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Moments of inertia of nuclei in the rare earth region: A relativistic
versus nonrelativistic investigation
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A parameter-free investigation of the moments of inertia of ground-state rotational bands in well-deformed
rare-earth nuclei is carried out using cranked relativistic Hartree-BogoliyB®HB) and nonrelativistic
cranked Hartree-Fock-BogoliubdZHFB) theories. In CRHB theory, the relativistic fields are determined by
the nonlinear Lagrangian with the NL1 force and the pairing interaction by the central part of a finite-range
Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined
solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of
the Lipkin-Nogami method improves the agreement with the experimental data, especially in CRHB theory.
The effect of the particle humber projection on the moments of inertia and pairing energies is larger in
relativistic than in nonrelativistic theory.

PACS numbds): 21.60.Jz, 27.76:q

[. INTRODUCTION spectrum of quasiparticle excitations occurring in the de-
nominator of the Belyaev formula. Therefore, the small mo-
One of the oldest problems in our understanding of themnents of inertia of the rotational bands provided one of the

collective motion of nuclei is the moments of inertia of most important experimental hints for a superfluid behavior
ground-state rotational bands in well-deformed nuclei. Theyf these heavy open shell nuclei. Extended calculations using
depend in a very sensitive way on collective properties suckhe theory of Belyaev have been carried out by Nilsson and
as deformations and on pairing correlations of these manyFrior [8] using the BCS model based on the single-particle
body systems. Since rotational bands have been detected $Rectrum of the Nilsson potential. _

nuclei nearly 50 years ago and since the first microscopic Apart fr_om the fact that the results of these calculations
calculations of the moments of inertia by Ing[is], these were relatively successful, there are, as we know today, a

guantities have been used as a testing ground for nearly zﬂlur(?)bgrelofazs,esnfg:%ﬂng’bnairgglz’nthiéglrlg:’i\ggg'mean field
microscopic theories of collective motion. They describe the 'yae . on g .
theory violating essential symmetries. It has been pointed out

response of the strongly interacting nuclear many-body Sysé\lready by Migda[9,10] that Galileian invariance is broken.

tem to an external Coriolis field breaking time-reversal SYM-16 therefore modified the Belyaev formula by taking into

metry. They are, therefqrgz In SOme Sense comparable Fo tQf?zcount more complicated correlations to correct the viola-
static magnetic susceptibility in condensed matter physics. (o of this symmetry. The question of the restoration of the
The earliest microscopic calculations were based on &roken Galileian invariance in the particle-hole and particle-

mean field of a deformed harmonic oscillafér-3]. In these  particle channels was later discussed in a number of articles:
calculations, residual interactions were neglected. In this wagee, for example, Reff11-13 and references therein.
one found the values of the moments of inertia identical to (ii) Since Be|yaev’s formula describes 0n|y quasipartides
those of a rigid body with the same shape, in strong disagreenoving independently, higher order correlations have to be
ment with the experimentally observed values, which wheraaken into account. This has been done by Thouless and Val-
considerably smaller. It was pointed out already very earlyatin [14] who considered all orders of the interaction in a
[2,4] that residual two-body interactions would lower the theory describing the linear response of the system to the
values of the moment of inertia obtained in the Inglis model.external Coriolis field. Marshalek and Wene§&b] showed
The most important correlations causing such a reduction arthat the method of Thouless and Valatin preserves all the
pairing correlationg5]. In fact, Belyae\[6,7] showed that a symmetries violated in the mean field approximation in lin-
simple extension of the Inglis formula in the framework of ear order. In that sense Migdal's formula was just a special
BCS theory is able to reduce the theoretical moments o€ase to deal with Galilean invariance. Marshalek showed in a
inertia dramatically because of the large energy gap in theeries of papertsee, for example, Refl16]) that this is just

the linear approximation of a more general theory based on

boson expansion techniques treating the symmetries appro-

*On leave of absence from the Laboratory of Radiation Physicspriately in all orderq16].

