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The multipole amplitudes for thH-A(1232) electromagnetic transition are computed in the framework of
the linearo model and the chiral chromodielectric model for small and moderate photon virtualities. The
models include quark and meson degrees of freedom and the nucleon akhditbeclusters of three valence
hedgehog quarks surrounded by meson clouds described by coherent states. Angular momentum and isospin
projections are performed to endow model states representing the nucleon ahditie proper quantum
numbers. Recoil corrections involved in the procegbl— A are taken into account by performing linear
momentum projection of the initial and final baryon states. The radi@8vi1l and C2/M1 are in good
agreement with the data in the two models, but the magnetic amplitude is better reproduced in the linear
model. The ratios show little dependence with the model parameters. Both in thedimaadel and in the
chromodielectric model the charged pions are responsible for the nonvanishing quadrupole-electric and
-Coulomb amplitudes. The recoil corrections enhance the results obtained for the amplitudes without linear
momentum projection, improving the comparison with experimental data. The dependence of the theoretical
amplitudes with the choice of the reference frame is also studied.

PACS numbeps): 13.40.Gp, 12.39.Fe, 14.20.Dh

I. INTRODUCTION in the baryon model stat¢§—7], as in the type of effective
theories considered in the present work.

Electromagnetic processes have always played a central Our calculations are carried on in the framework of two
role in studies of the structure of nuclei, nucleons, and theiwell known quark-meson models of the baryon structure,
excitations. Recently, the interest in the electroproduction ohamely, the linear model (LSM) [8] and the chiral chro-
the A(1232) and other nucleon resonances has increasethodielectric model(CDM) [9], which have been used to
fueled by the large number of experiments planned and aldescribe the structure of the nucld@+-12]. In these models,
ready running in several center@viainz, Bonn, MIT, a baryon — such as the nucleon — is a soliton with three
TJINAF, etc), where very clean electromagnetic probes arebare valence quarks, all in the same orbital-spin-isospin

now available. In this paper we report on a theoretical calcustate, interacting with chirab> and = meson fields. In the
lation of the multipole amplitudes of thN-A electromag- CDM, there is an additional interaction with a scalar-
netic transitions. isoscalar chiral singlet meson field — the chromodielectric
The processy,N—A has been considered in the frame- fie|d . Except for a small explicit chiral symmetry breaking
work of several models of baryon structure. From the pointerm, both models are SU(X)SU(2) chiral invariant, a
of view of a pure quark model, the state results from a spin - symmetry which is spontaneously broken to(3)Jthe pions
flip of one quark in the nucleon. This corresponds to apeing the Goldstone bosons.
magnetic-dipole transition and vanishing quadrupole transi-  Although the two models use essentially the same ingre-
tions. The experimental observation of quadrupole transigients, they provide quite different pictures of the nucleon
tions, although small in comparison with the magnetic di-(and of the delta In the LSM the stability of the cluster of
pole, caused a discussion about the structure of the nucleqnree quarks interacting with the mesons depends on the
and theA. In models only with quarks, nonvanishing quad- quark-meson interaction strength. A soliton is formed when
rupole electric and scalar nucledn4ransition amplitudes the coupling constant for that interaction is sufficiently large,
result fromd-state admixtures to the quarks’ lowesstate, and it turns out that a strong meson cldpdrticularly a pion
otherwise those amplitudes would be identically Zere4].  cloud is required for stabilizing the system. In the LSM, the
The quadrupole transitions resulting from such charge deforehiral mesons bind the three quarks. In the CDM, in addition
mations are generally small. However, other explanationso the interaction between the quarks and the chiral mesons,
can be found, in particular the contribution of pions includedthere is an interaction between the chromodielectric field and
the quarks. As a result of this interaction the quarks acquire
a position-dependent dynamical mass which is an increasing

*Electronic address: amoreira@mercury.ubi.pt function of the distance. The quarks are thus prevented to
"Electronic address: pedro@teor.fis.uc.pt move too far away from the origin and such mechanism ef-
*Electronic address: tmanuel@teor.fis.uc.pt fectively generates quark confinement. The role of the chiral
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mesons, although conceptually important to implement chiral Il. MODELS AND MODEL REPRESENTATION

symmetry and its dynamical breaking, gets much suppressed OF BARYONS

and the resulting picture of the baryon is a soliton with three

confined valence quarks surrounded by a weak cloud of Chibe

ral mesongparticularly pion$. By considering two models

providing such extreme pictures of the nucleon, namely, with L=Ly+ Lyt L

quite different meson clouds, we are able to address interest-

ing questions, e.g., how electromagnetic transition ampliwhere

tudes are sensitive to quantities such as the “number of —

pions” presented in the baryon states. Lo=igpy*a, i, 2
In the framework of the chiral models considered in this ~ .

