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Dirac-Hartree-Bogoliubov approximation for finite nuclei
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We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function
and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the
Dirac-Hartree-Bogoliubov approximation~we neglect the Fock term!, using a zero-range approximation to the
relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the
isotopic chains of Ca, Ni, and Sn~spherical! and Kr and Sr~deformed!, as well as theN528 isotonic chain,
and compare our results with experimental data and with other recent calculations.

PACS number~s!: 21.65.1f, 21.60.Jz, 21.30.Fe
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I. INTRODUCTION

The advances made at radioactive nuclear beam facil
provide us with an increasing amount of information on n
clei far away from the stability line. We now have access
experimental measurements of the masses, radii and d
mations of unstable nuclei in a wider region of the nucle
chart than ever before. Studies of exotic nuclei have reve
new features, such as neutron halos@1# and neutron skins
@2,3# and bring new perspectives to nuclear physics@4#.
Planned facilities around the world plan to study unsta
nuclei up to ther-process region or even beyond. This w
enable us to investigate where and how exotic phenomen
nuclear structure appear in the region far from the stab
line @5,6#.

In recent years relativistic many-body theories have b
applied to nuclei and nuclear matter with remarkable succ
@7–9#. The relativistic Brueckner-Hartree-Fock~RBHF!
theory has been shown to be capable of reproducing the s
ration properties of nuclear matter using interaction para
eters that describe the two-nucleon bound state and sca
ing @10#. Its phenomenological version, the relativistic me
field model~RMF!, has been successfully applied to the d
scription of many of the ground-state properties of stable
unstable nuclei@11–24# and has been shown to be capable
simultaneously reproducing the properties of stable and
stable nuclei over a wide mass range of the Periodic Ta
@25#.

The relativistic mean field approach has also been app
to describe the structure of very exotic nuclei. In these c
culations, the pairing interaction has been neglected or s
ply treated by a nonrelativistic BCS type of approximati
@25,26#. For nuclei on or near the stability line, the BC
approach provides a reasonably good description of pai
properties. However, for drip-line nuclei, the Fermi level

*Present address: GANIL, BP5027, Bd Becquerel, F-14076 C
Cedex 5, France.
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close to the continuum and the coupling between bound
continuum states should be taken into account explicitly. T
pairing correlations and the mean fields should be calcula
simultaneously in order to obtain an accurate description
the ground state properties of drip-line nuclei.

A more precise relativistic description of pairing correl
tions, a Dirac-Hartree-Fock-Bogoliubov~DHFB! approxima-
tion, was developed some time ago@27# and, more recently,
applied to nuclear matter calculations@28–31#. The first cal-
culations in nuclear matter furnished pairing gaps mu
larger than those obtained in nonrelativistic calculations
ing realistic interactions@28#. The results suggested that th
meson-exchange interactions adjusted to describe nuc
matter saturation might not be adequate for the partic
particle pairing channel. However, these calculations did
perform a complete self-consistent DHFB calculatio
Rather, they combined a relativistic Hartree mean field c
culation with a nonrelativistic calculation of the pairing fie
using the nonrelativistic reduction of the meson-exchan
potential. Self-consistent calculations including the full Dir
structure of the self-energy and pairing fields resulted
more reasonable values for the pairing gap@29,30#. Yet these
DHFB calculations, using various sets of meson-excha
parameters that furnish similar good descriptions of nucl
saturation, still resulted in values of the pairing gap that w
not consistent with nonrelativistic calculations nor consist
among themselves. In Ref.@31#, these discrepancies wer
resolved by associating the pairing gap of each set of me
exchange parameters with the set’s description of low-ene
two-nucleon scattering in the1S0 channel. When each of th
parameter sets was supplemented with a momentum cu
so that they each described the two-nucleon1S0 virtual state
correctly, they all provided consistent values for the pairi
gap that very close to the nonrelativistic ones, at low den
ties. Thus, the conclusion of Ref.@28# was found to be cor-
rect after all. The meson-exchange interactions adjuste
describe nuclear matter saturation are indeed inadequat
the pairing channel, when they do not describe the tw
nucleon 1S0 channel well. In the case of nuclear matte
n
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however, we have found that this inadequacy can be ea
remedied.

Even after the different sets of meson-exchange par
eters have been augmented so as to describe the two-nu
1S0 channel, they still differ slightly among themselves
densities greater than about one-eighth of the saturation
sity, where mean field effects begin to play a role. Mo
importantly, they all differ in a consistent manner from t
gap functions obtained using realistic nonrelativistic tw
nucleon interactions. The relativistic pairing gap consisten
falls to zero at lower density~by about one-half! of that for
which it disappears in nonrelativistic calculations. Much
the Dirac structure of the nuclear mean field weakens
effective interaction as the density increases, leading to s
ration, so the Dirac structure of the pairing field weakens
effective pairing interaction with density, leading to the su
pression of the pairing field relative to the nonrelativis
one. An estimate of the relativistic effects on quasideute
pairing shows that the same effects also suppress quas
teron pairing at the saturation density@32#. We thus expect a
density-dependent suppression of the pairing field to b
general feature when we take the Dirac structure of the fi
into account.

The relativistic Hartree mean field1 nonrelativistic pair-
ing field approximation of Ref.@28# can and has been ex
tended to finite nuclei. This hybrid relativistic Hartre
Bogoliubov ~RHB! approximation, using a nonrelativisti
finite-range Gogny interaction in the pairing channel, h
been applied extensively, and quite successfully, to the
culation of the ground state properties of spherical@33–41#
and deformed nuclei@42#. We would expect reasonable re
sults from such a model as long as the mean field is w
described by the meson exchange interaction and the1S0
two-nucleon channel is well described by the effective pa
ing interaction. This is indeed the case in the references c
here. However, we might expect its pairing interaction to
less reliable than a meson-exchange one when extrapo
far beyond the stability valley, the condition for which i
parameters have been adjusted.

Aside from simply being more pleasing aesthetically,
are motivated to retain the Dirac structure of the pairing
teraction in our calculations by the success of our studie
1S0 pairing in nuclear matter and by their differences fro
the nonrelativistic results. The success of our nuclear ma
calculations lead us to believe that a good description
nuclei can be obtained using a Dirac pairing interact
based on a meson-exchange one. Such a description w
be of general interest, since the Dirac structure of a mes
exchange interaction could be extended beyond the valle
stability with better reliability than could a nonrelativist
interaction. A nonrelativistic effective interaction must inco
porate the density dependence furnished by the Dirac st
ture of a meson-exchange interaction into its effective
rameters. This density dependence changes as we con
nuclei further and further from the stability valley, thus lim
iting the range of application of an effective interaction a
justed to describe the conditions in the valley.

The differences between our results and nonrelativi
ones in nuclear matter suggest that interesting effects of
05431
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Dirac structure of the pairing interaction might appear ev
in nuclei within the stability valley. The suppression of pa
ing in the saturated interior region, in DHFB calculation
similar to that observed in nuclear matter, would result
greater localization of the pairing field on the nuclear surfa
than is the case in nonrelativistic or RHB calculations. Th
in turn, would tend to make the nucleus more rigid and te
to diminish its deformation. We then would expect to o
serve a smaller pairing field in DHB calculations that furni
the same deformation as nonrelativistic or RHB ones, o
smaller deformation in DHB calculations that furnish th
same value of the pairing field as nonrelativistic or RH
ones.

Here we present a fully relativistic Dirac-Hartree
Bogoliubov ~DHB! approximation for axially deformed nu
clei. We use a direct extension of the DHFB approximati
developed in Ref.@29#. We neglect the exchange term in th
self-energy but retain the Dirac structure of the pairing int
action and pairing field. The neglect of the exchange te
seems a reasonable approximation here, as we restrict
calculations to the exchange ofs, r, and v mesons, for
which the exchange effects can be fairly well accommoda
by adjustments in the coupling constants. The characteris
of the pairing field and of its Dirac structure will form th
center of our study. Our goal is to extend our success
DHFB description of nuclear matter to a DHB description
finite nuclei.

We use a local~zero-range! approximation to the meson
exchange interaction in the pairing channel. A zero-ran
approximation to the pairing interaction can be justified
an analysis of the length scales in a typical DHB calculati
Taking oscillator wave functions as a guide, we can estim
the wavelength in one dimension of a wave function of qu
tum numbern ~in that dimension! as ln'4.4b0 /An, where
b0 is the oscillator length,b0'A1/6 fm, and A is the mass
number of the nucleus. In the fairly extreme case of theN
516 shell of 16O, we find a wavelength ofl16'1.75 fm.
The wavelength is larger in heavier nuclei or in lower she
On the other hand, the range of a typical meson-excha
interaction isr x5\c/m, wherem is the meson mass. For th
lightest of the mesons that we include, thes meson, we find
a range ofr s,0.5 fm, substantially smaller than the wav
length l16. Even the term of longest range of the Gog
interaction hasr 251.2 fm only. Thus we find that the inter
action range is typically smaller than the length scale of
most energetic level, making the effects due to the fin
range of the interaction small. This analysis has, in fact, b
confirmed numerically by Meng@38#, who found zero-range
and finite-range Gogny RHB calculations to yield almo
identical results.

In Sec. II of the following, we derive the self-consisten
equations for the self-energy and pairing fields. In Sec.
we discuss the properties of static solutions to the equat
and, in Sec. IV, reduce these to the form in which we u
them. In Sec. V, we briefly describe the numerical meth
used in the calculations and, in Sec. VI, we discuss the
sults of the calculations. We summarize and conclude in S
VII.
0-2
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DIRAC-HARTREE-BOGOLIUBOV APPROXIMATION FOR . . . PHYSICAL REVIEW C 62 054310
II. THE MEAN FIELD EQUATIONS FOR S AND D

In this section we present the Lagrangian of the mo
and the covariant equations for the self-energy and pai
mean fields,S andD.

We designate byc(x), s(x), vm(x), rW m(x), andAm(x),
the field operators at the pointx associated to the nucleon
and mesonss, v, r, andg, respectively. The quantum num
bers (Jp,T) for each meson with spinJ, intrinsic parityp,
and isospinT are

s~01,0!, v~12,0!, r~12,1!, g~12,2 !.

We designate the effective meson-nucleon coupling c
stants bygs , gv , andgr and the respective bare masses
ms , mv , andmr . The interaction of the masslessg does not
conserve isospin, coupling to the protons alone with coup
constante. ~We will ignore the interaction with the anoma
lous magnetic moments of the nucleons!. The nucleon bare
mass isM and we assume in the present model that
nucleons and mesons are pointlike. We will not take thep
meson into account, although its effects could be import
in the exchange terms we will consider. We will assume t
these effects can be described through the effective coup
of the mesons we do include. These assumptions are typ
of the simplest meson-exchange models of nuclear struc

The Lagrangian density is given by

L5L01Lint ,

whereL0 is the free Lagrangian density

L0~x!5c̄~x!@ i ]”2M #c~x!

1
1

2
]ms~x!]ms~x!2U„s~x!…

2
1

4
FmnFmn2

1

4
VmnVmn1

1

2
mv

2vm~x!vm~x!

2
1

4
GW mn•GW mn1

1

2
mr

2rW m~x!•rW m~x!, ~1!

with vector field tensors

Fmn5]mAn2]nAm ,

Vmn5]mvn2]nvm ,

GW mn5]mrW n2]nrW m ,

and a nonlinears potential,

U„s~x!…5
1

2
ms

2s~x!21
1

3
g3s~x!31

1

4
g4s~x!4. ~2!

