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D„1232… electroproduction amplitudes in chiral soliton models of the nucleon
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The multipole amplitudes for theN-D(1232) electromagnetic transition are computed in the framework of
the linears model and the chiral chromodielectric model for small and moderate photon virtualities. The
models include quark and meson degrees of freedom and the nucleon and theD are clusters of three valence
hedgehog quarks surrounded by meson clouds described by coherent states. Angular momentum and isospin
projections are performed to endow model states representing the nucleon and theD with proper quantum
numbers. Recoil corrections involved in the processgvN→D are taken into account by performing linear
momentum projection of the initial and final baryon states. The ratiosE2/M1 and C2/M1 are in good
agreement with the data in the two models, but the magnetic amplitude is better reproduced in the linears
model. The ratios show little dependence with the model parameters. Both in the linears model and in the
chromodielectric model the charged pions are responsible for the nonvanishing quadrupole-electric and
-Coulomb amplitudes. The recoil corrections enhance the results obtained for the amplitudes without linear
momentum projection, improving the comparison with experimental data. The dependence of the theoretical
amplitudes with the choice of the reference frame is also studied.

PACS number~s!: 13.40.Gp, 12.39.Fe, 14.20.Dh
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I. INTRODUCTION

Electromagnetic processes have always played a ce
role in studies of the structure of nuclei, nucleons, and th
excitations. Recently, the interest in the electroproduction
the D(1232) and other nucleon resonances has increa
fueled by the large number of experiments planned and
ready running in several centers~Mainz, Bonn, MIT,
TJNAF, etc.!, where very clean electromagnetic probes
now available. In this paper we report on a theoretical cal
lation of the multipole amplitudes of theN-D electromag-
netic transitions.

The processgvN→D has been considered in the fram
work of several models of baryon structure. From the po
of view of a pure quark model, theD state results from a spin
flip of one quark in the nucleon. This corresponds to
magnetic-dipole transition and vanishing quadrupole tra
tions. The experimental observation of quadrupole tran
tions, although small in comparison with the magnetic
pole, caused a discussion about the structure of the nuc
and theD. In models only with quarks, nonvanishing qua
rupole electric and scalar nucleon-D transition amplitudes
result fromd-state admixtures to the quarks’ lowests state,
otherwise those amplitudes would be identically zero@1–4#.
The quadrupole transitions resulting from such charge de
mations are generally small. However, other explanati
can be found, in particular the contribution of pions includ
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in the baryon model states@5–7#, as in the type of effective
theories considered in the present work.

Our calculations are carried on in the framework of tw
well known quark-meson models of the baryon structu
namely, the linears model ~LSM! @8# and the chiral chro-
modielectric model~CDM! @9#, which have been used t
describe the structure of the nucleon@8–12#. In these models,
a baryon — such as the nucleon — is a soliton with th
bare valence quarks, all in the same orbital-spin-isos

state, interacting with chirals and pW meson fields. In the
CDM, there is an additional interaction with a scala
isoscalar chiral singlet meson field — the chromodielec
field x. Except for a small explicit chiral symmetry breakin
term, both models are SU(2)3SU(2) chiral invariant, a
symmetry which is spontaneously broken to SU~2!, the pions
being the Goldstone bosons.

Although the two models use essentially the same ing
dients, they provide quite different pictures of the nucle
~and of the delta!. In the LSM the stability of the cluster o
three quarks interacting with the mesons depends on
quark-meson interaction strength. A soliton is formed wh
the coupling constant for that interaction is sufficiently larg
and it turns out that a strong meson cloud~particularly a pion
cloud! is required for stabilizing the system. In the LSM, th
chiral mesons bind the three quarks. In the CDM, in addit
to the interaction between the quarks and the chiral mes
there is an interaction between the chromodielectric field
the quarks. As a result of this interaction the quarks acqu
a position-dependent dynamical mass which is an increa
function of the distance. The quarks are thus prevented
move too far away from the origin and such mechanism
fectively generates quark confinement. The role of the ch
©2000 The American Physical Society02-1
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mesons, although conceptually important to implement ch
symmetry and its dynamical breaking, gets much suppres
and the resulting picture of the baryon is a soliton with th
confined valence quarks surrounded by a weak cloud of
ral mesons~particularly pions!. By considering two models
providing such extreme pictures of the nucleon, namely, w
quite different meson clouds, we are able to address inte
ing questions, e.g., how electromagnetic transition am
tudes are sensitive to quantities such as the ‘‘numbe
pions’’ presented in the baryon states.

In the framework of the chiral models considered in th
paper, the nucleon and theD are made out of neutral (s, x,
and p0) and charged~quarks andp6) particles, the latter
coupling directly to the electromagnetic probe~a virtual or a
real photon!. The three quarks are assumed in the sa
orbital-spin-isospin state occupying the lowests state ~no
d-state admixture!, represented byuq&. Moreover the hedge
hog state is assumed for the spin-isospin wave function
the quarks. The three valence quarks are therefore desc
by the fully symmetric stateuq3& ~antisymmetrization applies
in color space — the state is a Slater determinant in co
space!. A quantum mechanical description for the mesons
considered by means of coherent states representing
sigma and chi clouds, namely,uP&, uS&, andux&. The start-
ing point to describe a baryon in the framework of the LS
and CDM is, therefore, the Fock stateuc&5uq&3uP&uS&ux&.
Such state should then be projected onto angular momen
and isospin eigenstates in order to get states with the nuc
andD quantum numbers@10–12#.

The calculation reported in this work is a natural exte
sion of Ref. @6#. We have refined the approximation
namely, by taking into account the state of motion of t
initial and final baryon states involved in the nucleon-D tran-
sition. To this end, a linear momentum projection@13# of the
initial and final baryon states is applied, following th
method used in Ref.@14# for the calculation of the nucleon
electromagnetic form factors. In addition to this concept
improvement, we also present in more detail the formali
and address the issue of how the choice of the refere
frame affects the theoretical transition amplitudes.