paper, the nucleon and tieare made out of neutrab{ y, L, =3 (d0)°+5 (dm)?~U(o,m) (©)]

and 7°) and chargedquarks and=™) particles, the latter

coupling directly to the electromagnetic profgevirtual or a

real photon. The three quarks are assumed in the same

orbital—spin—isospin state occupying the lowesstate (no qu{mlngg(gﬂ;,;%)w (%)

d-state admixturg represented bjqg). Moreover the hedge- P

hog state is assumed for the spin-isospin wave function of

the quarks. The three valence quarks are therefore describédthe quark-meson interaction term, and

by the fully symmetric statgg®) (antisymmetrization applies 1 2 14422

in color space — the state is a Slater determinant in color L= 7 (0X)" =2 Mix™, )

spacg. A quantum mechanical description for the mesons 'Shbsent in the LSM, contains the kinetic and potential terms

considered by means of coherent states representing piogy the chromodielectric field. In these expressigiis) rep-

§|gma_and chi CIO.UdS’ namelul_), %), and|y). The start- resents the quark field operata?,(x) and o(x) the chiral

Ing point t(? describe a baryon in the framewsgrk of the LSM pion and sigma meson fields, respectivihe arrow denotes

and CDM is, therefore, the FO.Ck stae) =a)° [1) [ =)[ x). isovectoj, and y(x) the chromadielectric field. The param-

Such state should then be projected onto angular momentuf},, p in the denominator of the interaction Lagrangian

and isospin eigenstates in order to get states with the nucleop is 0 in the LSM(no y field in this model and 1 in
q—o,mx

andA quantum numbergl0-12. the CDM.

The calculation reported in this work is a natural exten-  The meaning of the other terms appearing in Egs-(5)
sion of Ref. [6]. We have refined the approximations, js the following. In Eq.(3), U(o, ) is the Mexican-hat po-
namely, by taking into account the state of motion of thetential,g in Eq. (4) is the coupling constant which is dimen-
initial and final baryon states involved in the nucledriran-  sjonless in the LSM and has dimensions of energy in the
sition. To this end, a linear momentum project{d3] of the ~ CDM (with p=1). In Eq.(5) the second term on the right-
initial and final baryon states is applied, following the hand side is just the mass term for thdield, M, being its
method used in Ref14] for the calculation of the nucleon mass. Other versions of the CDM consider a potential which
electromagnetic form factors. In addition to this conceptuaincludes, in addition to the mass term, up to quartic terms in
improvement, we also present in more detail the formalisnthe y field, as well as other powers @fin the interaction
and address the issue of how the choice of the referenderm (4). By just taking the mass term in the potential fpr
frame affects the theoretical transition amplitudes. andp=1 in the interaction, quark confinement is imposed in

Other calculations of the electromagneleA transition ~ the smoothest way, which is the most appropriate choice for
amplitudes carried out in several effective models of thethe quark matter sector of the CDM0]. The Mexican-hat
nucleon have been reported in constituent quark modelBotential is given by
[1-4], with two-body exchange currenf$5], in the Skyrme N
model[16,17], in the cloudy bag mod¢b,7], in chiral quark U= —(c?+ 72— 1%)%+co+d. (6)
solitons of Nambu—Jona-Lasinio type with polarized Dirac 4
sea[18,19, etc.

The Lagrangian densities of the LSM and the CDM can
written, in a compact form, as
+L,, (€N)

q—o,mx

are the pure quark and chiral meson terms,

The SU(2)X SU(2) chiral symmetry of is explicitly bro-

This paper is organized as follows. In Sec. Il we give a by th It Th tera q
short account of the models and sketch the approximationléen y the small ternto. 1he parameters, v, andc are
related to the sigma and pion massgsandm_., and to the

used to construct model states representing the nucleon an tbn decay constartt
the delta. In Sec. lll we develop the formalism for the appli—p Y '

cation of the models to the electroproduction of thgl 232) 2 2 2
i : . : . g m:—m m
with a special emphasis on the implementation of the linear A= T 22T o fm2 )
. . . . 2 1 m 1 s a "
momentum projection. Finally, the results are presented in 2f A

Sec. IV together with their discussion. A summary of the
main conclusions of this work is presented in Sec. V. Theln Eq. (6), d is a constant which guarantees that ridir 0.
more technical aspects are given in the appendixes. The Mexican hat potential induces spontaneous chiral sym-
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metry breaking. The vacuum expectation values of the chiral In our approach, the pions, sigmas, and ¢hishe CDM)

fields are zero for the pion andf . for the sigma: are described by coherent staték) for the pions,|) for
the sigmas, andly) for the chis. The expectation values of
<0|;;|0>:O ®) the field operators in these coherent states are the mean me-

son fields. The hedgehog ansatz for the mesons reads
(0|aloy=~1, (9) Sa(n[S)y=o(r), (12)

(we use the hat symbol whenever we want to stress the op- N r
eratorial character of the fielgddt is convenient to define a (IL]7r(r)[IT) = S o), (13

new sigma field, which we still denote hy, as the fluctua-
tion around the vacuum value, i.e., we perform the replace-

! ) , (XX (D]x)=x(r) (14
mento— —f .+ 0. Hence, the vacuum expectation value of

the “new” sigma field is zero, according to E(9). (we remember that is now the fluctuating part of the origi-
Altogether, the parameters of the models defined by Egpg)| sigma field around the vacuum expectation vaie,).