The baryon spinorc(x) has four Dirac components for eac
of two isospin projections—mt51/2 for protons andmt5
21/2 for neutrons—for a total of eight components. W
have included the cubic and quartic terms of the scalar fi
s(x) in the free Lagrangian density as we will only consid
05431
l
g

-
y

g

e

nt
t
gs
al

re.

ld
r

their contributions to the scalar mean field. For this purpo
we may formally include them in the ‘‘free’’ scalar meso
propagator, when it is convenient to do so.

We take the interaction terms in the Lagrangian density
have the simplest possible form consistent with their Lore
and isospin structure,

Lint~x!5gsc̄~x!s~x!c~x!2gvc̄~x!gmvm~x!c~x!

2
1

2
grc̄~x!gmtW•rW m~x!c~x!

2ec̄~x!
~11t3!

2
gmAm~x!c~x!. ~3!

In particular, we will not consider tensor couplings of th
vector mesons.

We wish to characterize the average effect of the inter
tions of a nucleon with the other nucleons through an eff
tive single-particle Lagrangian,Leff , given in terms of the
two fields,S andD. The self-energyS describes the averag
interaction of a nucleon with the surrounding matter. T
pairing fieldD and its conjugateD̄ describe, respectively, th
formation and destruction of pairs during the propagation
particular, the definition ofD makes use of correlated pair
of time-reversed single-particle states, in agreement with
original idea of Cooper@43#. Generalizing slightly the devel
opment due to Gorkov@44#, we introduce such pairs by usin
an extended form of the time-reversed states, which we d
ignate bycT . Designating the time reversal operator byT,
the usual time-reversed conjugatec (T) of the Dirac field op-
eratorc is given by@45#

c (T)~x!5Tc~x!T 215Bc̄T~ x̃!5g0Bc* ~ x̃!,

where

x̃5~2t,xW !, B5g5C,

andC is the charge conjugation operator. We definecT as

cT~x!5t2^ c (T)~ x̃![Ac̄T~x!,

whereA5t2^ B and t2 is the antisymmetric Pauli matrix
which operates here in the isospin space. Note thatA5AT

andA* 5A†. We then use the following ansatz for the effe
tive single-particle Lagrangian:

E dt Leff5E d4x d4yH c̄~x!@ i ]”2M1g0m#

3d~x2y!c~y!2c̄~x!S~x,y!c~y!

1
1

2
c̄~x!D~x,y!cT~y!1

1

2
c T̄~x!D̄~x,y!c~y!J ,

~4!

where d(x2y) is a four-dimensional Dirac delta functio
and
0-3
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m5S mp 0

0 mn
D ~5!

is the isospin matrix of chemical potentials, which will b
used as Lagrange multipliers to fix the average numbe
protons and neutrons.

The symmetries of the effective mean-field Lagrang
under transposition and Hermitian conjugation yield the f
lowing properties of the mean fields:

D~x,y!52A DT~x,y!A†52A„D~y,x!…TA†,

D̄~x,y!52AD̄T~x,y!A†, ~6!

and

S~x,y!5g0S†~x,y!g0 , D~x,y!5g0D̄†~x,y!g0 . ~7!
on

t-
n

05431
of

n
-

The first of these symmetry conditions requires that the p
wave function be antisymmetric under exchange while
second guarantees real energy eigenvalues and proba
conservation.

We can put the effective LagrangianLeff in a more sym-
metrical form by noting that

E d4x d4y c̄~x!@~ i ]”2M1g0m!d~x2y!2S~x,y!#c~y!

5E d4x d4y c T̄~x!@~ i ]”1M2g0m!d~x2y!

1ST~x,y!#cT~y!, ~8!

where

ST~x,y!5AST~x,y!A†. ~9!

The effective Lagrangian can then be rewritten in mat
form as
E dt Leff5
1

2E d4x d4y„c̄~x!,c̄T~x!…S ~ i ]”2M1g0m!d~x2y!2S~x,y! D~x,y!

D̄~x,y! ~ i ]”1M2g0m!d~x2y!1ST~x,y!
D S c~y!

cT~y!
D ,

~10!

which immediately yields the following coupled equations of motion for the fieldsc and cT , which we will call the
Dirac-Gorkov equation:

E d4yS ~ i ]”2M1g0m!d~x2y!2S~x,y! D~x,y!

D̄~x,y! ~ i ]”1M2g0m!d~x2y!1ST~x,y!
D S c~y!

cT~y!
D 50. ~11!
r
e-

istic
by

he

-
tion

des-
Defining the generalized baryon field operator as

C~x!5S c~x!

cT~x!
D ,

we obtain a generalized baryon~quasiparticle! propagator

S~x,y!5S G~x,y! F~x,y!

F̃~x,y! G̃~x,y!
D

52 i K S c~x!

cT~x!
D „c̄~y!,c̄T~y!…L , ~12!

where, by ^ . . . &, we mean the time-ordered expectati
value in the interacting nuclear ground state,^0̃uT( . . . )u0̃&.
We assume that the stateu0̃& contains only nucleons interac
ing through the exchange of virtual mesons and contains
real mesons.
o

We observe thatG(x,y) is the usual baryon propagato
while G̃(x,y) describes the propagation of baryons in tim
reversed states. The off-diagonal terms ofS(x,y) describe
the propagation of correlated baryons and are the relativ
generalizations of the anomalous propagators defined
Gorkov @44#.

To derive the mean field equations, we first rewrite t
interaction terms of the Lagrangian density,Lint , as

Lint~x!52(
j

c̄~x!G j a~x!f j
a~x!c~x!, ~13!

where the Greek lettersa,b, . . . represent any indices nec
essary for the correct description of the meson propaga
and coupling~Lorentz indices, isospin, etc.!. The index j
indicates the mesons of the model:s, v, p, and r, while
their respective fields and meson-nucleon couplings are
ignated by thef j

a(x) and theG j a(x).
We then rewrite the meson fieldsf j in terms of their

sources as
0-4
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f j
a~x!5E d4y Dj

ab~x2y!c̄~y!G j b~y!c~y!, ~14!

where D j
ab(x2y) is the Feynman propagator of mesonj.

Here, we have included the nonlinears-meson terms in the
s-meson propagator, so that they do not appear as co
tions to the source term. Substituting in Eq.~13! and insert-
ing a factor of 1/2 for reasons of symmetry, we have
in

th
in

o
an
s

.
tio
el

05431
c-

E dt Lint52
1

2 (
j
E d4x d4y c̄~x!G j a~x!c~x!

3D j
ab~x2y!c̄~y!G j b~y!c~y!. ~15!

Following Gorkov@44#, we then obtain the mean field con
tribution of this interaction term by replacing each of th
possible pairs of fermion fields by its vacuum expectat
value,
E dt~L int!eff52
1

2 (
j
E d4x d4y Dj

ab~x2y!$2c̄~x!G j a~x!c~x!^c̄~y!G j b~y!c~y!&

12c̄~x!G j a~x!^c~x!c̄~y!&G j b~y!c~y!2c̄~x!G j a~x!^c~x!cT~y!&G j b
T ~y!c̄T~y!

2cT~x!G j a
T ~x!^c̄T~x!c̄~y!&G j b~y!c~y!%, ~16!
d

de-

de-
tion
it-
where^ . . . & is again the time-ordered expectation value
the interacting nuclear-matter ground state.

The first term in this expression is a Hartree one,
second a Fock exchange term while the last two, after us
the definition ofcT to replace the transposedc ’s, can be
recognized as pairing terms. Comparing the mean field c
tributions to those of the effective quasiparticle Lagrangi
we can express the self-energy and pairing fields in term
the two-fermion vacuum expectation values as

S~x,y!5d~x2y!(
j

G j a~x!

3E d4zDj
ab~x2z!^c̄~z!G j b~z!c~z!&

1(
j

G j a~x!Dab~x2y!^c~x!c̄~y!&G j b~y!

~17!

and

D~x,y!5(
j

G j a~x!D j
ab~x2y!^c~x!c̄T~y!&AGb

T~y!A†,

~18!

while the equation forD̄(x2y) can be obtained from the
equation forD(x2y) using the Hermiticity condition of Eq
~7!. These expressions become self-consistency equa
when we evaluate the expectation values by using their r
tionship to the generalized baryon propagator, Eq.~12!,
which is itself a function of the mean fields. We find
e
g

n-
,
of

ns
a-

S~x,y!52 id~x2y!(
j

G j a~x!E d4z Dj
ab~x2z!

3Tr@G j b~z!G~z,z1!#

1 i(
j

G j a~x!Dab~x2y!G~x,y!G j b~y!,

~19!and

D~x,y!5 i(
j

G j a~x!D j
ab~x2y!F~x,y!AG j b

T ~y!A†.

~20!

The number of protonsZ and neutronsN are the expectation
values of the baryon number operators,N̂5c̄(x)g0(1
6t3)c(x)/2, which we rewrite in terms of the generalize
baryon propagator@7#, as

Z

NJ 5E d3xK c̄~x!g0

~16t3!

2
c~x!L

52 i E d3x TrFg0

~16t3!

2
G~x,x1!G . ~21!

The Lagrange multipliersmp and mn , given in Eq.~5!, are
determined by requiring that these equations yield the
sired values ofZ andN.

The Hamiltonian density operator is given by theT̂00

component of the energy-momentum tensor,

Ĥ5T̂0052L1
]L

]~] tc!
] tc1(

j

]L
]~] tf j

a!
] tf j

a . ~22!

Neglecting the retardation terms associated with the time
rivatives of the meson fields in the ground state expecta
value of Eq.~22!, the energy density that results can be wr
ten as
0-5
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E~x!5^Ĥ&

5 i Tr@~ igW •]W2M !G~x,x1!#

2
1

6
g3s~x!32

1

4
g4s~x!42

i

2E d4y

3Tr@S~x,y!G~y,x1!2D~x,y!F̃~y,x!#. ~23!
or
he
e

u

nc

05431
The total energy is obtained by integrating this density o
space.

III. PROPERTIES OF STATIC SOLUTIONS

We will develop a static, ground-state solution to the se
consistency equations. We write the temporal Fourier tra
form of the full HFB propagator as
ely, of
S~xW ,yW ;v!5S G~xW ,yW ;v! F~xW ,yW ;v!

F̃~xW ,yW ;v! G̃~xW ,yW ;v!
D

5(
a

S Ua~xW !

Va~xW !
D 1

v2«a1 ih
„Ūa~yW !,V̄a~yW !…1(

b
S Ub~xW !

Vb~xW !
D 1

v1«b2 ih
„Ūb~yW !,V̄b~yW !…. ~24!

The componentsUa,b andVa,b are Dirac spinors corresponding to the normal and time-reversed components, respectiv
the positive-frequency,«a , and negative-frequency,«b , solutions to the Dirac-Gorkov equation

E d3yS g0„~«1m!d~xW2yW !2h~xW ,yW !… D~xW ,yW !

D̄~xW ,yW ! „~«2m!d~xW2yW !1hT~xW ,yW !…g0
D S U~yW !

V~yW !
D 50, ~25!

where we have introduced the single-particle Hamiltonian,h(xW ,yW ), given by

h~xW ,yW !5~2 iaW •¹W 1bM !d~xW2yW !1bS~xW ,yW !, ~26!

with

hT~xW ,yW !5AhT~xW ,yW !A† and h~xW ,yW !5h†~xW ,yW !. ~27!