Other calculations of the electromagneticN-D transition
amplitudes carried out in several effective models of
nucleon have been reported in constituent quark mo
@1–4#, with two-body exchange currents@15#, in the Skyrme
model@16,17#, in the cloudy bag model@5,7#, in chiral quark
solitons of Nambu–Jona-Lasinio type with polarized Dir
sea@18,19#, etc.

This paper is organized as follows. In Sec. II we give
short account of the models and sketch the approximat
used to construct model states representing the nucleon
the delta. In Sec. III we develop the formalism for the app
cation of the models to the electroproduction of theD(1232)
with a special emphasis on the implementation of the lin
momentum projection. Finally, the results are presented
Sec. IV together with their discussion. A summary of t
main conclusions of this work is presented in Sec. V. T
more technical aspects are given in the appendixes.
04520
al
ed
e
i-

h
st-
i-
of

e

of
ed

r
s
on,

m
on

-

l

ce

e
ls

ns
nd

-

r
in

e

II. MODELS AND MODEL REPRESENTATION
OF BARYONS

The Lagrangian densities of the LSM and the CDM c
be written, in a compact form, as

L5Lq1Ls,p1Lq2s,p,x1Lx , ~1!

where

Lq5 i c̄gm]mc, ~2!

Ls,p5 1
2 ~]s!21 1

2 ~]pW !22U~s,pW ! ~3!

are the pure quark and chiral meson terms,

Lq2s,p,x5
g

xp
c~s1 itW•pW g5!c ~4!

is the quark-meson interaction term, and

Lx5 1
2 ~]x!22 1

2 Mx
2x2, ~5!

absent in the LSM, contains the kinetic and potential ter
for the chromodielectric field. In these expressionsc(x) rep-
resents the quark field operator,pW (x) and s(x) the chiral
pion and sigma meson fields, respectively~the arrow denotes
isovector!, andx(x) the chromodielectric field. The param
eter p in the denominator of the interaction Lagrangia
Lq2s,p,x is 0 in the LSM~no x field in this model! and 1 in
the CDM.

The meaning of the other terms appearing in Eqs.~2!–~5!
is the following. In Eq.~3!, U(s,p) is the Mexican-hat po-
tential,g in Eq. ~4! is the coupling constant which is dimen
sionless in the LSM and has dimensions of energy in
CDM ~with p51). In Eq. ~5! the second term on the right
hand side is just the mass term for thex field, Mx being its
mass. Other versions of the CDM consider a potential wh
includes, in addition to the mass term, up to quartic terms
the x field, as well as other powers ofp in the interaction
term ~4!. By just taking the mass term in the potential forx
andp51 in the interaction, quark confinement is imposed
the smoothest way, which is the most appropriate choice
the quark matter sector of the CDM@20#. The Mexican-hat
potential is given by

U5
l

4
~s21pW 22n2!21cs1d. ~6!

The SU(2)3SU(2) chiral symmetry ofL is explicitly bro-
ken by the small termcs. The parametersl, n, andc are
related to the sigma and pion massesms andmp , and to the
pion decay constantf p :

l5
ms

22mp
2

2 f p
2

, n25 f p
2 2

mp
2

l
, c52 f pmp

2 . ~7!

In Eq. ~6!, d is a constant which guarantees that minU50.
The Mexican hat potential induces spontaneous chiral s
2-2
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metry breaking. The vacuum expectation values of the ch
fields are zero for the pion and2 f p for the sigma:

^0upŴ u0&50, ~8!

^0uŝu0&52 f p ~9!

~we use the hat symbol whenever we want to stress the
eratorial character of the fields!. It is convenient to define a
new sigma field, which we still denote byŝ, as the fluctua-
tion around the vacuum value, i.e., we perform the repla
ment ŝ→2 f p1ŝ. Hence, the vacuum expectation value
the ‘‘new’’ sigma field is zero, according to Eq.~9!.

Altogether, the parameters of the models defined by
~1! are the pion ands masses~fixed atmp50.139 GeV and
ms51.2 GeV!, the pion decay constant (f p50.093 GeV!,
and g in the LSM andg and Mx in the the CDM. In the
simpler version of the CDM considered in this work, it tur
out that the results are sensitive only to the combinationG
5AgMx. The physical region of the coupling constant isg
;5 in the LSM @10,12# and G;0.2 GeV, in the CDM
@14,20#. We remark that the physical range of the coupli
constant in the CDM is much narrower than in the LSM. F
this reason, later on, in Sec. IV, when we show the dep
dence of the results on the coupling constant~all other pa-
rameters being fixed to the quoted values! we shall only
consider the LSM. The only free parameters areg in the
LSM and G in the CDM and these are fixed in order
reproduce well the bulk of the nucleon properties.

It is known that, in these quark-meson models,
D-nucleon mass splitting is small. We may remedy this
adding to the Hamiltonians of the models explicit ba
baryon mass terms with different masses for the bare nuc
and the bareD @6,21#. Then there is one more parameter
the bare nucleon-bareD mass difference — which can b
fitted to reproduce the physical nucleonD mass splitting. The
inclusion of such a term has little effect~especially in the
LSM! in the wave functions of both quarks and meso
Such a bare nucleon-D mass splitting accounts for the re
sidual chromomagnetic interaction and for the ’t Hooft inte
action which is attractive for the nucleon and absent in theD.

Solutions of the LSM and CDM representing the physi
baryons can be obtained using a variational approach b
on the projected hedgehog ansatz@11,12,21,22#. For the sake
of completeness we sketch the formalism here. We cons
three valence quarks with spin and isospin state in the
called hedgehog configuration

uhh&5
1

A2
~ uu↓&2ud↑&). ~10!

