is challenging, but not impossib
to extend the present calculations to even larger mo
spaces, e.g., 6\V. This would be important, as we noted th
our results were not fully converged, even in the case of
0\V-dominated states. In addition, the positive-par
higher-\V-dominated states were not observed in the lo
lying part of our calculated spectra. A further increase of
model-space size should result in the lowering of their
ergy. This investigation is in progress.

m
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