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Dirac-Hartree-Bogoliubov approximation for finite nuclei
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We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function
and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the
Dirac-Hartree-Bogoliubov approximatidive neglect the Fock termusing a zero-range approximation to the
relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the
isotopic chains of Ca, Ni, and Sspherical and Kr and Srdeformed, as well as theN=28 isotonic chain,
and compare our results with experimental data and with other recent calculations.

PACS numbse(s): 21.65:+f, 21.60.Jz, 21.30.Fe

[. INTRODUCTION close to the continuum and the coupling between bound and
continuum states should be taken into account explicitly. The
The advances made at radioactive nuclear beam facilitiegairing correlations and the mean fields should be calculated
provide us with an increasing amount of information on nu-simultaneously in order to obtain an accurate description of
clei far away from the stability line. We now have access tothe ground state properties of drip-line nuclei.
experimental measurements of the masses, radii and defor- A more precise relativistic description of pairing correla-
mations of unstable nuclei in a wider region of the nucleartions, a Dirac-Hartree-Fock-Bogoliubd@HFB) approxima-
chart than ever before. Studies of exotic nuclei have revealetion, was developed some time agd¥] and, more recently,
new features, such as neutron hala$ and neutron skins applied to nuclear matter calculatiof28—31]. The first cal-
[2,3] and bring new perspectives to nuclear phydids culations in nuclear matter furnished pairing gaps much
Planned facilities around the world plan to study unstabldarger than those obtained in nonrelativistic calculations us-
nuclei up to ther-process region or even beyond. This will ing realistic interaction$28]. The results suggested that the
enable us to investigate where and how exotic phenomena ofieson-exchange interactions adjusted to describe nuclear
nuclear structure appear in the region far from the stabilitymatter saturation might not be adequate for the particle-
line [5,6]. particle pairing channel. However, these calculations did not
In recent years relativistic many-body theories have beeperform a complete self-consistent DHFB calculation.
applied to nuclei and nuclear matter with remarkable succesRather, they combined a relativistic Hartree mean field cal-
[7-9]. The relativistic Brueckner-Hartree-FockRBHF) culation with a nonrelativistic calculation of the pairing field
theory has been shown to be capable of reproducing the satusing the nonrelativistic reduction of the meson-exchange
ration properties of nuclear matter using interaction parampotential. Self-consistent calculations including the full Dirac
eters that describe the two-nucleon bound state and scattestructure of the self-energy and pairing fields resulted in
ing [10]. Its phenomenological version, the relativistic meanmore reasonable values for the pairing ¢29,30. Yet these
field model(RMF), has been successfully applied to the de-DHFB calculations, using various sets of meson-exchange
scription of many of the ground-state properties of stable angpgarameters that furnish similar good descriptions of nuclear
unstable nucl€il1-24 and has been shown to be capable ofsaturation, still resulted in values of the pairing gap that were
simultaneously reproducing the properties of stable and umot consistent with nonrelativistic calculations nor consistent
stable nuclei over a wide mass range of the Periodic Tablamong themselves. In Ref31], these discrepancies were
[25]. resolved by associating the pairing gap of each set of meson-
The relativistic mean field approach has also been appliedxchange parameters with the set’s description of low-energy
to describe the structure of very exotic nuclei. In these caliwo-nucleon scattering in th&S, channel. When each of the
culations, the pairing interaction has been neglected or sinparameter sets was supplemented with a momentum cutoff,
ply treated by a nonrelativistic BCS type of approximationso that they each described the two-nuclé®y virtual state
[25,26. For nuclei on or near the stability line, the BCS correctly, they all provided consistent values for the pairing
approach provides a reasonably good description of pairingap that very close to the nonrelativistic ones, at low densi-
properties. However, for drip-line nuclei, the Fermi level is ties. Thus, the conclusion of R¢28] was found to be cor-
rect after all. The meson-exchange interactions adjusted to
describe nuclear matter saturation are indeed inadequate for
*Present address: GANIL, BP5027, Bd Becquerel, F-14076 Caethe pairing channel, when they do not describe the two-
Cedex 5, France. nucleon S, channel well. In the case of nuclear matter,
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however, we have found that this inadequacy can be easilRirac structure of the pairing interaction might appear even
remedied. in nuclei within the stability valley. The suppression of pair-
Even after the different sets of meson-exchange paraning in the saturated interior region, in DHFB calculations,
eters have been augmented so as to describe the two-nuclesimilar to that observed in nuclear matter, would result in
15, channel, they still differ slightly among themselves atgreater localization of the pairing field on the nuclear surface
densities greater than about one-eighth of the saturation dethian is the case in nonrelativistic or RHB calculations. This,
sity, where mean field effects begin to play a role. Mostin turn, would tend to make the nucleus more rigid and tend
importantly, they all differ in a consistent manner from theto diminish its deformation. We then would expect to ob-
gap functions obtained using realistic nonrelativistic two-serve a smaller pairing field in DHB calculations that furnish
nucleon interactions. The relativistic pairing gap consistenththe same deformation as nonrelativistic or RHB ones, or a
falls to zero at lower densitgby about one-halfof that for  smaller deformation in DHB calculations that furnish the

Which_it disappears in nonrelativistic calculations. Much assame value of the pairing field as nonrelativistic or RHB
the Dirac structure of the nuclear mean field weakens thgnes.

effective interaction as the density increases, leading to satu- Here we present a fully relativistic Dirac-Hartree-

ration, so the Dirac structure of the pairing field weakens thesooliubov (DHB) approximation for axially deformed nu-
effective pairing interaction with density, leading to the sup-qjei We use a direct extension of the DHFB approximation

pression of the pairing field relative to the nonrelativistic developed in Refi29]. We neglect the exchange term in the

one. An estimate of the relativistic effects on quas'deme_ro%elf-energy but retain the Dirac structure of the pairing inter-
pairing shows that the same effects also suppress quaside

feron paiing at e saturatoncend, We hus expecta (107 7% PATI FAe. The nedet of e excnge e
density-dependent suppression of the pairing field to be a pp '

general feature when we take the Dirac structure of the fieig@iculations to the exchange of, p, and » mesons, for
into account. which the exchange effects can be fairly well accommodated

The relativistic Hartree mean field nonrelativistic pair- °Y @djustments in the coupling constants. The characteristics
ing field approximation of Ref[28] can and has been ex- of the pairing field and of its Dllrac structure will form the
tended to finite nuclei. This hybrid relativistic Hartree- c€nter of our study. Our goal is to extend our successful
Bogo”ubov (RHB) approximation, using a nonrelativistic DHFB description of nuclear matter to a DHB description of
finite-range Gogny interaction in the pairing channel, hadinite nuclei.
been applied extensively, and quite successfully, to the cal- We use a localzero-rangg approximation to the meson-
culation of the ground state properties of spher[@8—41  exchange interaction in the pairing channel. A zero-range
and deformed nucldi42]. We would expect reasonable re- approximation to the pairing interaction can be justified by
sults from such a model as long as the mean field is welfn analysis of the length scales in a typical DHB calculation.
described by the meson exchange interaction andl%e Taklng oscillator wave functions as a guide, we can estimate
two-nucleon channel is well described by the effective pairthe wavelength in one dimension of a wave function of quan-
ing interaction. This is indeed the case in the references citedim numbem (in that dimensionas \,~4.40,/\/n, where
here. However, we might expect its pairing interaction to bebo is the oscillator lengthb,~AY® fm, andA is the mass
less reliable than a meson-exchange one when extrapolatégimber of the nucleus. In the fairly extreme case of khe
far beyond the stability valley, the condition for which its =16 shell of %O, we find a wavelength ok;¢~1.75 fm.
parameters have been adjusted. The wavelength is larger in heavier nuclei or in lower shells.

Aside from simply being more pleasing aesthetically, weOn the other hand, the range of a typical meson-exchange
are motivated to retain the Dirac structure of the pairing in-interaction isr,=7%c/m, wheremis the meson mass. For the
teraction in our calculations by the success of our studies dightest of the mesons that we include, #heneson, we find
15, pairing in nuclear matter and by their differences froma range ofr ,<0.5 fm, substantially smaller than the wave-
the nonrelativistic results. The success of our nuclear mattdength A ;5. Even the term of longest range of the Gogny
calculations lead us to believe that a good description ofnteraction has,=1.2 fm only. Thus we find that the inter-
nuclei can be obtained using a Dirac pairing interactionaction range is typically smaller than the length scale of the
based on a meson-exchange one. Such a description wouttost energetic level, making the effects due to the finite
be of general interest, since the Dirac structure of a mesorrange of the interaction small. This analysis has, in fact, been
exchange interaction could be extended beyond the valley afonfirmed numerically by Menf38], who found zero-range
stability with better reliability than could a nonrelativistic and finite-range Gogny RHB calculations to yield almost
interaction. A nonrelativistic effective interaction must incor- identical results.
porate the density dependence furnished by the Dirac struc- In Sec. Il of the following, we derive the self-consistency
ture of a meson-exchange interaction into its effective paequations for the self-energy and pairing fields. In Sec. IlI,
rameters. This density dependence changes as we considee discuss the properties of static solutions to the equations
nuclei further and further from the stability valley, thus lim- and, in Sec. IV, reduce these to the form in which we use
iting the range of application of an effective interaction ad-them. In Sec. V, we briefly describe the numerical method
justed to describe the conditions in the valley. used in the calculations and, in Sec. VI, we discuss the re-

The differences between our results and nonrelativistisults of the calculations. We summarize and conclude in Sec.
ones in nuclear matter suggest that interesting effects of th¥ll.

054310-2



DIRAC-HARTREE-BOGOLIUBOV APPROXIMATION FQR . ..

Il. THE MEAN FIELD EQUATIONS FOR 3 AND A

In this section we present the Lagrangian of the mode
and the covariant equations for the self-energy and pairin

mean fieldsX andA.
We designate bys(x), o(x), o*(X), ﬁ’*(x), andA*(x),

the field operators at the pointassociated to the nucleons
and mesong, o, p, andvy, respectively. The quantum num-

bers 07, T) for each meson with spid, intrinsic parity 7,
and isospinT are

a(07,0, (17,0, p(17,1), p(17,-).