After multiplying on the left by the matrix (0
g0

1
0), the Dirac-Gorkov equation, Eq.~25!, can be written in Hamiltonian form

as a Hermitian eigenequation,

E d3yS ~«1m!d~xW2yW !2h~xW ,yW ! D̄†~xW ,yW !

D̄~xW ,yW ! ~«2m!d~xW2yW !1hT~xW ,yW !
D S U~yW !

g0V~yW !
D 50. ~28!
ua-
We thus conclude that the eigenvalues« are real.
After multiplying the complex conjugate of Eq.~25! on

the left by the matrixg0A^ t1, we can manipulate it into a
form which is identical to the original equation, except f
the sign of«. We may thus conclude that the solutions to t
Dirac-Gorkov equation occur in pairs with real eigenvalu
of opposite sign and eigenvectors of the form

«5«a :S U~yW !

V~yW !
D , «52«a :S g0AV* ~yW !

g0AU* ~yW !
D . ~29!

Using the above properties of the eigensolutions, we co
rewrite the full HFB propagator of Eq.~24! as a sum over the
positive eigenvalues«a alone. However, we will continue to
use the form given in Eq.~24!, distinguishing the positive
and negative frequency solutions through explicit refere
to one or the other.
s

ld

e

In the frequency representation, the self-consistency eq
tions take the form

S~xW ,yW ;v!52 id~xW2yW !(
j

G j a~xW !

3E d3z Dj
ab~xW2zW;0!

3E dv

2p
Tr@G j b~zW !G~zW,zW;v1!#

1 i(
j
E dv8

2p
G j a~xW !Dab~xW2yW ;v2v8!

3G~xW ,yW ;v8!G j b~yW ! ~30!

and
0-6
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D~xW ,yW ;v!5 i(
j
E dv8

2p
G j a~xW !D j

ab~xW2yW ;v2v8!

3F~xW ,yW ;v8!AG j b
T ~yW !A†, ~31!

where we have taken the vertices to be time independent
have assumed a time dependence of the formt2t8 in all
other quantities. We evaluate the equations in the static l
of the meson propagators,

Dab~xW2yW ;v!→Dab~xW2yW ;0![Dab~xW2yW !. ~32!

We then have for the self-consistency equations

S~xW ,yW !52 id~xW2yW !(
j

G j a~xW !

3E d3z Dj
ab~xW2zW !E dv

2p
Tr@G j b~zW !G~zW,zW;v1!#

1 i(
j

G j a~xW !Dab~xW2yW !E dv

2p
G~xW ,yW ;v!G j b~yW !,

~33!

and

D~xW ,yW !5 i(
j

G j a~xW !D j
ab~xW2yW !

3E dv

2p
F~xW ,yW ;v!AG j b

T ~yW !A†.

Finally, we evaluate the frequency integrals by closing
contour in the upper half-plane, yielding

S~xW ,yW !5d~xW2yW !(
j

G j a~xW !E d3z Dj
ab~xW2zW !

3 (
«g,0

Ūg~zW !G j b~zW !Ug~zW !

2(
j

G j a~xW !Dab~xW2yW !

3 (
«g,0

Ug~xW !Ūg~yW !G j b~yW ! ~34!

and

D~xW ,yW !52(
j

G j a~xW !D j
ab~xW2yW !

3 (
«g,0

Ug~xW !V̄g~yW !AG j b
T ~yW !A†, ~35!
05431
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where the sum runs over the negative frequency solutio
«g,0, of Eq. ~25!.

The expressions for the number of protons and neutr
can be written similarly as

Z

NJ 5E d3x (
«g,0

Ug
†~xW !

~16t3!

2
Ug~xW !. ~36!

The expression for the energy can be reduced to

E5E d3xS (
«g,0

Ug
†~xW !~«g1m!Ug~xW !

2
1

6
g3s~xW !32

1

4
g4s~xW !4D

2
1

2E d3x d3y (
«g,0

„Ūg
†~xW !S~xW ,yW !Ug~yW !

2Ūg
†~xW !D~xW ,yW !Vg~yW !…. ~37!

Note that the last term is real due to the Hermiticity of t
Dirac-Gorkov equation.

The summation over negative frequency solutions in E
~34! through ~37! takes into account the occupation of a
states, both those in the Fermi sea~the surface of which is
now diffuse, due to the pairing! and those in the Dirac sea
These expressions would thus require renormalization
yield finite results. Instead, we simply truncate the sums
excluding the solutions corresponding to quasiparticle sta
in the Dirac sea. This approximation has been found to g
reasonable results in nuclear matter@29#.

Before reducing the self-consistency equations, toge
with the Dirac-Gorkov equation, Eq.~25!, to a form in which
they can be solved, we observe that, withB5g5C, each of

the pair of wave vectors, (V(xW )
U(xW )) and (BV* (xW )

BU* (xW )), possesses the
time-reversed Dirac structure of the other. In Appendix
we show that when these two states are equally occup
then they satisfy the same Dirac-Gorkov equation with
same eigenvalue. We will assume this to be the case in
following.

IV. REDUCING THE SELF-CONSISTENCY EQUATIONS

We begin by analyzing the isospin structure of the se
energy and pairing fields under the assumption of p
proton-proton and neutron-neutron pairing. In this case,
solutions to the Dirac-Gorkov equation will be either pure
proton particle-hole ones or neutron particle-hole ones of
form
0-7
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Cp5S Up

0

0

Vp

D , Cn5S 0

Un

Vn

0

D ,

where each of the elements in the column vectors are th
selves four-component Dirac spinors. Substitution of th
into the self-consistency equations yields isospin structu
of the mean fields of the form
op

-
r
o

th
(

o

o
th

05431
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S~xW ,yW !5S Sp~xW ,yW ! 0

0 Sn~xW ,yW !
D ,

D~xW ,yW !5S 0 Dp~xW ,yW !

Dn~xW ,yW ! 0
D , ~38!

where each of the elements of the matrices are themse
434 matrices. The isospin dependent Dirac-Gorkov eq
tion thus decouples into independent equations for neutr
and protons. In their Hamiltonian form, these are
E d3yS ~«1m t!d~xW2yW !2ht~xW ,yW ! D̄ t
†~xW ,yW !

D̄ t~xW ,yW ! ~«2m t!d~xW2yW !1ht~xW ,yW !
D S Ut~yW !

g0Vt~yW !
D 50, ~39!
n-
h
en-

rgy

in
ree
of
where we have written the respective Dirac Hamiltonian
erators as

ht~xW ,yW !5~2 iaW •¹W 1bM !d~xW2yW !1bS t~xW ,yW ! t5p,n
~40!

and the Lagrange multipliers asmp5m1dm and mn5m

2dm. We have also made use of the fact thatS tT(xW ,yW )
5S t(xW ,yW ), so that htT(xW ,yW )5ht(xW ,yW ), since we have as
sumed invariance under time inversion of the Dirac structu

We want to obtain the coupled equations for the case
an axially-deformed nucleus. We take the z axis to be
symmetry axis and use cylindrical coordinatesx
5r' cosw, y5r' sinw, and z). Although the total angular
momentumj is no longer a good quantum number, its pr
jection along the symmetry axisV, as well as the parityp,
~and, of course, the isospin projection, which we also den
by t) are still good quantum numbers. We write each of
four-component spinors of the wave function as

Utg~xW !5S u ftg~xW !

i ugtg~xW !
D 5

1

A2p S u ftg
1 ~r' ,z!ei (Vg21/2)w

u ftg
2 ~r' ,z!ei (Vg11/2)w

i ugtg
1 ~r' ,z!ei (Vg21/2)w

i ugtg
2 ~r' ,z!ei (Vg11/2)w

D ,

~41!

and

g0Vtg~xW !5S v f tg~xW !

i vgtg~xW !
D

5
1

A2p S v f tg
1 ~r' ,z!ei (Vg21/2)w

v f tg
2 ~r' ,z!ei (Vg11/2)w

i vgtg
1 ~r' ,z!ei (Vg21/2)w

i vgtg
2 ~r' ,z!ei (Vg11/2)w

D , ~42!
-

e.
f
e

-

te
e

in which the functionsu ftg
6 , ugtg

6 , v f tg
6 , andvgtg

6 are real.
For each solution with positive value of the angular mome
tum projection,Vg , we have a time-reversed solution wit
the same energy but a negative value of the angular mom
tum projection,2Vg , given by BUtg* (xW ) and g0BVtg* (xW ).
The densities that enter the Hartree terms of the self-ene
can then be written as

rs~r' ,z!52 (
v tg^0,t,Vg&0

Utg
† g0Utg ,

rB~r' ,z!52 (
v tg^0,t,Vg&0

Utg
† Utg ,

~43!

r3~r' ,z!52 (
v tg^0,t,Vg&0

2mtUtg
† Utg ,

rc~r' ,z!52 (
v tg^0,t,Vg&0

~mt11/2!Utg
† Utg ,

in which the sum over states of different parity is implicit
the sum over states of different energy. The local Hart
contribution to the self-energy may be written in terms
these densities as

bSH~xW ,yW !5d~xW2yW !E d3zX2bgs
2ds~xW2zW !rs~zW !

1gv
2 dv

0 ~xW2zW !rB~zW !1S gr

2 D 2

t3dr
0~xW2zW !r3~zW !

1e2
~11t3!

2
dg

0~xW2zW !rc~zW !C, ~44!

where the meson propagators have been reduced to
0-8



ll
y
o

ld

rm

te

n
de
pa
na
nit
se
ra

i
a

ld
ons

on-
c-
ero-
e a
es
e

c-

e

en-

DIRAC-HARTREE-BOGOLIUBOV APPROXIMATION FOR . . . PHYSICAL REVIEW C 62 054310
dj
0~xW2zW !5

1

4p

exp~2mj uxW2yW u!

uxW2yW u
, ~45!

with the exception of thes-meson propagator, which is sti
assumed to contain the nonlinear terms. It is customar
write the Hartree contribution to the self-energy in terms
the mean fields associated with each of the mesons, as

bSH~xW !52bgss~xW !1gvv0~xW !

1
gr

2
t3r00~xW !1e

~11t3!

2
A0~xW !, ~46!

with

v0~xW !5gvE d3z dv
0 ~xW2zW !rB~zW !,

r00~xW !5
gr

2 E d3z dr
0~xW2zW !r3~zW !,

~47!

A0~xW !5eE d3z dg
0~xW2zW !rc~zW !,

s~xW !5gsE d3z ds~xW2zW !rs~zW !

5E d3z ds
0~xW2zW !„gsrs~zW !2g3s~xW !22g4s~xW !3

….

In the last expression, we have written thes mean field in
terms of its free propagator, as given in Eq.~45!, and in-
cluded the nonlinear terms explicitly. The mean meson fie
possess the same axial symmetry as the densities.

The Fock exchange term of the self-energy has the fo

SF~xW ,yW !52(
j

G j a~xW !Dab~xW2yW !

3 (
« tg^0,t,Vg&0

x tx t
†
„Utg~xW !Utg

† ~yW !