All quarks occupy the same lowest positive energys state of
the model effective potential, given by the spinor

^ruqh&5
1

A4p
S u~r !

i s• r̂v~r !
D uhh&. ~11!
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In our approach, the pions, sigmas, and chis~in the CDM!
are described by coherent statesuP& for the pions,uS& for
the sigmas, andux& for the chis. The expectation values o
the field operators in these coherent states are the mean
son fields. The hedgehog ansatz for the mesons reads

^Suŝ~r!uS&5s~r !, ~12!

^PupŴ ~r!uP&5
r

r
f~r !, ~13!

^xux̂~r!ux&5x~r ! ~14!

~we remember thatŝ is now the fluctuating part of the origi
nal sigma field around the vacuum expectation value2 f p).
Actually the spherical symmetry of sigmas and chis and
‘‘hedgehoglike’’ character of the pion with the peculia
isospin-coordinate space correlation, result from the qu
spin-isospin hedgehog configuration~10! and from the re-
quirement of minimum mean field energy solutions@21–23#.

The pion coherent state is

uP&5Np@jW #expH (
i 51

3 E d3kAvp~k!

2
j i~k!ai

†~k!J u0&,

~15!

whereai
†(k) creates a free pion with momentumk and~Car-

tesian! isospin indexi, Np is a normalization factor,vp

5Ak21mp
2 , andj i(k) is the pion amplitude. Similarly, the

sigma coherent state is given by

uS&5Ns@h#expH E d3kAvs~k!

2
h~k!b†~k!J u0&,

~16!

whereb†(k) is the sigma creation operator,h(k) is the co-
herent state amplitude function for thes field. A similar
expression holds for the chi field and we denote the am
tude of the corresponding coherent state byk(k).

The coherent states are particularly easy to deal with
cause they are eigenstates of the annihilation operators,

ai~k!uP&5Avp~k!

2
j i~k!uP&. ~17!

Similar expressions hold, involving the annihilation opera
of s ’s andx ’s.

The coherent state amplitudes are the Fourier transfo
of the meson functions in coordinate space introduced
Eqs.~12!–~14!, and exhibit the following hedgehog shape
momentum space:

j i~k!52 i
ki

k
j~k!, ~18!

h~k!5h~k!, ~19!

k~k!5k~k!. ~20!
2-3
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Altogether the hedgehog baryon ansatz reads

uch&5uqh&
3uS&uP&ux&. ~21!

In the mean field approximation we demand the total ene
functionalE5^chu:H:uch&, where :H: is the normal ordered
Hamiltonian of the models defined by Eq.~1!, to be station-
ary with respect to variations ofu(r ), v(r ), s(r ), f(r ), and
x(r ). Of course, the meson wave functions may equivalen
be determined by performing the variations with respec
the coherent state amplitudesj(k), h(k), and k(k). The
variations with respect to the functions ofr lead to a set of
differential equations. For appropriate choices of the c
pling constants, soliton solutions of those equations are
tained with three quarks absolutely confined~in CDM! @9,11#
or just bound~in LSM! @8,10#.

The solitons described by the hedgehog state,uch& cannot
represent physical baryons because they are not eigens
of angular momentum or isospin. In addition, Eq.~21! rep-
resents a localized object and therefore the translational s
metry of the model Hamiltonians is also broken in su
states. In particular they contain spurious center-of-m
components which contribute to the energy and to other
servables.

States with good spin and isospin can be obtained fr
uch& by means of the Peierls-Yoccoz projection. The hed
hog only contains states withJ5T and therefore, due to suc
space-isospace correlation, a single projection, either in
or in isospin, is needed@12,22#. We choose to project onto
isospin. A baryon with isospinT, spin J5T and projection
quantum numberst ands ~for isospin and spin, respectively!
is given by

uT,t;J5T,s&5~21!T1tP t2s
T uch&, ~22!

whereP t2s
T is the isospin operator

P ts
T 5

2T11

8p2 E dVD ts
T* ~V!R~V!. ~23!

In this expression,R(V) stands for the rotation operator i
isospin space,D are the Wigner matrices, and the integrati
is performed over all orientationsV ~which represents the se
of three Euler angles in isospin space!. In the following we
considers52t5M and use the shorthand notationPJM

5P M ,M
T .

On the other hand, a model state representing a baryo
rest can be obtained by applying a Peierls-Yoccoz projec
onto linear momentum zero to the state already projec
onto isospin~and angular momentum!. The Peierls-Yoccoz
linear momentum projector is given by

Pq5
1

~2p!3E daeia•qU~a!, ~24!

whereU(a) is the translation operator. A nucleon at rest
therefore represented by the model state
04520
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uJ5T5 1
2 , M ,q50&5Pq50PJMuch&5Pq50ucJM&.

~25!

For q50, the isospin-angular momentum projector opera
and the linear momentum projector operator commute,
this is no longer the case forqÞ0 @24#.

In order to include recoil effects in the calculations,
principle one should boost@13# the zero momentum state
~25!, but the technical difficulties associated with boosti
prevent, in practice, the use of such a procedure. Howeve
least for small linear momentumq, we may approximate the
boost operation by the Peierls-Yoccoz projection onto lin
momentumq @11,24#. Thus, the model state representing
physical baryon of angular momentum and isospinJ and
linear momentumq is

uJ5T ,M ,q&;PqucJM&. ~26!

Proper normalization of the projected state requires the
clusion of kinematical normalization factors. For example
nucleon with four-momentumq, uN(q)&, is described by

uN~q!&→A~2p!3d3~0!A E

mN

PqucJM&

A^PqcJMuPqcJM&
,

~27!

whereJ5 1
2 , mN is the nucleon mass andE5Aq21mN

2 its
energy.