We designate the effective meson-nucleon coupling con-
stants bygs, g,, andg, and the respective bare masses by
mg, m,, andm, . The interaction of the masslegsdoes not
conserve isospin, coupling to the protons alone with coupling/
constante. (We will ignore the interaction with the anoma-
lous magnetic moments of the nucledrighe nucleon bare
mass isM and we assume in the present model that th
nucleons and mesons are pointlike. We will not take the
meson into account, although its effects could be importa
in the exchange terms we will consider. We will assume thal
these effects can be described through the effective couplin
of the mesons we do include. These assumptions are typic
of the simplest meson-exchange models of nuclear structur

The Lagrangian density is given by
EZ £0+ ;Cim f

where L, is the free Lagrangian density
Lo(X)= )1 4=Mih(x)
1
+ Eﬂﬂo(x)&”a(x)— U(a(x))

1 1 1,
— PP = 29,00 S mle, () e(X)

- - 1 .. -
= 28 GH+ 3mip, () pH(x), (1)

with vector field tensors
Fu=0,A,—d,A,,
Qy,=0d,0,—d,w,,
Gpv=09,p= v

and a nonlinear potential,

L o002t Eauo(0it Saaet0
U(@(x))= 53 Mo (0% + 36s000%+ 7040(0%  (2)

The baryon spinogy(x) has four Dirac components for each

of two isospin projections-m,=1/2 for protons andn,=

—1/2 for neutrons—for a total of eight components. We

n
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their contributions to the scalar mean field. For this purpose,

ropagator, when it is convenient to do so.
We take the interaction terms in the Lagrangian density to
have the simplest possible form consistent with their Lorentz
and isospin structure,

g)ve may formally include them in the “free” scalar meson

Ling(X) = geh(X) 7(X) $(X) = Gy h(X) 7, 0™ (X) ()

1 — - -
= 59,00 V7 X0

(1"’ 7'3)
2

—ep(x) Y AHX) (X). )

In particular, we will not consider tensor couplings of the
ector mesons.

We wish to characterize the average effect of the interac-
tions of a nucleon with the other nucleons through an effec-

Give single-particle Lagrangian, ¢, given in terms of the

wo fields,X andA. The self-energ® describes the average
{ teraction of a nucleon with the surrounding matter. The

mation and destruction of pairs during the propagation. In

%fliring fieldA and its conjugat&describe, respectively, the
r

particular, the definition oA makes use of correlated pairs

of time-reversed single-particle states, in agreement with the
original idea of Coopef43]. Generalizing slightly the devel-
opment due to Gorkop4], we introduce such pairs by using
an extended form of the time-reversed states, which we des-
ignate by . Designating the time reversal operator By

the usual time-reversed conjugat€”? of the Dirac field op-
erator s is given by[45]

PP00=TY()T =By (X) = yoBy* (%),
where
X=(—t,X), B=ysC,
andC is the charge conjugation operator. We defineas
Yr(x) =10y D) =AYT(x),
where A=7,®B and 7, is the antisymmetric Pauli matrix,
which operates here in the isospin space. Note fha\"

andA* =A". We then use the following ansatz for the effec-
tive single-particle Lagrangian:

| dtia- [ o d“yﬁ(x)[m—Mwm
X 8(x—y)(y) = p(X)Z(X,Y) (y)

1— 1
FSHOOAXY) (V) + SIr AV HY) |

4

have included the cubic and quartic terms of the scalar fieldvhere 6(x—y) is a four-dimensional Dirac delta function
o(x) in the free Lagrangian density as we will only considerand
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(5)  wave function be antisymmetric under exchange while the
second guarantees real energy eigenvalues and probability

is the isospin matrix of chemical potentials, which will be conservation.

. ; We can put the effective Lagrangiang in a more sym-
used as Lagrange multipliers to fix the average number orfnetrical form by noting that
protons and neutrons.

The symmetries of the effective mean-field Lagrangian

wp O ) The first of these symmetry conditions requires that the pair
#:

0 Mn

under transposition and Hermitian conjugation yield the fol- — .
lowing properties of the mean fields: f A 6y POOLII=M+ y0u) 80=y) =2 () J)
_ Ay, A T AT (G _ —
) ATy AT ALy TAT = [ dtxdty G010+ M=y a0-y)
+ 1 00Y) YY), ®
A(x,y)=—AAT(x,y)AT, ®  where
and S1(x,y)=AST(x,y)A. 9)

_ The effective Lagrangian can then be rewritten in matrix
26 =72 () 0, AXY)=v0AT(XY) . (7)) form as

j dt L= j d*x d* (Z(x)Z(x))((M_MHOM)(S(X_y)_E(X'y) e )( w(y))
=7 y 7 A(xYy) (16+M—you) S(X=y) +Z(x,y) |\ hr(y) )
(10

which immediately yields the following coupled equations of motion for the fieldand ¢, which we will call the
Dirac-Gorkov equation:

(i0=M+ you) S(X=y) =2 (X,y) A(x,y) P(y)
j diy — : = (12)
A(x,y) (10+M—you) S(X=y) +Z1(x,y) | | r(y)
|
Defining the generalized baryon field operator as We observe thaG(x,y) is the usual baryon propagator

while G(x,y) describes the propagation of baryons in time-
reversed states. The off-diagonal termsSgk,y) describe

W (x)= P(x) the propagation of correlated baryons and are the relativistic
Yr(x))’ generalizations of the anomalous propagators defined by
Gorkov [44].
we obtain a generalized barygquasiparticle propagator To derive the mean field equations, we first rewrite the

interaction terms of the Lagrangian densi,;, as

_[Gxy) F(xy) B
SOV 2 xy) Bxy) La0= =2 FOTL 006 00x), (13
= —i< ( v(x) )(Z(Y),ET(Y))>, (12)  where the Greek letters, 8, . . . represent any indices nec-
Pr(X) essary for the correct description of the meson propagation

. . and coupling(Lorentz indices, isospin, elc.The index]|
where, by(...), we mean the time-ordered expectationi,gicates the mesons of the model; w, 7, and p, while

value in the interacting nuclear ground sta@T(...)[0).  their respective fields and meson-nucleon couplings are des-
We assume that the std@) contains only nucleons interact- ignated by thepj'(x) and thel’;,(x).

ing through the exchange of virtual mesons and contains no We then rewrite the meson fields; in terms of their
real mesons. sources as
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_ 1 _
B(x)= | dYy DI(x—y)p(NT 5(y)(y), (14 dtLig=—5 > | d**d% ()T} .(X) %(X)
2 ]

@By _ _
where Dj‘w(x—y) is the Feynman propagator of mespn XD NPT () $Y). (19
Here, we have included the nonlinearmeson terms in the Following Gorkov[44], we then obtain the mean field con-
o-meson propagator, so that they do not appear as corretribution of this interaction term by replacing each of the
tions to the source term. Substituting in E§3) and insert-  possible pairs of fermion fields by its vacuum expectation
ing a factor of 1/2 for reasons of symmetry, we have value,

1 _ _
f dt(Lin)er=— 5 2 fd“x d*y DIP(x—y) {20 ()T} () OO W(Y)T (Y (y))

+ 24T ()W) YY) 5(Y) () = ()T (XX T (YT 5(y) 7 (y)
— T OOT 0T O P))T (V) (Y}, (16)

where( .. .) is again the time-ordered expectation value in .
the interacting nuclear-matter ground state. S(xy)=—id(x=y) > Fja(X)f d*z D*(x—2)
The first term in this expression is a Hartree one, the :
second a Fock exchange term while the last two, after using xTr[FjB(Z)G(z,f)]
the definition of 1 to replace the transposeffs, can be
recognized as pairing terms. Comparing the mean field con- +|E I}, (x)D*(x—y)G(x,y)Tj4(y),
tributions to those of the effective quasiparticle Lagrangian,
we can express the self-energy and pairing fields in terms of 1 (19
the two-fermion vacuum expectation values as

A(x,y>=i; I}, ()DM(x—y)F(x,Y)AT [5(y)A.
2<x,y>=5<x—y>; T'j.(x) (20

The number of protonZ and neutrond\ are the expectation

w — values of the baryon number operatorﬁ,zE(x)y (1
X f d*zDfP(x=2) (2T 5(2) ¥(2)) + 73) (x)/2, which we rewrite in terms of the gene?alized
baryon propagatdi7], as
+ 2 T 00D B(x=y) () (y)Tj4(y) z 1+ 7o)
j
N} j <¢(X)70 ¢(X)>
17

. (1% 73)

=—i| dTr| yo G(x,x)|. (21)
and j 2

The Lagrange multiplierg., and u,, given in Eq.(5), are
determined by requiring that these equations yield the de-
ired values oZ andN.
A(x, T}, (x)D§P(x— X AT L(y)AT, sire .
(xy)= 2 ja(X) Y{UOOUr(Y)ATK(Y) The Hamiltonian density operator is given by tAé°

(18 component of the energy-momentum tensor,

. aL aL
_ —F00_ _
while the equation forA(x—y) can be obtained from the H=T Lt () o) T EJ: Ao p®) —adi. (22

equation forA(x—y) using the Hermiticity condition of Eq.

(7). These expressions become self-consistency equatioMeglecting the retardation terms associated with the time de-
when we evaluate the expectation values by using their reladvatives of the meson fields in the ground state expectation
tionship to the generalized baryon propagator, ER), value of Eq.(22), the energy density that results can be writ-
which is itself a function of the mean fields. We find ten as
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&x)=(A The total energy is obtained by integrating this density over
(x)=(H)
space.
=i T (iy-d—M)G(x,x")]
1 Ill. PROPERTIES OF STATIC SOLUTIONS
— 3_ 4__ 4
6930(X)7 = 7940(X) zf d’y We will develop a static, ground-state solution to the self-

5 consistency equations. We write the temporal Fourier trans-
XTI (X,Y)G(y,x")—A(x,y)F(y,x)]. (23  form of the full HFB propagator as

v | GOV F(i&;w))
O B Bliyie)
o [Ua®) T U () 1T
=2 V. oo 7n U ValyDF 2 V0| v epn Vs Ve (24

The componentsl , ; andV,, ; are Dirac spinors corresponding to the normal and time-reversed components, respectively, of
the positive-frequency,,, and negative-frequency,;, solutions to the Dirac-Gorkov equation

o [ vol(s+m)(x=y)—h(x,y)) A(X,Y) u(y)
fdy - . oL . . | =0, (25)
A(X,y) (e — w) 8(x—y)+h(x,¥) v/ | V(y)
where we have introduced the single-particle Hamiltontgx,y), given by
h(X,y)=(—ia-V+BM)S(X—y)+B(X,y), (26)
with
hr(x,y)=Ah"(x,y)AT and h(x,y)=h"(x,y). @27

After multiplying on the left by the matrixg(’ (1)), the Dirac-Gorkov equation, E@25), can be written in Hamiltonian form
as a Hermitian eigenequation,

(8+ 1) 8(X=y) —h(X,y) AT(x,y) u(y)
f d3y — . . . . | =0. (29
A(X,y) (e=p)6(x=y)+hr(x,y)] \ yoV(y)
|
We thus conclude that the eigenvalueare real. In the frequency representation, the self-consistency equa-

After multiplying the complex conjugate of E@¢25) on  tions take the form
the left by the matrixy,A® 7, we can manipulate it into a
form which is identical to the original equation, except for .- L -
the sign ofe. We may thus conclude that the solutions to the ~ 2(X,Y; @)= —i S(X=y) 2 Tjo(X)
Dirac-Gorkov equation occur in pairs with real eigenvalues !

