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Properties of the predicted superdeformed band in®2S
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Properties like the excitation energy with respect to the ground state, moments of BERD), transition
probabilities, and stability against quadrupole fluctuations at low spin of the predicted superdeformed band of
%23 are studied with the Gogny force D1S using the angular momentum projected generator coordinate method
for the axially symmetric quadrupole moment. The self-consistent cranking method is also used to describe the
superdeformed rotational band. In addition, properties of some collective normal deformed states are discussed.

PACS numbse(s): 21.60.Jz, 21.10.Re, 21.10.Ky, 27.30.

[. INTRODUCTION generating coordinate and restricted ourselvek 00 con-
figurations. The method allows us to obtain an accurate esti-
Recently, a number of papers have addressed the theorenate of the excitation energy of the superdeformédstate
ical study of the predicted super deformé®D) configura-  with respect to the ground state. The properties of the super-
tion in the nucleus®”S by using the mean-field approxima- deformed band obtained with the AMP-GCM are also com-
tion at high spin with several flavors of the Skyrfdg2] and  pared to those of a self-consistent cranking calculation. The
also the Gogny interactiof8]. The interest to study the SD choice of the Gogny interaction for this calculation is backed
configuration in3?S comes from the fact that this SD con- up not only by the results we obtain for low-lying excited
figuration is thought to be an intermediate case between thgtates but also by previous calculations in the context of the
strongly deformed cluster structures in very light nuclei andBohr Hamiltonian in theg andy collective variables at zero
the known SD states in th&=60 region[4,5]. In fact, itis ~ spin for normal deformed states that were used to describe
interesting to understand the relationship between the prereutron and proton pair transfer reactidd$] and proton
dicted SD band ir?S and the®0+ %0 quasimolecular ro- scattering 16] data with great success.
tational states observed in this nucldiés7]. On the other
hand, many states up to an excitation energy of around 10
MeV are known experimentally in this nucle(i8]. Those
states can be interpreted in terms of the shell model with In the framework of the angular momentum projected
active particles in thesd shell [9] and also in terms of the generator coordinate methédMP-GCM) we have used the
algebraic cluster mod¢lL0]. It turns out that some of these following ansatz for the&K =0 wave functions of the system:
states can be interpreted in terms of deformed intrinsic con-
figurations and, therefore, they can be used as a test ground
to assure the reliability of any interaction meant to describe |(1)'U>=j daaof | (920 Ph ©(a20))- (1)
the SD band in this nucleus at the mean-field level.
The purpose of this paper is to study, using the Gogny
interaction[11] with the D1S parametrizatioi2], the prop-  In this expression¢(g,g)) is the set of axially symmetric
erties of the superdeformed band of the nucl&Ssfocusing  (i.e.,K=0) Hartree-Fock-BogoliubotHFB) wave functions
on the stability of the superdeformed minimum at low spingenerated with the  constraint { (q,0)|z%— 1/2(x?
against quadrupole fluctuations. The reason is that in the ther y2)| ¢(0,0)) =00 0n the mass quadrupole moment. The
oretical studies mentioned in the above paragraph and also lHHFB wave functions have been expanded in an axially sym-
previous mean-field calculations with the Skyride] and  metric harmonic oscillato(HO) basis with ten major shells
Gogny forceq14], the SD minimum observed in the energy (220 HO states The two-body kinetic energy correction has
landscape was very shallow raising serious doubts about itseen fully taken into account in the variational process. The
ability to hold states at low angular momentum when fluc-Coulomb exchange part of the interaction has not been in-
tuations in the quadrupole degree of freedom are taken intoluded in the variational process but added, in a perturbative
consideration(see[2] for a discussion of this issieObvi-  fashion, at the end of the calculation. Reflection symmetry
ously, at higher spins the rotational energy makes the Sas been used as a self-consistent symmetry in our HFB
minimum deeper and therefore much more stable againstave functions. This is not a real limitation as octupole in-
guadrupole fluctuations. As a side product of our calculationstability is expected3] at much higher spins than the ones
and also to check the suitability of the Gogny force for thisconsidered in this work.
nucleus we have studied the properties of low-lying normal The operator
deformed states and compared them with the available ex-
perimental data. To perform the theoretical analysis, we have o1+ 1
used the angular momentum projected generator coordinate ploo:_J' deBO(IB)efianefiBJyefiyJZ )
method(AMP-GCM) with the axial quadrupole moment as 8m?