1BUtg* ~xW !Utg
T ~yW !B†

…g0G j b~yW !, ~48!

where we have written the isospin dependence of the in
mediate states in terms of the isospinorx t . As has been
discussed in the literature~cf. Ref. @7# or Ref.@42#!, the most
important effects of the Fock terms due to the exchange
the short-ranges, v, andr mesons can be taken into accou
by using adjusted Hartree terms. This can be better un
stood by looking at the zero-range limit of the meson pro
gators, for which the Fock terms reduce to linear combi
tions of the Hartree ones. Here, we retain the small but fi
range of the meson propagators, but approximate the
energy as the Hartree contribution alone and use the pa
eters appropriate for this purpose.

The pairing field arises from an exchange term, similar
form to the Fock term of the self-energy. We can write it
05431
to
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D~xW ,yW !52(
j

G j a~xW !D j
ab~xW2yW !

3 (
« tg^0,t,Vg&0

x tx t̄„Utg~xW !Vtg
† ~yW !

1BUtg* ~xW !Vtg
T ~yW !B†

…g0AG j b
T ~yW !A†, ~49!

wherex p̄,n̄5xn,p are the time-reversed isospinors.
We neglect the Coulomb contribution to the pairing fie

here and approximate the contributions of the other mes
using the zero-range~infinite-mass! limit of the meson
propagators. We also neglect the contribution of the n
linear s-meson terms. As we have argued in the introdu
tion, due to the short range of the exchanged mesons, a z
range approximation to their propagators does not mak
significant difference in the results. It also greatly simplifi
the numerical calculations. The Hamiltonian form of th
pairing field is, in this case,

D̄ t
†~xW ,yW !5g0D t~xW ,yW !g0

5d~xW2yW !cpairXgs
2

ms
2

g0k t~xW !g0

2S gv
2

mv
2

1
~gr/2!2

mr
2 D g0gmk t~xW !gmg0C, ~50!

where the anomalous densityk t(xW ) is

k t~xW !5 (
« tg^0,Vg&0

„Utg~xW !Vtg
† ~xW !

1BUtg* ~xW !Vtg
T ~xW !B†

…g0 , t5p,n. ~51!

However, the pairing field, in the given form, does not ne
essarily satisfy the antisymmetry condition of Eq.~6!. Ap-
plying the antisymmetry condition to the pairing field, w
can reduce it to a condition on the anomalous density,

k t~xW !5Bk t
T~xW !B†. ~52!

To ensure that this is satisfied, we take the anomalous d
sity to be

k t~xW !→ 1

2
„k t~xW !1Bk t

T~xW !B†
…

5
1

2 (
« tg^0,Vg&0

„Utg~xW !Vtg
† ~xW !g0

1BUtg* ~xW !Vtg
T ~xW !B†g01g0Vtg~xW !Utg

† ~xW !

1g0BVtg* ~xW !Utg
T ~xW !B†

…, t5p,n. ~53!

We then write the components of the pairing field as
0-9
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D̄ t
†~xW !5S d1t~r' ,z! 0 i d3t~r' ,z! i d4t~r' ,z!e2 iw

0 d1t~r' ,z! i d4t~r' ,z!eiw 2 i d3t~r' ,z!

2 i d3t~r' ,z! 2 i d4t~r' ,z!e2 iw d2t~r' ,z! 0

2 i d4t~r' ,z!eiw i d3t~r' ,z! 0 d2t~r' ,z!

D , ~54!
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where the four real functionsd j t are

d1t~r' ,z!5~cs2cv!k1t~r' ,z!23cvk2t~r' ,z!,

d2t~r' ,z!5~cs2cv!k2t~r' ,z!23cvk1t~r' ,z!,
~55!

d3t~r' ,z!5~cs12cv!k3t~r' ,z!,

d4t~r' ,z!5~cs12cv!k4t~r' ,z!,

with

cs5cpair

gs
2

ms
2

, cv5cpairS gv
2

mv
2

1
~gr/2!2

mr
2 D . ~56!

The four real components of the anomalous density are

k1t~r' ,z!5 (
« tg^0,Vg&0

~u ftg
1 v f tg

1 1u ftg
2 v f tg

2 !,

k2t~r' ,z!5 (
« tg^0,Vg&0

~ugtg
1 vgtg

1 1ugtg
2 vgtg

2 !,

~57!

k3t~r' ,z!5
1

2 (
« tg^0,Vg&0

~u ftg
1 vgtg

1 2u ftg
2 vgtg

2

1ugtg
1 v f tg

1 2ugtg
2 v f tg

2 !,

k4t~r' ,z!5
1

2 (
« tg^0,Vg&0

~u ftg
1 vgtg

2 1u ftg
2 vgtg

1

1ugtg
1 v f tg

2 1ugtg
2 v f tg

1 !.

The Dirac structure of the pairing field is very similar
that of the 1S0 pairing field in symmetric nuclear matte
where

Dnm~k!5g0Dnm
2 †~k!g05DS~k!2g0D0~k!2 ig0gW •kWDT~k!.

~58!

The upper and lower diagonal components of the pair
field, d1t and d2t can be directly associated with the line
combinationsDS6D0 of the nuclear matter component
while the remaining components,d3t and d4t are more
loosely related to the contributions of the nuclear matter t
sor term,DT .

An overall constantcpair has been introduced in the ex
pression for the pairing field to compensate for deficienc
of the interaction parameters and of the numerical calc
05431
g

-

s
-

tion. The necessity for such a constant is apparent from s
ies of pairing in nuclear matter. Nonrelativistic@46–48# and
relativistic @31# calculations have verified that1S0 pairing in
nuclear matter is dominated by the two-nucleon1S0 virtual
state. Pairing in nuclear matter is weaker the further the1S0
virtual state is from the real axis in the complex-momentu
plane. The location of the virtual state depends on
strength and form of the two-nucleon interaction and on
space of states used in the calculation. In Ref.@31#, various
sets of interaction parameters, even zero-range ones,
shown to furnish mutually consistent physical values for
pairing gap function, when they were supplemented with
large momentum cutoff adjusted so as to place the tw
nucleon virtual state at its physical location. We expec
condition similar to that in nuclear matter to apply her
However, as it is extremely difficult to fix the position of th
two-nucleon virtual state within the harmonic oscillator ba
that we use, we instead multiply the pairing field by an ov
all constant that we expect to be able to fix independently
the charge and mass of the systems under consideration
emphasize that this is not a weakness of our calculati
alone, but of any Hartree-~Fock!-Bogoliubov calculation us-
ing a limited space of states and an effective interacti
even those using a finite-range one. The pairing field
tained in such a calculation will depend on both the inter
tion and the space of states used and will usually require
one or the other of these be adjusted on order to obtain
sonable results. Here, we find it more convenient to int
duce an arbitrary constant in the interaction rather than a
trarily limit the space of states we use.

With the above simplifications in the self-energy and pa
ing fields, the Dirac-Gorkov equations for neutrons and p
tons reduce to local differential equations. Their Hamiltoni
form is

S «1m t2ht~xW ! D̄ t
†~xW !

D̄ t~xW ! «2m t1ht~xW !
D S Ut~xW !

g0Vt~xW !
D 50, ~59!

with

ht~xW !52 iaW •¹W 1bM* ~xW !1Vt~xW !, t5p,n, ~60!

where

M* ~xW !5M2gss~xW !,

Vt~xW !5gvv0~xW !1
gr

2
2mtr

00~xW !1e~1/21mt!A
0~xW !,

~61!
0-10
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and D̄ t
†(xW ) is given in Eq.~54!.

The total energy can now be written in terms of the me
fields as

E5E d3xS (
«g,0

uUg~xW !u2~«g1m!2
1

6
g3s~xW !32

1

4
g4s~xW !4

1
1

2
gss~xW !rs~xW !2

1

2
gvv0~xW !rB~xW !

2
1

2

gr

2
r00~xW !r3~xW !2

1

2
eA0~xW !rc~xW !

1
1

2 (
t

Tr@D̄ t
†~xW !k t~xW !# D 2Ec.m.. ~62!

In the expression above, we have also subtracted the
monic oscillator estimate to the center-of-mass motion,

Ec.m.5
3

4
\v05

3

4

41

A1/3
MeV, ~63!

in order to obtain an expression for the total internal ene
of the nucleus.

V. NUMERICAL SOLUTION OF THE DHB EQUATION

We solve the Dirac-Gorkov and the Klein-Gordon equ
tions by expanding the fields as well as the wave function
complete sets of eigenfunctions of harmonic oscillator pot
tials. In actual calculations, the expansion is truncated
finite number of major shells, with the quantum number
the last included shell denoted byNF in the case of the
fermions and byNB for the bosons. The maximum values a
selected so as to assure the physical significance of the
sults obtained. The same procedure has been used by m
researchers, among them, by Vautherin@49# in the nonrela-
tivistic Hartree-Fock approximation, by Ghambiret al. @17#
in the relativistic mean field1BCS approach and by Lalazis
sis et al. @40–42# in the RHB approach.

The spinors of the Dirac-Gorkov equation are expande
terms of the eigenfunctions of an axially-deform
harmonic-oscillator potential,

Vosc~r' ,z!5
1

2
Mvz

2z21
1

2
Mv'

2 r 2. ~64!

The oscillator constants are taken as

bz5
1

bz
5AMvz

\
, b'5

1

b'

5AMv'

\
, ~65!

with volume conservation relating the two constants to t
of a spherically-symmetric potentialb'

2 bz5b0
3 .

The eigenfunctions of the deformed harmonic oscilla
can be written explicitly as

Fa~rW !5cnr

ml~r'!cnz
~z!

eimlw

A2p
xms

xmt
, ~66!
05431
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wherea denotes the complete set of quantum numbers (nr ,
ml , nz , ms , andmt) and

cnr

ml~r'!5
Nnr

ml

b'

A2hml /2Lnr

ml~h!e2h/2 with h5S r

b'
D 2

,

~67!

cnz
~z!5

Nnz

Abz

Hnz
~j!e2j2/2 with j5

z

bz
.

In Eq. ~67!, Lnr

ml(h) and Hnz
(j) are Hermite and associat

Laguerre polynomials@50#, with the normalization constants
Nnr

ml andNnz
, given in Ref.@17#. In these equations,nr andnz

are the number of nodes in ther andz directions, andml and
ms are the projections of angular momentum and spin on
z axis. The third component of the total angular moment
Vg and the parityp are then defined as

Vg5ml1ms , p5~21!nz1ml. ~68!

We expand the Pauli components of the Dirac spino
u ftg(r' ,z), ugtg(r' ,z), v f tg(r' ,z), and vgtg(r' ,z), in
terms of the oscillator eigenfunctions. Inserting these exp
sions into the Dirac-Gorkov equation~59!, we can reduce the
equation to the diagonalization problem of a symmetric m
trix and calculate the Hartree densities of Eq.~43! and com-
ponents of the anomalous density of Eq.~57!. The fields of
the massive mesons are expanded in a manner similar to
fermion expansion, with the same deformation parameterb0

but a smaller oscillator length ofbB5b0 /A2. The Coulomb
field is calculated directly in configuration space. In sho
the method used is a direct generalization of that describe
Ref. @17#, where more details may be found.

VI. NUMERICAL RESULTS

The parameters required to perform numerical calcu
tions are the nucleon and meson masses, the meson-nu
coupling constants and the factorcpair that multiplies the
pairing interaction. The calculations that we present w
performed using the masses and coupling constants of
NL3 potential @51#. We performed calculations for sever
values of the factorcpair. These permit us to study the exte
to which physical observables depend on the pairing inte
tion and to choose the value of the parametercpair that best
fits the observables.