Before presenting the formalism to compute the amp
tudes for the electroproduction of the delta, one sho
briefly mention how the radial profilesu(r ), v(r ), s(r ),
f(r ), andx(r ) are determined. They may be determined
the so-called ‘‘variation-before-projection’’~VBP! method,
and, in that case, the stationarity of the mean field energ
required. A better approach~even if much more demandin
numerically! is the variation-after-projection~VAP! method,
where the energy functional to be minimized is the expec
tion value of the normal ordered Hamiltonian in the pr
jected stateucJM&. In this procedure, which we followed, on
obtains different field radial profilesuB(r ),vB(r ),fB(r ),
sB(r ), xB(r ) @and coherent state amplitudesjB(k),hB(k),
kB(k)] for the nucleon (B→N) and for the delta (B→D).
The results presented Sec. IV use the VAP method for
angular momentum projection and the approximate V
method for the linear momentum projection as described
Ref. @11#. Unless otherwise stated, the coupling constants
g55 in the LSM @8,12,25# and G50.2 GeV in the CDM
@14,20#, for which nucleon properties are well describe
These values, together with the abovementioned values
meson masses and pion decay constant, will be referred
the standardparameters.

III. MULTIPOLE AMPLITUDES

The N-D electromagnetic transverse helicity amplitud
@26# are defined by
2-4
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Al
(m)52

e

A2kW

^D 1
2 l;kDu:em•J~0!:uN 1

2 l2m;kN&

~28!

and the scalar helicity amplitude by

Sl5
1

A2

e

A2kW

^D 1
2 l;kDu:J0~0!:uN 1

2 l;kN&, ~29!

whereJm is the electromagnetic current density operatorei ,
i 50,61 are the photon polarization vectors (e0 is chosen
along the direction of the photon motion!, and kW is the
by

a
to
te

-

h

04520
magnitude of the photon three-momentum at the pho
point @4#. Because of gauge invariance, the other amplitu
— longitudinal amplitude — is just the scalar amplitud
multiplied by the kinematical factorv/k. The values forl
andm are usually chosen asl51/2,3/2,m51 for the trans-
verse amplitudes andl51/2 for the scalar amplitude. If the
linear momentum projection of the model states is skipp
~i.e., no recoil corrections!, expressions~28! and~29! reduce
to those usually presented in the literature@see, e.g., Eq.~7!
of Ref. @6## using the procedure described in Ref.@25#.

Replacing the baryon states above by their model rep
sentations in Eq.~27!, and noting thatU†(r)Jn(0)U(r)
5Jn(r), we get~for l51/2, m51)
A1/252NNDE d3ad3re2 iq•r^D 1
2

1
2 uU†@~x21!a#:e1•J~r!:U~xa!uN 1

2 2 1
2 &, ~30!

S1/25
1

A2
NNDE d3ad3re2 iq•r^D 1

2
1
2 uU†@~x21!a#:J0~r!:U~xa!uN 1

2
1
2 &, ~31!
-
lti-
and
mo-
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the
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wherex is the fraction of the photon momentum carried
the delta. In this way, the parameterx identifies the reference
frame used in the calculations:x50 corresponds to the delt
rest frame which is mostly used in the literature. The fac
NND contains all kinematical factors as well as the projec
states normalization terms@see Eq.~27!#, and is given by

NND5
1

~2p!3

e

A2kW

AEN

mN
AED

mD

1

AF1/2@~x21!q#F3/2~xq!
,

~32!

with

F1/2~q!5^N 1
2

1
2 uPquN

1
2

1
2 &, ~33!

and similarly for the deltaF factor. These factors only de
pend on the magnitudeuqu.
r
d

The multipoleN-D transition amplitudes are usually ex
tracted from the helicity amplitudes above making a mu
pole expansion of the electromagnetic field. For nucleon
delta model states which are eigenstates of the angular
mentum and parity operators, only the magnetic dipole a
the electric and scalar quadrupole terms contribute to
transition~see Appendix A for details!. The linear momen-
tum projection in our approach affects the rotational symm
try of the baryon states, and the relevant multipoles are
automatically selected. Instead, one has to explicitly rem
the spurious terms in the multipole expansion of the ex
nential in Eqs.~30! and ~31!, which implies restricting the
momentum transferq to low values. In that case, the rota
tional symmetry of the model states is almost preserved e
if the linear momentum projection is performed. The mul
pole amplitudes are then
M M1~q!52 3
2 NNDE d3ad3r j 1~qr !^D 1

2
1
2 uU†@~x21!a#:@ r̂3J~r!#1 :U~xa!uN 1

2 2 1
2 &, ~34!

ME2~q!52
A10p

k
NNDE d3ad3r^D 1

2
1
2 uU†@~x21!a#:@“3 j 2~qr !Y22

1 ~ r̂!#•J~r!:U~xa!uN 1
2 2 1

2 &, ~35!

MC2~q!52A10pNNDE d3ad3r j 2~qr !Y20~ r̂!^D 1
2

1
2 uU†@~x21!a#:J0~r!:U~xa!uN 1

2
1
2 &, ~36!
f

whereYJl
m are the vector spherical harmonics,j l(x) are the

spherical Bessel functions and the index 1 in theM1 opera-
tor denotes component11 in the spherical basis. It is wort
noticing that formulas~34!–~36! differ from those used when
no recoil corrections are considered†see, e.g., Eqs.~10!–~12!
of Ref. @6#‡ by the integration overa and by the presence o
2-5
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FIG. 1. Quadrupole electric to dipole mag
netic ratio in the LSM and the CDM, as a func
tion of 2Q2. The solid~dashed! lines show the
results with~without! recoil effects for the stan-
dard parameter set and in the rest frame of theD.
Experimental data was taken from Refs.@27,28#
(s) and Refs.@29–31# (d).
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the translation operations. Had we insertedd3(a) in Eqs.
~34!–~36! and integrated overa, the expressions for the mu
tipole amplitudes when no recoil effects are considered~see,
amongst others, Refs.@6,16,18,19#! would be obtained.

