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Moments of inertia of nuclei in the rare earth region: A relativistic
versus nonrelativistic investigation
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A parameter-free investigation of the moments of inertia of ground-state rotational bands in well-deformed
rare-earth nuclei is carried out using cranked relativistic Hartree-Bogoliubov~CRHB! and nonrelativistic
cranked Hartree-Fock-Bogoliubov~CHFB! theories. In CRHB theory, the relativistic fields are determined by
the nonlinear Lagrangian with the NL1 force and the pairing interaction by the central part of a finite-range
Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined
solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of
the Lipkin-Nogami method improves the agreement with the experimental data, especially in CRHB theory.
The effect of the particle number projection on the moments of inertia and pairing energies is larger in
relativistic than in nonrelativistic theory.

PACS number~s!: 21.60.Jz, 27.70.1q
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I. INTRODUCTION

One of the oldest problems in our understanding of
collective motion of nuclei is the moments of inertia
ground-state rotational bands in well-deformed nuclei. Th
depend in a very sensitive way on collective properties s
as deformations and on pairing correlations of these ma
body systems. Since rotational bands have been detect
nuclei nearly 50 years ago and since the first microsco
calculations of the moments of inertia by Inglis@1#, these
quantities have been used as a testing ground for nearl
microscopic theories of collective motion. They describe
response of the strongly interacting nuclear many-body s
tem to an external Coriolis field breaking time-reversal sy
metry. They are, therefore, in some sense comparable to
static magnetic susceptibility in condensed matter physic

The earliest microscopic calculations were based o
mean field of a deformed harmonic oscillator@1–3#. In these
calculations, residual interactions were neglected. In this w
one found the values of the moments of inertia identica
those of a rigid body with the same shape, in strong disag
ment with the experimentally observed values, which wh
considerably smaller. It was pointed out already very ea
@2,4# that residual two-body interactions would lower th
values of the moment of inertia obtained in the Inglis mod
The most important correlations causing such a reduction
pairing correlations@5#. In fact, Belyaev@6,7# showed that a
simple extension of the Inglis formula in the framework
BCS theory is able to reduce the theoretical moments
inertia dramatically because of the large energy gap in

*On leave of absence from the Laboratory of Radiation Phys
Institute of Solid State Physics, University of Latvia, LV 216
Salaspils, Miera str. 31, Latvia.
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spectrum of quasiparticle excitations occurring in the d
nominator of the Belyaev formula. Therefore, the small m
ments of inertia of the rotational bands provided one of
most important experimental hints for a superfluid behav
of these heavy open shell nuclei. Extended calculations u
the theory of Belyaev have been carried out by Nilsson a
Prior @8# using the BCS model based on the single-parti
spectrum of the Nilsson potential.

Apart from the fact that the results of these calculatio
were relatively successful, there are, as we know today
number of open problems, namely, the following.

~i! Belyaev’s formula is based on generalized mean fi
theory violating essential symmetries. It has been pointed
already by Migdal@9,10# that Galileian invariance is broken
He therefore modified the Belyaev formula by taking in
account more complicated correlations to correct the vio
tion of this symmetry. The question of the restoration of t
broken Galileian invariance in the particle-hole and partic
particle channels was later discussed in a number of artic
see, for example, Refs.@11–13# and references therein.

~ii ! Since Belyaev’s formula describes only quasipartic
moving independently, higher order correlations have to
taken into account. This has been done by Thouless and
atin @14# who considered all orders of the interaction in
theory describing the linear response of the system to
external Coriolis field. Marshalek and Weneser@15# showed
that the method of Thouless and Valatin preserves all
symmetries violated in the mean field approximation in l
ear order. In that sense Migdal’s formula was just a spe
case to deal with Galilean invariance. Marshalek showed
series of papers~see, for example, Ref.@16#! that this is just
the linear approximation of a more general theory based
boson expansion techniques treating the symmetries ap
priately in all orders@16#.

~iii ! Much more elaborated versions of the cranked N
son model@17,18# showed that thel2 term in this model,

s,
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which corrects in an elegant way the fact that realistic pot
tials for heavy nuclei are much flatter than an oscillator in
nuclear interior, introduces a strong spurious momentum
pendence. This leads to the values for the moments of ine
deviating considerably from the experimental values. Ho
ever, this problem is to a large extent cured either by Stru
sky renormalization of the moments of inertia@17# or by an
additional term to the cranked Nilsson potential that resto
the local Galilean invariance@19,20#.