Institute of Solid State Physics, University of Latvia, LV 2169  (iii) Much more elaborated versions of the cranked Nils-
Salaspils, Miera str. 31, Latvia. son model[17,18 showed that thd? term in this model,
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which corrects in an elegant way the fact that realistic potenfarities and differences between these two theories using in a
tials for heavy nuclei are much flatter than an oscillator in thesystematic way the moments of inertia of rare-earth nuclei as
nuclear interior, introduces a strong spurious momentum dea testing ground.
pendence. This leads to the values for the moments of inertia
deviating considerably from the experimental values. How-
ever, this problem is to a large extent cured either by Strutin-
sky renormalization of the moments of inerfie7] or by an
additional term to the cranked Nilsson potential that restores CRHB theory[23,24 is an extension of cranked relativ-
the local Galilean invariancl9,20. istic mean field theory36,33,34 to the description of pair-
Realistic applications of the Thouless-Valatin theory areing correlations in rotating nuclei. It describes the nucleus as
by no means trivial. They should be based on self-consistery system of Dirac nucleons which interact in a relativistic
solutions of the mean field equations, because only for thosgovariant manner through the exchange of virtual mesons
solutions does the random phase approximati®PA)  [37]: the isoscalar scalar meson, the isoscalar vecter
theory preserve the symmetriggl]. In addition, they re- meson, and the isovector vectermeson. The phonon field
quire the inversion of the RPA matrix. Meyet al.[22] have  (A) accounts for the electromagnetic interaction. The CRHB
interaction they used density-dependent Migdal fofe&sn A0 A
the ph channel andF¢ in the pp channel. These interactions X=X
both channels, each of them modifying the Belyaev values”/1r€ h=hp =\ is the Dirac Hamiltonianhp for the
generalized mean field model gave reasonable results as hpo=a[—iV=V(r)]+Vo(r)+p[m+S(r)], 3
compared to the experiment.
ity Q. Using the resulting wave function the Q _
T%ouless-Val%tin moment ofginertia can be fof:]bdﬂés (a[N|g)=N. @

Il. THEORETICAL TOOLS

carried out such calculations in a restricted configuratiorequations for the fermions in the rotating frame are given in
space replacing the self-consistent mean field in an approx one-dimensional cranking approximation by
mate way by the Woods-Saxon potential. As the residual
- A A =E , 2

have been carefully adjusted to experimental data for the —A* —h*+0,J% ) | Vi k Vi
underlying configuration space. The results of these calcula-
tions showed that there are indeed effects originating from
but canceling themselves to a large extent. Therefore onrélJCIeon with massn,
could understand why older calculatiof] based on the

Nowadays there are theories available where the Hartregninus the chemical potential defined from the average
(FockJBogoliubov equations can be solved in a fully self- particle number constraint:
consistent way in the rotating frame for finite angular veloc-

d . The Dirac Hamiltonian contains a repulsive vector potential

J= E(CDQ|JX|<I>Q) . (1) Vy(r), an attractive scalar potenti&(r), and the magnetic
Q=0 potential V(r) which leads to nonvanishing currents in the

. . . . . systems with broken time-reversal symmetrig33,34].

In this way one avoids the inversion of the full RPA matrix, Thase currents play an extremely important role in the de-

a task which is so far technically impossible for realistic g;intion of the moments of inert@3,34 and thus they are

forces in a full configuration space. Among these theories the, ey into account fully self-consistently in the calculations.

properties of rotating nuclei are described in a way free from, g4 (2 U, andV. are quasiparticle Dirac spinors a
adjustable parameters only in the cranked relativistic a. (2), Uy k a P D B

Hartree-BogoliuboCRHB) theory[23,24] and nonrelativ- denotes th_e ql_Ja3|part|c|e energies. Furthermdyeand (), .
istic density-dependent cranked Hartree-Fock-BogoIiubO\?r(.a the prolect|on_of total angular momentum on the rotation
(CHFB) theory with finite-range Gogny forc¢25,26]. Sev- axis and 'ghe rptatlonal frequgncy. .

eral realistic investigations of the moments of inertia in nor- Th(_a tlme-lndependept .|nhomoge'neous Klein-Gordon
mally deformed and in superdeformed bands have been capauations for the mesonic fields are given by

ried out in the literature in the framework of nonrelativistic .

CHFB theory with Gogny forcef25,27—3Q. Similar inves-  {—A—(Q,L,)2+m2}o(r)=—g,[ p2(r)+ p2(r)]—g,0%(r)
tigations in the relativistic framework have been performed 3

without pairing in theA~60 [31], 80 [32], and 140—150 —030°(r),

[33—-39 regions of superdeformation where the pairing cor-

rel_ations are expected to be consid_erably quenched at high {_A_(Qxf_x)2+ mi}wo(f)=9w[PUp(f)+P2(f)], (5)
spin. The recently developed formalism of the CRHB theory

has been applied so far only for the description of the mo- e ] ]

ments of inertia in théA~ 190 mass region of superdeforma-  {— A~ [Qu(Lx+ S 1"+ M fe(r)=g,[j *(r) +]"(r)],

tion [23,24]. A very successful description of the moments of

inertia has been obtained in the framework of these two theowith source terms involving the various nucleonic densities
ries. The aim of the present investigation is to find the simi-and currents:
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pL(r)=go[VL(r)]T,?5’VL(r), pL(r)=kZO[VL(r)]TVL(r), k=k(r,st,r s t)= EOV’k‘(r,s,t)Uk(r’,s’,t), (8)