The electric quadrupole amplitude involves the operat

ÔE2~q!5
1

qE d3r@“3 j 2~qr !Y22
1 ~ r̂!#•J~r!, ~37!

which, using the properties of the vector spherical harmon
and integration by parts, can be written as

ÔE2~q!5
1

A6

v

qE d3r
d

dr
@r j 2~qr !#Y21~ r̂!J0~r!

2
iq

A6
E d3r j 2~qr !Y21~ r̂!r•J~r!, ~38!
04520
s

where we used the electric current conservation condition
simplify the first term. The second term gives a negligib
correction to theE2 amplitude in the low momentum regim
and can be dropped@6#. Other technical aspects of the calc
lation of the multipole amplitudes are provided in Appe
dixes B and C.

IV. RESULTS AND DISCUSSION

The ratiosE2/M1 and C2/M1 for the delta electropro-
duction are related to the multipoles~34!–~36! through

E2

M1
5

1

3

ME2

M M1
~39!

C2

M1
5

1

2A2

MC2

M M1
. ~40!
-
er-
en
FIG. 2. Quadrupole Coulomb to dipole mag
netic ratio. Conventions, parameters and ref
ence frame as in Fig. 1. Experimental data tak
from Refs.@27,32# (s) and Refs.@30,33# (d).
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FIG. 3. Dipole magnetic amplitudeM1 ~in
units of 1023 GeV21/2) as a function of2Q2, for
the LSM and the CDM. Conventions, paramete
and reference frame as in Fig. 1. Experimen
data taken from Ref.@34#.
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These ratios~EMR and CMR, respectively! are equal for
uqu→0, a limit which is never met since, even at the phot
point, a finiteuqu is needed for the transition to take place

In most calculations reported in the literature the tran
tion amplitudes are computed in the rest frame of theD.
Such a choice corresponds tox50 in the expressions of Sec
III. The nucleon four-momentum (EN ,2q) and the photon
four-momentum (v,q) completely specify the kinematic
and the~invariant! photon virtuality,Q252q2 is the appro-
priate quantity in terms of which the electroproduction a
plitudes should be expressed. In theD reference frame,

uqu25S mD
2 1mN

2 1Q2

2mD
D 2

2mN
2 ~41!

and
04520
i-

-

v5
mD

2 2mN
2 2Q2

2mD
. ~42!

Figure 1 shows the results for the quadrupole electric
dipole magnetic ratio, in the LSM and CDM, for standa
parameter sets in both models, in the rest frame of the d
Figure 2 displays the quadrupole Coulomb to dipole m
netic ratio as a function of2Q2. The first conclusion to be
drawn is the compatibility of the model predictions with th
data, namely, the negative signs for both ratios. From
theoretical point of view we do not find any sign of the u
and down behavior of the data points. Another interest
conclusion is the small effect of the recoil corrections
EMR and CMR. Recoil corrections enhance the nucle
magnetic moments@11,24# and nucleon magnetic form fac
tors @14#. Such enhancement is also found in the nucleonD
magnetic transition as it is shown in Fig. 3, improving t
f
FIG. 4. EMR in the LSM for three values o
the coupling constant.
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FIG. 5. CMR in the LSM for three values o
the coupling constant.
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comparison with experimental values, but the effect, in
present case, is smaller than for the nucleon.

A similar enhancement turns out to show up in the qu
rupole electric and Coulomb multipoles, and altogether
sensible modification appears in EMR and CMR. In t
CDM the modification ofM M1 due to a better treatment o
the kinematics of the nucleon and theD is not enough to
achieve a better comparison with the data. The compar
with the data of this observable favors the model with la
number of pions in the cloud. The big slope of the theoreti
CMR in the CDM is due to the small value predicted f
M M1 in this model.

The values of the ratios at the photon point (D photopro-
duction! are 22.56% ~LSM! and 22.54% ~CDM! for the
CMR and22.11% ~LSM!, 21.85% ~CDM! for the EMR.
These values are compatible~although slightly smaller, in
the case of the EMR! with the experimental value22.5
60.5% estimated for EMR by the Particle Data Group@35#.
04520
e

-
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It is not our purpose to find fittings of model paramete
that better reproduce the experimental results~model param-
eters were fixed in the nucleon sector of the models!. Nev-
ertheless it is interesting to analyze the dependence of
results with model parameters, namely, the coupling c
stants. As stated before, the physical window forG in the
CDM is relatively narrow and the resulting radial wave fun
tions are very much similar throughout that physical ran
The LSM, on the other hand, provides a larger range an
large variety of radial wave functions. The results are su
marized in Figs. 4–6 for three values of the coupling co
stant in the LSM:g54.5 ~weak coupling, weak pion cloud!,
g55.0 ~intermediate coupling, standard parameter!, and g
55.5 ~strong coupling, strong pion cloud!. The graphs cor-
respond to the calculation with recoil corrections. As Fig
reveals, the EMR remains impressively unchanged w
2Q2. The CMR ~Fig. 5! is affected specially for large
2Q2. The effect onM1 is shown in Fig. 6. The multipole
FIG. 6. M1 in the LSM for three values of the
coupling constant.
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FIG. 7. M1 ~left! and CMR~right! in the LSM, computed in different inertial frames using the standard parameter set in the LSM
parameterx denotes the fraction of the photon momentum carried by theD.
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C2 results from pion contribution alone, whereasM1 re-
ceives contributions from both pions and quarks. The str
ger pion cloud enhances moreC2 than M1 resulting in a
larger~in absolute value! CMR for higher coupling constant
The same trends were also found in the CDM~but with even
smaller variations withG).