of opposite sign and eigenvectors of the form .
PR g g Xf d3z D*(x~20)

(V) _ VoAV*(§)> 9 do
=g,: |, E=—g,! . do e -
V() yoAU* (y) ><J 271_Tr[l“],@(z)G(z,z,w )]
Using the above properties of the eigensolutions, we could +i2 f do’ L\ (D™ §iw— ')
rewrite the full HFB propagator of E¢24) as a sum over the ] 27 1@ '

positive eigenvalues, alone. However, we will continue to . .

use the form given in Eq24), distinguishing the positive XG(X,y 0" )jay) (30)
and negative frequency solutions through explicit reference

to one or the other. and
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. do’ . o where the sum runs over the negative frequency solutions,
A(X,y;0)=i2, ng;a(x)Df‘ﬁ(x—y:w—w’) e,<0, of Eq.(25).
. The expressions for the number of protons and neutrons
X F()Z,)?;w’)AFjTB()?)AT, (31  can be written similarly as

where we have taken the vertices to be time independent and

have assumed a time dependence of the form’ in all z
other quantities. We evaluate the equations in the static limit N :f
of the meson propagators,

(1= .
xS u;(x)( 273)uy(x). (36)

57<0

D*#(x~y;0)—~D*(x~y;0)=D*(x~y). (32  The expression for the energy can be reduced to

We then have for the self-consistency equations

E:j d3x(S§<:O UT(X) (e, + 1)U ,(X)
2<>?.§>=—i5<i—y*>§ T (%)

1 -3 1 - 4
~ 593000~ 7940(X)
I e 1)) . L
XJ dz Dfﬁ(x—z)jZTr[I‘jB(z)G(z,z;wﬂ] L
y —5] ey S @RsEnu,m
+i2 rja<i>DaB(§—>7)f 5 GOYi@)Tja(y), T

: —UT0A (X Y)V,(Y)). (37
(33

and Note that the last term is real due to the Hermiticity of the
Dirac-Gorkov equation.
A()Zj):iE_ Fja(i)Dj“B(;—?) The summation over _negative frequency solutiqns in Egs.
] (34) through (37) takes into account the occupation of all
do states, both those in the Fermi sghae surface of which is
% f —F()Z,)?;w)AFjTﬁ(i)AT. now diffuse, due to the pairingand those in the Dirac sea.
2 These expressions would thus require renormalization to
. ) . yield finite results. Instead, we simply truncate the sums by
Finally, we evaluate the frequency integrals by closing the,yc|yding the solutions corresponding to quasiparticle states
contour in the upper half-plane, yielding in the Dirac sea. This approximation has been found to give
reasonable results in nuclear matt2g].
S(X,Y)=8(X—y) >, rja(i)f d3z ch'ﬁ(i—f) Before reducing the self-consistency equations, together
i with the Dirac-Gorkov equation, E25), to a form in which
they can be solved, we observe that, wik ysC, each of

. - - > e
X ZO U(2)T5(2)U (2) the pair of wave vectors,\%f))) and ., ((:))) possesses the
&
4 time-reversed Dirac structure of the other. In Appendix A,
we show that when these two states are equally occupied,

_zj: Ija(X)DF(x=y) then they satisfy the same Dirac-Gorkov equation with the
same eigenvalue. We will assume this to be the case in the
- - following.
X 2, U,00U,(0Tj4(y) (34
gy
and IV. REDUCING THE SELF-CONSISTENCY EQUATIONS

We begin by analyzing the isospin structure of the self-
A()Z,)?):—E Fja(f)Dj“ﬁ(i—;) energy and pairing fields under the. assumptipn of pure
i proton-proton and neutron-neutron pairing. In this case, the
solutions to the Dirac-Gorkov equation will be either purely
X > Uy(f)vy(Q)AFjTB(%AT, (35) ]E)roton particle-hole ones or neutron particle-hole ones of the
63=0 orm
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Up 0 S Sexy) 0
O e R YT 0 s
N RO I R VA
- 0 AxYy)
Vp 0 A(x,y)=(A s po , (39

where each of the elements in the column vectors are thenwhere each of the elements of the matrices are themselves
selves four-component Dirac spinors. Substitution of thesé x4 matrices. The isospin dependent Dirac-Gorkov equa-

into the self-consistency equations yields isospin structureson thus decouples into independent equations for neutrons
of the mean fields of the form and protons. In their Hamiltonian form, these are

Ui(y)
YoVi(Y)

(84 p) (X—Y) —hy(X,y) Al(xy)

- .. - . =0, (39
Ay(x,y) (&= my) 6(X—y) +h(x,y)

J @

where we have written the respective Dirac Hamiltonian op4in which the functionsufy,, ugy,, vf{,, andvgy, are real.

erators as For each solution with positive value of the angular momen-
. o o . tum projection,(),,, we have a time-reversed solution with
h(x,y)=(—ia-V+BM)S(x—y)+ B2:(X,y) t=p,n the same energy but a negative value of the angular momen-

(400 tum projection,—Q,, given by BU},(x) and y,BV{(X).
The densities that enter the Hartree terms of the self-energy

and the Lagrange multipliers ag,=u+ou and u,=pu can then be written as

—Su. We have also made use of the fact tak(X,y)
=3,(x.,y), so thath(x,y)=h,(X,y), since we have as- B ;
sumed invariance under time inversion of the Dirac structure. ps(ry,2)=2 2 U, 70Uy

We want to obtain the coupled equations for the case of @080
an axially-deformed nucleus. We take the z axis to be the
symmetry axis and use cylindrical coordinates< ( pa(r, ,2)=2 2 U;ryut'ya
=r, coSep, Y=r, sing, andz). Although the total angular 01,{01,0,)0
momentumj is no longer a good quantum number, its pro- (43)

jection along the symmetry axi@, as well as the parityr,

(and, of course, the isospin projection, which we also denote .

by t) are still good quantum numbers. We write each of the pa(r,2)=2 > 2mUl U,
four-component spinors of the wave function as “r 01050

+ i(Q,—1/2)
] ufe(r, ,Z)ef Yoo por,,2)=2 > (M+1/2U{ Uy,
™ —)) Ufty(x) 1 Uf;y(ri 1Z)el(Qy+ 1/2)¢ wg,{01,€2,)0
X)= > = H i — ’
" i ug,(x) V2| | UQQ(M ,2)e (12 in which the sum over states of different parity is implicit in
iug,(r, ,z)el @y 12 the sum over states of different energy. The local Hartree
AL (41) contribution to the self-energy may be written in terms of
these densities as
and
vf(X) BEHOZ,);):&;_)?)f d3Z(—Bg§dU()Z—Z)pS(Z)
> Y
’)/OVI)/(X):( ) - ) 5
Ivgt'y(x) 2,0, > > gp 0, >, N
: t0,d,(X=2)pe(2) +| 57| 73d,(X—2)p3(2)
vf(r, ,z)e/ (@12 2

- i[(Q,+1/2) 1in o )

:\/1 e +e2gd°(x—z)pc(z), (44)
2w ivg+(r Z)ei(!27—1/2)¢ , (42 > y

ty\h L

Fvgg,(ry 2)e (T 12e where the meson propagators have been reduced to
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IR 1 exp—m|x—y ** SNNaBiw_
dd(x—2)=— e mX=y) ‘|» y|), (45) (Xy)==2 T}o(x)D*(x~y)
' 4T Xyl j
with the exception_of ther—meson propagator, which is still X XtXﬁUty(i)VtTy()?)
assumed to contain the nonlinear terms. It is customary to et5(01,2,)0
write the Hartree contribution to the self-energy in terms of . T ot Tt
the mean fields associated with each of the mesons, as +BUL(X)V,(Y)B)yoAL s(y)AT, (49
BEH(Q): _,3900()2) +9ww0(>2) where x, = xn,p are the time-reversed isospinors.

We neglect the Coulomb contribution to the pairing field
here and approximate the contributions of the other mesons
using the zero-rangdinfinite-mas$ limit of the meson
propagators. We also neglect the contribution of the non-
with linear o-meson terms. As we have argued in the introduc-

tion, due to the short range of the exchanged mesons, a zero-
_gmf d3z dO()Z_Z)pB(E), range appro_ximation fo their propagators does not mgl_<e a
@ significant difference in the results. It also greatly simplifies
the numerical calculations. The Hamiltonian form of the
pairing field is, in this case,

A%(x),  (46)

(1"’ T3)
2

+ % 7'3p00()2) +e

o0 = %[ @2 - 2)pa(3),

(47 o
A (X,Y) = v0AX,¥Y) Yo
AR =e [ 4% &= 2)p(2), T
- 5(X_y)cpair(m_g Yoki(X) Yo
a(i):ggf d3z d,(x—2)ps(2) P
(_ZJF . )707’ K(X )nyo), (50)
= f d°z (X~ 2)(9,ps(2) ~ 930 (X)*~ 940 ()?). m, o

) ) ) ) where the anomalous densiky(i) is
In the last expression, we have written ttvemean field in

terms of its free propagator, as given in Ed5), and in- _
cluded the nonlinear terms explicitly. The mean meson fields Ki(X)= 2 (U (x Vty(x)
possess the same axial symmetry as the densities. £10042,)0
The Fock exchange term of the self-energy has the form +BU? (x)V (x)B Y0, t=p.n. (51)

Se(xy)=—2 T (x)D*(x—y) However, the pairing field, in the given form, does not nec-
! essarily satisfy the antisymmetry condition of E§). Ap-
plying the antisymmetry condition to the pairing field, we

X <2 5 XtXtT(Uty()Z)UIy()?) can reduce it to a condition on the anomalous density,
£1,(01,2,)0
S = _ T,
+BUL(OUL (VB vl 5(y),  (49) K(X)=Bx{(x)B". (52)

where we have written the isospin dependence of the interfo ensure that this is satisfied, we take the anomalous den-
mediate states in terms of the isospingr. As has been sity to be

discussed in the literatukef. Ref.[7] or Ref.[42]), the most
important effects of the Fock terms due to the exchange of
the short-range, o, andp mesons can be taken into account
by using adjusted Hartree terms. This can be better under-
stood by looking at the zero-range limit of the meson propa-