B>

and the matrix elementgbl. , of the effective interaction in
thepp channel. In the present version of CRHB theory, pair-
ing correlations are only considered between the baryons,
because pairing is a genuine nonrelativistic effect, which
plays a role only in the vicinity of the Fermi surface. The
central part of the Gogny interaction containing two different
finite-range term$see Eq(9)] is employed in thepp (pair-
ing) channel.

The CRHB calculations have been performed with the

IKGEDS

[Vi(N1TaVi(r). (6)
k>0

The sums ovek>0 run over all quasiparticle states corre-

sponding to positive-energy single-particle stdtessea ap-

proximation and the indices could be eithen (neutrong or

p (protons. For simplicity, the equations for the meson

and the Coulomb fields are omitted in EdS) since they

have a structure similar to the equations fermeson; see NL1 parametrization[38] of the relativistic mean field

Refs.[23,24] for details. Since the coupling constant of the ; )
electromagnetic interaction is small compared with the cou—(RMF) Lagrangian. The D1S set of paramet8] is used

pling constants of the meson fields, the Coriolis term for th for the Gogny force in the pairing channel. The CRHB equa-

Coulomb potential(r) and the spatial components of theetions are solved in the basis of an anisotropic three-
pOote 0 P pone dimensional harmonic oscillator in Cartesian coordinates. A
vector potentialA(r) are neglected in the calculations.

The pairing potentials in Eq. (2) is given by basis defo_rmation oﬁo=0._3 has been used. All fermionic

' and bosonic states belonging to the shells uplte=13 and
Ng=16 are taken into account in the diagonalization and the
matrix inversion, respectively. This truncation scheme pro-
vides reasonable numerical accuracy for the physical observ-
ables which as estimated in the calculations with larger fer-
mionic basis is on the level of 1.5% or better for kinematic
moment of inertia)", and charge quadrupole momefs.
In order to calculate the derivative with respect(loin Eq.

1
A=Aap=5 2 Vaheaea, ™

where the indices,b, ... contain the space coordinatess
well as the Dirac and isospin indicesandt. It contains the
pairing tensork

TABLE |. The calculated and experimental charge quadrupole monggatsd quadrupole deformation
parameterg (shown in square bracketfor typical well-deformed nuclei in the rare-earth region. The results
of relativistic calculations are indicated by “CRHB,” while the results of nonrelativistic calculations by
“Gogny.” The calculations without and with approximate particle number projection by means of the
Lipkin-Nogami method are shown in columns marked by “Without projection” and “With projection,”
respectively. The experimental data are taken from R

Without projection With projection Expt.
A CRHB Gogny CRHB Gogny
Gd 154 6.7150.335 6.074[0.303 5.907[0.295 5.606[0.280Q 6.221[0.310
156 7.1990.356 6.792[0.336| 6.886[0.34]] 6.601[0.327 6.830[0.33§
158 7.3830.362 7.077[0.347 7.262[0.3564 6.961[0.34]] 7.104[0.348
160 7.5770.369 7.286[0.354] 7.490[0.364) 7.200[0.350Q 7.265[0.353
Dy 156 5.860[0.281] 5.994[0.287 5.610[0.269 5.438[0.261] 6.107[0.293
158 7.032[0.334 6.990[0.333 6.711[0.319 6.538[0.311] 6.844[0.326
160 7.496[0.354] 7.297[0.344 7.373[0.34§ 7.102[0.335 7.13[0.337
162 7.711/0.361] 7.492[0.350Q 7.697[0.36Q 7.382[0.345 7.28[0.34]
164 7.9280.368 7.626[0.354 7.883[0.364 7.543[0.350Q 7.503[0.348
Er 164 7.6710.345 7.585[0.34]] 7.791[0.35]] 7.522[0.339 7.402[0.333
166 8.047[0.359 7.781[0.347 8.075[0.361] 7.728[0.345 7.656[0.342
168 8.213(0.364 7.838[0.347] 8.151[0.361] 7.831[0.347 7.63[0.339
170 8.137[0.35§ 7.899[0.347 8.075[0.355 7.782[0.342 7.65[0.336
Yb 164 6.552(0.287] 6.900[0.302 6.602[0.289 6.828[0.299 6.60[0.289
166 7.3390.31§ 7.594[0.330 7.653[0.332 7.508[0.326| 7.19[0.312
168 8.362(0.360 7.997[0.344 8.222[0.354 7.864[0.339 7.59[0.327
170 8.546[0.365 8.147[0.34§ 8.354[0.357] 8.013[0.342 7.57[0.324
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TABLE Il. Pairing energies for typical well-deformed nuclei in the rare-earth region. For details of this
table see the caption of Table I.