(1) are the pion and- massesfixed atm,=0.139 GeV and  actually the spherical symmetry of sigmas and chis and the

m,=1.2 GeV), the pion decay constanf {=0.093 GeV,  “nedgehoglike” character of the pion with the peculiar

andg in the LSM andg and M, in the the CDM. In the  isospin-coordinate space correlation, result from the quark

simpler version of the CDM considered in this work, it turns gpin-isospin hedgehog configuratiéh0) and from the re-

out that the results are sensitive only to the combina@n guirement of minimum mean field energy solutiggs—23.

=+vgM,. The physical region of the coupling constanigis The pion coherent state is

~5 in the LSM [10,12 and G~0.2 GeV, in the CDM

[14,20. We remark that the physical range of the coupling . 3 w,(K)

constant in the CDM is much narrower than in the LSM. For |H>=Nﬁ[§]9XP{ > f d’k T&(k)aﬁ(k)] |0),

this reason, later on, in Sec. IV, when we show the depen- =1 (15)

dence of the results on the coupling constik other pa-

rameters being fixed to the quoted valuege shall only \yhereal(k) creates a free pion with momenturand (Car-
consider the LSM. The only free parameters grin the  oqjay isospin indexi, N, is a normalization factore..

LSM and G in the CDM and these are fixed in order to _ 2.~ . . . . .
reproduce well the bulk of the nucleon properties. K+, and&i(k) is the pion amplitude. Similarly, the

It is known that, in these quark-meson models, the>9Ma coherent state is given by

A-nucleon mass splitting is small. We may remedy this by o (K
adding to the Hamiltonians of the models explicit bare |E>=Na[n]exp{fd3kw la—ﬂ(k)bT(k)JW},
baryon mass terms with different masses for the bare nucleon 2

and the baré\ [6,21]. Then there is one more parameter —
the bare nucleon-bard mass difference — which can be
fitted to reproduce the physical nucleArmass splitting. The
mclusu_)n of such a term has little effe¢specially in the expression holds for the chi field and we denote the ampli-
LSM) in the wave functions of_bpth quarks and MeSOoNSy \4a of the corresponding coherent statexgi).

Such a bare nucleoA-mass splitting accounts for the re- The coherent states are particularly easy to deal with be-

S|dyal chr.ompmagnet_lc interaction and for the 't Hoo_ft INter- cause they are eigenstates of the annihilation operators, e.g.,
action which is attractive for the nucleon and absent inthe

Solutions of the LSM and CDM representing the physical o (K)
baryons can be obtained using a variational approach based a;(k) |1y = ”2 &(K)|IT). 17
on the projected hedgehog ansit1,12,21,22 For the sake
of completeness we sketch the formalism here. We consideé. i . hold. involving th ihilati t
three valence quarks with spin and isospin state in the soo/miiar expressions hold, nvolving the annihiiation operator

' . of o’s and y’s.
called hedgehog configuration The coherent state amplitudes are the Fourier transforms

of the meson functions in coordinate space introduced in
Ihhy= i(lul)— d7)) (10) Egs.(12)—(14), and exhibit the following hedgehog shape in
J2 ' momentum space:

(16)

whereb(k) is the sigma creation operatay(k) is the co-
herent state amplitude function for the field. A similar

All quarks occupy the same lowest positive enesgfate of £(K)=—i ﬁ (k) (18)
the model effective potential, given by the spinor : k '
1 u(r) 7(k)= 5(k), (19
(aw=-=|. - [lhh). (1)
Jam\io-ru(r) k(k) = k(k). (20
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Altogether the hedgehog baryon ansatz reads [J=T=3, M,g=0)= pq:OpJM|¢h>: pq:OWJM),

|4} =1an)*[Z)TT) | x). (1)

) o For g=0, the isospin-angular momentum projector operator
In the mean field approximation we demand the total energy,g the linear momentum projector operator commute, but
functionalE= (4| :H:|¢y,), where H: is the normal ordered  his is no longer the case fop=0 [24].
Hamiltonian of the models defined by Eq,), to be station- In order to include recoil effects in the calculations, in
ary with respect to variations of(r), v(r), o(r), ¢(r), and  principle one should boogtl3] the zero momentum states
x(r). Of course, the meson wave functions may equivalently25) pyt the technical difficulties associated with boosting
be determined by performing the variations with respect tqyrevent, in practice, the use of such a procedure. However, at
the coherent state amplitudegk), 7(k), and «(k). The  |east for small linear momentum we may approximate the
variations with respect to the functions ofead to a set of post operation by the Peierls-Yoccoz projection onto linear
differential equations. For appropriate choices of the COUmomentumq [11,24). Thus, the model state representing a

pling constants, soliton solutions of those equations are Obphysical baryon of angular momentum and isospiand
tained with three quarks absolutely confir@dCDM) [9,11]  jinear momentuny is

or just bound(in LSM) [8,10!.

