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Properties of the predicted superdeformed band in32S

R. R. Rodrı´guez-Guzma´n, J. L. Egido, and L. M. Robledo
Departamento de Fı´sica Teo´rica C-XI, Universidad Auto´noma de Madrid, E-28049 Madrid, Spain

~Received 9 June 2000; published 10 October 2000!

Properties like the excitation energy with respect to the ground state, moments of inertia,B(E2) transition
probabilities, and stability against quadrupole fluctuations at low spin of the predicted superdeformed band of
32S are studied with the Gogny force D1S using the angular momentum projected generator coordinate method
for the axially symmetric quadrupole moment. The self-consistent cranking method is also used to describe the
superdeformed rotational band. In addition, properties of some collective normal deformed states are discussed.

PACS number~s!: 21.60.Jz, 21.10.Re, 21.10.Ky, 27.30.1t
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I. INTRODUCTION

Recently, a number of papers have addressed the the
ical study of the predicted super deformed~SD! configura-
tion in the nucleus32S by using the mean-field approxima
tion at high spin with several flavors of the Skyrme@1,2# and
also the Gogny interaction@3#. The interest to study the SD
configuration in 32S comes from the fact that this SD co
figuration is thought to be an intermediate case between
strongly deformed cluster structures in very light nuclei a
the known SD states in theA560 region@4,5#. In fact, it is
interesting to understand the relationship between the
dicted SD band in32S and the16O116O quasimolecular ro-
tational states observed in this nucleus@6,7#. On the other
hand, many states up to an excitation energy of around
MeV are known experimentally in this nucleus@8#. Those
states can be interpreted in terms of the shell model w
active particles in thesd shell @9# and also in terms of the
algebraic cluster model@10#. It turns out that some of thes
states can be interpreted in terms of deformed intrinsic c
figurations and, therefore, they can be used as a test gr
to assure the reliability of any interaction meant to descr
the SD band in this nucleus at the mean-field level.

The purpose of this paper is to study, using the Gog
interaction@11# with the D1S parametrization@12#, the prop-
erties of the superdeformed band of the nucleus32S focusing
on the stability of the superdeformed minimum at low sp
against quadrupole fluctuations. The reason is that in the
oretical studies mentioned in the above paragraph and als
previous mean-field calculations with the Skyrme@13# and
Gogny forces@14#, the SD minimum observed in the energ
landscape was very shallow raising serious doubts abou
ability to hold states at low angular momentum when flu
tuations in the quadrupole degree of freedom are taken
consideration~see@2# for a discussion of this issue!. Obvi-
ously, at higher spins the rotational energy makes the
minimum deeper and therefore much more stable aga
quadrupole fluctuations. As a side product of our calculati
and also to check the suitability of the Gogny force for th
nucleus we have studied the properties of low-lying norm
deformed states and compared them with the available
perimental data. To perform the theoretical analysis, we h
used the angular momentum projected generator coordi
method~AMP-GCM! with the axial quadrupole moment a
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generating coordinate and restricted ourselves toK50 con-
figurations. The method allows us to obtain an accurate e
mate of the excitation energy of the superdeformed 01 state
with respect to the ground state. The properties of the su
deformed band obtained with the AMP-GCM are also co
pared to those of a self-consistent cranking calculation. T
choice of the Gogny interaction for this calculation is back
up not only by the results we obtain for low-lying excite
states but also by previous calculations in the context of
Bohr Hamiltonian in theb andg collective variables at zero
spin for normal deformed states that were used to desc
neutron and proton pair transfer reactions@15# and proton
scattering@16# data with great success.

II. THEORETICAL FRAMEWORK

In the framework of the angular momentum project
generator coordinate method~AMP-GCM! we have used the
following ansatz for theK50 wave functions of the system

uFs
I &5E dq20f s

I ~q20!P̂00
I uw~q20!&. ~1!

