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The subtle interplay between the two nuclear superfluids, isovactdt, and isoscalal =0 phases are
investigated in an exactly soluble model. It is shown thatl andT=0 pair modes decouple in the exact
calculations with theT=1 pair energy being independent of tlie=0 pair strength and vice versa. In the
rotating field, the isoscalar correlations remain constant in contrast to the well-known quenching of isovector
pairing. An increase of the isoscalal<€1,T=0) pair field results in a delay of the band crossing frequency.
This behavior is shown to be present only nearitheZ line and its experimental confirmation would imply
a strong signature for isoscalar pairing collectivity. The solutions of the exact model are also discussed in the
Hartree-Fock-Bogoliubov approximation.

PACS numbgs): 21.60.Cs, 21.10.Hw, 21.10.Ky, 27.56

There is overwhelming evidence that the isovector, h'=hger— wJy, )
=1 pairing field among identical nucleons is an essential
component of the nuclear mean-field potential. The bulk ofyith
nuclear ground-state properties, such as the odd-even mass
differences and the moments of inertia of deformed nuclei, -
can be accounted for by considering nucleons to be in a hdef=—4;<\/?z <j|Y20|i>5Ti715mimjcfci. (3
superfluid T=1,J=0) paired phasgl]. These effects have g
been studied mostly in heavier nuclei with>Z, where the o )

Fermi surfaces of protons and neutrons lie in different majorThe labelsi,j, ... denote the magnetic quantum-number
shells. (m) of thej shell and the isospin projection quantum-number
In recent years, however, due to substantial progresg [7=1/2(neutron and—1/2(proton]. The deformation en-

achieved in the sensitivity of the detecting systems it ha&rgy « is equal to the usual deformation paramegeby «
been possible to study nuclei near tie Z line in the mass = 0.16iw(N+3/2)8 in units of G(Ref.[11]). The two-body
A=70 and 80 regions. Furthermore, with the availability of interaction in Eq/(1) is given by

radioactive beams these studies are expected to reach even

heavierN=Z nuclei. For these nuclei, one expects the pair- Vv _} S (ijvalkiclc!

ing between protons and neutrons to become important, since 24 (ijfvalklieicjeicy

the Fermi surfaces of both protons and neutrons lie in the
same major shell.

The role of the isovectom =1 pairing between protons
and neutrons in the low-spin regime has been discussed in
recent studie$2,3]. The importance of the isoscaldr=0 . ot B
pairing can be inferred from massigd and studies of high- with Aj;M_;TTz_(Cj%_Cj%)‘]M;TTz andAJM:TTz_(AgM:TTz)T' For
spin state§5—8]. However, most of these studies are basedhe antisymmetric-normalized two-body matrix element
on the mean-field approximation which often predicts a tran{E;7), we use the delta interaction which for a singishell
sitional behavior for rotating nuclei for thi=1 andT=0 is given by[12]
pair fields as a function of the rotational frequency and the

N[ =

> EJTA}M;TTZAJM;TTZr (4)
I,

strength of theT =0 interaction[4,5]. ej+v2 ([i 1 3
The purpose of the present Rapid Communication is to Esr=- 223+ ||t —t o0

examine properties of the isoscalar and isovector correlations 2 2

within an exactly soluble model of a deformed singlshell J

H 2

and to compare with the predictions of the mean-field +£{1+(_1)T}{Jl ] (5

Hartree-Fock-Bogoliubov(HFB) approximation. The ob- 2 2

servable consequences of tiie=0 pair field which have

remained illusive are also discussed in the present study. where the brackef ] denotes the Clebsch-Gordon coeffi-
The model Hamiltonian consists of a cranked deformectient.

one-body term and a scalar two-body interacti®ri0]: As mentioned in the introduction, one of the objectives of
the present Rapid Communication is to investigate the HFB
H' =h'"+V,, (1)  approximation. In the following, we present some basic HFB
formulas, for details see, for instance, REf3]. The HFB
where equations are given by
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_ 2 . . FIG. 1. The singlg-exact shell model pairing gaps as a function
F'l & <'k|va|]| )PiK (10 of the T=0 strength for a system with two protons and two neu-
trons inf,, shell.