A n EP

pair pair

Without projection With projection Without projection With projection

A CRHB Gogny CRHB Gogny CRHB Gogny CRHB Gogny

Gd 154 -6.790 —7.413 -—11.264 —14566 -—4.556 —8.857 —10.176 —10.828
156 -6.0389 —-6.236 —11.552 -12871 -3.635 —-7.740 —-8.977 —10.778
158 —-7.071 —-6.511 —11.495 -—-12355 —3.151 —7.247 —8.748 —10.487
160 -7.174 —-6.731 —11.385 -—11.961 —-2579 -6.830 —8.686 —10.341

Dy 156 -5.965 —8.017 -—-10.904 -15.610 —-7.293 -—9.849 -—11.167 —10.888
158 -—-7.007 —8.085 —11.742 —13.870 -5596 -—7.773 —9.888 —11.234
160 -7.706 —8.067 —11.712 —13.101 -3.077 -—6.980 —9.470 —11.090
162 -6.331 —7.887 —11.440 —12581 -2859 —6.323 —9.289 —10.837
164 —-5237 —6.755 —11.046 —12.169 -3.497 -—5.952 —9.187 —10.332

Er 164 —-6.154 —8.686 —11.562 -—13.157 -5924 —7.176 —9.938 —11.256
166 —-6.549 —7.520 -—-11.052 -12.621 -6.019 -6.213 -—-9.701 —10.603
168 —-4.036 —5569 —10.784 —12.043 —-5.695 —5555 —9.492 -9.904
170 —-5.741 —4.881 —10.998 —1158 —4968 —5.157 —9.289 —9.464

Yb 164 —8.651 —9.462 -—12.069 —11.256 —-6.388 —9.336 —10.435 —11.708
166 —-7.919 -—-9.114 -—-11.527 -10.603 -6.459 —8.223 —10.427 —11.350
168 —6.702 —7.947 —10.946 -—-9.904 -6.024 -6.715 -10.12 -10.771
170 —-4.353 -6.061 -—-10.603 —-9.464 -5274 -5105 —-9.795 —10.051

(1), all CRHB calculations have been performed at rotational= Eijfij(r)CiTCj . The parameter set D1[89] has been used
frequency(2,=0.05 MeV. in the present calculations. The CHFB equations are again
The starting point of the nonrelativistic CHFB theory solved in the basis of an anisotropic three-dimensional har-
based on the Gogny force is the phenomenological finitemonic oscillator in Cartesian coordinates with the oscillator
range two-body interaction of the forf80] length by=1.98 fm and the deformation of basty=0.3.
Only single-particle states satisfying the condition

pp - ~[(r1=12)/il?(\W. + B. P — H.P™
Vi izEl,z © (Wi +B;P7—H;P honyt+hon +hon,<Np,fiog with Np,=11.1
11
—M;PP)+iW { V1/A8(r1—15) V5] D
- 13 have been included in the basis. The HFB equation has been
X (011 02) F15(1+P%0) (1 =r2)Lp(R)I solved with the conjugated gradient metHdd).
9 We also consider in this investigation the fluctuations in
the pairing field by using the technique of an approximate
which is used simultaneously bothrp andph channels. In particle number projection before the variation introduced by
Eq. (9), R=(r;+r,)/2. The transformation to the rotating Lipkin and Nogami[further APNRLN)] and discussed in
frame[30] leads to equations similar to Ed®), (7), and(8).  detail in the nonrelativistic case in Refst1,42,3Q. In the
The only difference is that the Dirac Hamiltonian of E§)  relativistic case, the same approximate particle number pro-
is replaced by the nonrelativistic Hartree-Fock Hamiltonianjection is used but only thep part of the interaction is taken

h;; containing the density-dependent Gogny force and thento account for the Lipkin-Nogami procedure; see R
rearrangement ter@l’;; , stemming from the density depen- for details.
dence of the force:

!