As the meson fields and the nucleon wave functions
expanded in a deformed basis of harmonic oscillator sta
we must also specify the number of major oscillator shells
be used in the expansions for fermions,NF , and bosons,NB ,
as well as the basis deformation parameter,b0. Here, we
work, for the most part, in a basis of 12 major oscillat
shells for fermions and 24 for bosons. We use the st
dard expression for the oscillator frequencies,\v0
541A21/3 MeV, and spherical bases, withb050, in all cal-
culations. Although the number of major oscillator shells
not as large as might be desired, it does seem to be l
0-11
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enough to obtain reasonable values for the observables
ied.

In order to analyze the characteristics of the sing
particle levels, we define several related average val
First, in deference to the standard nonrelativistic notation,
define the occupation probability of each of the two states
the level with frequency« tg,0 as

v tg
2 5E d3xuUtg~xW !u2, ~69!

so that we also have

utg
2 512v tg

2 5E d3xuVtg~xW !u2. ~70!

We define the energy of a single-particle level as

Etg5E d3x„Utg
† ~xW !htUtg~xW !1Vtg

† ~xW !htVtg~xW !…, ~71!

in which we take advantage of the normalization of the st
vector to avoid normalizing the result. This is not possib
for the pairing term, for which we define the gap parame
of a single-particle level as

D tg52E d3x Utg
† ~xW !D̄ t

†g0Vtg~xW !/utgv tg . ~72!

The definition of the gap parameter is fragile and is sub
to numerical error whenv tg→1 or utg→1. We define an
average gap parameter for the neutrons and protons
nucleus as

^D t&5 (
«g,0

D tgv tg
2 Y (

«g,0
v tg

2 . ~73!

We note that, unlike in the BCS approximation, no relati
exists here between the occupation probabilities,v tg

2 andutg
2 ,

the energyEtg , and the gap parameterD tg . However, these
averages still furnish a good description of the most imp
tant characteristics of the single-particle levels.

In the following, we first analyze pairing in the isotope
of tin and then discuss similar results for the isotopes
nickel and calcium, all of which are spherical. The isotop
of tin and nickel have already been the object of two th
ough studies@40,52#. We then analyze deformation and pa
ing of theN528 isotonic chain, which has been the object
two recent studies@42,58,59#. Finally, we turn our attention
to nuclei in the region of theZ'40 subshell closure, the
isotopes of Kr and Sr, in particular. These have been
object of many previous studies@20–22,54,55#.

A. Spherical nuclei

Pairing in the Sn and Ni isotopes has been studied ex
sively, due to the simplification provided by their spheric
symmetry. In Ref.@52#, Dobaczewskiet al. describe a very
complete study of pairing in the Sn isotopes, based o
nonrelativistic Hartree-Fock-Bogoliubov approximation,
which they examine the differences in pairing due to the
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of various effective interactions and due to coupling to t
particle continuum, as well as the effects of these on exp
mental observables. In Ref.@40#, Lalazissiset al. compare
RHB calculations of both the odd and even isotopes in the
and Ni chains with the experimental data, obtaining qu
good agreement. In another study@38#, Meng compared
RHB calculations using the finite-range Gogny D1S and
zero-range interaction and found good agreement betw
the two and with the experimental data.

We begin our study of spherical nuclei with the tin is
topes. We performed calculations of the ground states of
even isotopes from100Sn to 176Sn, that is, from the closed
neutron shell atN550 to the closed shell atN5126. We
present calculations for three values of the parametercpair.
The objective of this study was to identify the observab
sensitive to the parametercpair ~and, thus, to the pairing! and
to adjust the parameter accordingly.

We present in Fig. 1 the two-neutron separation energy
the even Sn isotopes in the mass range fromA5100 to A
5176, calculated for the valuescpair50.45, 0.47, and 0.50
We compare our calculations with the two-neutron sepa
tion energies obtained using the ground state masses ta
of Möller-Nix @56# and of Audi-Wapstra@57#. The Möller-
Nix values for ground state masses were calculated usin
extended finite-range droplet model with parameters adju
to the experimental ground state masses. The Audi-Was
values for the ground state masses are essentially the ex
mental ones, with some extension to proton- and neutr
rich nuclei based on systematics. We verify that all thr
calculations follow the trend of the Mo¨ller-Nix and Audi-
Wapstra values. The two-neutron separation energy is s
to be almost independent of the strength of the pairing fie
with the calculation usingcpair50.50 providing only slightly
better agreement with the data than the others. All the ca
lations underestimateS2n in the region ofA5100. This dis-
crepancy might be attributable to a deficiency in the isos
dependence of the NL3 parameter set. It could also be du
effects that are not included in the calculation, such
neutron-proton correlations, which are suspected of bein

FIG. 1. Two-neutron separation energy of the even isotope
Sn, as a function of the mass numberA, for three values of the
parametercpair . The values obtained from the compilation of e
perimental masses of Audi and Wapstra@57# ~solid circles! and the
Möller-Nix systematics@56# ~open circles! are also shown.
0-12
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DIRAC-HARTREE-BOGOLIUBOV APPROXIMATION FOR . . . PHYSICAL REVIEW C 62 054310
importance inN'Z nuclei. Our two-neutron separation e
ergies are in good agreement with the RHB ones of R
@40#. However, such consistency is to be expected, given
relative insensitivity of the two-neutron separation energy
the pairing, since both calculations use the NL3 param
set.

The calculated two-neutron separation energies remain
most constant from the shell closure atA5132 to aboutA
5160, in contrast to the Mo¨ller-Nix values, which decreas
slowly. The SIII and Skd Skyrme interaction calculations o
Ref. @52# also furnish a relatively constant separation ene
above theA5132 shell closure, which extends to eve
higher values of the mass, although most of their calculati
are in agreement with the Mo¨ller-Nix systematics. The
nucleus176Sn is unbound in the calculation withcpair50.50,
as it is in all of the calculations of Ref.@52#. In our calcula-
tions, this is due to the fact that174Sn is more tightly bound
for cpair50.50 than for the other values of the parameter. T
binding energy of the magic nucleus176Sn is the same for al
values of the parametercpair.

In Fig. 2 we show the average value of the neutron g
parameter of the even Sn isotopes as a function of the m
numberA, for the same three values ofcpair. The gap param-
eter possesses a clear dependence on the value ofcpair. We
also show in the figure the Mo¨ller-Nix and experimental
Audi-Wapstra values for the standard estimate of the neu
gap parameter as the difference between the binding ene
of an even-even nucleus and its odd mass neighbors,

^Dn~Z,A!&5B~Z,A!2
1

2
„B~Z,A21!1B~Z,A11!…,

whereB(Z,A) is the binding energy. The calculation wit
cpair50.50 shows reasonable agreement with the Mo¨ller-Nix
values in the region of theN582, A5132, shell closure, bu
tends to underestimate the Mo¨ller-Nix values well below the
shell closure and overestimate these values well above
shell closure.

FIG. 2. Mean value of the neutron gap parameter of the e
isotopes of Sn, as a function of the mass numberA, for three values
of the parametercpair ~lines!. The odd-even mass differences o
tained from the compilation of experimental masses of Audi a
Wapstra@57# ~solid circles! and from the Mo¨ller-Nix systematics
@56# ~open circles! are also plotted.
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The neutron shell closures atN550, 82, and 126 are
clearly visible in Fig. 2. At each of values of the neutro
number, calculated neutron gap parameter goes to zero
note that the experimental gap parameter has maxim
rather than a minimum, at each shell closure, reflecting
local maximum of the binding energy that occurs there. S
eral subshell closures are also visible in the calculations
values of the mass at which the gap parameter reach
nonzero minimum. These occur atN558, A5108, between
the 1g7/2 and 2d5/2 levels, atN564, A5114, between the
2d5/2 level and the remaining levels of the 4\v shell, and at
N5112, A5162, between the 5\v shell and the 1i13/2
level. Subshell closures are more visible when the pair
interaction is weaker and, thus, more sensitive to the ene
differences between the levels.

Average values of the neutron gap parameter of the e
Sn isotopes obtained in RHB and nonrelativistic calculatio
were presented in Refs.@40# and@52#, respectively. The cal-
culations using the Gogny interaction, both the RHB and
nonrelativistic ones, furnish a large value of the g
parameter—above 2 MeV—and show no subshell struct
Were we to increase the strength of the pairing interaction
as to obtain similar values for the pairing gap, our calcu
tions would also show no shell substructure in the aver
pairing gap. The nonrelativistic calculations of Ref.@52#, us-
ing Skyrme pairing interactions produced results in clo
agreement with ours. These calculations also show struc
due to subshell closures, although the structure is differ
from that seen here, possibly due to differences in the s
orbit splitting of the levels, due to the different mean field

In Fig. 3, we show the pairing energy of the even
isotopes as a function of the mass number, obtained using
same three values ofcpair. The pairing energy is defined a

Epr52
1

2 (
t
E dx3 Tr@D̄ t

†~xW !k t~xW !#,

where k t and D̄ t
† are given in Eqs.~53! and ~54!, respec-

tively. We observe that the pairing energyEpr displays a
dependence on the parametercpair and a shell structure simi
lar to those seen in Fig. 2 for the average gap parame

n

d

FIG. 3. Pairing energy of the even isotopes of Sn, as a func
of the mass numberA, for three values of the parametercpair .
0-13
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B. V. CARLSON AND D. HIRATA PHYSICAL REVIEW C62 054310
However,Epr is observable only through its effects on th
binding energy, which diminishes its utility as a means
determining the parametercpair.

In Fig. 4 we present the difference between the calcula
value of the binding energy of the even Sn isotopes and
Möller-Nix value, as a function of the mass, using the sa
three values ofcpair used before. We also present the diffe
ence between the calculated value forcpair50.50 and the
Audi-Wapstra values, where the latter exist. In the m
range of the valley of stability, the difference between t
two binding energies can be minimized, to a certain po
through an appropriate choice ofcpair. For the tin isotopes, a
value of cpair close to 0.50 seems to yield the best avera
agreement. A value much larger than this would destroy
good agreement obtained for the gap parameter of Fig
However, a larger value ofcpair would smooth out the two
dips in the binding energy difference that roughly follow t
mass dependence of both the average gap parameter an
pairing energy. This would yield pairing gaps in better agr
ment with the Gogny D1S ones of Ref.@40#. We then might
expect to be able to reduce the remaining discrepancy
adjusting the mean field parameters.

In Fig. 4, the calculated value of the binding energy
larger than the experimental/systematic values in theN'Z
region and reaches a difference of about 4 MeV for
magic nucleus100Sn, a result which is independent of th
value ofcpair. The sharp increase of the binding-energy d
ference forN'Z is consistent with the discrepancies b
tween the calculated and the Mo¨ller-Nix values of the two-
neutron separation energy, shown in Fig. 1. We can attrib
the discrepancies to deficiencies in the isospin dependen
the NL3 parameters. If we were to include neutron-pro
pairing in the calculations, the difference would only i
crease as the pairing would bind even more the already o
boundN'50 nuclei. The large differences in binding ener
on the neutron-heavy side of the curve could be due as m
to deficiencies in the Mo¨ller-Nix systematics as in the NL3
parameters.