In this expressionuw(q20)& is the set of axially symmetric
~i.e.,K50) Hartree-Fock-Bogoliubov~HFB! wave functions
generated with the constraint ^w(q20)uz221/2(x2

1y2)uw(q20)&5q20 on the mass quadrupole moment. T
HFB wave functions have been expanded in an axially sy
metric harmonic oscillator~HO! basis with ten major shells
~220 HO states!. The two-body kinetic energy correction ha
been fully taken into account in the variational process. T
Coulomb exchange part of the interaction has not been
cluded in the variational process but added, in a perturba
fashion, at the end of the calculation. Reflection symme
has been used as a self-consistent symmetry in our H
wave functions. This is not a real limitation as octupole
stability is expected@3# at much higher spins than the one
considered in this work.

The operator

P̂00
I 5

2I 11

8p2 E dVd00
I ~b!e2 iaJze2 ibJye2 igJz ~2!
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appearing in Eq.~1! is the usual angular momentum proje
tor with theK50 restriction@17# and f s

I (q20) are the ‘‘col-
lective wave functions’’ solution of the Hill-Wheeler~HW!
equation

E dq208 H I~q20,q208 ! f s
I ~q208 !

5Es
I E dq208 N I~q20,q208 ! f s

I ~q208 !. ~3!

In the HW equation we have introduced the projected no
N I(q20,q208 )5^w(q20)uP̂00

I uw(q208 )&, and the projected

Hamiltonian kernelH I(q20,q208 )5^w(q20)uĤ P̂00
I uw(q208 )&.

The solution of the HW equation for each value of t
angular momentumI determines not only the ground sta
(s51), which is a member of the yrast band, but also
cited states (s52,3, . . . ) that, in the present context, ma
correspond to states with different deformation than
ground state and/or quadrupole vibrational excitations. In
der to solve the HW equation it is usually convenient to wo
in an orthogonal basis given by the statesukI&
5(nk

I )21/2*dq20uk
I (q20) P̂00

I uw(q20)& defined in terms of the
quantitiesuk

I (q20) andnk
I which are eigenvectors and eige

values, respectively, of the projected norm, i.
*dq208 N I(q20,q208 )uk

I (q208 )5nk
I uk

I (q20). The correlated wave
functions are written in terms of the new basis asuFs

I &
5(kgk

s,I ukI&, where the amplitudesgk
s,I have been intro-

duced. In terms of these amplitudes it is possible to de
‘‘collective’’ wave functions gs,I(q20)5(kgk

s,Iuk
I (q20)

whose square, contrary to thef s
I (q20) amplitudes, has the

meaning of a probability. In the solution of the HW equati
a technical difficulty is encountered: forq20 values close to
sphericity andIÞ0, the projected normsN I(q20,q208 ) get
very small and, as a consequence, the evaluation of
Hamiltonian kernels for those values ofq20, q208 and I is
prone to strong numerical instabilities. The most notorio
consequence is that the angular momentum projected~AMP!
energyEI(q20)5H I(q20,q20)/N I(q20,q20) cannot be accu-
rately computed forq20 close to sphericity andIÞ0. For this
reason, whenever the AMP energies are plotted in the n
section the values corresponding toq20 near sphericity will
be omitted. However, this difficulty does not pose any pro
lem for the solution of the HW equation because the confi
rations with very small projected norms only contribute
the orthogonal statesukI& with very small values ofnk

I and
these states are not taken into account in the solution of
HW equation. Let us also mention that details pertaining
the evaluation of the Hamiltonian kernels for density dep
dent forces are given in@18,19#.

Finally, it has to be said that one of the drawbacks of
method is that the intrinsic wave functions are determin
before the projection, i.e., we are using a projection a
variation ~PAV! method. A better way to proceed would b
to use projection before the variation~PBV! @20# but this
would lead us to a triaxial projection which, for the mome
is extremely costly for the full configuration spaces us
with the Gogny force~see @21# for an implementation of
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PBV in small configuration spaces!. According to the results
of Refs.@22,23# the PBV energy for strongly deformed sy
tems~computed after several approximations! can be written
as

EPBV~ I !5^H&2
^JW2&
2JY

1
\2I ~ I 11!