~ oH
hij—hij + 0 =t +> Uiqjq’Pq’q+<5_pfij(R)>- [ll. RESULTS AND DISCUSSION
aq’

(10) In order to see the dependence of the results on proton

and neutron numbers several nuclei in the Gd, Dy, Er, and

In the above expressidi;(r) is the quantity appearing in the Yb isotope chains, the ground-state rotational bands of which
second-quantization form of the density operatofr) are close to rotational limftE(4*)/E(2")~3.3], have been
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TABLE Ill. Moments of inertia 2 in units of MeV ™! for

©

typical well-deformed nuclei in the rare-earth region. The experi- § ] E E | o ]
mental values are extracted from the energies of the first excited 2 o ¢ s a (z_‘:: JE 3
states given in Ref43]. For other details of this table see caption £ [ : Sl ] ]
of Table I. €7 2 1 E
£ [ [ p 3
Without projection With projection  Expt. % °F 3 er 1f Yb ]
g | 1 ]
[&} o C 1 " 1 1 L 1
A RHB  Gogny RHB  Gogny ~ T
%) 100 -— - - -
Gd 154  78.19 64.79  49.26 4856  48.75 2 i \,.‘,/.\s 1t ]
156  88.79 7874 6215  67.96 6744 = Pt | e
158  86.38 79.05 6642  70.90 7546 4, , - 1t i
160  87.30 81.56  68.80 6650 79.72 & , | 1 1 1 ]
2 P SEEEPREEPUR T | M TN TR T | N O TR | M S M
Dy 156 63.22 57.52 43.32 47.79 43.52 152 156 160 156 160 164 164 168 164 168 172

Mass number A

158 80.45 72.81 56.17 65.66  60.64
160 93.76 76.14 63.71 67.38 69.13 FIG. 1. Experimental and calculated charge quadrupole mo-

162 98.22 77.56 67.24 68.00 74.38 mentsQ (top panelyand moments of inertiaZY (bottom panels
164 99.92 82.41 69.80 7069 81.75 Of well-deformed rare-earth nuclei. The experimental data are
shown by solid unlinked circles. The results of calculations with the
Er 164 88.49 72.50 64.73 64.62 65.65 APNP(LN) method are shown by the lines without symbols. The

lines with open symbols are used to indicate the results of calcula-
tions without the APNRLN) method. Solid and dashed lines are
used for relativistic and nonrelativistic results, respectively.

166 83.34 76.40 68.20 69.40 74.46
168 93.74 82.19 69.04 69.23 75.19
170 82.30 81.08 67.39 71.55 76.25

Yb 164  61.66 60.72 4988 5710 4866 Values ofQ are the subject of considerable experimental er-
166 70.54 67.72 61.24 62.44 5861 'O'S [43], one can conclude that both theories describe ex-
168 82.96 75.00 67.37 68.91  68.39 per_lmental charge quadrupole moments reasonably well
170 93.12 8053 68.61 7169 7121 Whlch_allows us to proceed further with fche s_tudy of more

' ) ’ ) ) sensitive quantities such as moments of inertia.

In HartreetFock-)Bogoliubov calculations the size of the
Qairing correlations is usually measured in terms of the pair-
Ing energy defined as

selected for the present study. The results of relativistic an
nonrelativistic calculations with and without the AP{LR/)

method are presented in Tables I-Ill and Figs. 1 and 2 and
compared with the experiment. Such quantities as charge E...=—1Tr(Ak) (13)
guadrupole moment&deformationg, pairing energies, and pair 2 '
moments of inertia are discussed below.
The calculated and experimental charge quadrupole mo ~ —— CRHB - Gogny
mentsQ and quadrupole deformation parametgrslerived R R
[ t ]
from Q by Sp T k| | gk > 3
[167 3 R T S G e
= 10| 4 HF qF ¢ =
Q= = EZR(Z),B where Ry=1.2AY3 (12 g f — f~—f —= | =
m§_15-_ < Gd qJp 7 Dy qb Er 10 Yb

o
T

g ‘energies
T

are shown in Table | and Fig. 1. The general feature is thal
the charge quadrupole momens obtained in relativistic
calculations are larger than the ones of the nonrelativistic

calculations. In the nonrelativistic case, Qevalues calcu- £ [ _.o=o° o7 s

lated with the APNIFLN) method are slightly smaller than & <o 2 .- =4 = I — 1
the ones obtained without the APNN) method because of F proton i ] ] -

the larger pairing correlationsee Table I, which in gen- 5 1F 1t 1k .
eral favors more spherical configurations. This trend also 1z T 760 7o e T e e e e
persists in the relativistic case, but there are the cases Mass number A