Il. THEORETICAL FRAMEWORK
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appearing in Eq(1) is the usual angular momentum projec- PBV in small configuration spacesAccording to the results
tor with the K =0 restriction[17] and f! (q,0) are the “col-  of Refs.[22,23 the PBV energy for strongly deformed sys-
lective wave functions” solution of the Hill-WheeléHW)  tems(computed after several approximatipean be written

equation as
' ' ' 3% RA(1+1)
ddz0H (920,020 f o (G30) Epnl)=(H _@_,_ -~ =
PBV( ) < > 2\7Y ijV ’
= ELJ d N (20,020) T (0120)- (3 whereJy and J;y are the YoccozY) and Thouless-Valatin

(TV) moments of inertia, respectively. For the PAV one has
In the HW equation we have introduced the projected nornio replace the TV moment of inertia by the Y one in the last

A al)= p! ')y, and the projected t€rm of the previous formula. These results mean that the
(G0, G20 = (G20 [ Pool ¢(G20)) prol rotational energy correction &0 is already well described

Hamiltonian .kemewl(qzo’qé&:<‘{°(q20)“:|IS|°°|<P(%0)>' in the PAV but forl #0 one has to use the PBV method. As
Thle solution tOfmfhg ![_'W _equatloP folr i?]Ch ValuedOftﬂ:ediscussed in19] the effect of the PBV can be estimated by

angular mﬁ.“}?f‘ u N et:mmefshno on yb edgrl;)un IS ate carrying out self-consistent crankin@SCQ calculations.

(o=1), which is a member of the yrast band, but also EX\When the results of these calculations are compared to those

cited stateéc, ‘fzzf’i e )_ttP;]ata_Q thetp(;e?ent ct(_)nteﬁc{ ma% of the AMP in several Mg isotopes it is found that the SCC
correspond o states wi literent deformation than ey ray energies are quenched by a factor of 0.7 with respect to
ground state and/or quadrupole vibrational excitations. In or

der t ve the HW ton it I ont & kfhe AMP ones. As we will see in the next section the same
derto solve the equation itIs usually convenien °,W°r quenching factor appears for the SD rotational band when
in an orthogonal basis given by the statd&')

- the SCC and the AMP results are compared.
= ()~ 2/ da0uk(G20) Pool ¢(d20)) defined in terms of the
quantitiesuL(qzo) and nL which are eigenvectors and eigen-
values, respectively, of the projected norm, i.e.,
JdabN' (G20, G50 Uk(Ghe) = NiUi(Ga0) . The correlated wave In Fig. 1 we present the results of the HFB calculations
functions are written in terms of the new basis |ds,) used to generate the intrinsic stafegq,q)). On the left-
=3,07'|k"), where the amplitudegy"' have been intro- hand side of the figure we show the HFB enefggnel(a)]
duced. In terms of these amplitudes it is possible to defin@long with theg, deformation paramet¢panel(b)] and the
“collective” wave functions g”'(qp0) =29y 'ui(gye)  Particle-particle energf,,= —1/2Tr(A«*) [panel(c)] for
whose square, contrary to tHé(q,,) amplitudes, has the Protons and neutrons as a function of the quadrupole moment
meaning of a probability. In the solution of the HW equation d20- The energy curve shows a_defprmed ground-state mini-
a technical difficulty is encountered: fop, values close to  MUM atdxo=0.4b (3,=0.19) which is only 130 keV deeper
sphericity andl #0, the projected norms\' (0,050 get than the sphe_nc_al configuration. A very shall_ow super de-
very small and, as a consequence, the evaluation of th{ormed(SD) minimum atQZozl'qF)B(BZZO'n) is also ob-
Hamiltonian kernels for those values gfo, Q) and | is ~ S€rved at an excitation energg/"*(SD)=9.85 MeV. To