.1 . -
Kt(x)_)E(Kt(X)""BKt(X)B )

gators, for which the Fock terms reduce to linear combina- 2 Sty<02vﬂy> (Upy(x Vty(x) Yo

tions of the Hartree ones. Here, we retain the small but finite

range of the meson propagators, but approximate the self- +BU; (x)V (x)BT70+ yovty(x)u (X)
energy as the Hartree contribution alone and use the param-

eters appropriate for this purpose. + yoBVf. (X)U (X)BT) t=p,n. (53

The pairing field arises from an exchange term, similar in
form to the Fock term of the self-energy. We can write it as We then write the components of the pairing field as
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o1(r,,2) 0 i 0x(r,,2)  i0g(r, ,20€7'¢
. 0 Su(r, ,2) i Sq(ry ,2)€'%  —idy(r,,2)
A= S . I (54)
=i 63(r,,2) =i Oy(r ,2)€77° On(r,,2) 0
—i Sy(r, ,2)€'¢ i O3(r, ,2) 0 O(1 ,2)
|
where the four real functiong;; are tion. The necessity for such a constant is apparent from stud-
ies of pairing in nuclear matter. Nonrelativisfi46—48 and
O1(r,2)=(Cs—C,) kye(ry ,2) = 3C,kn(r L ,2), relativistic[31] calculations have verified thasS, pairing in
B nuclear matter is dominated by the two-nucletsy virtual
Oat(r,2)=(Cs— €, ) ku(r,,2) = 3C, k(T ,2), state. Pairing in nuclear matter is weaker the further'ige
(55 virtual state is from the real axis in the complex-momentum
ST | . 2)=(Cat 2C Y kay(T | ,2), plane. The location of the virtual sfcate de_pends on the
alf.2)=(Cs o)kl .2) strength and form of the two-nucleon interaction and on the
Sa(r | ,2)=(Cs+2C,) ka(T | ,2), space of states' used in the calculation. In Ref], various
sets of interaction parameters, even zero-range ones, were
with shown to furnish mutually consistent physical values for the
pairing gap function, when they were supplemented with a
2 2 2 large momentum cutoff adjusted so as to place the two-
95 9. , (9,/2) g | P
Cs= Cpairo Cy = Cpair FJF T . (56) nucleon virtual state at its physical location. We expect a
o w P

condition similar to that in nuclear matter to apply here.
However, as it is extremely difficult to fix the position of the
two-nucleon virtual state within the harmonic oscillator basis
that we use, we instead multiply the pairing field by an over-
ku(r 2= > (ufiofl +ufvfp), all constant that we expect to be able to fix independently of
2A0L2)0 the charge and mass of the systems under consideration. We
emphasize that this is not a weakness of our calculations
koY, ,2)= 2, (Ugav gt+7+ ug,v;,), alone, but of any Hartred-ock-Bogoliubov calculation us-
21,(0.,)0 ing a limited space of states and an effective interaction,
(57) even those using a finite-range one. The pairing field ob-
tained in such a calculation will depend on both the interac-
tion and the space of states used and will usually require that

The four real components of the anomalous density are

1 -
ka(r2)=5 > (uflugl —ufieg,

£,{0.02,)0 one or the other of these be adjusted on order to obtain rea-
- o sonable results. Here, we find it more convenient to intro-
+tugufl,—uggufy), duce an arbitrary constant in the interaction rather than arbi-

trarily limit the space of states we use.

With the above simplifications in the self-energy and pair-
ing fields, the Dirac-Gorkov equations for neutrons and pro-
Lo o tons reduce to local differential equations. Their Hamiltonian
+ugguf +ugoufl). form is

1
_ + - -+
Ka(T | ,2)= 2 8ty<02v9'y>0 (uft'yvgty—‘r UftyUgty

The Dirac structure of the pairing field is very similar to &+ p— hy(%) KT(i)
that of the 1S, pairing field in symmetric nuclear matter, K= T t

where Kt(i) S_Mt+ht()z)

Anm(K)=Y0A 1 (K) Y= Ag(K) = y0Ao(K) —i %07 EAT((lo.) with
58

U(X)

- 1=0, (59
YoVi(X)

v [ _). Vi * v v =
The upper and lower diagonal components of the pairing h(X)=—la-V+AM*(X)+Vi(x), t=p.n, (60

field, &,; and 65, can be directly associated with the linear where
combinationsAs*= Ay of the nuclear matter components,
while the remaining componentsjy, and &, are more . -
loosely related to the contributions of the nuclear matter ten- M*(x)=M—g,0(x),
sor term,A+.
An overall constant,,, has been introduced in the ex- el 0,2, 9o 00/ & 0y

pression for the pairingp?ireld to compensate for deficiencies Vi) =9,0° 00+ 5 2Myp () +e(1/2+ m) AT(x),

of the interaction parameters and of the numerical calcula- (62
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anth’f(Q) is given in Eq.(54). wherea denotes the complete set of quantum numbars (
The total energy can now be written in terms of the mear™, Nz, Ms, andm,) and
fields as

£.,<0

N™ 2
. 1 | . M v 5 mi2p ™ —pi2 _|
e- | dsx( S U002, ) 500 (0P ot V()T H N2 e T with (b) '

y (67)
+ 50,0 (R)palX) ~ 20,020 pa(R) Nn 2 z
297 s 2% B z)=—H, (¢)e” with &= —.
tn (2) b, n,(§) € b,
1% 9(x)p3(X) — = e A%(X) pe(X) m . .
22° P3 2 Pe In Eq. (67), L,'(») and an(g) are Hermite and associate
1 o Laguerre polynomialf50], with the normalization constants,
+5 > Tr[AI(x)Kt(x)]) —Ecm- (620 N"andN, , given in Ref[17]. In these equations, andn,
t r z

are the number of nodes in th@ndz directions, andn, and
In the expression above, we have also subtracted the hamg are the projections of angular momentum and spin on the
monic oscillator estimate to the center-of-mass motion, z axis. The third component of the total angular momentum
), and the parityr are then defined as

3 3 41
Ec.m,:Zth: Z A_1/3 MeV, (63) Qyz ml + mS! = ( _ l)nz+ m|_ (68)
in order to obtain an expression for the total internal energy We expand the Pauli components of the Dirac spinors,
of the nucleus. ufi,(ri,2), ugy,(r,,z), vfy(r,,z), andvg,(r, ,2), in
terms of the oscillator eigenfunctions. Inserting these expan-
V. NUMERICAL SOLUTION OF THE DHB EQUATION sions into the Dirac-Gorkov equati@f9), we can reduce the

equation to the diagonalization problem of a symmetric ma-
We solve the Dirac-Gorkov and the Klein-Gordon equa-trix and calculate the Hartree densities of E4g) and com-
tions by expanding the fields as well as the wave functions ihonents of the anomalous density of E§7). The fields of
complete sets of eigenfunctions of harmonic oscillator potenthe massive mesons are expanded in a manner similar to the
tials. In actual calculations, the expansion is truncated at garmion expansion, with the same deformation parameger
finite number of major shells, with thg quantum number ofput a smaller oscillator length dn‘szo/\/f. The Coulomb
the last included shell denoted BYr in the case of the fig|q is calculated directly in configuration space. In short,
fermions and byNg for the bosons. The maximum values are the method used is a direct generalization of that described in
selected so as to assure the physical significance of the rgyef. [17], where more details may be found.
sults obtained. The same procedure has been used by many
researchers, among them, by Vauthd#d8] in the nonrela-
tivistic Hartree-Fock approximation, by Ghamlgit al. [17]
in the relativistic mean field- BCS approach and by Lalazis-  The parameters required to perform numerical calcula-
sis et al. [40—43 in the RHB approach. _tions are the nucleon and meson masses, the meson-nucleon
The spinors of the Dirac-Gorkov equation are expanded ioupling constants and the factop,;, that multiplies the
terms of the eigenfunctions of an axially-deformed pajring interaction. The calculations that we present were

VI. NUMERICAL RESULTS

harmonic-oscillator potential, performed using the masses and coupling constants of the
1 1 NL3 potential[51]. We performed calculations for several
VosdT 1 ,2)= = Mw?Z?+ ~Mw?r2. (64)  Vvalues of the factoc,;. These permit us to study the extent

2 2 to which physical observables depend on the pairing interac-

tion and to choose the value of the parametgy, that best
fits the observables.
As the meson fields and the nucleon wave functions are
1 Mo, 1 Mw, . . . .
By==\—— B==\— (65)  expanded in a deformed basis of harmonic oscillator states,
b, h b, h we must also specify the number of major oscillator shells to
with volume conservation relating the two constants to thaP€ used in the expansions for fermioNg,, and bosonsi\,
as well as the basis deformation paramejgy, Here, we

of ihsphgrlcallcly—symmetr;crﬁ)otgnlflbﬁbzd— EO' . i work, for the most part, in a basis of 12 major oscillator
be elggn unctlﬁnil of the deformed harmonic oscillatorgpe|is for fermions and 24 for bosons. We use the stan-
can be written explicitly as dard expression for the oscillator frequenciedwg

=41A"Y® MeV, and spherical bases, wig,=0, in all cal-

The oscillator constants are taken as

. e'me . . : .
(1) =y™(r)) 7)) — ’ (66)  culations. Although the number of major oscillator shells is
( w“r L)l \/27-r)(ms)(mt not as large as might be desired, it does seem to be large
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enough to obtain reasonable values for the observables stud-
ied.

In order to analyze the characteristics of the single-
particle levels, we define several related average values.
First, in deference to the standard nonrelativistic notation, we
define the occupation probability of each of the two states of
the level with frequency,<0 as

Szn (MeV)

v2,= f d3|Uyy(x)[?, (69

so that we also have

" " | " | ) | )
100 120 14;\) 160 180
ut2y=1—vt2y=f d3x| Vi, (x)|2. (70)
FIG. 1. Two-neutron separation energy of the even isotopes of
Sn, as a function of the mass numbrfor three values of the
parameterc,,,. The values obtained from the compilation of ex-
R R R . perimental masses of Audi and Wapdts&] (solid circles and the
Ety:f d3x(UtTy(x)htUw(x)+VtTy(x)hti(x)), (77 Moller-Nix systematic§56] (open circley are also shown.