The solitons described by the hedgehog statg) cannot
represent physical baryons because they are not eigenstates [9=T,M,a)~Pq|/sm)-
of angular momentum or isospin. In addition, Eg1) rep-
resents a localized object and therefore the translational syniRroper normalization of the projected state requires the in-
metry of the model Hamiltonians is also broken in suchclusion of kinematical normalization factors. For example a
states. In particular they contain spurious center-of-masaucleon with four-momenturg, [N(q)), is described by
components which contribute to the energy and to other ob-
servables.

States with good spin and isospin can be obtained from IN(Q))— (2m)26%(0) E Pq| Pam)

| ) by means of the Pe|erls—Yoccoz projection. The hedge- my /<qu/fJM|Pq</fam)
hog only contains states with=T and therefore, due to such (27)

space-isospace correlation, a single projection, either in spin
or in isospin, is needefl2,22. We choose to project onto , ,
isospin. A baryon with isospifT, spinJ=T and projection whereJ=3, my is the nucleon mass ari=\q*+my its
quantum numbersands (for isospin and spin, respectively €Nergy. , , ,
is given by Before presenting the formallsm to compute the ampli-
tudes for the electroproduction of the delta, one should
C1— —(_a\T+tpT briefly mention how the radial profilea(r), v(r), o(r),
T.EI=T.8)=(=1) P g, 22 &(r), and x(r) are determined. They may be determined in
the so-called “variation-before-projection(’VBP) method,
and, in that case, the stationarity of the mean field energy is
required. A better approadleven if much more demanding
numerically is the variation-after-projectioVAP) method,
where the energy functional to be minimized is the expecta-
tion value of the normal ordered Hamiltonian in the pro-

In this expressionR(Q) stands for the rotation operator in 1€Cted statéyyy). In this procedure, which we followed, one

; : ; ; ; .~~obtains different field radial profilesig(r),vg(r), ds(r),
isospin spaceD are the Wigner matrices, and the mtegratlonO B B B
is performed over all orientatior® (which represents the set “&("); xa(r) [and coherent state amplitudég(k), 7s(k),

of three Euler angles in isospin spackn the following we ~ <8(K)] for the nucleon B—N) and for the deltaB—A).
considers=—t=M and use the shorthand notatidty,, The results presented Sec. IV use the VAP method for the

:P-ll\-/l " angular momentum projection and the approximate VAP

On the other hand, a model state representing a baryon gethod for the linear momentum projection as described in
rest can be obtained by applying a Peierls-Yoccoz projectio ef.[11]. Unless otherwise stated, the coupling constants are

onto linear momentum zero to the state already projecte =5 in the LSM[8,12.23 and G=0.2 GeV in the CDM

onto isospin(and angular momentumThe Peierls-Yoccoz le?,Z(],vfc;r Wh'tCh r:ﬁclre\?vri][hptrﬁ perge\s/ ?nren\t/iverlll ge:clrlbedf. ]
linear momentum projector is given by ese values, togethe € abovementioned values 1o

meson masses and pion decay constant, will be referred to as
the standardparameters.

(26)

whereP[_, is the isospin operator

PT=2T—+1] dODT (Q)R(Q) (23)
tsT g 2 ts :

1 .
Pq:—f dae'® U (a), (24)
(2m)®
IIl. MULTIPOLE AMPLITUDES

whereU(a) is the translation operator. A nucleon at restis The N-A electromagnetic transverse helicity amplitudes
therefore represented by the model state [26] are defined by
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e magnitude of the photon three-momentum at the photon
Al = — ——(A3N k|1 €, J(0): NS A—piky) point [4]. Because of gauge invariance, the other amplitude
— longitudinal amplitude — is just the scalar amplitude
(28) multiplied by the kinematical factow/k. The values forn
o _ andu are usually chosen as=1/2,3/2,.=1 for the trans-
and the scalar helicity amplitude by verse amplitudes and=1/2 for the scalar amplitude. If the
linear momentum projection of the model states is skipped
%:i e (i.e., no recail correctionsexpression$28) and(29) reduce
V2 \2ky to those usually presented in the literat{isee, e.g., Eq.7)
of Ref. [6]] using the procedure described in Rig#5].
whereJ* is the electromagnetic current density operagqr Replacing the baryon states above by their model repre-
i=0,=1 are the photon polarization vectorg,(is chosen sentations in Eq.(27), and noting thatU™(r)J”(0)U(r)
along the direction of the photon motignand kyy is the  =J"(r), we get(for \=1/2, u=1)