prone to strong numerical instabilities. The most notoriousStudy the effect of the finite size of the basis in the HFB
consequence is that the angular momentum projeitP) energies and in the excitation energy of the SD minimum we

_ have carried out calculations including 18 major shells for
energyE'(dz0) =M '(d20,920/N" (020,020 cannot be accu- .
rately computed foj,q close to sphericity anti=0. For this the HO basi (1140 statesfor both the normal deformed

reason, whenever the AMP energies are plotted in the nexXf\D) @nd SD HFB minima and found that the corresponding
section the values correspondingdg, near sphericity will €nergies are shifted downwards by 759 and 1071 keV, re-

be omitted. However, this difficulty does not pose any prob-SpeCti.V‘?ly' As a consequence, the excitation energy of the
lem for the solution of the HW equation because the configu-SD m|n|mumBgets reduced by 312 keldl 4% effect up to
rations with very small projected norms only contribute toth€ valueE,™“(SD)=9.54 MeV. The hexadecupole defor-

the orthogonal statesk') with very small values ofl and mation parametep, is seeing to increase with increasing
these states are not taken into account in the solution of th@Uadrupole moments and reach at the SD minimum the
HW equation. Let us also mention that details pertaining td@ther high valugs,=0.33. Concerning the particle-particle
the evaluation of the Hamiltonian kernels for density depencorrelation energie,, we observe that their values for pro-
dent forces are given ifi8,19. tons and neutrons are nearly identical and they go to zero in

Finally, it has to be said that one of the drawbacks of the_bOth_ the normal deformed_ gnd superdeformed minima. This
method is that the intrinsic wave functions are determinedMPlies that dynamical pairing effects could be relevant for
before the projection, i.e., we are using a projection aftefn€ description of both the ND and SD bands. On the right-
variation (PAV) method. A better way to proceed would be hand side of the figure we have plotted the matter density
to use projection before the variatigPBV) [20] but this
would lead us to a triaxial projection which, for the moment,
is extremely costly for the full configuration spaces used IThis basis is considered by some auth@kas almost indistin-
with the Gogny force(see[21] for an implementation of guisable from an infinite basis for the nucleus considered here.

Ill. DISCUSSION OF THE RESULTS
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FIG. 1. On the left-hand side the HFB enelfganel(a)], the B, deformation parametg¢panel(b)], and the particle-particle correlation
energiesE, for protons and neutrorfpanel(c)] are depicted as a function of the quadrupole monagggiven in barns. On the right-hand
side, contour plots of the matter distribution corresponding to a density of 0.08 &md different quadrupole moments are depicted.

contour plots(at a densityp,=0.08 fm %) for several val- 0.864, and 0.174 for thef},, 1fs,, 2pg,, and 2, , orbit-