2JTV
,

whereJY andJTV are the Yoccoz~Y! and Thouless-Valatin
~TV! moments of inertia, respectively. For the PAV one h
to replace the TV moment of inertia by the Y one in the la
term of the previous formula. These results mean that
rotational energy correction atI 50 is already well described
in the PAV but forIÞ0 one has to use the PBV method. A
discussed in@19# the effect of the PBV can be estimated b
carrying out self-consistent cranking~SCC! calculations.
When the results of these calculations are compared to th
of the AMP in several Mg isotopes it is found that the SC
g ray energies are quenched by a factor of 0.7 with respec
the AMP ones. As we will see in the next section the sa
quenching factor appears for the SD rotational band w
the SCC and the AMP results are compared.

III. DISCUSSION OF THE RESULTS

In Fig. 1 we present the results of the HFB calculatio
used to generate the intrinsic statesuw(q20)&. On the left-
hand side of the figure we show the HFB energy@panel~a!#
along with theb4 deformation parameter@panel~b!# and the
particle-particle energyEpp521/2 Tr(Dk* ) @panel~c!# for
protons and neutrons as a function of the quadrupole mom
q20. The energy curve shows a deformed ground-state m
mum atq2050.4b (b250.19) which is only 130 keV deepe
than the spherical configuration. A very shallow super d
formed ~SD! minimum atq2051.9b (b250.73) is also ob-
served at an excitation energyEx

HFB(SD)59.85 MeV. To
study the effect of the finite size of the basis in the HF
energies and in the excitation energy of the SD minimum
have carried out calculations including 18 major shells
the HO basis1 ~1140 states! for both the normal deformed
~ND! and SD HFB minima and found that the correspond
energies are shifted downwards by 759 and 1071 keV,
spectively. As a consequence, the excitation energy of
SD minimum gets reduced by 312 keV~a 4% effect! up to
the valueEx

HFB(SD)59.54 MeV. The hexadecupole defo
mation parameterb4 is seeing to increase with increasin
quadrupole moments and reach at the SD minimum
rather high valueb450.33. Concerning the particle-particl
correlation energiesEpp we observe that their values for pro
tons and neutrons are nearly identical and they go to zer
both the normal deformed and superdeformed minima. T
implies that dynamical pairing effects could be relevant
the description of both the ND and SD bands. On the rig
hand side of the figure we have plotted the matter den

1This basis is considered by some authors@2# as almost indistin-
guisable from an infinite basis for the nucleus considered here
8-2
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FIG. 1. On the left-hand side the HFB energy@panel~a!#, theb4 deformation parameter@panel~b!#, and the particle-particle correlatio
energiesEpp for protons and neutrons@panel~c!# are depicted as a function of the quadrupole momentq20 given in barns. On the right-hand
side, contour plots of the matter distribution corresponding to a density of 0.08 fm23 and different quadrupole moments are depicted.
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contour plots~at a densityr050.08 fm23) for several val-
ues ofq20. Only for q20 values greater or equal 3.2 b th
matter density distribution resembles the one correspon
to two touching16O spherical nuclei. On the other hand, t
matter distribution corresponding to the SD minimum (q20
52b) resembles closely the density obtained in the tw
center harmonic oscillator model by coalescing~i.e., taking
the distance between the centers of the two harmonic o
lator potentials equal to zero! the configuration correspond
ing to two separate16O nuclei in their ground states~see@5#
and references therein!. In this case and according the Ha
vey prescription the resulting32S nucleus is not formed in its
ground state but rather in the excited configurat
(0)4(1)12(2)12(3)4 where four particles have been promot
from theN52 major shell to theN53 one. According to the
ideas developed by Rae@24# relating clustering to the ap
pearance of shell gaps in the single-particle spectrum
above configuration correspond to a deformed nucleus w
an axis ratio of2:1. In fact, the matter distribution of the SD
minimum has an axis ratioz/x51.92, a proton mean-squar
radius of 3.66 fm and deformation parametersb250.73 and
b450.33. To study further the connection between th
ideas and our HFB results for the SD minimum we ha
computed the spherical shell occupanciesn(nl j )
5(m^wucnl jm