Realistic applications of the Thouless-Valatin theory a
by no means trivial. They should be based on self-consis
solutions of the mean field equations, because only for th
solutions does the random phase approximation~RPA!
theory preserve the symmetries@21#. In addition, they re-
quire the inversion of the RPA matrix. Meyeret al. @22# have
carried out such calculations in a restricted configurat
space replacing the self-consistent mean field in an appr
mate way by the Woods-Saxon potential. As the resid
interaction they used density-dependent Migdal forcesFv in
the ph channel andFj in the pp channel. These interaction
have been carefully adjusted to experimental data for
underlying configuration space. The results of these calc
tions showed that there are indeed effects originating fr
both channels, each of them modifying the Belyaev valu
but canceling themselves to a large extent. Therefore
could understand why older calculations@8# based on the
generalized mean field model gave reasonable result
compared to the experiment.

Nowadays there are theories available where the Hart
~Fock-!Bogoliubov equations can be solved in a fully se
consistent way in the rotating frame for finite angular velo
ity V. Using the resulting wave functionsuFV& the
Thouless-Valatin moment of inertia can be found as

J5
d

dV
^FVuĴxuFV&U

V50

. ~1!

In this way one avoids the inversion of the full RPA matri
a task which is so far technically impossible for realis
forces in a full configuration space. Among these theories
properties of rotating nuclei are described in a way free fr
adjustable parameters only in the cranked relativis
Hartree-Bogoliubov~CRHB! theory @23,24# and nonrelativ-
istic density-dependent cranked Hartree-Fock-Bogoliub
~CHFB! theory with finite-range Gogny forces@25,26#. Sev-
eral realistic investigations of the moments of inertia in n
mally deformed and in superdeformed bands have been
ried out in the literature in the framework of nonrelativist
CHFB theory with Gogny forces@25,27–30#. Similar inves-
tigations in the relativistic framework have been perform
without pairing in theA;60 @31#, 80 @32#, and 140–150
@33–35# regions of superdeformation where the pairing c
relations are expected to be considerably quenched at
spin. The recently developed formalism of the CRHB theo
has been applied so far only for the description of the m
ments of inertia in theA;190 mass region of superdeform
tion @23,24#. A very successful description of the moments
inertia has been obtained in the framework of these two th
ries. The aim of the present investigation is to find the sim
05430
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larities and differences between these two theories using
systematic way the moments of inertia of rare-earth nucle
a testing ground.

II. THEORETICAL TOOLS

CRHB theory@23,24# is an extension of cranked relativ
istic mean field theory@36,33,34# to the description of pair-
ing correlations in rotating nuclei. It describes the nucleus
a system of Dirac nucleons which interact in a relativis
covariant manner through the exchange of virtual mes
@37#: the isoscalar scalars meson, the isoscalar vectorv
meson, and the isovector vectorr meson. The phonon field
~A! accounts for the electromagnetic interaction. The CR
equations for the fermions in the rotating frame are given
a one-dimensional cranking approximation by

S ĥ2VxĴx D̂

2D̂* 2ĥ* 1VxĴx*
D S Uk

Vk
D 5EkS Uk

Vk
D , ~2!

where ĥ5ĥD2l is the Dirac HamiltonianĥD for the
nucleon with massm,

ĥD5a @2 i“2V~r!#1V0~r!1b@m1S~r!#, ~3!

minus the chemical potentiall defined from the average
particle number constraint:

^FVuN̂uFV&5N. ~4!

The Dirac Hamiltonian contains a repulsive vector poten
V0(r), an attractive scalar potentialS(r), and the magnetic
potentialV(r) which leads to nonvanishing currents in th
systems with broken time-reversal symmetries@33,34#.
These currents play an extremely important role in the
scription of the moments of inertia@33,34# and thus they are
taken into account fully self-consistently in the calculation
In Eq. ~2!, Uk andVk are quasiparticle Dirac spinors andEk

denotes the quasiparticle energies. Furthermore,Ĵx and Vx
are the projection of total angular momentum on the rotat
axis and the rotational frequency.

The time-independent inhomogeneous Klein-Gord
equations for the mesonic fields are given by

$2D2~VxL̂x!
21ms

2%s~r!52gs@rs
p~r!1rs

n~r!#2g2s2~r!