ues ofqg,e. Only for g, values greater or equal 3.2 b the als, respectivelythe quantities for proton and neutrons are
matter density distribution resembles the one correspondingery similar and therefore only the proton values are given
to two touching®O spherical nuclei. On the other hand, the Therefore, we have for the SD intrinsic state 11.124 particles
matter distribution corresponding to the SD minimumyd in the N=2 major shell and 4.624 in thid=3 one in good
=2b) resembles closely the density obtained in the two-agreement with the Harvey prescription. As a consequence
center harmonic oscillator model by coalesciing., taking  of these occupancies, we get contributions to the quadrupole
the distance between the centers of the two harmonic oscimoment both from the positive paritys¢) orbitals and the
lator potentials equal to zerdhe configuration correspond- negative parity pf) ones. The two contributions turn out to
ing to two separaté®0 nuclei in their ground statgsee[5]  be nearly the same for the SD intrinsic wave function. These
and references therginin this case and according the Har- values of the occupancies also imply that for a proper de-
vey prescription the resultingS nucleus is not formed in its  scription of the SD configuration in terms of the shell model
ground state but rather in the excited configurationone needs to consider not only tisel shell but also the
(0)*(1)*4(2)*%(3)* where four particles have been promoted completefp shell. Finally, let us mention that the occupan-
from theN=2 major shell to théN=3 one. According to the cies of the negative parity orbitals just mentioned are very
ideas developed by Rd@4] relating clustering to the ap- small for the ND minimum as expected.

pearance of shell gaps in the single-particle spectrum the In Fig. 2(a) we have plotted the AMP energy curves for
above configuration correspond to a deformed nucleus with=0, ... ,1Z (full lines) along with the HFB energy curve
an axis ratio oR:1. Infact, the matter distribution of the SD (dashed lingas a function of the quadrupole moment. The
minimum has an axis ratie/x=1.92, a proton mean-square AMP | =0#% energy curve shows more pronounced ND and
radius of 3.66 fm and deformation paramet8gs=0.73 and  SD minima than the HFB one and they are located at quad-
B4=0.33. To study further the connection between theseupole moments),,=0.5% andq,,=2.02 for the ND and
ideas and our HFB results for the SD minimum we haveSD configurations. The excitation energy of the SD mini-
computed the spherical shell occupancies(nlj) mum with respect to the ground state fo=0% is

=3 m(¢|CnijmCnijm| @) for the intrinsic SD wave function. E;?(SD)=8.22 MeV to be compared with the 9.85 MeV
The quantities/(nlj) give the occupancior contentsof the  obtained in the HFB calculation. Let us mention that per-
HO orbitalnlj in the intrinsic wave functioni¢). The posi-  forming the AMP calculations with 18 shells is extremely
tive parity level occupancies are 3.168, 1.688, and 0.706 fotime consuming and therefore we will just use in this case
the dsp, dsp, and 24, orbitals, respectively, whereas for the 312 keV shift obtained in the HFB to account for the
the negative parity levels the occupancies are 0.992, 0.282ffect of the finite size of the basis in the excitation
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FIG. 2. In panela) the HFB energydashed lingand the angular momentum projected energies Up=th2% are plotted as a function
of the quadrupole deformatiag,, measured in barns. See Sec. Il for an explanation of the missing point agggm@b. In panel(b), the

four lowest-lying solutions of the AMP-GCM equation are plotted for each spin. In both plots the Coulomb exchange energy has not been

added. See text for further details.

energy of the SD band head. We will also use the 759 ke\becomes yrast dt=8#% and shows an irregularity at= 2%

shift in the energy of the ground state to estimate the bindinghat is related to the near degeneracy of this SD state with the
energy in the AMP-GCM calculation. If we take into consid- 25 ND state. We also notice that a bunch of other SD states
eration the 312 keV shift the excitation energy of the SDwith angular momentum ¥0and 17 appear. Let us also
minimum in the AMP case becomesEx™"(SD)  note that, when the Coulomb exchange energy is taken into
=7.91 MeV to be Compared with the 9.54 MeV obtained in account the @ ground-state energy becomes
the HFB case with 18 shells. We notice that for increasing_ 270 87 Mev (-271.63 MeV when the effect of the finite
spins, the superdeformed minimum gets more and more prgsi;e of the basis is taken into accouin good agreement

\r/]gllijrécﬁsd fgg:ju?l?tzolrgv?;rt?ﬁagr?#gil Ii?tSrgctiiEﬁ?rZ[;fgi]s with the experimental binding energy of 271.780 ME2B].
. ; + at
Finally, let us mention that the main effect of considering the Concerning the normal deformed states, thie 21 , 67,