1 . . L
Aij=5 2 (ijlvalkly Ky, (12) tails concerning the HFB transformation in the presence of
24 both T=1 andT=0 pairing, we refer the reader to Refs.
[15,16].
p=V*VT, k=Vv*UT=-UV" (12 Mean-field studies often show that tie=0 and T=1

pairing modes are exclusive in the BCS approximation
In order to evaluate the angular-momentum dependence ¢f 17]. Note, however that mixed solutions have been ob-
the pair energy, we define the coupled pair-field through  tained in recent studies using a complex model spécks.
The question therefore arises as to what extent the different
pairing modes survive in an exact model. Figure 1 depicts
the size of the pair correlations as a function of increasing
T=0 strength in the exact analysis for thep(22n) system.
with The figure clearly shows that the two modes are essentially
independent. There is no critical strength for either pairing
mode and therefore one expects to have both modes present
Kij - in nuclei. It also implies that atomic nuclei exhibit the unique
possibility of exhibiting two different pairing condensates
(14 simultaneously.
Similar calculations but for the HFB approximation are
The pair energy can now be expressed in terms of th@resented in Fig. 2. For the normal strengBy_,=1, the
coupled pair-fields as solution corresponds to =1 pair field. With increasing
Gr-o the HFB energy remains constant which is obvious

1
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A 3
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m; m M T ( )

Ti Tj z
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palr 2 Alejl = E 2 i JT (15 : :
JT JT
o—e T=1
The above expression is quite useful since in the exact cal- —oT=0
culations there is no gap parameferbut one may associate -250 1

“ Epair” With the expectation value of the two-body residual _
interaction,V,. To obtain theA value from the exact analy-
sis, Eq.(15) is then simply inverted. 2

The HFB solutions have been obtained by solving Egs. £
(6)—(12) self-consistently. In order to treat both the=0 and
the T=1 pair fields simultaneously, it is necessary to define -270 | .
complex HFB potentials, since the symmetries of Thel
and T=0 n-p fields are differenf14]. The initial complex
HFB wave functions have been constructed by using the ex- : .
pressions for real and imaginakys and U’s of the HFB 15 G 25
transformation in terms of the pair gajist]. We would like
to mention that no symmetry restrictions have been imposed FIG. 2. The HFB pairing energy for four protons and four neu-
on the HFB wave function since it is known that symmetriestrons as a function of th&=0 strength. The label fof =1 (0)
lead to the exclusion of particular correlations. For more deindicates the symmetry of the HFB pairing field.

E

T=0
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since the solution has only the=1 component and there is 5 e
no T=0 component. Th& =0 solution shown in Fig. 2 has
been obtained by solving the HFB equations for a very large
value of Gr—y (G1-¢=2.8) and then using this solution for
lower values ofGr_q. In this manner, it was possible to
obtain aT=0 solution also below the critical point, see Fig.
2. We note from Fig. 2 that the two solutions coexist for
most of theGt_, values. They represent two different solu-
tions of the HFB equations. Isospin is of course not pre-
served in the HFB approximation and the label o+ 0 (1)
in Fig. 2 is merely used to indicate the kind of pairing field
obtained in the calculations.
The exact solution, presented in Fig. 1 contains both the et —
T=0 andT=1 pair modes, whereas HFB gives two solu- 0.0 0.5 1.0 1.5
tions that are decoupled, corresponding to eifhierO or T Ao [MeV]
:_1 p:?ur fields. The QIfference between the two mode!s '® FIG. 3. Behavior of the exact shell model pairing gaps as a
sides in the fact that in the exact model, the two-body interfynction of rotational frequencytw for 2+2 particles in thef
aCtion iS a Sca|al’ Whereas in the HFB aprOXimation, the pairshe"l The SOnddashea“ines represent thé=1 (T: 0) part of the
ing potential is either aT=0 or T=1 field, with the pairing energy. For the case B0, we show all individual com-
corresponding symmetry. Our analysis shows that startingonents of the force, clearly demonstrating the importance of the
from a certain solution, with a given symmetry, this symme-different parts. In contrast, th€=1 force is dominated by thé
try propagates to the next solutidwith different G_), =0 part.
analogous to other self-consistent symmetries of the HFB
Hamiltonian, see, e.g., the discussion[ib]. The different At this crossing point, the yrast band changes character from
pair fields appear as independent of each other. Our resultBe paired §=0) configuration to the alignedJ&M,=6
further indicate, that for a certain strength of tBge_, pair ~ +6) state.
field, energy can be gained_ This conforms with earlier re- Similar calculations were also performed for the case of
sults to associate the Wigner energy witk 0 pair correla-  the (4+2) and (4+4) systems. Qualitatively, they all show
tions [4]. the same trend, where of course the size of the drop in cor-
Hence, the reason why the mean-field approximation of_relatlpn energy depends on the number of part|cles.present in
ten avoids mixed solutions relates to several facts. the singlej shell. For the(4+2) system, the correlations of