FIG. 4. Difference between the calculated binding energy
the Möller-Nix binding energy@56# for the even isotopes of Sn, a
a function of the mass numberA, for three values of the paramete
cpair ~lines!. The difference between the calculated binding ene
and the Audi-Wapstra experimental binding energy@57#, for cpair

50.500, is also plotted~circles!.
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In Fig. 5 we present the deviation from the systema
value,r n0N1/3, of the root mean square neutron radius of t
even isotopes of Sn, as a function of the mass. The devia
displays a clear minimum at the principal shell closure
N582. Although the deviation also tends to decrease n
the shell closures atN550 andN5126, the effect of these
more extreme shell closures is much smaller than that of
N582 one, within the stability valley. The deviation from
the systematic value also possesses a sharp maximumN
5112, between the 5\v shell and the 1i13/2 level. We re-
call that the average gap parameter and the pairing en
display a minimum at the same subshell closure. Other s
shell closures also appear in the deviation of the radius,
only as changes in its slope. The deviation from the syste
atic value of the root mean square mass radius of the eve
isotopes shows the same structure, but to a lesser degree
is not shown here. The deviation from the systematic of
root mean square proton radius, which is also not sho
increases monotonically with the mass number.

We find that the deviations of the root mean square ra
are almost independent of the parametercpair and, thus, of
the pairing interaction. Slightly larger variations have be
seen in a comparison between RHB and Hartee1BCS calcu-
lations @42#. Still, with the exception of a few very specia
nuclei, such as11Li, the root mean square radii of a nucleu
would seem to be determined almost exclusively by its m
field.

As the second example of a spherical isotopic chain,
studied the even isotopes of nickel, performing calculatio
from 48Ni, at theN520 shell closure, to100Ni, two neutrons
beyond the subshell closure atN570. We again performed
calculations for three values of the parametercpair, their val-
ues in this case beingcpair50.49, 0.50, and 0.52. Here w
wanted to verify the generality of the observations made
the case of the Sn isotopes.

The calculations of the two-neutron separation energy
the Ni isotopes describe the tendency of the data fairly w
reproducing the discontinuities in separation energy that
cur at the shell closures atN528 andN550. The calculated

d

y

FIG. 5. Deviation of the root mean square neutron radius fr
the systematic valuer 0N1/3, for the even isotopes of Sn, as a fun
tion of the mass numberA, for three values of the parametercpair .
The reduced radius,r 0, was adjusted to the root mean square ne
tron radius of132Sn.
0-14
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values of the~two-neutron! separation energy are almost i
dependent of the parametercpair and underestimate the ma
dependence of the separation energy at very low and
high values of the neutron excess, as in the case of Sn.
surprisingly, our values are in good agreement with the R
ones of Ref.@40#, which also use the NL3 parameter s
They also agree well with the results of Ref.@38#, obtained
with the NLSH parameter set@53#, using Gogny D1S and
density-dependent zero-range pairing interactions.

In Fig. 6, we present the mean value of the neutron
parameter of the even Ni isotopes as a function of the m
for the same three values ofcpair. Again, we find a clear
dependence of the gap parameter on the value ofcpair. The
calculation withcpair50.52 shows the best agreement w
the Möller-Nix and Audi-Wapstra values in the region abo
the shell closure atN528,A556. All of the calculations are
in disagreement with the experimental/systematic value
the region of the magic numberN528. This again suggest
that short-range neutron-proton correlations may be imp
tant whenN'Z.

In Fig. 6, we note that the neutron gap parameter is zer
the neutron shell closures atN520, 28, and 50. The subshe
closures are more marked here than in the case of tin. Fo
these appear atN540, A568, between the 3\v shell and
the 1g9/2 level and atN570,A598, between the 4\v shell
and the 1i11/2 level. As occurred in the calculations of th
isotopes of Sn, the value of the average gap parameter a
subshell closures increases withcpair.

Values of the average neutron gap parameter of the
isotopes betweenN528 and N550, obtained using the
Gogny interaction in a RHB calculation, were presented
Ref. @40#. As in the case of Sn, the RHB calculation fu
nishes values of the gap parameter greater than 2.5 M
which are quite large. The calculation presents a subs
structure similar to that withcpair50.52 in Fig. 6, but almost
50% larger in magnitude.

As in the case of the Sn isotopes, the pairing energy of
even Ni isotopes reflects the shell structure and the de

FIG. 6. Mean value of the neutron gap parameter of the e
isotopes of Ni, as a function of the mass numberA, for three values
of the parametercpair ~lines!. The odd-even mass differences o
tained from the compilation of experimental masses of Audi a
Wapstra@57# ~solid circles! and from the Mo¨ller-Nix systematics
@56# ~open circles! are also plotted.
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dence oncpair observed in the average gap parameter,
furnishes no new information. The root mean square ra
reflect the same shell structure, although with less clar
and are almost independent of the value ofcpair.

We also examined the Ca isotope chain, performing c
culations of the even isotopes of Ca fromN58, A528, to
N550, A570, for two values of the parametercpair. Com-
parisons between the two calculations and the Audi-Wap
and Möller-Nix systematics resulted in conclusions similar
those obtained for the tin and nickel isotopes. In particu
the two-neutron separation energies were well describe
the two calculations, which show almost no dependence
the parametercpair. A value of cpair50.55 best agrees with
the gap parameters obtained from the Audi-Wapstra syst
atics, which, in this case, lie about 20% below the Mo¨ller-
Nix values.

In summary, we found our calculations of the root me
square radii and the two-neutron separation energies
spherical nuclei to be relatively independent of the stren
of the pairing interaction. As the experimental data for the
quantities are well fit by the NL3 parameter set used here
is not surprising that our calculations describe them well. W
observed that the pairing energy is only observable thro
its effects on the binding energy and that our calculations
not as successful at describing the latter as they are with
radii and the separation energies. A reasonable fit to
binding energies will depend on the adequate choice of
parametercpair as well as further adjustments in other inte
action parameters. We found that the binding energy and
mean value of the gap parameter, to a certain point, are
observables that can be used as guides to a study of pa
in spherical nuclei.

B. Several deformed light nuclei

In this section, we analyze pairing and deformation in t
N528 isotonic chain. The measured quadrupole deform
tions for these nuclei characterize48Ca as spherical but46Ar
and 44S as deformed, implying suppression of theN528
magic number. The deformation can be explained, in t
case, by the close proximity of the 1f 7/2 level to the 2p
levels in the 4\v shell. In the nucleus48Ca, the spherical
proton configuration constrains the neutron configuration
also remain spherical. In the46Ar and 44S nuclei, the par-
tially filled proton shell perturbs the neutrons sufficiently f
them to prefer a deformed configuration in which the 1f 7/2
and 2p orbitals are partially occupied.

Recent theoretical studies describe the experimental
for these nuclei reasonably well with nonrelativistic and re
tivistic mean field1BCS @58,59# calculations and with RHB
calculations using the Gogny potential@42#. In Refs.@58,59#,
Werneret al. use both a Skyrme-Hartree-Fock approach a
a relativistic mean field model, with the NLSH parameter s
to study various isotopic chains in theN'28 region. They
include pairing as a small~75 keV! constant pairing gap in a
BCS formalism. They found the isotones42Si, 44S, and46Ar
to show evidence of shape coexistence in both approac
although the deformation at the energy minimum and its
ergy difference with the excited minimum varied betwe

n

d
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B. V. CARLSON AND D. HIRATA PHYSICAL REVIEW C62 054310
the two calculations. Lalazissiset al.used the RHB approac
to perform a similar study of theN'28 isotopes in Ref.@42#.
Using the NL3 parameter set, they studied the even isoto
of Mg through Cr. They observed prolate-oblate stagger
in theN528 isotones below48Ca, similar to that seen in th
RMF calculations of Werneret al.and similar signs of shap
coexistence: the binding energies versus quadrupole de
mation of the isotones display two minima or a very fl
single minimum.

We present here the average values of the gap param
of the even-even S isotopes, in Fig. 7 as a function of
mass, for two values of the parametercpair. We observe that
both calculations fall well below the Mo¨ller-Nix and Audi-
Wapstra values at lower values of the mass. However,
isotopes that are of interest at the moment are in the re
of large neutron excess,A*40, where the average values
the calculated gap parameter and the experimen
systematic values are in reasonable agreement. In partic
we see in Fig. 7, that the Mo¨ller-Nix and Audi-Wapstra val-
ues of the gap in44S fall close to the calculation withcpair
50.55. The average value of the gap parameters of the o
isotopes that we will examine show the same reason
agreement with the experimental/systematic values in
mass range of interest.

To study in detail the dependence of the binding ene
on the quadrupole deformation, we perform calculations
several fixed values of the deformation. To do this, we
clude in the Lagrangian a term that is quadratic in the diff
ence between the quadrupole moment of the nucleus an
desired value of the moment. The solution of the equation
motion including this additional potential term tends to ta
a value which minimizes its contribution, thereby yielding
quadrupole moment close to the desired value. The contr
tion of the constraint term to the energy is subtracted
obtain the binding energy of the system at the value of
quadrupole moment obtained in the calculation. The con
tency of the method can be verified by calculating the grou
state energy of a spherical nucleus as a function of the q

FIG. 7. Average value of the gap parameter of the even isoto
of S, as a function of the mass numberA, for two values of the
parametercpair ~lines!. The odd-even mass differences obtain
from the compilation of experimental masses of Audi and Wap
@57# ~solid circles! and from the Mo¨ller-Nix systematics@56# ~open
circles! are also plotted.
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rupole deformationb. For the case of48Ca, we find that the
ground state energy reaches its minimum atb50, where the
nucleus is spherical, just as we would expect. We also fin
small difference of about 0.5 MeV between the calculatio
for the two values ofcpair. This difference is consistent with
the small difference in the pairing energy and the small,
nonzero, average pairing gap found in the calculations.

In Fig. 8, we present the dependence on the deforma
b of the binding energy of the nucleus44S, for the two
values ofcpair. @The energyEb displayed in the figure actu
ally differs by a sign from the binding energy,Eb(Z,A)5
2B(Z,A).# Here the variation ofcpair from 0.50 to 0.55
makes a difference of almost 3 MeV in the binding energ
in contrast with the small difference of about 0.5 MeV foun
for 48Ca. The energy curves for44S possess two well define
minima, with the oblate minimum about 1 MeV above th
prolate one in the case ofcpair50.50 and about 0.5 MeV
above the prolate minimum whencpair50.55. The increase in
the parametercpair tends to flatten the energy curve, there
diminishing the differences between its peaks and valle
The increase incpair also reduces the value of the deform
tion at the minima. The deformation at the oblate minimu
decreases in magnitude by almost 20% with the increas
cpair from 0.50 to 0.55, while the deformation at the prola
minimum is reduced by about 10% with the same increas
cpair.

The experimental value of the quadrupole deformation
44S is b50.258(36) @60,61#, which is in good agreemen
with the calculated value,b50.28, usingcpair50.55. The
relativistic calculations of Werneret al. and Lalazissiset al.
furnish a value of the deformation similar to this one. T
RHB calculation of Ref.@42# yields an oblate minimum
about 200 keV above the prolate one, which can be co
pared to our value of about 0.5 MeV between the tw
minima and a value of about 0.8 MeV in the RMF1BCS
calculation of Refs.@58,59#. Nonrelativistic HF calculations
furnish a value ofb that is about half of the experimenta
one @58,59#.