PBV moments of inertigsee Sec. )l in the AMP energy and 8 states have nearly the same valueggf and they
curves would be the lowering of the£0 curves but the could be the members of a rotational band with moderate
=0 reference curve should remain unchanged. Therefore, waeformation. Moreover, the;2and 4, states are oblate and
do not expect changes in our prediction of the excitationtogether with the § state could be the member of another
energy of the SD bandhead and the angular momentum fahoderate deformation band. Experimentally, there are many
which the SD band becomes the yrast band coming from thRnown levels at low excitation enerdg] either of positive
effects of PBV. and negative parity. They can be interpreted in terms of the
In Fig. 2b) we show the energies obtained in the AMP- ghe|| model within thesd shell [9] or the algebraic cluster
GCM calculations for the four lowest-lying solutions of the ,ggel of[10]. Some of the levels can be bunched together as

HW equation(labeled with the subindex=1,...,4) and  mempers ok =0 bands and could be associated with the
spins from zero up to ¥2 Each level has been placed at ayq pands obtained in our calculations. In Table | we com-

0,0 Value corresponding to its average deformatiggy)”"'
= [d 097" (00)|%020. The | =0% projected energy curve
has also been plotted to guide the eye.

We first observe that the three lowest 6tates are spheri-

pare the available experimental data on excitation energies
andB(E2) transition probabilities for botK =0 bands with

our predictions. Taking into account that in our calculations
we only take into account the quadrupole degree of freedom

cal whereas the fourth one is located inside the SD minimunand that the Gogny force has not been fitted for this region of
and therefore is the bandhead of the SD rotational band. Asthe Periodic Table we conclude from Table | that our results
consequence of the quadrupole mixing the excitation energgire in reasonable agreement with experiment especially for
of the SD 0" with respect to the ground state increases up tahe lowest lying states. This fact gives us some confidence on
EMP-GCM(SD)=8.87 MeV(8.56 MeV for the 18 shells ba- the predictions we make for the SD band. In this respect, we
si9) and we also confirm that the’0SD state is stable against can also mention that we obtain a spectroscopic quadrupole
quadrupole fluctuations. We also clearly observe the SD romoment for the # of —13.29 fnf that compares well with
tational band (§ , 2, , 45, 65, 8], 10/, and 1Z) which  the experimental valug26] of —14.9 fr?. Our results are
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TABLE |. Experimental and theoretical values for the excitation ener¢resMeV) and B(E2,| — 1|
—2) transition probabilitiegin e fm*) of the two K=0 bands of%?S. Values marked with an asterisk
correspond to theoretical predictions found 11®)].

Band 1(Exp) Band 1(Th) Band 2(Exp) Band 2(Th)
J7 E B(E2) J” E B(E2) J” E B(E2) J” E B(E2)
o* 0 0r 0 0" 3.778 0, 2975
2 2230 606 2 2107 723 7 4282 488) 2; 4816 580
4% 4459 72-12 47 5825 1198 4 6.852 354°:%% 4 9097 1322
6" 8346 >222 6] 10962 1428 6 9.783  39.¢")

also in good agreement with previous calculations with theGCM-Q, which is obtained by quenching the AMP-GCM
Gogny force in the context of the Bohr Hamiltonian for Be  ray energies by a factor of 0.7. In the following we will
and vy collective variableg15]. consider the AMP-GCM-Q results for the SD rotational band
Coming back to the SD band we have also carried ouhs our “best” prediction. However, we have to take into
SCC-HFB calculations for the SD intrinsic state to estimateaccount that the pairing correlations in the SD minimum are
the effect of PBV in the moment of inertia of the SD band neg||g|b|e and, therefore, one can expect that dynamic pair-
(see Sec. I _ ~ing could play an important role in determining the SCC
In panel(a) of Fig. 3 we have plotted thg ray energies  moment of inertia. The static moment of inertia obtained in
E,(1)=E(I)~E(I—2) as a function of for the SD band  {he AMP-GCM-Q (or the SCC-HFB calculation is rather
obtaltned with ?'fferi”tth apsplgo_"’“t:hes; Nan;_ely, ?nguﬁr MOtonstant as a function of spin and has an average value
mentum projection of the intrinsic configuration, the re- 2 -1 ; —72
sult of the AMP-GCM and the SCC-HFB resllts. We ob- 2! oo e which - correspond - tok=A"/(2.7)