W

(A3 N;Kal:3%0): NS N Ky, (29

A1,2=—NNAJ d3ad®re "9 (A% UM (x—1)a]:€-I(r):U(xa)|N3 —3), (30)
1 )
S5 | dPare (Al U0 D)0 UGN B, 31

wherex is the fraction of the photon momentum carried by = The multipoleN-A transition amplitudes are usually ex-
the delta. In this way, the parameteidentifies the reference tracted from the helicity amplitudes above making a multi-
frame used in the calculations:=0 corresponds to the delta pole expansion of the electromagnetic field. For nucleon and
rest frame which is mostly used in the literature. The factordelta model states which are eigenstates of the angular mo-
Nna contains all kinematical factors as well as the projectednentum and parity operators, only the magnetic dipole and
states normalization ternjsee Eq.(27)], and is given by the electric and scalar quadrupole terms contribute to the
transition(see Appendix A for details The linear momen-
Nys = 1 e . /ﬂ, /E 1 , tum projection in our approach affects the rotational symme-
(2m)3 V2ky ¥ M Y My R (x— 1) q]F5(X0) try of the baryon states, and the relevant multipoles are not
(32 automatically selected. Instead, one has to explicitly remove
the spurious terms in the multipole expansion of the expo-
nential in Egs.(30) and (31), which implies restricting the
11 11 momentum transfeq to low values. In that case, the rota-
Fu@)=(Nz z[PNz 2), B3 fional symmetry of tqhe model states is almost preserved even

and similarly for the delteF factor. These factors only de- if the linear momentum projection is performed. The multi-

with

pend on the magnitude|. pole amplitudes are then
M@ =~ Ny [ e (a8} U0 )l (X0 1V @INg - ), )
V107 -
M=2(q)= - — — Ny | d*ad’r(Az 3lUTT(x=1)al:[V X jo(ar) Ya(N)]-I(r):U(xa)|N3 = 3), (39
MCZ(Q):_\/]-OWNNAf d®ad®rjo(ar) Yoo (A 3 5[UTT(x—1)a]:3%(r):U(xa)|N3 3), (36)

where Y| are the vector spherical harmonigg(x) are the noticing that formulag34)—(36) differ from those used when
spherical Bessel functions and the index 1 in Mh& opera-  no recoil corrections are considereste, e.g., Eq$10)—(12)
tor denotes component 1 in the spherical basis. It is worth of Ref.[6]] by the integration ovea and by the presence of
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O T——T—T—T——T—7 —T—TTT

01l 4 F .

FIG. 1. Quadrupole electric to dipole mag-
netic ratio in the LSM and the CDM, as a func-
tion of —Q?2. The solid(dashedl lines show the
results with(without) recoil effects for the stan-
dard parameter set and in the rest frame ofAhe
Experimental data was taken from Reff27,2§
(O) and Refs[29-31] (@).

0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1

-Q* (GeV) -Q* (GeV)

the translation operations. Had we insertét{a) in Eqs. where we used the electric current conservation condition to

(34—(36) and integrated ovea, the expressions for the mul- simplify the first term. The second term gives a negligible
tipole amplitudes when no recoil effects are considéses, correction to thee2 amplitude in the low momentum regime

amongst others, Ref§6,16,18,19) would be obtained. and can be droppe@]. Other technical aspects of the calcu-
The electric quadrupole amplitude involves the operator lation of the multipole amplitudes are provided in Appen-
dixes B and C.
- 1 -
I - 1,57
OeAq)= qj d* [V Xja(anYAn]- I, (@37 IV. RESULTS AND DISCUSSION
which, using the properties of the vector spherical harmonics The ratiosE2/M1 andC2/M1 for the delta electropro-
and integration by parts, can be written as duction are related to the multipolé34)—(36) through
A 1 o d A E2 1 MF
Oedd= 5 g f dr - Lrj2(an]Yay(nI%(r) M1~ 3 M (39
9 [ riganvadran, @9 c2_ 1 M- (40)
—— | d3rj(qr)Yy(r)r-I(r), VTR -
J6 12(91) Y2y M1 22 MM

-0.05

-01
g FIG. 2. Quadrupole Coulomb to dipole mag-
-0.15 netic ratio. Conventions, parameters and refer-
ence frame as in Fig. 1. Experimental data taken
from Refs.[27,32 (O) and Refs[30,33 (®).
-021 -
025~ - o -

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 08 1
2 2
-Q’(Ge -Q (GeV?)
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300
o«
s FIG. 3. Dipole magnetic amplitud&1 (in
6200 units of 1072 GeV~*? as a function of- Q?, for
T the LSM and the CDM. Conventions, parameters,
E and reference frame as in Fig. 1. Experimental
=

data taken from Ref.34].

8

0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1

-Q* (GeV) -Q* (GeV)

These ratioSEMR and CMR, respectivelyare equal for mi_mﬁ_(f
|gl—0, a limit which is never met since, even at the photon w= )
point, a finite|q| is needed for the transition to take place.
In most calculations reported in the literature the transi-
tion amplitudes are computed in the rest frame of the
Such a choice correspondsxe- 0 in the expressions of Sec.
[ll. The nucleon four-momentumEy,—q) and the photon
four-momentum {,q) completely specify the kinematics
and the(invariany photon virtuality,Q?= —q? is the appro-
priate quantity in terms of which the electroproduction am-
plitudes should be expressed. In thereference frame,

2ms (42)