We define the energy of a single-particle level as

in which we take advantage of the normalization of the statey various effective interactions and due to coupling to the
vector to avoid norma”Zing the result. This is not pOSSibleF)artide Continuum' as well as the effects of these on experi_
for the pairing term, for which we define the gap parameteimental observables. In Reff40], Lalazissiset al. compare
of a single-particle level as RHB calculations of both the odd and even isotopes in the Sn
and Ni chains with the experimental data, obtaining quite
Aw:_f d3x UtTy()Z)AtT'YOVty()Z)/utyvty' (72 good agreement. In another_ _stu@98], Meng compared
RHB calculations using the finite-range Gogny D1S and a

The definition of the gap parameter is fragile and is subjec ero-range interaction and found good agreement between

to numerical error whew.,—1 or u,—1. We define an he two and with the experimental data.

average gap parameter for the neutrons and protons of a We begin our study of spherlcal nuclei with the tin iso-
nucleus as topes. We performed calculations of the ground states of the

even isotopes from%sn to 176Sn, that is, from the closed
neutron shell aN=50 to the closed shell d&il=126. We
(A= 2 Atyvtzy/ > vl (73 present calculations for three values of the paramesgr.
£y<0 ey<0 The objective of this study was to identify the observables

We note that, unlike in the BCS approximation, no relationSensitive to the parameteg,; (and, thus, to the pairingand
exists here between the occupation probabilisésandu?,, adjust the parameter accordingly. ,
the energyE,,,, and the gap parametdy,. However, these We present in Fig. 1 the two-neutron separation energy of

averages still furnish a good description of the most impor{€_€Ven Sn isotopes in the mass range fm100 t0 A

tant characteristics of the single-particle levels. =176, calculated forl thle \.’alue%?ih: %45’ 0.47, and 0.50.
In the following, we first analyze pairing in the isotopes W& compare our calculations with the two-neutron separa-

of tin and then discuss similar results for the isotopes of!ON €nergies obtained using the ground state masses tables
nickel and calcium, all of which are spherical. The isotopesOf, Moller-Nix [56] and of Audi-Wapstrd57]. The Mdler—.

of tin and nickel have already been the object of two thor-\iX values for ground state masses were calculated using an

ough studie$40,52. We then analyze deformation and pair- extended fln!te—range droplet model with parameters adjusted

ing of theN = 28 isotonic chain, which has been the object ofto the experimental ground state masses. The Audi-Wasptra

two recent studie42,58,59. Finally, we turn our attention values for the gr_ound state masses are essentially the experi-
to nuclei in the region of the~40 subshell closure, the mental ones, with some extension to proton- and neutron-
isotopes of Kr and Sr, in particular. These have been th&CN nuclei based on systematics. We verify that all three
object of many previous studié80—22,54,55 calculations follow the trend of the I\ner—N|x and Audr
Wapstra values. The two-neutron separation energy is seen
to be almost independent of the strength of the pairing field,
with the calculation using,,;=0.50 providing only slightly
Pairing in the Sn and Ni isotopes has been studied exterbetter agreement with the data than the others. All the calcu-
sively, due to the simplification provided by their sphericallations underestimat8,,, in the region ofA=100. This dis-
symmetry. In Ref[52], Dobaczewskkt al. describe a very crepancy might be attributable to a deficiency in the isospin
complete study of pairing in the Sn isotopes, based on @dependence of the NL3 parameter set. It could also be due to
nonrelativistic Hartree-Fock-Bogoliubov approximation, in effects that are not included in the calculation, such as
which they examine the differences in pairing due to the us@eutron-proton correlations, which are suspected of being of

A. Spherical nuclei
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FIG. 2. Mean value of the neutron gap parameter of the even
isotopes of Sn, as a function of the mass nun#dor three values FIG. 3. Pairing energy of the even isotopes of Sn, as a function
of the parametec,; (lines. The odd-even mass differences ob- Of the mass numbeh, for three values of the parametgy.
tained from the compilation of experimental masses of Audi and
Wapstra[57] (solid circles and from the Mder-Nix systematics The neutron shell closures & =50, 82, and 126 are
[56] (open circle} are also plotted. clearly visible in Fig. 2. At each of values of the neutron

number, calculated neutron gap parameter goes to zero. We

importance inN~Z nuclei. Our two-neutron separation en- note that the experimental gap parameter has maximum,
ergies are in good agreement with the RHB ones of Reffather than a minimum, at each shell closure, reflecting the
[40]. However, such consistency is to be expected, given thécal maximum of the binding energy that occurs there. Sev-
relative insensitivity of the two-neutron Separation energy t(_ﬁral subshell closures are also visible in the CalCUIationS, at
the pairing, since both calculations use the NL3 parameteyalues of the mass at which the gap parameter reaches a
set. nonzero minimum. These occur =58, A= 108, between

The calculated two-neutron separation energies remain athe 197/2 and 215/2 levels, atN=64, A= 114, between the
most constant from the shell closure &t 132 to aboutA 2d5/2 level and the remaining levels of thé & shell, and at
=160, in contrast to the Mter-Nix values, which decrease N=112, A=162, between the 76w shell and the 113/2
slowly. The SlIl and SE Skyrme interaction calculations of level. Subshell closures are more visible when the pairing
Ref.[52] also furnish a relatively constant separation energynteraction is weaker and, thus, more sensitive to the energy
above theA=132 shell closure, which extends to even differences between the levels.
higher values of the mass, although most of their calculations Average values of the neutron gap parameter of the even
are in agreement with the Wer-Nix systematics. The Sh isotopes obtained in RHB and nonrelativistic calculations
nucleus'’®Sn is unbound in the calculation with,,=0.50, ~ Were presented in Refsd0] and[52], respectively. The cal-
as it is in all of the calculations of Reff52]. In our calcula- ~ culations using the Gogny interaction, both the RHB and the
tions, this is due to the fact thaf“Sn is more tightly bound honrelativistic ones, furnish a large value of the gap
for cpar=0.50 than for the other values of the parameter. TheParameter—above 2 MeV—and show no subshell structure.
binding energy of the magic nucled®Sn is the same for all \Were we to increase the strength of the pairing interaction so
values of the parameter,,,. as to obtain similar values for the pairing gap, our calcula-

In Fig. 2 we show the average value of the neutron gapions would also show no shell substructure in the average
parameter of the even Sn isotopes as a function of the mag&iring gap. The nonrelativistic calculations of Rei2], us-
numberA, for the same three values 6fy;,. The gap param- INg Skyrme pairing interactions produced resuits in closer
eter possesses a clear dependence on the valgg;ofWe agreement with ours. These calculations also sho_vv structure
also show in the figure the Mer-Nix and experimental due to subshell closures, 'although thg structurells d|ffergnt
Audi-Wapstra values for the standard estimate of the neutroffom that seen here, possibly due to differences in the spin-
gap parameter as the difference between the binding energi@gb't splitting of the levels, due to the different mean fields.

of an even-even nucleus and its odd mass neighbors, ~In Fig. 3, we show the pairing energy of the even Sn
isotopes as a function of the mass number, obtained using the

1 same three values af,;. The pairing energy is defined as

(An(Z,A))=B(Z,A)— E(B(Z,A— 1)+B(Z,A+1)),
1 — - -

, » o Ep=—5 2 f A TA{ () (%),
whereB(Z,A) is the binding energy. The calculation with t
Cpair=0.50 shows reasonable agreement with theldtdNix _
values in the region of thel=82, A=132, shell closure, but where x; and AI are given in Eqs(53) and (54), respec-
tends to underestimate the Mo-Nix values well below the tively. We observe that the pairing ener@y, displays a
shell closure and overestimate these values well above thdependence on the parametgy;, and a shell structure simi-
shell closure. lar to those seen in Fig. 2 for the average gap parameter.
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FIG. 4. Difference between the calculated binding energy andh FIG. 5. D_ewatllon Efl,‘sh‘i rooht mean square neL;tron radiu? from
the Mdler-Nix binding energy[56] for the even isotopes of Sn, as '€ S):(stsmatlc va ueob ,for the everll |sotofpehs of Sn, as a func-
a function of the mass numbé for three values of the parameter E:_?ln 0 ; e n;assd_num o, ordt_ reedva uis of the parametgg.
Cparr (lines). The difference between the calculated binding energy e red_uce f{sazs:us'o’ was adjusted to the root mean square neu-
and the Audi-Wapstra experimental binding enefgy], for cpq tron radius o n.

=0.500, is also plottedcircles.
In Fig. 5 we present the deviation from the systematic

However,E, is observable only through its effects on the value,r,oN'3, of the root mean square neutron radius of the
binding energy, which diminishes its utility as a means ofeven isotopes of Sn, as a function of the mass. The deviation
determining the parametep,;,. displays a clear minimum at the principal shell closure at

In Fig. 4 we present the difference between the calculatedl=82. Although the deviation also tends to decrease near
value of the binding energy of the even Sn isotopes and ththe shell closures atl=50 andN=126, the effect of these
Moller-Nix value, as a function of the mass, using the samemore extreme shell closures is much smaller than that of the
three values ot used before. We also present the differ- N=82 one, within the stability valley. The deviation from
ence between the calculated value fg;=0.50 and the the systematic value also possesses a sharp maximin at
Audi-Wapstra values, where the latter exist. In the mass=112, between the/w shell and the 113/2 level. We re-
range of the valley of stability, the difference between thecall that the average gap parameter and the pairing energy
two binding energies can be minimized, to a certain pointdisplay a minimum at the same subshell closure. Other sub-
through an appropriate choice @fy;. For the tin isotopes, a shell closures also appear in the deviation of the radius, but
value of ¢, close to 0.50 seems to yield the best averagenly as changes in its slope. The deviation from the system-
agreement. A value much larger than this would destroy thatic value of the root mean square mass radius of the even Sn
good agreement obtained for the gap parameter of Fig. Asotopes shows the same structure, but to a lesser degree, and
However, a larger value afy,, would smooth out the two is not shown here. The deviation from the systematic of the
dips in the binding energy difference that roughly follow the root mean square proton radius, which is also not shown,
mass dependence of both the average gap parameter and thereases monotonically with the mass number.
pairing energy. This would yield pairing gaps in better agree- We find that the deviations of the root mean square radii
ment with the Gogny D1S ones of R¢#0]. We then might  are almost independent of the parametgy;, and, thus, of
expect to be able to reduce the remaining discrepancy bithe pairing interaction. Slightly larger variations have been
adjusting the mean field parameters. seen in a comparison between RHB and HarBES calcu-

In Fig. 4, the calculated value of the binding energy islations[42]. Still, with the exception of a few very special
larger than the experimental/systematic values inNkeZ ~ nuclei, such ag’Li, the root mean square radii of a nucleus
region and reaches a difference of about 4 MeV for thewould seem to be determined almost exclusively by its mean
magic nucleus!®Sn, a result which is independent of the field.
value ofc,,;. The sharp increase of the binding-energy dif- As the second example of a spherical isotopic chain, we
ference forN~Z is consistent with the discrepancies be-studied the even isotopes of nickel, performing calculations
tween the calculated and the Ma-Nix values of the two-  from “Ni, at theN=20 shell closure, td°Ni, two neutrons
neutron separation energy, shown in Fig. 1. We can attributbeyond the subshell closure [dt=70. We again performed
the discrepancies to deficiencies in the isospin dependence célculations for three values of the parametgy,, their val-
the NL3 parameters. If we were to include neutron-protonues in this case being,,;=0.49, 0.50, and 0.52. Here we
pairing in the calculations, the difference would only in- wanted to verify the generality of the observations made in
crease as the pairing would bind even more the already ovethe case of the Sn isotopes.
boundN~50 nuclei. The large differences in binding energy ~ The calculations of the two-neutron separation energy for
on the neutron-heavy side of the curve could be due as mudhe Ni isotopes describe the tendency of the data fairly well,
to deficiencies in the Meer-Nix systematics as in the NL3 reproducing the discontinuities in separation energy that oc-
parameters. cur at the shell closures At=28 andN=>50. The calculated
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4 ' ' ' ' T dence onc,,;, observed in the average gap parameter, but
furnishes no new information. The root mean square radii
reflect the same shell structure, although with less clarity,
and are almost independent of the valuecgy.