1 cnl jmuw& for the intrinsic SD wave function
The quantitiesn(nl j ) give the occupancy~or contents! of the
HO orbital nl j in the intrinsic wave functionuw&. The posi-
tive parity level occupancies are 3.168, 1.688, and 0.706
the d5/2, d3/2, and 2s1/2 orbitals, respectively, whereas fo
the negative parity levels the occupancies are 0.992, 0.
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0.864, and 0.174 for the 1f 7/2, 1f 5/2, 2p3/2, and 2p1/2 orbit-
als, respectively~the quantities for proton and neutrons a
very similar and therefore only the proton values are give!.
Therefore, we have for the SD intrinsic state 11.124 partic
in the N52 major shell and 4.624 in theN53 one in good
agreement with the Harvey prescription. As a conseque
of these occupancies, we get contributions to the quadru
moment both from the positive parity (sd) orbitals and the
negative parity (p f) ones. The two contributions turn out t
be nearly the same for the SD intrinsic wave function. The
values of the occupancies also imply that for a proper
scription of the SD configuration in terms of the shell mod
one needs to consider not only thesd shell but also the
completef p shell. Finally, let us mention that the occupa
cies of the negative parity orbitals just mentioned are v
small for the ND minimum as expected.

In Fig. 2~a! we have plotted the AMP energy curves f
I 50, . . . ,12\ ~full lines! along with the HFB energy curve
~dashed line! as a function of the quadrupole moment. T
AMP I 50\ energy curve shows more pronounced ND a
SD minima than the HFB one and they are located at qu
rupole momentsq2050.55b andq2052.02b for the ND and
SD configurations. The excitation energy of the SD mi
mum with respect to the ground state forI 50\ is
Ex

AMP(SD)58.22 MeV to be compared with the 9.85 Me
obtained in the HFB calculation. Let us mention that p
forming the AMP calculations with 18 shells is extreme
time consuming and therefore we will just use in this ca
the 312 keV shift obtained in the HFB to account for t
effect of the finite size of the basis in the excitatio
8-3
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FIG. 2. In panel~a! the HFB energy~dashed line! and the angular momentum projected energies up toI 512\ are plotted as a function
of the quadrupole deformationq20 measured in barns. See Sec. II for an explanation of the missing point aroundq2050b. In panel~b!, the
four lowest-lying solutions of the AMP-GCM equation are plotted for each spin. In both plots the Coulomb exchange energy has
added. See text for further details.
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energy of the SD band head. We will also use the 759 k
shift in the energy of the ground state to estimate the bind
energy in the AMP-GCM calculation. If we take into consi
eration the 312 keV shift the excitation energy of the S
minimum in the AMP case becomesEx

AMP(SD)
57.91 MeV to be compared with the 9.54 MeV obtained
the HFB case with 18 shells. We notice that for increas
spins, the superdeformed minimum gets more and more
nounced and becomes the ground state at spinI 58\. This
value is four units lower than the HFB predictions of@2,3#.
Finally, let us mention that the main effect of considering t
PBV moments of inertia~see Sec. II! in the AMP energy
curves would be the lowering of theIÞ0 curves but theI
50 reference curve should remain unchanged. Therefore
do not expect changes in our prediction of the excitat
energy of the SD bandhead and the angular momentum
which the SD band becomes the yrast band coming from
effects of PBV.