Figure 1 shows the results for the quadrupole electric to
dipole magnetic ratio, in the LSM and CDM, for standard
parameter sets in both models, in the rest frame of the delta.
Figure 2 displays the quadrupole Coulomb to dipole mag-
netic ratio as a function of Q2. The first conclusion to be
drawn is the compatibility of the model predictions with the
data, namely, the negative signs for both ratios. From the
theoretical point of view we do not find any sign of the up
and down behavior of the data points. Another interesting

mi+mﬁ+Q2 2 conclusion is the small effect of the recoil corrections in
|gl?= B T — -mi (41)  EMR and CMR. Recoil corrections enhance the nucleon
A magnetic momentgl1,24 and nucleon magnetic form fac-
tors[14]. Such enhancement is also found in the nucldon-
and magnetic transition as it is shown in Fig. 3, improving the

-0.005

-0.01

g-o.ms -
FIG. 4. EMR in the LSM for three values of

1 the coupling constant.
-0.02

0025 -

_0'03 'l I 'l I L I L I L
—Q* (GeV)
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-0.03

-0.04

-0.05

CMR

FIG. 5. CMR in the LSM for three values of

-0.06 the coupling constant.

-0.07

-0.08

-0.09

@ GeV)

comparison with experimental values, but the effect, in the It is not our purpose to find fittings of model parameters
present case, is smaller than for the nucleon. that better reproduce the experimental resgittsedel param-

A similar enhancement turns out to show up in the quadeters were fixed in the nucleon sector of the mode\ev-
rupole electric and Coulomb multipoles, and altogether ncertheless it is interesting to analyze the dependence of the
sensible modification appears in EMR and CMR. In theresults with model parameters, namely, the coupling con-
CDM the modification ofMM* due to a better treatment of stants. As stated before, the physical window @iin the
the kinematics of the nucleon and theis not enough to CDM is relatively narrow and the resulting radial wave func-
achieve a better comparison with the data. The comparisotions are very much similar throughout that physical range.
with the data of this observable favors the model with largeThe LSM, on the other hand, provides a larger range and a
number of pions in the cloud. The big slope of the theoreticalarge variety of radial wave functions. The results are sum-
CMR in the CDM is due to the small value predicted for marized in Figs. 4—6 for three values of the coupling con-
MM in this model. stant in the LSMig=4.5 (weak coupling, weak pion cloid

The values of the ratios at the photon poitt photopro-  g=5.0 (intermediate coupling, standard paramgtand g
duction are —2.56% (LSM) and —2.54% (CDM) for the = =5.5(strong coupling, strong pion cloudThe graphs cor-
CMR and —2.11% (LSM), —1.85% (CDM) for the EMR.  respond to the calculation with recoil corrections. As Fig. 4
These values are compatibfalthough slightly smaller, in reveals, the EMR remains impressively unchanged with
the case of the EMRwith the experimental value-2.5 —Q2. The CMR (Fig. 5 is affected specially for large

+0.5% estimated for EMR by the Particle Data Grd8p]. —Q?2. The effect onM1 is shown in Fig. 6. The multipole
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FIG. 7. M1 (left) and CMR(right) in the LSM, computed in different inertial frames using the standard parameter set in the LSM. The
parametex denotes the fraction of the photon momentum carried byAthe

C2 results from pion contribution alone, wherellsl re-  this study but no dramatic change was actually found with

ceives contributions from both pions and quarks. The stronrespect to the calculation with just angular momentum pro-

ger pion cloud enhances mof&2 thanM1 resulting in a  jection from the hedgehog. This is different from the modi-

larger (in absolute valueCMR for higher coupling constant. fications occurring in nucleon form factors where larger ef-

The same trends were also found in the COt with even  fects were found when the center of mass motion spurious

smaller variations withG). components are removed from the baryon wave functions.
Finally we address the problem of the reference frame. IriStrong fluctuations of©2/M1, as seen in the experimental

principle, the theoretical amplitudes should not be dependerttata, are not observed in the present approach.

on the particular choice of the reference frame. However,
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A: x=0, x=0.5, andx=0.7 (EMR follows the trend of

CMR). The curvex=0.5 would correspond to the Breit APPENDIX A: DEFINITION OF THE MAGNETIC AND

frame if nucleon and\ were degenerate. The major differ- ELECTRIC MULTIPOLE AMPLITUDES

enceg(indicating lack of covariangecome up at large values , ) ,

of —Q? as one would anticipate. Indeed, unlike the correc The operator mv_olved in the calculation of the transverse

description of baryon motion through Lorentz boosts of zeréquICIty amplitudes is

momentum eigenstates as mentioned in Sec. Il, our approxi- A )

mate treatment inot relativistic and, therefore, more reliable O(r)=e '%"e - J(r). (A1)

for small and intermediate linear momenta. The region

Spanned by the curves in F|g 7 gives an idea of the “theo.ChOOSing- the axis in the direction Oq, the expanSion of the

retical uncertainty” of the model predictions. exponential reads

V. CONCLUSIONS e 1= \am 2, (D21 1ji@anYion),  (A2)

In this paper we addressed the question of Ahelectro-
production amplitudes in the framework of two chiral effec- . : . -
tive models of the nucleon with meson and quark degrees O\@/hereh(x_) are the sphencal Bessel functlonsAangL(r) are
freedom. Although the predictions for the ratie@/M1 and ~ the spherical harmonics. Now, the prodiy,(r)e, can be
C2/M1 are compatible with data in both models, the ampli-CaSt in terms of the vector spherical harmonics as
tudes are better reproduced in the LSM thus favoring a pic-
ture of the nucleon and the delta with a stronger pion cloud. Y, (e :2 (I,u'1v|jm>Ym(f) (A3)
Recoil corrections of the baryons were taken into account in A ’ R
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where(l u;1" u'|jm) are Clebsch-Gordan coefficients. Equa-of the vector product of two vectors. The scalar amplitude