We also examined the Ca isotope chain, performing cal-
culations of the even isotopes of Ca frdd+=8, A=28, to
N=50, A=70, for two values of the parameteg,;,. Com-
parisons between the two calculations and the Audi-Wapstra
and Mdler-Nix systematics resulted in conclusions similar to
those obtained for the tin and nickel isotopes. In particular,
the two-neutron separation energies were well described in
the two calculations, which show almost no dependence on
the parametec,,;. A value of cp,;=0.55 best agrees with
the gap parameters obtained from the Audi-Wapstra system-

FIG. 6. Mean value of the neutron gap parameter of the evergtiCS: Which, in this case, lie about 20% below thellete
isotopes of Ni, as a function of the mass numbefor three values ~ NiX Values. .
of the parametec,,; (lines). The odd-even mass differences ob- In summary, we found our calculations of the root mean
tained from the compilation of experimental masses of Audi andSquare radii and the two-neutron separation energies of
Wapstra[57] (solid circle and from the Mder-Nix systematics ~SPherical nuclei to be relatively independent of the strength
[56] (open circley are also plotted. of the pairing interaction. As the experimental data for these

quantities are well fit by the NL3 parameter set used here, it
values of thetwo-neutron separation energy are almost in- is not surprising that our calculations describe them well. We
dependent of the parametgy,;, and underestimate the mass observed that the pairing energy is only observable through
dependence of the separation energy at very low and veris effects on the binding energy and that our calculations are
high values of the neutron excess, as in the case of Sn. Nobt as successful at describing the latter as they are with the
surprisingly, our values are in good agreement with the RHB-adii and the separation energies. A reasonable fit to the
ones of Ref.[40], which also use the NL3 parameter set. binding energies will depend on the adequate choice of the
They also agree well with the results of RE38], obtained  parametec,,;, as well as further adjustments in other inter-
with the NLSH parameter s¢b3], using Gogny D1S and action parameters. We found that the binding energy and the
density-dependent zero-range pairing interactions. mean value of the gap parameter, to a certain point, are the
In Fig. 6, we present the mean value of the neutron gapbservables that can be used as guides to a study of pairing
parameter of the even Ni isotopes as a function of the mas# spherical nuclei.
for the same three values of,;. Again, we find a clear
dependence of the gap parameter on the valug,gf The
calculation withc,,;,=0.52 shows the best agreement with
the Mdler-Nix and Audi-Wapstra values in the region above In this section, we analyze pairing and deformation in the
the shell closure atl=28, A=56. All of the calculations are N=28 isotonic chain. The measured quadrupole deforma-
in disagreement with the experimental/systematic values itions for these nuclei characteriZéCa as spherical but?Ar
the region of the magic numbé&t=28. This again suggests and *‘S as deformed, implying suppression of tNe-28
that short-range neutron-proton correlations may be impormagic number. The deformation can be explained, in this
tant whenN~Z. case, by the close proximity of thefZ/2 level to the »
In Fig. 6, we note that the neutron gap parameter is zero devels in the 4o shell. In the nucleus®Ca, the spherical
the neutron shell closures Bt=20, 28, and 50. The subshell proton configuration constrains the neutron configuration to
closures are more marked here than in the case of tin. For Nalso remain spherical. In th&Ar and #*S nuclei, the par-
these appear dtl=40, A=68, between the Bw shell and tially filled proton shell perturbs the neutrons sufficiently for
the 1g9/2 level and aN= 70, A= 98, between the#w shell  them to prefer a deformed configuration in which thie7/2
and the 111/2 level. As occurred in the calculations of the and 2p orbitals are partially occupied.
isotopes of Sn, the value of the average gap parameter at the Recent theoretical studies describe the experimental data
subshell closures increases wif,. for these nuclei reasonably well with nonrelativistic and rela-
Values of the average neutron gap parameter of the Nivistic mean field+ BCS[58,59 calculations and with RHB
isotopes betweerN=28 and N=50, obtained using the calculations using the Gogny potentid®]. In Refs.[58,59,
Gogny interaction in a RHB calculation, were presented inWerneret al. use both a Skyrme-Hartree-Fock approach and
Ref. [40]. As in the case of Sn, the RHB calculation fur- a relativistic mean field model, with the NLSH parameter set,
nishes values of the gap parameter greater than 2.5 Me\{o study various isotopic chains in tié~28 region. They
which are quite large. The calculation presents a subsheihclude pairing as a small’'s keV) constant pairing gap in a
structure similar to that witle,,,= 0.52 in Fig. 6, but almost  BCS formalism. They found the isotoné%si, *‘S, and*°Ar
50% larger in magnitude. to show evidence of shape coexistence in both approaches,
As in the case of the Sn isotopes, the pairing energy of thalthough the deformation at the energy minimum and its en-
even Ni isotopes reflects the shell structure and the depemrgy difference with the excited minimum varied between
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FIG. 7. Average value of the gap parameter of the even isotopes |G, 8. Binding energy of“S, as a function of the quadrupole
of S, as a function of the mass numbr for two values of the  geformationg, for two values of the parametep;-
parameterc,,; (lines). The odd-even mass differences obtained

from the compilation of experimental masses of Audi and Wapstra . #8c .
[57] (solid circles and from the Mdtler-Nix systematic§56] (open rupole deformatior. For the case of*Ca, we find that the

circles are also plotted. ground state energy reaches its minimunBat0, where the
nucleus is spherical, just as we would expect. We also find a
the two calculations. Lalazissé al. used the RHB approach small difference of about 0.5 MeV between the calculations
to perform a similar study of thid~28 isotopes in Ref42].  for the two values of ;. This difference is consistent with
Using the NL3 parameter set, they studied the even isotopdfe small difference in the pairing energy and the small, but
of Mg through Cr. They observed prolate-oblate staggeringionzero, average pairing gap found in the calculations.
in the N= 28 isotones below®Ca, similar to that seeninthe ~ In Fig. 8, we present the dependence on the deformation
RMF calculations of Werneet al.and similar signs of shape B of the binding energy of the nucleu¥'s, for the two
coexistence: the binding energies versus quadrupole defovalues ofc,,;. [The energyE, displayed in the figure actu-
mation of the isotones display two minima or a very flatally differs by a sign from the binding energi,(Z,A) =
single minimum. —B(Z,A).] Here the variation ofc,,, from 0.50 to 0.55
We present here the average values of the gap parametéakes a difference of almost 3 MeV in the binding energy,
of the even-even S isotopes, in Fig. 7 as a function of thén contrast with the small difference of about 0.5 MeV found
mass, for two values of the parametgy,. We observe that for **Ca. The energy curves fdfS possess two well defined
both calculations fall well below the Mier-Nix and Audi-  minima, with the oblate minimum about 1 MeV above the
Wapstra values at lower values of the mass. However, thgrolate one in the case af,,;=0.50 and about 0.5 MeV
isotopes that are of interest at the moment are in the regiodbove the prolate minimum whep,;= 0.55. The increase in
of large neutron exces#=40, where the average values of the parametec,; tends to flatten the energy curve, thereby
the calculated gap parameter and the experimentatliminishing the differences between its peaks and valleys.
systematic values are in reasonable agreement. In particulakhe increase irc,,;, also reduces the value of the deforma-
we see in Fig. 7, that the Mler-Nix and Audi-Wapstra val- tion at the minima. The deformation at the oblate minimum
ues of the gap irfS fall close to the calculation with,,;,  decreases in magnitude by almost 20% with the increase of
=0.55. The average value of the gap parameters of the oth€pair from 0.50 to 0.55, while the deformation at the prolate
isotopes that we will examine show the same reasonableinimum is reduced by about 10% with the same increase in
agreement with the experimental/systematic values in th€pai-
mass range of interest. The experimental value of the quadrupole deformation of
To study in detail the dependence of the binding energy*S is 3=0.258(36)[60,61, which is in good agreement
on the quadrupole deformation, we perform calculations awith the calculated valugg=0.28, usingcp,=0.55. The
several fixed values of the deformation. To do this, we in-relativistic calculations of Werneat al. and Lalazissi%t al.
clude in the Lagrangian a term that is quadratic in the differfurnish a value of the deformation similar to this one. The
ence between the quadrupole moment of the nucleus and tfiRHB calculation of Ref.[42] yields an oblate minimum
desired value of the moment. The solution of the equation ofibout 200 keV above the prolate one, which can be com-
motion including this additional potential term tends to takepared to our value of about 0.5 MeV between the two
a value which minimizes its contribution, thereby yielding aminima and a value of about 0.8 MeV in the RMBCS
guadrupole moment close to the desired value. The contribwsalculation of Refs[58,59. Nonrelativistic HF calculations
tion of the constraint term to the energy is subtracted tdurnish a value ofg that is about half of the experimental
obtain the binding energy of the system at the value of thene[58,59.
qguadrupole moment obtained in the calculation. The consis- In Fig. 9, we present the dependence on the deformation
tency of the method can be verified by calculating the groungB of the binding energy of the nucled$Ar, for two values
state energy of a spherical nucleus as a function of the quaaf the parametec,,;,. The difference in the binding energy
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-378 . | . . . . . TABLE I. Binding energies, ground state deformations, and av-
erage pairing gaps of thg=28 isotones forc,,;=0.55.
r 46Ar 1
_asol _ B.E. B (An) (Ap)
= | | DHB A-W M-N M-N DHB DHB DHB
%_382_ ] %Ne -225.19 —214.03 —0.29 0.28 221 1.19
- 40Mg —272.48 —268.04 —0.29 0.39 1.86 0.00
23 i 1 425 —315.53 —313.04 —315.16 —0.32 —0.32 1.24 0.00
-384} - 45 -352.78 —353.49 —351.99 0.00 0.28 1.42 0.00
i 1 PTI &"5’6’_ 4Ar —385.58 —386.91 —386.18 0.00—0.18 1.19 0.00
Sppo e~ T we2er 055 “8Ca —415.05 —415.98 —41556 0.00 0.00 0.84 0.00
3800 " 025 000 025 050 50Ti —436.99 —437.77 —438.65 0.00 0.00 0.00 1.55

52Cr —455.58 —456.34 —457.27 0.00 0.00 0.00 1.52
SFe —470.69 —471.75 —47258 0.00 0.00 0.00 1.06

FIG. 9. Binding energy of®Ar, as a function of the quadrupole 56N; —482.67 —483.98 —484.48 0.00 0.00 0.00 0.00
deformationg, for two values of the parametep,;,.