Finally we address the problem of the reference frame
principle, the theoretical amplitudes should not be depend
on the particular choice of the reference frame. Howev
due to the lack of translational invariance of the mod
baryon states~even when recoil corrections are taken in
account!, that is not the case. Nevertheless, no dram
changes in the results, as a consequence of the diffe
choice of reference frame, are supposed to occur. In Fi
we present theM1 multipole amplitude and the CMR rati
for the LSM (g55.0) and for three values of the parametex
which is the fraction of the photon momentum carried by
D: x50, x50.5, andx50.7 ~EMR follows the trend of
CMR!. The curvex50.5 would correspond to the Bre
frame if nucleon andD were degenerate. The major diffe
ences~indicating lack of covariance! come up at large value
of 2Q2 as one would anticipate. Indeed, unlike the corr
description of baryon motion through Lorentz boosts of z
momentum eigenstates as mentioned in Sec. II, our appr
mate treatment isnot relativistic and, therefore, more reliab
for small and intermediate linear momenta. The reg
spanned by the curves in Fig. 7 gives an idea of the ‘‘th
retical uncertainty’’ of the model predictions.

V. CONCLUSIONS

In this paper we addressed the question of theD electro-
production amplitudes in the framework of two chiral effe
tive models of the nucleon with meson and quark degree
freedom. Although the predictions for the ratiosE2/M1 and
C2/M1 are compatible with data in both models, the amp
tudes are better reproduced in the LSM thus favoring a
ture of the nucleon and the delta with a stronger pion clo
Recoil corrections of the baryons were taken into accoun
04520
-

n
nt
r,
l

ic
nt
7

e

t
o
xi-

n
-

of

-
-
.

in

this study but no dramatic change was actually found w
respect to the calculation with just angular momentum p
jection from the hedgehog. This is different from the mod
fications occurring in nucleon form factors where larger
fects were found when the center of mass motion spuri
components are removed from the baryon wave functio
Strong fluctuations onC2/M1, as seen in the experiment
data, are not observed in the present approach.
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APPENDIX A: DEFINITION OF THE MAGNETIC AND
ELECTRIC MULTIPOLE AMPLITUDES

The operator involved in the calculation of the transve
helicity amplitudes is

Ô~r!5e2 iq•re1•J~r!. ~A1!

Choosing thez axis in the direction ofq, the expansion of the
exponential reads

e2 iq•r5A4p(
l

~2 i ! lA2l 11 j l~qr !Yl0~ r̂!, ~A2!

wherej l(x) are the spherical Bessel functions andYlm( r̂) are
the spherical harmonics. Now, the productYlm( r̂)en can be
cast in terms of the vector spherical harmonics as

Ylm~ r̂!en5(
jm

^ lm;1nu jm&Yj l
m~ r̂!, ~A3!
2-9
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where^ lm; l 8m8u jm& are Clebsch-Gordan coefficients. Equ
tion ~A1! then reads

Ô~r!5A4p(
l j

~2 i ! lA2l 11 j l~qr !^ l0;11u j 1&Yj l
1 ~ r̂!•J~r!.

~A4!

Since only the terms withj 5 l , j 5 l 61 contribute, we may
write

Ô~r!5A2p(
L

A2L11~2 i !LH 2 j L~qr !YLL
1 ~ r̂!•J~r!

1 i FA L11

2L11
j L21~qr !YLL21

1 ~ r̂!•J~r!

2A L

2L11
j L11~qr !YLL11~ r̂!•J~r!G J

5A2p(
L

A2L11~2 i !LH 2 j L~qr !YLL
1 ~ r̂!

1
1

k
“@ j L~qr !YLL

1 ~ r̂!#J •J~r! ~A5!

~see Ref.@36# for more details!. The two terms inside the
curly braces in this expression are, respectively, the elec
magnetic field (L,1)-magnetic and (L,1)-electric multipoles

ALM
(M)~r!5 j L~qr !YLL

M ~ r̂!, ~A6!

ALM
(E) ~r!52

i

k
“3@ j L~qr !YLL

M ~ r̂!#. ~A7!

As is shown, for instance, in Ref.@36#, the scalar products o
the Lth order field multipoles with any vector~such as the
current density operator! form the irreducible components o
rank-L operators, with parity (21)L11 and (21)L for the
magnetic and electric multipoles, respectively. In a transit
between states with angular momentumJi51/2 and Jf
53/2 and positive parity, only (L51)-magnetic and (L
52)-electric multipoles may contribute, so that the opera
Ô may be replaced by

Ô8~r!5 i @A6pA11
(M)~r!2A10pA21

(E)~r!#•J~r!. ~A8!

The M1 andE2 amplitudes are, respectively, the matrix e
ements of the first and second terms on the right hand sid
this equation. To make the correspondence with Eq.~34! we
note that

iA6pA11
(M)~r!•J~r!5

3i

A2
j 1~qr !(

mn
^1m;1nu11& r̂ mJn~r!

52
3

2
j 1~qr !@ r̂3J~r!#1 , ~A9!

where use was made of the definition of the vector spher
harmonics and of the expression of the spherical compon
04520
-

o-

n

r

of

al
ts

of the vector product of two vectors. The scalar amplitu
can be derived in a similar fashion.

APPENDIX B: TRANSITION OVERLAP

The transition overlap of two~not necessarily the same!
hedgehog baryons, defined as

N~a,V!5^ch8uU~a!R~V!uch&, ~B1!

is a recurring function in calculations involving isospin an
linear momentum projected states@11,24#. It is the following
product of quark and meson overlaps:

N~a,V!5Nq
3~a,V!Np~a,V!Ns~a,V!Nx~a,V!.

An explicit form for this function can be derived following
the calculation of the norm overlaps in Ref.@11#. The iso-
scalar meson overlaps do not depend onV or on the orien-
tation of a, and taking advantage of the properties of t
coherent states~for the sigma field for instance!, one obtains

Ns~a,V![ns~a!

5 expH g0
s~a!2pE

0

`

dkk2vs~k!

3@h82~k!1h2~k!#J , ~B2!

where we introduced the functions

gl
s~a!52pE

0

`

dkk2vs~k! j l~ka!h8~k!h~k!. ~B3!