tion (A1) then reads can be derived in a similar fashion.
O =VamS, (—)'V2I+ 1j,(qr)(10; 110 1) Y4 (F) - 3(r). APPENDIX B: TRANSITION OVERLAP
! (A4) The transition overlap of tw@not necessarily the same

hedgehog baryons, defined as

Since only the terms with=1, j=1=1 contribute, we may ,
write N(a,Q)=(n|U(R(Q)]¢n), (BY)

. . is a recurring function in calculations involving isospin and
O(n=+2m> 2L+ 1(—i)L[ =N YL (n-(r) linear momentum projected stafdsl,24). It is the following
L product of quark and meson overlaps:

L+1 A _ N3
+il A ,—2L+1ijl(qr)Ythl(r)"](r) N(a,Q)=Ng(a Q)N (a,Q)N,(a,Q)N,(a,Q).
An explicit form for this function can be derived following
o L i l(qn)Y (1)-3(r) the calculation of the norm overlaps in R¢L1]. The iso-
2L+1°t*1 LL+i scalar meson overlaps do not depend(dmr on the orien-

tation of a, and taking advantage of the properties of the
:\/ﬁg \/m(_i)L[ —JL(qf)YﬁL(F) coherent stategor the sigma field for instangeone obtains

Ny(aQ)=n,(a)

1 -
+=V[iugnYL.(n ].J r (A5) oc
K LicanYg (nlg-3(r) ZEXp[gg(a)—Wf kK, (K)
0
(see Ref.[36] for more details The two terms inside the
curly braces in this expression are, respectively, the electro- ST 7" 2(K)+ 72(k B2
magnetic field [,1)-magnetic andL(,1)-electric multipoles RO A B2)

A= (qnYM (), (A6)  where we introduced the functions

AL

(r)=—IEV><[jL(qr)Yﬁ"L(F)]. (A7) g,"(a)=21-rJ’0 dkkw,(k)ji(ka) ' (k) (k).  (B3)

As is shown, for instance, in ReB6], the scalar products of A similar function should also be defined for the chromodi-

the Lth order field multipoles with any vectdsuch as the electric field. The quark overlap is also readily computed,
current density operatpform the irreducible components of Pecause the spatial part of the quark wavefunctions is invari-
rankL operators, with parity € 1)-*1 and (—1)" for the  a@ntunder isospin rotations and the spin-isospin part is invari-
magnetic and electric multipoles, respectively. In a transitiorRNt under space translations. It is given by

between states with angular momentuip=1/2 and J;

=3/2 and positive parity, only L(=1)-magnetic and I Na(a,02) =nq(a)Ny(€2), (B4)
=2)-electric multipoles may contribute, so that the operator 2 fu
O may be replaced by ng(a)= ;f dkiCjo(ka)[u’ (K u(k)+o’(k)o(k)],
0
O' (1 =i[ V6mALD(r) = VI0mALD(N]-J(r).  (A8) (B5)
i i : +

TheM1 and E2_ amplitudes are, respectlvely,_ the maitrix el- Ny(Q) = cosg cosaz Y. (B6)
ements of the first and second terms on the right hand side of

this equation. To make the correspondence with(B4). we _ _
note that In these equationgy andv are Fourier transforms of the
quark profiles, given by

3i
i Mry. = . r »
iV6mAl " (r)-(r) ﬁn(qr)% (Lpi1w]1DT,3,(1) ﬁ(k)=J0drr2j0(kr)u(r), ®7
3 ~
== 1@<y, (A9) - -
u(k)=f0 drrej(krov(r). (B8)

where use was made of the definition of the vector spherical
harmonics and of the expression of the spherical componenior the pion field overlap, we get
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3 5 ) wherec is a quark index and the cross product in the second
N.(a,Q)= exp[ - WJO dkiCw (K)[£%(k)+ & (k)]} term is in isospin space. The current density is the sum of an
isoscalar operator

1
XeXp{g[gg(a)ﬂLgg(a)]TrR(Q)] 13
$(N=7g 2 oM7), (C2)
xexplg7(a)aR;(Q)a}, (B9)
. _ which, because of isospin conservation, cannot contribute to
with g/ defined as for ther [see Eq(B3)]: N-A matrix elements, and the zeroth component of an is-
ovector operator
r(a) =27 | " dk o, (0] (a1E (WEK). (B10) L
VED=5 2 do(D 77D +[7(1) X dm(D)];.
In the reference frame with theaxis along the axis of the (3
rotation R, the quantitya;R;;(Q)a; does not depend on the
azimuthal angle of vectoa and that could be exploited in The components of isovector operators commute in a well
order to simplify some integratiorfd1]. However, the ori- defined manner with the isospin-space rotations involved in
entation of thez axis has already been fixed along the direc-the isospin projectorgssee Ref[38], for instancé and one
tion of the photon momentum. Therefore, in all integrationscan show that, regarding the expression of@2amplitude,
over a the transformatiora— 7 'a is made, wherd is the
rotation that aligns the axis with the axis of the rotation