(16419, 1641%p) in which the APNRLN) method leads FIG. 2. Calculated neutroftop panelsand proton(bottom pan-

to larger charge quadrupole moments as compared with Urss) pairing energies. The results of calculations withithout) the
projected calculations. As shown in Fig. 1, the nonrelativisticAPNP(LN) method are shown by the lines withautith) symbols.
results are somewhat closer to the experiment than the relolid and dashed lines are used for relativistic and nonrelativistic
tivistic ones. However, considering that the experimentalesults, respectively.
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This is not an experimentally accessible quantity, but it is anertia. The APNFLN) method restores to a large extent the
measure for the size of the pairing correlations in the theoeorrect size of pairing correlations and thus its effect is larger
retical calculations. These quantities are shown in Table lIn relativistic calculations. The average decrease of the mo-
and Fig. 2 for protons and neutrons separately. Both in relaments of inertia due to the APNEN) method over the con-
tivistic and nonrelativistic calculations, we observe that thesidered set of nuclei is 1.35 and 1.15 in relativistic and non-
APNP(LN) method leads to an increase of the pairing enerselativistic calculations, respectively. It is also clearly seen
gies. This increase shows large variations as a function of thinat the APNIPLN) method improves on average and espe-
proton and neutron numbers. In general, this increase isially in the relativistic case the agreement between experi-
larger in relativistic calculations. For example, proton pairingmental and calculated moments of inertia. The level of
energies increase on average by a factor of Pwlith mini-  agreement between calculations with the APN) method
mal and maximal increases being equal to 1.530y) and  and experiment is similar in both theories; however, some
3.36 (*%9Gd)]. In nonrelativistic calculations, the average in- discrepancies still remain.
crease of proton pairing energies is only 1[86th minimal
and maximal increases being equal to 1.13y) and 1.97
(1"%Yb)]. Neutron pairing energies behave in a similar way
but there the difference between relativistic and nonrelativ-
istic calculations is smaller: the average increase of neutron In conclusion, the moments of inertia, charge quadrupole
pairing energies due to the APNIN) method is 1.81 in the moments, and pairing energies of well-deformed nuclei in
relativistic and 1.73 in the nonrelativistic calculations. In the rare-earth region have been investigated within relativis-
some cases, such as, for example, in the Gd isotopes, thie and nonrelativistic mean field theories with and without
increase of neutron pairing energies due to the A@NP  approximate particle number projection by means of the
method is larger in nonrelativistic calculations. This increaseLipkin-Nogami method. With no adjustable parameters it
of pairing energies due to the APKNIN) method will lead to  was possible to obtain a good description of the experimental
an increase of the pairing gaps, as is well known from manyata. It was found that particle number projection plays a
phenomenological calculations using the monopole pairingnore important role in the relativistic calculations, most
force[44,45. We also see that with few exceptions the pair-likely reflecting the lower effective mass. In addition, it has a
ing energies are smaller in relativistic calculations. An addi-larger impact on the moments of inertia and the pairing en-
tional effect of the APNRLN) method is the increase of ergies as compared with the charge quadrupole moments.
absolute values of binding energies. In relativistic calcula-The remaining deviations from experimental data could be
tions, the APNILN) method provides an additional binding related either to the parametrization of the mean field or to
by ~—-2.5 MeV. the interaction in the pairing channel or to the approximate
Calculated moments of inertia are given in Table Il andcharacter of the particle number projection. Further and more
Fig. 1. Comparing the results of calculations without thesystematic investigations are needed for clarification of the
APNP(LN) method, it is clear that the moments of inertia aremain source of discrepancies between theory and experi-
systematically larger in the relativistic case. Although onement.
cannot completely exclude that this feature is to some extent
connected with a different angular momentum content of
single-particle orbitals in relativistic and nonrelativistic cal-
culations, a detailed analysis of pairing energies and mo- A.V.A. acknowledges support from the Alexander von
ments of inertia suggests that this fact can be explained in Bumboldt Foundation. This work has been supported in part
more realistic way by the different effective masses of theby DGICyT, Spain, under Project No. PB97-0023 and the
two theories:m*/m~0.6 in RMF theory and~0.7 in the  Bundesministerium fuBildung und Forschung under Project
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