serve that the effect of the quadrupole mixing is very small In panel(b) of Fig. 3 we show tha(E2, —I —2) tran-

as the AMP and the AMP-GCNE (1) are nearly identical. . . e
Y -
However, the SCC-HFB results are clearly different from theS!tion pTObab"'“eS along the SD band for the AM.P GCM
Iculation and the SCC-HFB ones computed within the ro-

AMP ones. The reason was mentioned before and has to d6 L
tational approximation. In both cases, the bare proton charge

with the fact that the moments of inertia computed in the v e
framework of projection beforéThouless-Valatinand after has been used. Both transition probabilities agree well up to

(Yocco? variation differ considerably. This fact has already | = 6% where the AMP-GCM results become bigger. This is
been observed in similar calculations carried out in the samgelated to the fact that in the SCC-HFB the Coriolis anti-
framework for several Mg isotopgd9]. In those calcula- stretching effect diminishes the intrinsic deformation from
tions we noticed that the SCC-HFB moment of inertia turned32=0.74 atl =0 to 3,=0.68 atl =12 whereas in the AMP-
out to be a factor of 1.4 bigger than the AMP one in all theGCM the quadrupole deformation increases with sisiee
nuclei considered. The same happens here as can be seenth§ right-hand side panel of Fig).2rhe Coriolis antistretch-

comparing the SCC-HFB curve with the one labeled AMP-ing effect cannot be present in a AMP-GCM calculation be-
cause the intrinsic states used there are those computed at

zero spin. The computeB(E2) are highly collective and

4 ————— 02—
° QM';_GCM (@) . awpcom | ® correspond to around 100 W.u. for thé 20" transition.
« SCC N
3F. AMP-GCM-Q 1 ° SCC
o5t 1
< 5 IV. CONCLUDING REMARKS
[0
=2¢f E .
M 1 As a result of our calculations we can conclude that the
u:‘.f 011 . predicted superdeformed band #4S is stable at low spin
T 1 & against quadrupole fluctuations in spite of the shallowness of
the HFB SD minimum. The effect of angular momentum
obe 005 Lt projection and quadrupole mixing reduces the excitation en-
0 2 4 6I(ﬁ)8 10 12 14 02 4 6I(ﬁ)8 10 12 14 ergy of the SD band head with respect to the ground state to

FIG. 3. In panel(a) the y ray energie (1) =E(I)—E(I-2)

in MeV for the SD configuration are depicted as a function of spin

8.87 MeV (8.56 MeV if the effect of the finite-size basis is
considerey] to be compared to the HFB result of 9.85 MeV
(9.54 MeV for the 18 shells bagiswe have also found that

I(%) for the AMP, AMP-GCM, and SCC calculations. In addition, the SD band becomes yrast at angular momeriter@7 in
the results of the AMP-GCM quenched by a factor of (AMP-

GCM-Q) are also depicted. In panédb) the theoretical results for

the B(E2,| —1—2) transition probabilities in units 0&?b? are 1a
depicted as a function of spin for the SCC and AMP-GCM 10.3:2 MeV ! and theB(E2) transition probabilities along
calculations.

our calculations in contrast with the results of several HFB
results where it becomes yrastlat 124. The computed mo-
ment of inertia of the SD band is of the order of

this band are very collective, exceeding 100 W.u. The SD
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