In Fig. 9, we present the dependence on the deforma
b of the binding energy of the nucleus46Ar, for two values
of the parametercpair. The difference in the binding energ

es

a

FIG. 8. Binding energy of44S, as a function of the quadrupol
deformationb, for two values of the parametercpair .
0-16
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due to the variation ofcpair is about 1 MeV. The minima of
the curves are much less defined here than they are in
case of44S. In fact, the calculation usingcpair50.50 appears
to have only an oblate minimum. The calculation withcpair
50.55 possesses two minima, with the oblate one appr
mately 200 keV below the prolate one. Due to the lack
structure in the curves, it is difficult to determine the redu
tion of the deformation at the minima due to the increase
the parametercpair. The experimental value of the quadr
pole deformation of46Ar is ubu50.176(17) @62#, with the
sign of the deformation undetermined experimentally. A
suming the deformation to be oblate, the calculated valu
b520.18 is in excellent agreement with the data. A nonr
ativistic HF calculation furnishes results in reasonable ag
ment with ours, while its companion RMF1BCS calculation
predicts the oblate minimum of the46Ar energy curve to lie
slightly above a spherical ground state@58,59#. The RHB
calculation using the Gogny interaction yields a flat ene
curve with a barely discernible minimum atb'20.15 @42#.

We have performed calculations of the binding energy
a function of the quadrupole deformation for otherN528
isotones. The binding energies of40Mg and 42Si are also
found to possess both an oblate and a prolate minimum.
as for 44S, we find that increasing the value ofcpair tends to
flatten their energy curves and to reduce the magnitude o
deformation at the minima. The calculation usingcpair
50.55 yields, for 42Si, a sharp oblate minimum atb5
20.32, about 1 MeV below a shallow prolate minimum
b50.25. For40Mg, the calculation usingcpair50.55 yields a
fairly shallow prolate minimum atb50.38, about 0.5 MeV
below a shallow oblate minimum atb520.25. As far as we
know, the deformations of these nuclei have not been m
sured. As mentioned before, a small neutron pairing gap
sists in our calculation of the spherical nucleus48Ca. This
gap disappears in the heavierN528 isotones,50Ti, 52Cr,
and 54Fe, which are also spherical, but which possess ins
an average proton gap. In Table I, we provide a summar
the ground state energies, deformations, and average ga
rameters of the nuclei in theN528 chain, obtained with
cpair50.55. We note that, except for the lightest nuclei

FIG. 9. Binding energy of46Ar, as a function of the quadrupol
deformationb, for two values of the parametercpair .
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chain, 38Ne and 40Mg, the calculations are in good agre
ment with the Audi-Wapstra and Mo¨ller-Nix systematics.

In agreement with the other calculations discussed abo
we find the even-even nuclei withA,48 in theN528 iso-
tonic chain to display the characteristics of shape coex
ence. The nuclei vary between oblate and prolate gro
state deformations and possess both prolate and ob
minima that are very similar in energy. The values we obt
for the ground state deformations are very similar to those
the other calculations. The values obtained for the pair
gaps are different however. The RMF1BCS calculations of
Refs. @58,59# fixed the gap at either 75 keV or at 500 keV
values which are relatively small for such light nuclei. Th
RHB calculations of Ref.@42#, which are the most similar to
our calculations in terms of method, obtained average va
of the pairing gap that are about 40% larger than ours,
values for the deformations that are almost identical to ou
If we were to increase the magnitude of the pairing field
our calculations, the resulting deformations would be sma
than those of the RHB~and other! calculations. This discrep
ancy is an indication of the relativistic effects of the Dira
pairing field that were discussed in the Introduction. The
we suggested that the Dirac structure of the pairing fi
should result in its being more localized on the nuclear s
face and, thus, more effective in limiting the deformation.
the Dirac structure of the pairing field is the principal diffe
ence between our calculations and the RHB ones, our res
lend support to this argument.

C. Deformed nuclei in theZÉ40 region

Nuclei in the region of theZ'40 subshell closure presen
interesting variations in deformation as they deviate from
neutron magic numberN550 on either side of the stability
line. Studies of their level schemes and lifetimes have sho
that the ground-state properties of these nuclei are very
sitive to small changes in the proton and neutron num
@63,64#.

Strontium isotopes present two regions (N'38 and N
'60) of very strong deformations, as large asb50.4. This
behavior can be seen in theE21measurements as well as
the isotope shifts. The rapid transition from a spherical sh

TABLE I. Binding energies, ground state deformations, and
erage pairing gaps of theN528 isotones forcpair50.55.

B.E. b ^Dn& ^Dp&
DHB A-W M-N M-N DHB DHB DHB

38Ne 2225.19 2214.03 20.29 0.28 2.21 1.19
40Mg 2272.48 2268.04 20.29 0.39 1.86 0.00
42Si 2315.53 2313.04 2315.16 20.32 20.32 1.24 0.00
44S 2352.78 2353.49 2351.99 0.00 0.28 1.42 0.00
46Ar 2385.58 2386.91 2386.18 0.00 20.18 1.19 0.00
48Ca 2415.05 2415.98 2415.56 0.00 0.00 0.84 0.00
50Ti 2436.99 2437.77 2438.65 0.00 0.00 0.00 1.55
52Cr 2455.58 2456.34 2457.27 0.00 0.00 0.00 1.52
54Fe 2470.69 2471.75 2472.58 0.00 0.00 0.00 1.06
56Ni 2482.67 2483.98 2484.48 0.00 0.00 0.00 0.00
0-17
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B. V. CARLSON AND D. HIRATA PHYSICAL REVIEW C62 054310
near theN550 shell closure to a strongly deformed one c
be explained by the reinforcement of the shell gaps in
single-particle levels for protons and neutrons@4#.

For krypton isotopes, on the other hand, the expec
change in shape atN560, which occurs for most elements
theZ540 region, does not appear. Instead, the isotope s
show a pronounced slope change atN550. The fact that a
strongly deformed ground state does not appear atN560 has
been attributed to a reduced proton-neutron interaction aZ
536.

Theoretical studies of these nuclei have been carried
using both relativistic and nonrelativistic framework
Boncheet al. @54,55# studied these isotopes extensively i
cluding triaxial deformations in the nonrelativistic Hartre
Fock with a Skyrme SIII force, which resulted in a line
trend for the isotope shifts. They also used the method
generator coordinates for Sr isotopes and predicted a tra
tion from a spherical to a deformed shape. However,
isotope shifts could not be reproduced in any of those ca
lations.

Many studies using the relativistic mean field approa
have been performed in this region. Early calculations e

FIG. 10. Binding energy of100Sr, as a function of the quadru
pole deformationb, for three values of the parametercpair .
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ployed the parameter set NL1, which has a very large as
metry energy and does not describe the isotope shifts
@20,21#. In Ref. @22#, however, Lalazissis and Sharma su
cessfully described the ground state properties of the Sr
Kr isotopes, by applying the RMF approach with the NLS
parameter set for the mean field Lagrangian and the B
formalism for the pairing correlations. The deviations of t
binding energies from the experimental data were the on
der of 0.5% and the deformation parametersb were in good
agreement with theb values extracted fromB(E2) measure-
ments. It is therefore of interest to perform calculations
the Sr and Kr isotopes using the Dirac-Hartree-Bogoliub
approach in those regions and compare the results with
experimental data.

We begin by studying the dependence of the binding
ergy on the quadrupole deformation parameter,b, using the
method described in the previous section. In Fig. 10,
present the total binding energy as a function of the de
mationb of the nucleus100Sr, for three values of the param
eter cpair. The most singular difference between the thr
curves is the change of the absolute minimum, from a pro
shape in the case ofcpair50.51 to an oblate one forcpair
50.54, remaining oblate forcpair50.58. The energy differ-
ence between the two minima is quite small and the ob
minimum becomes deeper relative to the prolate one ascpair
increases. Forcpair50.51, the prolate minimum is 379 keV
deeper than the oblate one. Forcpair50.54, the oblate mini-
mum is 17 keV deeper, while forcpair50.58, it is 823 keV
deeper. If we take the oblate solution as the absolute m
mum, the value of the deformation parameter agrees w
with the experimental value ofb50.37260.008.

We performed calculations for possible minima of bo
prolate and oblate shapes of most of the known even nu
in the Kr and Sr isotopic chains. We found many nuclei f
which the two minima have very similar binding energies,
indication of shape coexistence or of a triaxial ground st
deformation.

The two-neutron separation energies of the even Kr
Sr isotopes, as functions of the mass number, are show
FIG. 11. Two neutron separation energy of the even isotopes of Kr and Sr, as a function of the mass numberA, for three values of the
parametercpair . The values obtained from the compilation of experimental masses of Audi and Wapstra@57# ~solid circles! and the
Möller-Nix systematics@56# ~open circles! are also shown.
0-18
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FIG. 12. Mean value of the neutron gap parameter of the even isotopes of Kr and Sr, as a function of the mass numberA, for three values
of the parametercpair ~lines!. The odd-even mass differences obtained from the compilation of experimental masses of Audi and W
@57# ~solid circles! and from the Mo¨ller-Nix systematics@56# ~open circles! are also plotted.
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Fig. 11, for three values ofcpair. To prepare this figure, we
have selected the solution, among the multiple minima
each isotope, that has the deepest~absolute! minimum. We
compare our results with the Mo¨ller-Nix systematics and the
Audi-Wapstra compilation. We find the calculations to agr
quite well with both of these. As in the previous cases,
calculated two-neutron separation energies are fairly inse
tive to the parametercpair.

In Fig. 12, we display the mean value of the neutron g
parameter̂ Dn& of the even mass Kr and Sr isotopes, as
function of the mass number, for the same three value
cpair. We find the best agreement with the Mo¨ller-Nix and
Audi-Wapstra values to be given by the calculations us
cpair50.58. The shell closure atN550 is clearly visible as a
zero in the calculated pairing gap of both isotopic chains

In Table II, we present the results for the total bindi
energy and the deformation parameterb obtained in the
05431
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present calculations, forcpair50.58, together with the experi
mental data. The valuecpair50.58 furnishes the best descrip
tion of the total binding energies and of the mean value
the neutron pairing gap. The cases in which the differe
between two minima is less than 200 keV are marked wit
star and the results for the two deformations are presente
general, the calculated binding energies agree quite well w
the experimental values, although the proton-rich isoto
are slightly underbound in the calculations.

Our calculations, with one exception, predict that the no
spherical even nuclei in the two isotopic chains will have
oblate ground state deformation. This contrasts sharply w
the Möller-Nix systematics which, with two exceptions, pr
dicts prolate deformations for the ground states of the n
spherical nuclei of the two chains. Such disagreement is
too surprising, given the sensitivity to the interaction para
eters of the binding energy versus deformation curve
r for
TABLE II. Binding energies and ground state deformations of the even isotopes of Kr and S
cpair50.58.