In Fig. 2~b! we show the energies obtained in the AM
GCM calculations for the four lowest-lying solutions of th
HW equation~labeled with the subindexs51, . . . ,4) and
spins from zero up to 12\. Each level has been placed at
q20 value corresponding to its average deformation (q̄20)

s,I

5*dq20ugs,I(q20)u2q20. The I 50\ projected energy curve
has also been plotted to guide the eye.

We first observe that the three lowest 01 states are spheri
cal whereas the fourth one is located inside the SD minim
and therefore is the bandhead of the SD rotational band.
consequence of the quadrupole mixing the excitation ene
of the SD 01 with respect to the ground state increases up
Ex

AMP-GCM(SD)58.87 MeV ~8.56 MeV for the 18 shells ba
sis! and we also confirm that the 01 SD state is stable agains
quadrupole fluctuations. We also clearly observe the SD
tational band (04

1 , 24
1 , 43

1 , 62
1 , 81

1 , 101
1 , and 121

1) which
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becomes yrast atI 58\ and shows an irregularity atI 52\
that is related to the near degeneracy of this SD state with
23

1 ND state. We also notice that a bunch of other SD sta
with angular momentum 10\ and 12\ appear. Let us also
note that, when the Coulomb exchange energy is taken
account the 01

1 ground-state energy become
2270.87 MeV (2271.63 MeV when the effect of the finite
size of the basis is taken into account! in good agreemen
with the experimental binding energy of 271.780 MeV@25#.

Concerning the normal deformed states, the 21
1 , 41

1 , 61
1 ,

and 83
1 states have nearly the same value ofq̄20

s,I and they
could be the members of a rotational band with moder
deformation. Moreover, the 22

1 and 42
1 states are oblate an

together with the 02
1 state could be the member of anoth

moderate deformation band. Experimentally, there are m
known levels at low excitation energy@8# either of positive
and negative parity. They can be interpreted in terms of
shell model within thesd shell @9# or the algebraic cluste
model of@10#. Some of the levels can be bunched togethe
members ofK50 bands and could be associated with t
two bands obtained in our calculations. In Table I we co
pare the available experimental data on excitation ener
andB(E2) transition probabilities for bothK50 bands with
our predictions. Taking into account that in our calculatio
we only take into account the quadrupole degree of freed
and that the Gogny force has not been fitted for this region
the Periodic Table we conclude from Table I that our resu
are in reasonable agreement with experiment especially
the lowest lying states. This fact gives us some confidence
the predictions we make for the SD band. In this respect,
can also mention that we obtain a spectroscopic quadru
moment for the 21

1 of 213.29 fm2 that compares well with
the experimental value@26# of 214.9 fm2. Our results are
8-4
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TABLE I. Experimental and theoretical values for the excitation energies~in MeV! and B(E2,I→I
22) transition probabilities~in e2 fm4) of the two K50 bands of32S. Values marked with an asteris
correspond to theoretical predictions found in@10#.

Band 1~Exp! Band 1~Th! Band 2~Exp! Band 2~Th!

Jp E B(E2) Jp E B(E2) Jp E B(E2) Jp E B(E2)
01 0 01

1 0 01 3.778 02
1 2.975

21 2.230 6066 21
1 2.107 72.3 21 4.282 48.8~* ! 22

1 4.816 58.0
41 4.459 72612 41

1 5.825 119.8 41 6.852 35.428.4
118.6 42

1 9.097 132.2
61 8.346 .22.2 61

1 10.962 142.8 61 9.783 39.6~* !
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also in good agreement with previous calculations with
Gogny force in the context of the Bohr Hamiltonian for theb
andg collective variables@15#.

Coming back to the SD band we have also carried
SCC-HFB calculations for the SD intrinsic state to estim
the effect of PBV in the moment of inertia of the SD ba
~see Sec. II!.