Whereas in the exact model the two fields are fully decou—the‘]zo component only for one pair disappear whereas the

pled, in the BCS approximation they are linked through the?hrgpf;%rt t?ﬁafgnﬁ)argﬁf_s Ir?)tlt()er?sa%rgngr?gf:ne:ﬁ t;rohr:s ISai?ur?at\?e
number constraint, N=3[v*(T=0)+v2(T=1)]. If one y P P

ir-field is i . h her h q . aligned at the first crossing. Hence, the O correlations are
pair-lield 1S Increasing, the other has to ecrez(sé._ OF il active for the remaining two pairs. For higher frequen-
simple interactions, such as constant G, the system is alwaﬁeS the next pair will align, and then tte=0 (and in con-

choosing the mode that generates the lowest energy, resullaq encpthe T=1 correlations will drop in a similar fash-
ing in eitherT=0 or aT=1 pairing[7]. In the presence of oy as for the system with one-proton and one-neutron pair
approximate particle-number projection, the two modes copnly. The important message remains, as is evident from Fig.
exist, but only above a critical strengitf, 4]. 1, that theT=1 field is largely built up from thel=0 pair

As a next step, we consider the response of the nucleaorrelations, that are diminished in the process of particle
pair-potential to the rotating fields. In Fig. 3, we show thealignment. Although, the components with higllecontrib-
total A-parameter obtained from the pair field of E45) as  ute at higher values of angular momentum, The 1 corre-
well as selected individualJ(T) contribution as a function |ations are strongly reduced by the rotational motion.
of the rotational frequencyh(w) for four particles(two pro- In contrast, thelr =0 correlations evolve quite differently
tons and two neutronsn the f,,, shell. First of all, we may with rotational frequency. The contribution of the coupling
note the distinct difference between fhe1 andT=0 pair-  to low J, such as thel=1 pairs, behave similarly to the
ing fields. Whereas th€=1 field is dominated by one com- coupling toJ=0. This is quite natural, since they are built up
ponent withJ=0, the T=0 mode is dominated by thé by pairs ofL=0 andL=2. However, although the contribu-
=1 andJ=2j part of the interaction, but also the interme- tion of theJ=1 to theT=0 correlations drops in a similar
diate spinsJ=3,5 play a role. This already indicates that afashion as thed=0, the value of the total =0 correlations
discussion of a pairing force restricted ltc=0 may be ap- remains essentially unchanged. Apparently, the part that is
propriate for theT=1 part of the interaction, but not fof  lost by J=1 andJ=3 is gained byJ=7 andJ=5. This
=0, see also the analogous discussion in Réf8,19. implies that the high} components of th& =0 correlations

As we increase the rotational frequency, e 1 pairing  compensate for the loss of the lalwThis feature appears to
correlations(solid line) reveal the well-known drop due to be independent of the number of particles in the system. It
particle alignment from thé-, shell at aroundiw=0.7 G.  means that for a given interaction in the-channel, the total
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S however, mimic in an ad hoc way the region beyond
3 ' =28 by increasing the strength of tie=1 part of the inter-
204 - action.
: The effect of a redistributed strength of tlie=0 correla-
3 153 o tions, where thel=1 part has been increased by a factor of
2 r 2, is shown in Fig. 4. Indeed, the crossing frequency is
R a2 shifted. In other words, a coherenceb#1,T=0 pairs re-
s E sults in a change of the crossing frequency. What is even
~ 5] b more striking is that this effect is suppressed whenZ. In
] 5 Fig. 4, we also show the case &+4) nucleons in the ;,
03 E shell and, indeed, the first crossing frequency remains essen-
] r tially unchanged. This feature persists also in the HFB ap-
25 - proximation. Although our model is highly simplistic, one
] : can certainly conclude thaif&0,J=1) collectivity results
204 - in a shift of the crossing frequency to higher values and that
— - this property is expected to be present also in more realistic
E 15 o calculations. Of course, as discussed above, there can be
< " other factors that may affect the crossing frequency, such as
= 104 a the deformation that certainly is influenced by the 0 pair-
) . ing field [6].
- 5 ] E A shift of the crossing frequency has been reported for the
] 3 case of theN=Z nucleus’?Kr [22]. There have been several
0] E attempts to explain this shift of the crossing in termsTof
1 : : : =1 np pairing [23]. Assuming that the nuclear force de-