A similar function should also be defined for the chromo
electric field. The quark overlap is also readily compute
because the spatial part of the quark wavefunctions is inv
ant under isospin rotations and the spin-isospin part is inv
ant under space translations. It is given by

Nq~a,V!5nq~a!Nq~V!, ~B4!

nq~a!5
2

pE0

`

dkk2 j 0~ka!@ ũ8~k!ũ~k!1 ṽ8~k!ṽ~k!#,

~B5!

Nq~V!5 cos
b

2
cos

a1g

2
. ~B6!

In these equations,ũ and ṽ are Fourier transforms of the
quark profiles, given by

ũ~k!5E
0

`

drr 2 j 0~kr !u~r !, ~B7!

ṽ~k!5E
0

`

drr 2 j 1~kr !v~r !. ~B8!

For the pion field overlap, we get
2-10
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Np~a,V!5 expH 2pE
0

`

dkk2vp~k!@j82~k!1j2~k!#J
3expH 1

3
@g0

p~a!1g2
p~a!#TrR~V!J

3exp$g2
p~a!âiRi j ~V!â j%, ~B9!

with gl
p defined as for thes @see Eq.~B3!#:

gl
p~a!52pE

0

`

dk k2vp~k! j l~ka!j8~k!j~k!. ~B10!

In the reference frame with thez axis along the axis of the
rotation R, the quantityâiRi j (V)â j does not depend on th
azimuthal angle of vectora and that could be exploited in
order to simplify some integrations@11#. However, the ori-
entation of thez axis has already been fixed along the dire
tion of the photon momentum. Therefore, in all integratio
over a the transformationa→T 21a is made, whereT is the
rotation that aligns thez axis with the axis of the rotation
R(V), and again advantage can be taken from the abo
mentioned independence of the azimuthal angle. One ge

Np~T 21a,V!5np~a!Np~a,s,V!, ~B11!

wheres5 cosua is the cosine of the polar angle ofa, and

np~a!5 expH g0
p~a!2pE

0

`

dkk2vp~k!@j82~k!1j2~k!#J
~B12!

Np~a,s,V!5 expH 2z~a,s!S cos2
b

2
cos2

a1g

2
21D J

~B13!

z~a,s!5 2
3 @g0

p~a!1P2~s!g2
p~a!#, ~B14!

P2(s) being the Legendre polynomial of second degree.

APPENDIX C: CALCULATION OF MATRIX ELEMENTS
WITH PROJECTED STATES

Here we present some details regarding the calculatio
matrix elements of operators between isospin and linear
mentum projected states, using theC2 amplitude—see Eq
~36!—as an example. The other amplitudes can be obta
in a similar way~details in Ref.@37#!.

The electromagnetic current density for the two effect
theories considered in this paper, derived using Noeth
theorem, reads

Jm~r!5 (
c51

3

c̄ (c)~r!gmS 1

6
1

1

2
t0

(c)Dc (c)~r!

1@pW ~r!3]mpW ~r!#0 , ~C1!
04520
-
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wherec is a quark index and the cross product in the seco
term is in isospin space. The current density is the sum o
isoscalar operator

Sm~r!5
1

6 (
c51

3

c̄ (c)~r!gmc (c)~r!, ~C2!

which, because of isospin conservation, cannot contribut
N-D matrix elements, and the zeroth component of an
ovector operator

V1,t
m ~r!5

1

2 (
c51

3

c̄ (c)~r!gmt t
(c)c (c)~r!1@pW ~r!3]mpW ~r!# t .

~C3!

The components of isovector operators commute in a w
defined manner with the isospin-space rotations involved
the isospin projectors~see Ref.@38#, for instance! and one
can show that, regarding the expression of theC2 amplitude,

P 1/2,21/2
3/2†

V10
0 ~r!P 1/2,21/2

1/2 5(
t

ctV1t
0 ~r!P 2(t11/2),21/2

1/2 ,

~C4!

with

ct5A2

3 K 1

2
,t1

1

2
;1,2tU32 1

2L . ~C5!

We can then write theC2 amplitude as

MC2~q!52
A10p

~2p!2
NND(

t
ctE d3aE dV

3D 2(1/21t)21/2
1/2* ~V!Ft~a,V!, ~C6!

with

Ft~a,V!5E d3r j 2~qr !Y20~ r̂!

3^ch~D!uU†@~x21!a#V1t
0 ~r!R~V!U~xa!uch~N!&.

~C7!

In this expression,uch(N)& and uch(D)& represent the
nucleon and the delta hedgehogs.

The quark component of the isovector part of the cha
density in Eq.~C3! cannot contribute here since theC2 is a
matrix element of anL52 operator betweens-wave quark
states. We are then left only with the pion contribution to t
charge density, and we expand the pion fieldpW (r) and its
canonical conjugatePW p(r) in plane waves

p i~r!5
1

~2p!3/2
E d3k

1

A2vp~k!
@ai~k!eik•r1ai

†~k!e2 ik•r#,

~C8!
2-11
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Pp i~r!5
i

~2p!3/2
E d3kAvp~k!

2
@ai~k!eik•r2ai

†~k!e2 ik•r#.

~C9!

The translations and/or isorotations of coherent states
yield coherent states~the transformed states are still eige
states of the annihilation operators! with shifted and/or iso-
rotated amplitudes. Indeed, for the pion field one has

ai~k!U~xa!R~V!uch~N!&

5Avp~k!

2
e2 ixk•aRi j ~V!j j

(N)~k!U~xa!R~V!uch~N!&,

~C10!

^ch~D!uU†@~x21!a#ai~k!

5Avp~k!

2
ei (x21)k•aj i

(D)~k!^ch~D!uU†@~x21!a#.

~C11!

Taking now advantage of the hedgehog shape of the p
coherent state amplitude, Eq.~18!, we can write the Carte
sian components of the functionsFt(a,V) in Eq. ~C7! as

Fi~a,V!52
i

2p
N~a,V!E d3r j 2~qr !Y20~ r̂!e i jkRkl~V!