2g3s3~r!,

$2D2~VxL̂x!
21mv

2 %v0~r!5gv@rv
p~r!1rv

n~r!#, ~5!

$2D2@Vx~ L̂x1Ŝx!#
21mv

2 %v~r!5gv@ j p~r!1 j n~r!#,

with source terms involving the various nucleonic densit
and currents:
6-2



e-

e
ou
th
e

-
s,
h

t

e

-
-

A

e
-

rv-
r-

MOMENTS OF INERTIA OF NUCLEI IN THE RARE . . . PHYSICAL REVIEW C62 054306
rs
i ~r!5 (

k.0
@Vk

i ~r!#†b̂Vk
i ~r!, rv

i ~r!5 (
k.0

@Vk
i ~r!#†Vk

i ~r!,

j i~r!5 (
k.0

@Vk
i ~r!#†âVk

i ~r!. ~6!

The sums overk.0 run over all quasiparticle states corr
sponding to positive-energy single-particle states~no-sea ap-
proximation! and the indicesi could be eithern ~neutrons! or
p ~protons!. For simplicity, the equations for ther meson
and the Coulomb fields are omitted in Eqs.~5! since they
have a structure similar to the equations forv meson; see
Refs. @23,24# for details. Since the coupling constant of th
electromagnetic interaction is small compared with the c
pling constants of the meson fields, the Coriolis term for
Coulomb potentialA0(r) and the spatial components of th
vector potentialA(r) are neglected in the calculations.

The pairing potentialD in Eq. ~2! is given by

D[Dab5
1

2 (
cd

Vabcd
pp kcd , ~7!

where the indicesa,b, . . . contain the space coordinatesr as
well as the Dirac and isospin indicess and t. It contains the
pairing tensork
05430
-
e

k[k~r,s,t,r8,s8,t !5 (
Ek.0

Vk* ~r,s,t !Uk~r8,s8,t !, ~8!

and the matrix elementsVabcd
pp of the effective interaction in

thepp channel. In the present version of CRHB theory, pair
ing correlations are only considered between the baryon
because pairing is a genuine nonrelativistic effect, whic
plays a role only in the vicinity of the Fermi surface. The
central part of the Gogny interaction containing two differen
finite-range terms@see Eq.~9!# is employed in thepp ~pair-
ing! channel.

The CRHB calculations have been performed with th
NL1 parametrization@38# of the relativistic mean field
~RMF! Lagrangian. The D1S set of parameters@39# is used
for the Gogny force in the pairing channel. The CRHB equa
tions are solved in the basis of an anisotropic three
dimensional harmonic oscillator in Cartesian coordinates.
basis deformation ofb050.3 has been used. All fermionic
and bosonic states belonging to the shells up toNF513 and
NB516 are taken into account in the diagonalization and th
matrix inversion, respectively. This truncation scheme pro
vides reasonable numerical accuracy for the physical obse
ables which as estimated in the calculations with larger fe
mionic basis is on the level of;1.5% or better for kinematic
moment of inertia,J(1), and charge quadrupole momentsQ0.
In order to calculate the derivative with respect toV in Eq.
lts
by

f the
,’’
TABLE I. The calculated and experimental charge quadrupole momentsQ and quadrupole deformation
parametersb ~shown in square brackets! for typical well-deformed nuclei in the rare-earth region. The resu
of relativistic calculations are indicated by ‘‘CRHB,’’ while the results of nonrelativistic calculations
‘‘Gogny.’’ The calculations without and with approximate particle number projection by means o
Lipkin-Nogami method are shown in columns marked by ‘‘Without projection’’ and ‘‘With projection
respectively. The experimental data are taken from Ref.@43#.

Without projection With projection Expt.

A CRHB Gogny CRHB Gogny

Gd 154 6.715@0.335# 6.074@0.303# 5.907@0.295# 5.606@0.280# 6.221@0.310#
156 7.199@0.356# 6.792@0.336# 6.886@0.341# 6.601@0.327# 6.830@0.338#
158 7.383@0.362# 7.077@0.347# 7.262@0.356# 6.961@0.341# 7.104@0.348#
160 7.577@0.369# 7.286@0.354# 7.490@0.364# 7.200@0.350# 7.265@0.353#