00 05 10 15 20 25 30 pends only on total(T) and not on the projection of isospin
Aw [MeV] (T,), analogous to the assumption that it does not depend on
. s the angular-momentum projectialy, one finds that ther

_ FIG. 4. The dynamical moment of inertit—dl/dw, asafunc-  _ air gaps are not affected by rotation in isospa&21].

tion of frequency. Solid line corresponds to standard singdaell In other words, these very basic assumptions imply that
calculations, whereas the dashed line depicts the case whede the, , 2 2 2\ - . . .

=1 part of the interaction is increased by a factor of 2. Note theRAerllnE—Zé]p?szcncp())L:ﬁta:‘grlr’{]f:/:ns?\?ftt %??f?gt)é-rtigs?r?gaff'fgaztng;
difference between the44 and the 42 systems. the pairingT=1 pair gap was simply adjusted by increasing

T=0 correlations remain almost unaffected by rotation. Thed4, from 0 to a value of 2.5 MeV. Such an increase strongly
presence of increasirigvalues in the pairing field will affect violates isospin symmetry. Following the arguments given
deformation properties. This is what one expects in a fully@bove, one could as well increase the or p p-pairing gap.
self-consistent approach, which of course is beyond ouff course, any increase of tlle=1 pairing energy will re-
present model analysis. Note that a recent analysis within théult in a shift of the crossing frequency but this has nothing
Monte Carlo shell model shows that at high angular mo-{0 do withnp pairing. _ .
menta, theT=0 correlations with 2 increasd 20]. In summary, we have stqd|ed the competition between the
From the above analysis, one may conclude thatThe T.:O ?”dT:l pair f'EId.S in an exactly soluble deformed
=0 correlations are not able to affect rotational propertiess'.nglej. shell model. It is shown t_hat the HFB approach
since the increase in the stretché&d 2j component is ex- @ves rlse_to two decoulprl]ed ShOIL.’t'OTIS corresp%n(illmtho |
actly nullified by the decrease of tlle=1 part, see also the =1 andT=0 modes. Although, in the exact shell mode

discussion in Ref[21]. Indeed, these are the results, e foranalysis, the solution contains both=0 andT=1 modes,
Iscussion | 2o R T : = u, » €.9., 10Tihe two modes are independent with-1 pair energy inde-
the f,,, shell where one is dealing with a “singjé-shell.

) . . - . pendent of the strength of thE=0 correlations and vice
However, in heavier nuclei, when>28, the active shell is \grs5 Ther=0 correlations have a rather complicated struc-
composed of, €.9R372, fs/2, P1/2, ANdQgp. FOT those cases, (yre where the total amount is not affected by rotation. For
the J=1 part of theT=0 interaction becomes more coher- rggjistic cases in heavy nucleZ ¢ 28), with severaj-shells,

ent, since every subshell can contribute. In contrast,Jthe theJ=1 part will effectively acquire a larger strength. It has
=2]j components become fragmented, since they have a dibeen demonstrated that increasing the value of the
ferent value for each subshell. Therefore, one may expect @=0,J=1) pair strength results in a shift of the band cross-
different response of the=0 pair field to rotation in heavier ing frequency. Such a shift of the crossing frequency in
nuclei. Since we are dealing in our model with a single- heavy N=Z nuclei, therefore, may be an indication of the
shell it is not possible to deal with such a case. One maygollective (T=0,J=1) correlations.
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