In panel~a! of Fig. 3 we have plotted theg ray energies
Eg(I )5E(I )2E(I 22) as a function ofI for the SD band
obtained with different approaches. Namely, angular m
mentum projection of the SD intrinsic configuration, the r
sult of the AMP-GCM and the SCC-HFB results. We o
serve that the effect of the quadrupole mixing is very sm
as the AMP and the AMP-GCMEg(I ) are nearly identical.
However, the SCC-HFB results are clearly different from t
AMP ones. The reason was mentioned before and has t
with the fact that the moments of inertia computed in t
framework of projection before~Thouless-Valatin! and after
~Yoccoz! variation differ considerably. This fact has alrea
been observed in similar calculations carried out in the sa
framework for several Mg isotopes@19#. In those calcula-
tions we noticed that the SCC-HFB moment of inertia turn
out to be a factor of 1.4 bigger than the AMP one in all t
nuclei considered. The same happens here as can be se
comparing the SCC-HFB curve with the one labeled AM

FIG. 3. In panel~a! the g ray energiesEg(I )5E(I )2E(I 22)
in MeV for the SD configuration are depicted as a function of s
I (\) for the AMP, AMP-GCM, and SCC calculations. In additio
the results of the AMP-GCM quenched by a factor of 0.7~AMP-
GCM-Q! are also depicted. In panel~b! the theoretical results fo
the B(E2,I→I 22) transition probabilities in units ofe2b2 are
depicted as a function of spin for the SCC and AMP-GC
calculations.
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GCM-Q, which is obtained by quenching the AMP-GCMg
ray energies by a factor of 0.7. In the following we w
consider the AMP-GCM-Q results for the SD rotational ba
as our ‘‘best’’ prediction. However, we have to take in
account that the pairing correlations in the SD minimum
negligible and, therefore, one can expect that dynamic p
ing could play an important role in determining the SC
moment of inertia. The static moment of inertia obtained
the AMP-GCM-Q ~or the SCC-HFB! calculation is rather
constant as a function of spin and has an average v
of 10.3\2 MeV21 which correspond to k[\2/(2J)
548.5 keV.

In panel~b! of Fig. 3 we show theB(E2,I→I 22) tran-
sition probabilities along the SD band for the AMP-GC
calculation and the SCC-HFB ones computed within the
tational approximation. In both cases, the bare proton cha
has been used. Both transition probabilities agree well up
I 56\ where the AMP-GCM results become bigger. This
related to the fact that in the SCC-HFB the Coriolis an
stretching effect diminishes the intrinsic deformation fro
b250.74 atI 50 to b250.68 atI 512 whereas in the AMP-
GCM the quadrupole deformation increases with spin~see
the right-hand side panel of Fig. 2!. The Coriolis antistretch-
ing effect cannot be present in a AMP-GCM calculation b
cause the intrinsic states used there are those compute
zero spin. The computedB(E2) are highly collective and
correspond to around 100 W.u. for the 21→01 transition.

IV. CONCLUDING REMARKS

As a result of our calculations we can conclude that
predicted superdeformed band in32S is stable at low spin
against quadrupole fluctuations in spite of the shallownes
the HFB SD minimum. The effect of angular momentu
projection and quadrupole mixing reduces the excitation
ergy of the SD band head with respect to the ground stat
8.87 MeV ~8.56 MeV if the effect of the finite-size basis i
considered!, to be compared to the HFB result of 9.85 Me
~9.54 MeV for the 18 shells basis!. We have also found tha
the SD band becomes yrast at angular momentumI 58\ in
our calculations in contrast with the results of several H
results where it becomes yrast atI 512\. The computed mo-
ment of inertia of the SD band is of the order
10.3\2 MeV21 and theB(E2) transition probabilities along
this band are very collective, exceeding 100 W.u. The
8-5
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bandhead configuration corresponds to the promotion of
particles from thesd to the f p shell. As a consequence, th
matter distribution of the SD configuration corresponds
two coalescent16O nuclei in the sense of the two-cent
harmonic-oscillator shell model in good agreement with
Harvey prescription.
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