Dy 156 5.860@0.281# 5.994@0.287# 5.610@0.269# 5.438@0.261# 6.107@0.293#
158 7.032@0.334# 6.990@0.333# 6.711@0.319# 6.538@0.311# 6.844@0.326#
160 7.496@0.354# 7.297@0.344# 7.373@0.348# 7.102@0.335# 7.13 @0.337#
162 7.711@0.361# 7.492@0.350# 7.697@0.360# 7.382@0.345# 7.28 @0.341#
164 7.928@0.368# 7.626@0.354# 7.883@0.366# 7.543@0.350# 7.503@0.348#

Er 164 7.671@0.345# 7.585@0.341# 7.791@0.351# 7.522@0.339# 7.402@0.333#
166 8.047@0.359# 7.781@0.347# 8.075@0.361# 7.728@0.345# 7.656@0.342#
168 8.213@0.364# 7.838@0.347# 8.151@0.361# 7.831@0.347# 7.63 @0.338#
170 8.137@0.358# 7.899@0.347# 8.075@0.355# 7.782@0.342# 7.65 @0.336#

Yb 164 6.552@0.287# 6.900@0.302# 6.602@0.289# 6.828@0.299# 6.60 @0.289#
166 7.339@0.318# 7.594@0.330# 7.653@0.332# 7.508@0.326# 7.19 @0.312#
168 8.362@0.360# 7.997@0.344# 8.222@0.354# 7.864@0.339# 7.59 @0.327#
170 8.546@0.365# 8.147@0.348# 8.354@0.357# 8.013@0.342# 7.57 @0.324#
6-3
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TABLE II. Pairing energies for typical well-deformed nuclei in the rare-earth region. For details of
table see the caption of Table I.

A Epair
n Epair

p

Without projection With projection Without projection With projection

A CRHB Gogny CRHB Gogny CRHB Gogny CRHB Gogny

Gd 154 26.790 27.413 211.264 214.566 24.556 28.857 210.176 210.828
156 26.039 26.236 211.552 212.871 23.635 27.740 28.977 210.778
158 27.071 26.511 211.495 212.355 23.151 27.247 28.748 210.487
160 27.174 26.731 211.385 211.961 22.579 26.830 28.686 210.341

Dy 156 25.965 28.017 210.904 215.610 27.293 29.849 211.167 210.888
158 27.007 28.085 211.742 213.870 25.596 27.773 29.888 211.234
160 27.706 28.067 211.712 213.101 23.077 26.980 29.470 211.090
162 26.331 27.887 211.440 212.581 22.859 26.323 29.289 210.837
164 25.237 26.755 211.046 212.169 23.497 25.952 29.187 210.332

Er 164 26.154 28.686 211.562 213.157 25.924 27.176 29.938 211.256
166 26.549 27.520 211.052 212.621 26.019 26.213 29.701 210.603
168 24.036 25.569 210.784 212.043 25.695 25.555 29.492 29.904
170 25.741 24.881 210.998 211.58 24.968 25.157 29.289 29.464

Yb 164 28.651 29.462 212.069 211.256 26.388 29.336 210.435 211.708
166 27.919 29.114 211.527 210.603 26.459 28.223 210.427 211.350
168 26.702 27.947 210.946 29.904 26.024 26.715 210.12 210.771
170 24.353 26.061 210.603 29.464 25.274 25.105 29.795 210.051
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~1!, all CRHB calculations have been performed at rotatio
frequencyVx50.05 MeV.

The starting point of the nonrelativistic CHFB theo
based on the Gogny force is the phenomenological fin
range two-body interaction of the form@30#

Vpp~1,2!5 (
i 51,2

e2[( r12r2)/m i ]
2
~Wi1Bi P

s2Hi P
t

2Mi P
sPt!1 iWLS@“12̀ d~r12r2!“12#

3~s11s2!1t3~11Psx0!d~r12r2!@r~R!#1/3,

~9!

which is used simultaneously both inpp andph channels. In
Eq. ~9!, R5(r11r2)/2. The transformation to the rotatin
frame@30# leads to equations similar to Eqs.~2!, ~7!, and~8!.
The only difference is that the Dirac Hamiltonian of Eq.~3!
is replaced by the nonrelativistic Hartree-Fock Hamilton
hi j containing the density-dependent Gogny force and
rearrangement term]G i j , stemming from the density depen
dence of the force:

hi j →hi j 1]G i j 5t i j 1(
qq8

ỹ iq jq8rq8q1 K dH8

dr
f i j ~R!L .

~10!