3~r 2! l~r 1! ja~a,r ,â• r̂!, ~C12!

where

r15r1~12x!a, ~C13!

r25r2xa, ~C14!

a~a,r ,â• r̂!5
AN~r 2!BD~r 1!1AD~r 1!BN~r 2!

r 2r 1
,

~C15!

AB~r !5E dkk2 j 1~kr !jB~k!, ~C16!

BB~r !5E dkk2vp~k! j 1~kr !jB~k!, ~C17!

and

N~a,V!5^ch~D!uU~a!R~V!uch~N!& ~C18!

is the transition overlap of theN and theD intrinsic hedge-
hogs, derived in Appendix B.

Expanding the products (r 2) l(r 1) j , the function~C12!
unfolds in three terms:

Fi~a,V!5Fi
(0)~a,V!1Fi

(1)~a,V!1Fi
(2)~a,V!,

~C19!
04520
ill

n

with

Fi
(0)~a,V!5

i

2p
N~a,V!a2x~12x!e i jkRkl~V!â j âl

3E d3r j 2~qr !Y20~ r̂!a~a,r ,â• r̂!, ~C20!

Fi
(1)~a,V!52

i

2p
N~a,V!ae i jkRkl~V!E d3rr j 2~qr !Y20~ r̂!

3@~12x!â j r̂ l2xâl r̂ j #a~a,r ,â• r̂!, ~C21!

Fi
(2)~a,V!52

i

2p
N~a,V!e i jkRkl~V!E d3rr 2 j 2~qr !

3Y20~ r̂! r̂ l r̂ ja~a,r ,â• r̂!. ~C22!

Let us focus onFi
(0) . In doing the integration overr we are

not allowed to pick any particularly convenient orientatio
for the vectora, whose components are also integration va
ables. Still, it is possible to perform the integration over t
azimuthal angle ofr analytically, yielding

Fi
(0)~a,V!5

i

4
A5

p
x~12x!a2S02~a!e i jk

3Rkl~V!N~a,V!~3â3
221!â j âl , ~C23!

where the following functions were introduced:

Snl~a!5E
0

`

drr 21nj 2~qr !E
21

1

duPl~u!a~a,r ,u!,

~C24!

Pl(u) are the Legendre polynomials andu5 cosur is the
cosine of the polar angle ofr. Further analytical refinations
of theseF functions are not possible because the funct
a(a,r ,u) depends on the radial profiles of the meson fiel
which are known only numerically.

In order to compute the contribution of the functionF (0)

to MC2, we replace its spherical components in Eq.~C6!.
Making the transformationa→T 21a ~see Appendix B! the
dependence of the integrand on the azimuthal orientatio
the vectora is restricted to the termsâ j âl and â3

2â j âl , al-
lowing us to perform the integration overfa analytically.
The contribution ofF (0) to the Coulomb amplitude can the
be written as

MC2(0)
~q!52

A10p

~2p!2
NND(

t
ctE

0

`

daa2E
21

1

ds

3E dVD 2(1/21t)21/2
1/2* ~V!I t

(0)~a,s,V!,

~C25!

wheres5 cosua is the cosine of the polar angle ofa and
2-12
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I t
(0)5E

0

2p

dfaFt
(0)~T 21a,V!. ~C26!

The integration over the azimuthal angle ofa can now be
performed analytically, as the dependence on this varia
only appears in the vector component products such asâ j âl ,
etc. The cartesian components of the isovector functionI (0)

are then

I i
(0)~a,s,V!5 iA5p

4
x~12x!a2S02~a!n~a!N~a,s,V!

3H 3P4~s!Ti~V!2
1

3
@P0~s!2P2~s!#

3Xi~V!2P2~s!Wi~V!

1
1

35
@7P0~s!210P2~s!13P4~s!#

3@2Yi~V!1Xi~V!#1
3

7
@P2~s!2P4~s!#

3@2Zi~V!12Vi~V!1Wi~V!1Ui~V!#J ,

~C27!

where

N~a,s,V!5N~T 21a,V! ~C28!

~see Appendix B! and the following isovectors, functions o
the Euler angles alone, have been introduced:

Ti~V!5e i jkRkl~V!T3 j~V!T3l~V!T33
2 ~V!,

Ui~V!5e i jkRk j~V!T33
2 ~V!,
i,

04520
le

Vi~V!5e i jkRk3~V!T3 j~V!T33~V!,

Wi~V!5e i jkRkl~V!T3 j~V!T3l~V!,

Xi~V!5e i jkRk j~V!,

Yi~V!5e i3kRk3~V!,

Zi~V!5e i3kRkl~V!T3l~V!T33~V!.

In these definitions,Ti j are the matrix elements of the tran
formation T. We now note thatRklT3l5Tks

21Tsk8Rk8 lTl3
21

5T3k , becauseTsk8Rk8 lTl3
215Rs3

(z)5ds3 is the rotation ma-
trix transformed to the frame in which thez axis is along the
axis of rotation. Then, we immediately obtainTi50, Wi
50 andZi5e i3kT3kT33. Finally, we reconstruct the spher
cal components ofI (0), replace the result in Eq.~C25! and,
after the contraction with the Wigner matricesD, the inte-
gration over the Euler angles can proceed analytically, al
the lines followed in Ref.@11#. The final result is

MC2(0)
~q!5

p

6A2
x~12x!NNDE

0

`

daa4n~a!S02~a!

3@T10~a!2T12~a!2T30~a!1T32~a!#,

~C29!

with Tkl defined by

Tkl~a!5E
21

1

ds
e2z

z
I k~z!Pl~s!, ~C30!

whereI k are the modified Bessel functions of the first kin
depending on the parameterz introduced in Eq.~B14!. Using
a similar procedure we computed the two remaining con
butions to the scalar amplitude. The whole method can
applied to obtain formulas for the magnetic dipole amplitu
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