Kr Sr
B.E. b B.E. b

A DHB Expt. DHB M-N A DHB Expt. DHB M-N

72 2604.25 2607.11 20.32 20.35 76 2635.48 2638.08 0.49 0.42
74 2629.51 2631.28 20.30 0.40 78 2661.70* 2663.01 20.17 (0.47) 0.42
76 2653.51* 2654.23 20.20 (0.00) 0.40 80 2686.41 2686.28 0.00 0.05
78 2675.86 2675.55 0.00 20.23 82 2709.43 2708.13 0.00 0.05
80 2696.75 2695.43 0.00 0.06 84 2730.94 2728.90 0.00 0.05
82 2716.19 2714.27 0.00 0.07 86 2750.99 2748.92 0.00 0.05
84 2734.19 2732.26 0.00 0.06 88 2769.17 2768.46 0.00 0.05
86 2750.29 2749.23 0.00 0.05 90 2782.74 2782.63 0.00 0.05
88 2762.20 2761.80 0.00 0.06 92 2795.15* 2795.75 20.12 (0.10) 0.08
90 2773.08* 2773.21 20.14 (0.14) 0.16 94 2807.22 2807.81 20.18 0.26
92 2783.63* 2783.22 20.27 (0.20) 0.23 96 2818.67 2818.10 20.23 0.34
94 2793.59 2791.76 20.29 0.31 98 2829.36 2827.87 20.26 0.36
96 2802.77 2799.95 20.16 0.34 100 2839.29 2837.62 20.25 0.37
0-19
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FIG. 13. Isotopic shifts of the even isotopes of Kr and Sr, as a function of the mass numberA, for cpair50.58 ~lines!. The experimental
values are displayed as points with error bars.
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many of these nuclei. An example of this sensitivity w
displayed in Fig. 10, in which the ground state of100Sr was
seen to be prolate forcpair50.51 but oblate forcpair50.54
and 0.58. We note that, of the five nuclei for which we fou
a second minimum within 200 keV of the ground state o
the deformation of the second minimum of four of the
nuclei is in agreement with the Mo¨ller-Nix prediction. Ex-
perimentally, large ground state deformations ofb'0.44
have been found in76Sr, 74Kr, and 76Kr @4#. These values
are in agreement with the Mo¨ller-Nix ones and with our re-
sult for 76Sr. They are not consistent with our results for t
Kr isotopes.

The calculated isotope shifts of the even-even Kr and
isotopes, with respect to the reference nuclei86Kr and 88Sr,
respectively, are compared to the experimental data in
13. We display only the results for the deepest energy m
mum of each isotope in the figure. In the cases in whic
second minimum is close in energy to the deepest one, t
isotopic shifts are also very similar. We find the agreem
with the data for the neutron rich side to be very good.
addition, the positions of the kink due to the shell effect
the Kr and Sr isotopes are also well reproduced. Howe
the calculations underestimate the isotope shift on the pro
rich side of the stability line.

VII. SUMMARY

We have used an extension of the Gorkov formalism
the description of pairing to develop a Dirac-Hartree-Fo
Bogoliubov approximation to the ground state wave funct
and energy of finite nuclei. We have applied it to spin-ze
proton-proton and neutron-neutron pairing within the Dira
Hartree-Bogoliubov approximation~we neglected the Fock
term!. We have retained the full Dirac structure of the pa
ing field that is permitted by the symmetries of the proble
We find the Dirac pairing structure to be dominated by
scalar term and the zero component of a vector term, as
also been found to be the case for1S0 pairing in symmetric
nuclear matter.

In our calculations, we use a zero-range approximation
the pairing interaction, which results in a local pairing fie
05431
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We justified the zero-range approximation by arguing t
the effective length for spatial variations of the wave fun
tions, in the calculations performed at present, is larger t
the range of the nonlocality of the pairing interaction, re
dering the effects of the nonlocality close to negligible.

We studied the effects of the Dirac pairing field on t
properties of the even-even nuclei of the isotopic chains
Ca, Ni, and Sn~spherical! and Kr and Sr~deformed!, as well
as theN528 isotonic chain. We first studied the isotop
chains of the spherical nuclei in order to determine the s
sitivity of various nuclear observables to the interaction
the pairing channel. We found the two-neutron separat
energies, root-mean-square radii and isotopic shifts of
spherical nuclei to be fairly independent of the strength
the pairing interaction. The binding energy, on the contra
is quite sensitive to the pairing interaction strength~at least
when the pairing is not identically zero due to a shell c
sure!. Quite obviously, the average pairing gap also displa
a strong dependence on the strength of the pairing inte
tion. We observed that an adequate choice of this stren
simultaneously yields reasonable values for the binding
ergy, near the stability line, and rough agreement betw
the average pairing gap and the experimental gap, define
terms of even-odd mass differences. Far from the stab
line, our calculated binding energies showed increasing
crepancies with the experimental data, suggesting that
NL3 parameter set might require further adjustment, at le
when used in a DHB formalism. All in all, however, ou
results show good agreement with the data and with prev
calculations.

To study the deformed Kr and Sr nuclei and the deform
nuclei of theN528 isotonic chain, we performed a sequen
of constrained Dirac-Hartree-Bogoliubov calculations, as
function of the quadrupole deformationb, for each of the
nuclei in question. Each sequence of calculations provide
with a curve of binding energy versus deformation that p
mitted the localization of the equilibrium configurations
the nucleus. Most of the nuclei in these three chains pre
both a prolate and an oblate minimum~and, at times, a sligh
spherical minimum as well!. In agreement with other calcu
0-20
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lations, we found nuclei in each of the chains for which t
energies of the oblate and prolate minima were very simi
raising the possibility of shape coexistence or triaxial grou
state deformations. For the most part, our results present
sonable agreement with the data and with previous calc
tions. We did, however, observe a discrepancy between
average pairing gaps and those of the RHB calculation
Ref. @42#, which we took as an indication of the relativist
suppression of the pairing field due to its Dirac structure. O
DHB calculations furnished quadrupole deformations sim
to the RHB ones for average values of the pairing gap
are about 30% smaller than theirs.

Based on the nuclei we have studied here, we concl
that the DHB approximation can provide a description of
binding energies, rms radii and ground state deformation
finite nuclei that is at least as good as that provided by
nonrelativistic HFB approximation or by the RHB approx
mation. Our claim that the DHB approximation can provi
a more reliable description than the others, however, has
been demonstrated here. This will require further study
the parameters that enter the pairing interaction, in orde
better fix their values.

In the future, we plan to extend our calculations to
larger set of isotopic chains and to analyze in detail th
proton- and neutron-rich tails, in order to obtain a set
05431
r,
d
a-

a-
ur
of

r
r
at

e
e
of
e

ot
f
to

ir
f

parameters that describes these better. We plan to exten
calculations to odd nuclei by including a blocking term. A
the blocking term varies, along with the other states, dur
the search for the Dirac-Hartree-Bogoliubov stationary po
this does not seem to be a trivial task. In order to facilitate
we plan to first develop an extended BCS approximati
based on the self-consistent Hartree eigenstates of the m
field in conjunction with the relativistic pairing field. Such a
approximation could also serve as a faster first stage to
Dirac-Hartree-Bogoliubov calculations, which are qu
time-consuming at the present. Eventually, we also intend
include the nonlocality of the pairing interaction, in order
use more realistic interactions containing the relatively lon
range effects of pion exchange.
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APPENDIX A: TIME-REVERSED PAIRS OF STATES

We begin by writing the complex conjugate of Eq.~25! as

E d3yS g0„~«1m!d~xW2yW !2Bh* ~xW ,yW !B†
… BD* ~xW ,yW !B†

BD̄* ~xW ,yW !B†
„~«2m!d~xW2yW !1BhT* ~xW ,yW !B†

…g0
D S BU* ~yW !

BV* ~yW !
D 50, ~A1!

whereB5g5C is the Dirac matrix part of the time-reversal operator. Analyzing the Hamiltonian term, we see that

Bh* ~xW ,yW !B†5B~ iaW * •¹W 1b* M !B†d~xW2yW !1Bb* S* ~xW ,yW !B†5~2 iaW •¹W 1bM !d~xW2yW !1Bb* S* ~xW ,yW !B†. ~A2!

The self-energy term, in turn, can be put into the form

Bb* S~xW ,yW !B†5d~xW2yW !(
j

Bg0* G j a* ~xW !B†E d3z Dj
ab~xW2zW ! (

«g,0
Ug

T~zW !B†Bg0* G j b* ~zW !B†BUg* ~zW !B†

2(
j

Bg0* G j a* ~xW !B†Dab~xW2yW ! (
«g,0

BUg* ~xW !Ug
T~yW !B†Bg0* G j b* ~yW !B†. ~A3!

If we now look closely at the vertex functions we are considering here, we find
for the s meson:Bg0* 1B† . . . Bg0* 1B†5g01 . . .g01,
for the v meson:Bg0* gm* B†gmn . . . Bg0* gn* B†5g0gmgmn . . . g0gn ,
for the r meson:Bg0* gm* t i* B†gmnd i j . . . Bg0* gn* t j* B†5g0gmt ig

mnd i j . . . g0gnt j ,
for the photon:B(11t3* )/2g0* gm* B†gmn . . . B(11t3* )/2g0* gn* B†5(11t3)/2g0gmgmn . . . (11t3)/2g0gn . In short, the

products of the pairs of vertices remain unchanged by the transformation. We thus have for the transformed self en

Bb* S* ~xW ,yW !B†5d~xW2yW !(
j

g0G j a~xW !E d3z Dj
ab~xW2zW !S (

«g,0
Ug

T~zW !B†g0G j b~zW !BUg* ~zW ! D
2(

j
g0G j a~xW !Dab~xW2yW !S (

«g,0
BUg* ~xW !Ug

T~yW !B†g0DG j b~yW !, ~A4!

in which the only differences from the original expression for the self-energy are the propagator contributions, written i
of the solutions of the Dirac-Gorkov equation, that enter the expression.
0-21
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We can perform the same analysis on the pairing term, for which we find a similar result,

BD* ~xW ,yW !B†52(
j

G j a~xW !D j
ab~xW2yW !S (

«g,0
BUg* ~xW !Vg

T~yW !B†g0DAG j b
T ~yW !A†, ~A5!

in which the only difference between the original expression and the transformed one is again the propagator’s contri
the expression. Analyses of the other terms,BhT* (xW ,yW )B† andBD̄* (xW ,yW )B†, yield similar results.

We can thus show that the transformed wave vector (BV* (xW )
BU* (xW )) satisfies a similar equation

E d3yS g0„~«1m!d~xW2yW !2h~xW ,yW !… D~xW ,yW !

D̄~xW ,yW ! „~«2m!d~xW2yW !1hT~xW ,yW !…g0
D S BU* ~yW !

BV* ~yW !
D 50, ~A6!

to that satisfied by the wave vector (V(xW )
U(xW )). Each is a solution of an equation with the same energy eigenvalue but with o

quantum numbers and mean fields that have the time-reversed Dirac structure of the other. If each member of thes
states possessing time-reversed Dirac structure are equally occupied, the sums over states that enter into the defin
self-energy and pairing fields will be invariant under the transformation that temporally inverts the Dirac structure. Tha
then have that

(
«g,0

Ug~xW !Ug
†~yW !5 (

«g,0
BUg* ~xW !Ug

T~yW !B† ~A7!

and

(
«g,0

Ug~xW !Vg
†~yW !5 (

«g,0
BUg* ~xW !Vg

T~yW !B†. ~A8!

In this case, both of the wave vectors (V(xW )
U(xW )) and (BV* (xW )

BU* (xW )) satisfy the same Dirac-Gorkov equation with the same ene
eigenvalue. Then either both or neither of them will enter the propagator’s contributions to the self-consistency equat
these contributions will indeed be invariant under time inversion of their Dirac structure. We assume this to be the c
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