In the above expressionf i j (r) is the quantity appearing in th
second-quantization form of the density operatorr(r)
05430
l

-

e

5( i j f i j (r)ci
†cj . The parameter set D1S@39# has been used

in the present calculations. The CHFB equations are ag
solved in the basis of an anisotropic three-dimensional h
monic oscillator in Cartesian coordinates with the oscilla
length b051.98 fm and the deformation of basisb050.3.
Only single-particle states satisfying the condition

\vxnx1\vyny1\vznz<Nmax\v0 with Nmax511.1
~11!

have been included in the basis. The HFB equation has b
solved with the conjugated gradient method@40#.

We also consider in this investigation the fluctuations
the pairing field by using the technique of an approxim
particle number projection before the variation introduced
Lipkin and Nogami@further APNP~LN!# and discussed in
detail in the nonrelativistic case in Refs.@41,42,30#. In the
relativistic case, the same approximate particle number p
jection is used but only thepp part of the interaction is taken
into account for the Lipkin-Nogami procedure; see Ref.@24#
for details.

III. RESULTS AND DISCUSSION

In order to see the dependence of the results on pro
and neutron numbers several nuclei in the Gd, Dy, Er, a
Yb isotope chains, the ground-state rotational bands of wh
are close to rotational limit@E(41)/E(21)'3.3#, have been
6-4
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selected for the present study. The results of relativistic
nonrelativistic calculations with and without the APNP~LN!
method are presented in Tables I–III and Figs. 1 and 2
compared with the experiment. Such quantities as cha
quadrupole moments~deformations!, pairing energies, and
moments of inertia are discussed below.

The calculated and experimental charge quadrupole
mentsQ and quadrupole deformation parametersb derived
from Q by

Q5A16p

5

3

4p
ZR0

2b where R051.2A1/3 ~12!

are shown in Table I and Fig. 1. The general feature is
the charge quadrupole momentsQ obtained in relativistic
calculations are larger than the ones of the nonrelativi
calculations. In the nonrelativistic case, theQ values calcu-
lated with the APNP~LN! method are slightly smaller tha
the ones obtained without the APNP~LN! method because o
the larger pairing correlations~see Table II!, which in gen-
eral favors more spherical configurations. This trend a
persists in the relativistic case, but there are the ca
(164,166Er, 164,166Yb) in which the APNP~LN! method leads
to larger charge quadrupole moments as compared with
projected calculations. As shown in Fig. 1, the nonrelativis
results are somewhat closer to the experiment than the
tivistic ones. However, considering that the experimen

TABLE III. Moments of inertia 2J(1) in units of MeV21 for
typical well-deformed nuclei in the rare-earth region. The exp
mental values are extracted from the energies of the first excited1

states given in Ref.@43#. For other details of this table see captio
of Table I.

Without projection With projection Expt.

A RHB Gogny RHB Gogny

Gd 154 78.19 64.79 49.26 48.56 48.7
156 88.79 78.74 62.15 67.96 67.44
158 86.38 79.05 66.42 70.90 75.46
160 87.30 81.56 68.80 66.50 79.72

Dy 156 63.22 57.52 43.32 47.79 43.52
158 80.45 72.81 56.17 65.66 60.64
160 93.76 76.14 63.71 67.38 69.13
162 98.22 77.56 67.24 68.00 74.38
164 99.92 82.41 69.80 70.69 81.75

Er 164 88.49 72.50 64.73 64.62 65.65
166 83.34 76.40 68.20 69.40 74.46
168 93.74 82.19 69.04 69.23 75.19
170 82.30 81.08 67.39 71.55 76.25

Yb 164 61.66 60.72 49.88 57.10 48.66
166 70.54 67.72 61.24 62.44 58.61
168 82.96 75.00 67.37 68.91 68.39
170 93.12 80.53 68.61 71.69 71.21
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values ofQ are the subject of considerable experimental
rors @43#, one can conclude that both theories describe
perimental charge quadrupole moments reasonably
which allows us to proceed further with the study of mo
sensitive quantities such as moments of inertia.

In Hartree-~Fock-!Bogoliubov calculations the size of th
pairing correlations is usually measured in terms of the p
ing energy defined as

Epair52 1
2 Tr~Dk!. ~13!