chain, *Ne and ‘Mg, the calculations are in good agree-
due to the variation o€,; is about 1 MeV. The minima of Ment with the Audi-Wapstra and Mer-Nix systematics.
the curves are much less defined here than they are in the In agreement with the other calculations discussed above,
case of*S. In fact, the calculation using,,=0.50 appears we find the even-even nuclei with<48 in theN=28 iso-
to have only an oblate minimum. The calculation Witk tonic chain to display the characteristics of shape coexist-
—0.55 possesses two minima, with the oblate one approxi€Nce- The nuclei vary between oblate and prolate ground
mately 200 keV below the prolate one. Due to the lack ofStaté deformations and possess both prolate and oblate
structure in the curves, it is difficult to determine the reduc-Minima that are very similar in energy. The values we obtain
tion of the deformation at the minima due to the increase if©" the ground state deformations are very similar to those of
the parametec,;,. The experimental value of the quadru- the other qalculations. The values obtained for the pairing
pole deformation of*éAr is || =0.176(17)[62], with the ~ 9a@PS are dlffe_rent however. Th_e RMBCS calculations of
sign of the deformation undetermined experimentally. As-Refs:[58,59 fixed the gap at either 75 keV or at 500 keV,
suming the deformation to be oblate, the calculated value of@lues which are relatively small for such light nuclei. The
B=—0.18 is in excellent agreement with the data. A nonrel-RHB calculations of Refl42], which are the most similar to

ativistic HF calculation furnishes results in reasonable agree?U" calculations in terms of method, %btained average values
ment with ours, while its companion RMFBCS calculation  ©f the pairing gap that are about 40% larger than ours, but
predicts the oblate minimum of th&Ar energy curve to lie values for the deformations that are almost identical to ours.
slightly above a spherical ground std@8,59. The RHB If we were to increase the magnitude of the pairing field in
calculation using the Gogny interaction yields a flat ener ) L
curve with a bar%ly disce?ni{)le minimum);‘:’tw —0.15[42]. g)ét)han those of the RHRBand othey calculations. This discrep-
We have performed calculations of the binding energy a&ncY is an indication of the relativistic effects of the Dirac
a function of the quadrupole deformation for otHer 28 pairing field that were discussed in the Introduction. There,
isotones. The binding energies Mg and *%Si are also we suggested that the Dirac structure of the pairing field

found to possess both an oblate and a prolate minimum. Ju pould result in its being more Io_ca_li_zed on the nuclgar sur-
as for /S, we find that increasing the value @f,; tends to ace and, thus, more effective in limiting the deformation. As
) ailr

flatten their energy curves and to reduce the magnitude of thtv?e Dgac structure Ofl thle pairing f:jel?] |sr\s|f1|%prln0|pal differ- it
deformation at the minima. The calculation usirg, :encde etwe?r: O,tjhr. caicu atlonf and the ones, our results
=0.55 yields, for “’Si, a sharp oblate minimum g8= end support o this argument.

—0.32, about 1 MeV below a shallow prolate minimum at
B=0.25. For*Mg, the calculation usingpq;—= 0.55 yields a
fairly shallow prolate minimum aB=0.38, about 0.5 MeV Nuclei in the region of th&~40 subshell closure present
below a shallow oblate minimum @= —0.25. As far as we interesting variations in deformation as they deviate from the
know, the deformations of these nuclei have not been meareutron magic numbex =50 on either side of the stability
sured. As mentioned before, a small neutron pairing gap petine. Studies of their level schemes and lifetimes have shown
sists in our calculation of the spherical nucletf€a. This  that the ground-state properties of these nuclei are very sen-
gap disappears in the heavibr=28 isotones,*®Ti, 5°Cr, sitive to small changes in the proton and neutron number
and >*Fe, which are also spherical, but which possess insted®3,64].

an average proton gap. In Table I, we provide a summary of Strontium isotopes present two regions~38 andN

the ground state energies, deformations, and average gap pa60) of very strong deformations, as large s 0.4. This
rameters of the nuclei in th&l=28 chain, obtained with behavior can be seen in ti2 + measurements as well as in
Cpair=0.55. We note that, except for the lightest nuclei inthe isotope shifts. The rapid transition from a spherical shape

C. Deformed nuclei in the Z=40 region
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[ ' ' ' ] ployed the parameter set NL1, which has a very large asym-
—830r 100, Cputr ] metry energy and does not describe the isotope shifts well
r r reeer g-g}t 1 [20,21]. In Ref.[22], however, Lalazissis and Sharma suc-
—832r ceess 0.58 cessfully described the ground state properties of the Sr and
= N ] Kr isotopes, by applying the RMF approach with the NLSH
é —-834r ] parameter set for the mean field Lagrangian and the BCS
-~ RN . Rt formalism for the pairing correlations. The deviations of the
2 —836r L .7 et ] binding energies from the experimental data were the on or-
rooY A der of 0.5% and the deformation paramet@ra/ere in good
-838F % . A agreement with th@ values extracted frorB(E2) measure-
C e il ] ments. It is therefore of interest to perform calculations of
_858.50 ' _0_'25 ' 0‘60 ' 0_2'5 ' 0'5'0 the Sr and Kr isotopes using the Dirac-Hartree-Bogoliubov

approach in those regions and compare the results with the
experimental data.
FIG. 10. Binding energy of%Sr, as a function of the quadru- We begin by studying the dependence of the binding en-
pole deformationg, for three values of the paramei®y,;. ergy on the quadrupole deformation paramegrusing the
method described in the previous section. In Fig. 10, we
near theN=>50 shell closure to a strongly deformed one canpresent the total binding energy as a function of the defor-
be explained by the reinforcement of the shell gaps in thenationg of the nucleust®sr, for three values of the param-
single-particle levels for protons and neutrdds eter ;. The most singular difference between the three
For krypton isotopes, on the other hand, the expectegurves is the change of the absolute minimum, from a prolate
change in shape &t=60, which occurs for most elements in shape in the case af,;=0.51 to an oblate one foc,,;
the Z=40 region, does not appear. Instead, the isotope shifts: 0.54, remaining oblate foc,,;,=0.58. The energy differ-
show a pronounced slope changeNat 50. The fact that a ence between the two minima is quite small and the oblate
strongly deformed ground state does not apped=a60 has ~ minimum becomes deeper relative to the prolate one,gs
been attributed to a reduced proton-neutron interactioh at increases. Foc,,;=0.51, the prolate minimum is 379 keV
=36. deeper than the oblate one. Fxy;=0.54, the oblate mini-
Theoretical studies of these nuclei have been carried ounum is 17 keV deeper, while far,,,;=0.58, it is 823 keV
using both relativistic and nonrelativistic frameworks. deeper. If we take the oblate solution as the absolute mini-
Boncheet al. [54,55 studied these isotopes extensively in- mum, the value of the deformation parameter agrees well
cluding triaxial deformations in the nonrelativistic Hartree- with the experimental value g8=0.372+0.008.
Fock with a Skyrme SllI force, which resulted in a linear We performed calculations for possible minima of both
trend for the isotope shifts. They also used the method oprolate and oblate shapes of most of the known even nuclei
generator coordinates for Sr isotopes and predicted a trangin the Kr and Sr isotopic chains. We found many nuclei for
tion from a spherical to a deformed shape. However, thevhich the two minima have very similar binding energies, an
isotope shifts could not be reproduced in any of those calcuindication of shape coexistence or of a triaxial ground state
lations. deformation.
Many studies using the relativistic mean field approach The two-neutron separation energies of the even Kr and
have been performed in this region. Early calculations emSr isotopes, as functions of the mass number, are shown in

30 T T T T T T T T T T T T T T 30 T T T T T T T T T T T T T T
25 . 25
% 20_ | % 20_
g L 4 § L
. 15_ _ - 15_
10 . 10+
1 I I I L 1 1 ' I 1 I 1 1 1 I 1 1 1 1 I I 1 1 1 I I I 1
@0 80 90 100 "?0 80 90 100
A A

FIG. 11. Two neutron separation energy of the even isotopes of Kr and Sr, as a function of the massAdortteree values of the
parametercyy;,. The values obtained from the compilation of experimental masses of Audi and Wgpglrésolid circles and the
Moller-Nix systematic§56] (open circles are also shown.
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FIG. 12. Mean value of the neutron gap parameter of the even isotopes of Kr and Sr, as a function of the masA, riantbeze values
of the parametec,,; (lines). The odd-even mass differences obtained from the compilation of experimental masses of Audi and Wapstra
[57] (solid circles and from the Mder-Nix systematic§56] (open circles are also plotted.

Fig. 11, for three values df,,;,. To prepare this figure, we present calculations, far,,;= 0.58, together with the experi-
have selected the solution, among the multiple minima ofnental data. The valug,,;= 0.58 furnishes the best descrip-
each isotope, that has the deepfdisolut¢ minimum. We  tion of the total binding energies and of the mean value of
compare our results with the Mer-Nix systematics and the the neutron pairing gap. The cases in which the difference
Audi-Wapstra compilation. We find the calculations to agreebetween two minima is less than 200 keV are marked with a
quite well with both of these. As in the previous cases, thestar and the results for the two deformations are presented. In
calculated two-neutron separation energies are fairly insensgeneral, the calculated binding energies agree quite well with
tive to the parametec,;- the experimental values, although the proton-rich isotopes
In Fig. 12, we display the mean value of the neutron gapare slightly underbound in the calculations.
parametefA,) of the even mass Kr and Sr isotopes, as a Our calculations, with one exception, predict that the non-
function of the mass number, for the same three values a$pherical even nuclei in the two isotopic chains will have an
Cpair- We find the best agreement with the Mo-Nix and  oblate ground state deformation. This contrasts sharply with
Audi-Wapstra values to be given by the calculations usinghe Mdler-Nix systematics which, with two exceptions, pre-
Cpair= 0.58. The shell closure & =50 is clearly visible as a dicts prolate deformations for the ground states of the non-
zero in the calculated pairing gap of both isotopic chains. spherical nuclei of the two chains. Such disagreement is not
In Table Il, we present the results for the total bindingtoo surprising, given the sensitivity to the interaction param-
energy and the deformation paramejgrobtained in the eters of the binding energy versus deformation curve of

TABLE II. Binding energies and ground state deformations of the even isotopes of Kr and Sr for

Cpair=0.58.
Kr Sr
B.E. B B.E. B

A DHB Expt. DHB M-N A DHB Expt. DHB M-N
72 —604.25 -607.11 -0.32 —0.35| 76 —635.48 —638.08 0.49 0.42
74 —629.51 -631.28 —-0.30 0.40 78 —661.70 —663.01 —0.17 (0.47) 0.42
76 —653.5F —654.23 —0.20 (0.00) 0.40 80 —686.41 —686.28 0.00 0.05
78 —675.86 —675.55 0.00 —0.23| 82 —-709.43 —708.13 0.00 0.05
80 —696.75 —695.43 0.00 0.0§ 84 —730.94 —728.90 0.00 0.05
82 -—716.19 -714.27 0.00 0.07 86 —750.99 —748.92 0.00 0.05
84 —734.19 —732.26 0.00 0.06 88 —769.17 —768.46 0.00 0.05
86 —750.29 —749.23 0.00 0.03 90 —-782.74 —782.63 0.00 0.05
88 —762.20 —761.80 0.00 0.06 92 —795.1% —795.75 —0.12 (0.10) 0.08
90 -—-773.08 —773.21 —-0.14 (0.14) 0.1 94 —807.22 —-807.81 -0.18 0.26
92 -—783.63 —783.22 —-0.27 (0.20) 0.23 96 —818.67 —818.10 -0.23 0.34
94 —793.59 —791.76 —-0.29 0.31| 98 —829.36 —827.87 —0.26 0.36
96 —802.77 —799.95 -0.16 0.34| 100 —839.29 —837.62 -0.25 0.37
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FIG. 13. Isotopic shifts of the even isotopes of Kr and Sr, as a function of the mass nénfbec,,,= 0.58 (lines). The experimental
values are displayed as points with error bars.

many of these nuclei. An example of this sensitivity wasWe justified the zero-range approximation by arguing that
displayed in Fig. 10, in which the ground state '8fSr was  the effective length for spatial variations of the wave func-

seen to be prolate foc,,;=0.51 but oblate forc,,;=0.54  tions, in the calculations performed at present, is larger than
and 0.58. We note that, of the five nuclei for which we foundthe range of the nonlocality of the pairing interaction, ren-

a second minimum within 200 keV of the ground state onedering the effects of the nonlocality close to negligible.

the deformation of the second minimum of four of these e studied the effects of the Dirac pairing field on the

nuclei is in agreement with the Mer-Nix prediction. Ex-  properties of the even-even nuclei of the isotopic chains of
perimentally, Iarge; grou%j state ggformatlons/bﬁfzo.44 Ca, Ni, and Sr(spherical and Kr and S(deformed, as well
have been found if°Sr, "Kr, and "°Kr [4]. These values 55 theN=28 isotonic chain. We first studied the isotopic

are in a%reement with the I\Her-_le ones and with our re- - cpaing of the spherical nuclei in order to determine the sen-
sult for "°Sr. They are not consistent with our resuits for thesitivity of various nuclear observables to the interaction in

Kr isotopes. ‘e ;
. . the pairing channel. We found the two-neutron separation
The calculated isotope shifts of the even-even Kr and S nergies, root-mean-square radii and isotopic shifts of the

i 5 88,
isotopes, with respect to the reference nuéfr and *sr, spherical nuclei to be fairly independent of the strength of

respectively, are compared to the experimental data in Fi S . —
13. We display only the results for the deepest energy min%he pairing |n.t(.aract|on. The_ pmd.lng energy, on the contrary,
quite sensitive to the pairing interaction strengh least

mum of each isotope in the figure. In the cases in which &S o . .
second minimum is close in energy to the deepest one, thelf €N the pairing is not identically zero due to a shell clo-

isotopic shifts are also very similar. We find the agreemen?“re- Quite obviously, the average pairing gap a!s'o dl'splays
with the data for the neutron rich side to be very good. In@ Strong dependence on the strength of the pairing interac-
addition, the positions of the kink due to the shell effect fortion. We observed that an adequate choice of this strength
the Kr and Sr isotopes are also well reproduced. Howevels,lmultaneously yields reasonable values for the binding en-

the calculations underestimate the isotope shift on the protofdy. near the stability line, and rough agreement between
rich side of the stability line. the average pairing gap and the experimental gap, defined in

terms of even-odd mass differences. Far from the stability
line, our calculated binding energies showed increasing dis-
crepancies with the experimental data, suggesting that the
We have used an extension of the Gorkov formalism forNL3 parameter set might require further adjustment, at least
the description of pairing to develop a Dirac-Hartree-Fock-when used in a DHB formalism. All in all, however, our
Bogoliubov approximation to the ground state wave functionresults show good agreement with the data and with previous
and energy of finite nuclei. We have applied it to spin-zerocalculations.
proton-proton and neutron-neutron pairing within the Dirac- To study the deformed Kr and Sr nuclei and the deformed
Hartree-Bogoliubov approximatiofwe neglected the Fock nuclei of theN=28 isotonic chain, we performed a sequence
term). We have retained the full Dirac structure of the pair-of constrained Dirac-Hartree-Bogoliubov calculations, as a
ing field that is permitted by the symmetries of the problem.function of the quadrupole deformatigs, for each of the
We find the Dirac pairing structure to be dominated by anuclei in question. Each sequence of calculations provided us
scalar term and the zero component of a vector term, as hagith a curve of binding energy versus deformation that per-
also been found to be the case f&, pairing in symmetric  mitted the localization of the equilibrium configurations of
nuclear matter. the nucleus. Most of the nuclei in these three chains present
In our calculations, we use a zero-range approximation tdoth a prolate and an oblate minimuyand, at times, a slight
the pairing interaction, which results in a local pairing field. spherical minimum as well In agreement with other calcu-

VIl. SUMMARY
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lations, we found nuclei in each of the chains for which theparameters that describes these better. We plan to extend our
energies of the oblate and prolate minima were very similargcalculations to odd nuclei by including a blocking term. As
raising the possibility of shape coexistence or triaxial groundhe blocking term varies, along with the other states, during
state deformations. For the most part, our results present rethe search for the Dirac-Hartree-Bogoliubov stationary point,
sonable agreement with the data and with previous calculahis does not seem to be a trivial task. In order to facilitate it,
tions. We did, however, observe a discrepancy between owre plan to first develop an extended BCS approximation,
average pairing gaps and those of the RHB calculations dbased on the self-consistent Hartree eigenstates of the mean
Ref.[42], which we took as an indication of the relativistic field in conjunction with the relativistic pairing field. Such an
suppression of the pairing field due to its Dirac structure. Ouapproximation could also serve as a faster first stage to the
DHB calculations furnished quadrupole deformations similarDirac-Hartree-Bogoliubov calculations, which are quite
to the RHB ones for average values of the pairing gap thatime-consuming at the present. Eventually, we also intend to
are about 30% smaller than theirs. include the nonlocality of the pairing interaction, in order to

Based on the nuclei we have studied here, we concludase more realistic interactions containing the relatively long-
that the DHB approximation can provide a description of therange effects of pion exchange.
binding energies, rms radii and ground state deformations of
finite nupl_el _that is at Ieast_ as good as that provided by 'Fhe ACKNOWLEDGMENTS
nonrelativistic HFB approximation or by the RHB approxi-
mation. Our claim that the DHB approximation can provide The authors would like to thank P. Ring for providing
a more reliable description than the others, however, has ndhem with an early version of the Munich deformed relativ-
been demonstrated here. This will require further study ofstic Hartree cod¢65], which served as the starting point for
the parameters that enter the pairing interaction, in order tthe code used for the calculations described here. The au-
better fix their values. thors acknowledge partial support from FAPEGRNdaeo

In the future, we plan to extend our calculations to ade Amparo a@Pesquisa do Estado deé®BRaulg. B.V.C. ac-
larger set of isotopic chains and to analyze in detail theiknowledges partial support from the CNRgpnselho Nacio-
proton- and neutron-rich tails, in order to obtain a set ofnal de Pesquisa e Desenvolvimento

APPENDIX A: TIME-REVERSED PAIRS OF STATES
We begin by writing the complex conjugate of EE5) as
Yo((e+ p) (x—y)—Bh*(x,y)B") BA*(x,y)B' BU*(y)
fd3y 03 ot s e s - =0, (A1)
BA*(x,y)B (e—u)(x—y)+BhT(X,y)B")yo/ \ BV*(y)

whereB= y5C is the Dirac matrix part of the time-reversal operator. Analyzing the Hamiltonian term, we see that
Bh*(x,y)B'=B(ia*-V+B*M)BT8(x—y)+BB*S*(x,y)Bf=(—ia-V+BM)s(x—y)+BB*3*(x,y)BT. (A2

The self-energy term, in turn, can be put into the form

Bﬁ*2(§,9)8T=5(§—§)§j‘, ByZ,‘FJ-*a()Z)BTf d3z Dfﬁ(i—f)gzo UN(2)B'By§T}4(2)B'BU (2)BT
Y

—; Bys T}, (X)BTD“A(x—y) 2<0 BU*(X)U(y)B'By§T5(y)BT. (A3)
€y

If we now look closely at the vertex functions we are considering here, we find

for the o meson:Byg 1B .. . By 1B =y,1 ... 9,1,

for the o meson:Byj v5B'g* .. . By§ viB = %7, ... vov..

for the p meson:Byg yz 7 Bfgrvsl . .. Byg vi TJ* B'= yoy’urig”"éij C YOV T

for the photon:B(1+75)/2y5 yiB'g"" .. . B(1+75)/2y5 viB'=(1+73)/2y0y,9"" . .. (1+ 73)/2y0y,. In short, the
products of the pairs of vertices remain unchanged by the transformation. We thus have for the transformed self energy,

BB*E*OZ&)BT:&O?—?)}]: Yol o(X) f d’z Dfﬂ&—i’)(;@ u$<£>B*yoer<£>BU*;<£>)

—2 yor,-a<x“>Daﬂ<i—§>(sE<0 Bu;<i>u$<§>8*yo>rjﬁ<9>, (A4)

in which the only differences from the original expression for the self-energy are the propagator contributions, written in terms
of the solutions of the Dirac-Gorkov equation, that enter the expression.
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We can perform the same analysis on the pairing term, for which we find a similar result,
BA*(M)BE—; Pja(0DPx=y)| 2 Bu:<i>v1<§>s*yo)AF,-TB@A*, (A5)
Y

in which the only difference between the original expression_and the transformed one is again the propagator’s contribution to
the expression. Analyses of the other terBiaZ;(>_<>,)7)BJr ano!BA*(ij)BT, yield similar results.

We can thus show that the transformed wave vec@@f (t))) satisfies a similar equation
Yo((e+ 1) S(X—y) —h(x,y)) A(X,y) BU*(y)
Jd3y( e S o, (6)
A(x,y) (e =) 8(x=y) +h(X,¥))vo/ \ BV*(y)

to that satisfied by the wave vectqlfr((f))). Each is a solution of an equation with the same energy eigenvalue but with orbital
guantum numbers and mean fields that have the time-reversed Dirac structure of the other. If each member of these pairs of
states possessing time-reversed Dirac structure are equally occupied, the sums over states that enter into the definition of the
self-energy and pairing fields will be invariant under the transformation that temporally inverts the Dirac structure. That is, we
then have that

20 uy&)u;(y*):ggo BU*(x)U(y)BT (A7)
and

> U, ()Viy)= X BUX(x)Vi(y)B. (A8)

87<0 sy<0

- -
In this case, both of the wave vector\%((z)) and @\L;* ((:))) satisfy the same Dirac-Gorkov equation with the same energy
eigenvalue. Then either both or neither of them will enter the propagator’s contributions to the self-consistency equations and
these contributions will indeed be invariant under time inversion of their Dirac structure. We assume this to be the case.
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