FIG. 1. Experimental and calculated charge quadrupole m
mentsQ ~top panels! and moments of inertia 2J(1) ~bottom panels!
of well-deformed rare-earth nuclei. The experimental data
shown by solid unlinked circles. The results of calculations with
APNP~LN! method are shown by the lines without symbols. T
lines with open symbols are used to indicate the results of calc
tions without the APNP~LN! method. Solid and dashed lines a
used for relativistic and nonrelativistic results, respectively.

FIG. 2. Calculated neutron~top panels! and proton~bottom pan-
els! pairing energies. The results of calculations with~without! the
APNP~LN! method are shown by the lines without~with! symbols.
Solid and dashed lines are used for relativistic and nonrelativi
results, respectively.

-
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This is not an experimentally accessible quantity, but it i
measure for the size of the pairing correlations in the th
retical calculations. These quantities are shown in Tabl
and Fig. 2 for protons and neutrons separately. Both in r
tivistic and nonrelativistic calculations, we observe that
APNP~LN! method leads to an increase of the pairing en
gies. This increase shows large variations as a function o
proton and neutron numbers. In general, this increas
larger in relativistic calculations. For example, proton pairi
energies increase on average by a factor of 2.16@with mini-
mal and maximal increases being equal to 1.53 (156Dy) and
3.36 (160Gd)#. In nonrelativistic calculations, the average i
crease of proton pairing energies is only 1.55@with minimal
and maximal increases being equal to 1.11 (156Dy) and 1.97
( 170Yb)#. Neutron pairing energies behave in a similar w
but there the difference between relativistic and nonrela
istic calculations is smaller: the average increase of neu
pairing energies due to the APNP~LN! method is 1.81 in the
relativistic and 1.73 in the nonrelativistic calculations.
some cases, such as, for example, in the Gd isotopes
increase of neutron pairing energies due to the APNP~LN!
method is larger in nonrelativistic calculations. This increa
of pairing energies due to the APNP~LN! method will lead to
an increase of the pairing gaps, as is well known from ma
phenomenological calculations using the monopole pair
force @44,45#. We also see that with few exceptions the pa
ing energies are smaller in relativistic calculations. An ad
tional effect of the APNP~LN! method is the increase o
absolute values of binding energies. In relativistic calcu
tions, the APNP~LN! method provides an additional bindin
by '22.5 MeV.

Calculated moments of inertia are given in Table III a
Fig. 1. Comparing the results of calculations without t
APNP~LN! method, it is clear that the moments of inertia a
systematically larger in the relativistic case. Although o
cannot completely exclude that this feature is to some ex
connected with a different angular momentum content
single-particle orbitals in relativistic and nonrelativistic ca
culations, a detailed analysis of pairing energies and m
ments of inertia suggests that this fact can be explained
more realistic way by the different effective masses of
two theories:m* /m;0.6 in RMF theory and;0.7 in the
nonrelativistic theory. Thus the corresponding level dens
in the vicinity of the Fermi level is smaller in the relativist
theory which in general leads to weaker pairing correlatio
~see Table II and discussion above! as compared with non
relativistic calculations and as a result to larger moments
i-

k.
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inertia. The APNP~LN! method restores to a large extent t
correct size of pairing correlations and thus its effect is lar
in relativistic calculations. The average decrease of the m
ments of inertia due to the APNP~LN! method over the con-
sidered set of nuclei is 1.35 and 1.15 in relativistic and n
relativistic calculations, respectively. It is also clearly se
that the APNP~LN! method improves on average and esp
cially in the relativistic case the agreement between exp
mental and calculated moments of inertia. The level
agreement between calculations with the APNP~LN! method
and experiment is similar in both theories; however, so
discrepancies still remain.

IV. CONCLUSIONS

In conclusion, the moments of inertia, charge quadrup
moments, and pairing energies of well-deformed nuclei
the rare-earth region have been investigated within relati
tic and nonrelativistic mean field theories with and witho
approximate particle number projection by means of
Lipkin-Nogami method. With no adjustable parameters
was possible to obtain a good description of the experime
data. It was found that particle number projection plays
more important role in the relativistic calculations, mo
likely reflecting the lower effective mass. In addition, it has
larger impact on the moments of inertia and the pairing
ergies as compared with the charge quadrupole mome
The remaining deviations from experimental data could
related either to the parametrization of the mean field or
the interaction in the pairing channel or to the approxim
character of the particle number projection. Further and m
systematic investigations are needed for clarification of
main source of discrepancies between theory and exp
ment.
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