372t 1/2 _ 0 1/2
R(Q), and again advantage can be taken from the above- © 1212V 0NPL 1= - CVu(NP =l 12),- 1720
mentioned independence of the azimuthal angle. One gets (C4)
NAT'aQ)=n(aN,(asQ),  (B1) W
= i i 2/1 1 31
wheres= cosé, is the cosine of the polar angle af and c= \[5<§,t+§'1 _t‘i §>' (c5)
n.(a)= exp[ g5(a)— wf dkkPw (K[ £"2(k)+ £2(K)] We can then write th€2 amplitude as
0
(B12) 107
Me@) =~ )ZNNAE ¢ | | a0
_ 52'3 Sza+ "
N.(a,s,Q)= exp 2z(a,s)| co 5 Cos———1 XD];/%1/2+t)71/2(Q)Ft(an)v (C6)
(B13)
with
z(a,s)=5[g5(a)+Py(s)gz(a)], (B14)

FiaQ)= | d%ja(qr)Yalr
P,(s) being the Legendre polynomial of second degree. (ad) f 12(ar) Yz 1)

X (yp(D)|UTT (x— 1)@l Vi) RE)U(xa)| ¢n(N)).
APPENDIX C: CALCULATION OF MATRIX ELEMENTS
WITH PROJECTED STATES (C7)

Here we present some details regarding the calculation dh this expression,|¢,(N)) and |#n(A)) represent the
matrix elements of operators between isospin and linear maiucleon and the delta hedgehogs.

mentum projected states, using t82 amplitude—see Eq. The quark component of the isovector part of the charge
(36)—as an example. The other amplitudes can be obtainedensity in Eq.(C3) cannot contribute here since ta2 is a
in a similar way(details in Ref[37]). matrix element of arl.=2 operator betwees-wave quark

The electromagnetic current density for the two effectivestates. We are then left only with the pion contribution to the
theories considered in this paper, derived using Noether'gharge density, and we expand the pion fieltt) and its
theorem, reads canonical conjugaté’w(r) in plane waves

3

J”(Y)IZ E(c)(r)')’p' =~ _TE)C)>'//(C)U) gik-r t —ik-r
& mi(r)= 2’7T)3/2 h[a(k krral(kye 'k,
+[7(r) X *a(r)]o, (Cy (C8
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P _ | fd3k @(k) Kek—af(kye ikr it
wi(r)—(zﬂ_)glz \/ 5 [aj(k)e aj (ke 1.

i “ -
(Cg) FI(O)(a,Q) = EN(&,Q)aZX(l_X) Giijk|(Q)aja|

The translations and/or isorotations of coherent states still . A

yield coherent stateéhe transformed states are still eigen- xf d*rj,(qr)Y(Da(a,r,ar), (C20
states of the annihilation operatpmsith shifted and/or iso-
rotated amplitudes. Indeed, for the pion field one has

(1) :_i_ - 3rri r
2 (K U(XQR(Q) () Fiv'(a,Q) ZWN(an)afukRkl(Q)fd rrj(qr)Yoe(r)

) —X)air | —Xar; a-r 2
=\ ernear, () €M1 U IR [N, Aamoanxanle@nan, (2
€10 FP@0)=- 5 N@0)eRy(®) [ drriyan
rix— )
(MU= Dala(k) XYoo DT je(a,r,ah). (C22

oK) o
=V el 0D a1 (g (A)[UT(x=1)a].  Let us focus orF(?). In doing the integration over we are
not allowed to pick any particularly convenient orientation
(C1D  for the vectora, whose components are also integration vari-

. ._ables. Still, it is possible to perform the integration over the
Taking now advantage of the hedgehog shape of the PIoDimuthal anglepof analytica?lly yielding 9
coherent state amplitude, E(L8), we can write the Carte- '

sian components of the functiof(a,(2) in Eq. (C7) as

F(a,0)= iz\/gx(l—x)azsoz(a) €ijk

i -
- = — — 3 i . ~ A A
Fl(avﬂ) ZWN(a,Q)f d rJZ(qr)YZO(r)EIJkRH(Q) XRk|(Q)N(a,Q)(3a§_1)aja|, (C23)
X(ro)(ry)je(a,r,ar), (C12  where the following functions were introduced:
where o 1
Sm(a)=f drr'“”jz(qr)f duP(ua(a,r,u),
0 -1
ro.=r+(1—x)a, (C13 (C24)
r_=r—xa, (c14  Pi(u) are the Legendre polynomials and= cosé, is the
cosine of the polar angle af Further analytical refinations
o AG(rO)BA(rL) +AL(r)By(rL) of theseF functions are not possible because the function
a(a,r,a-r)= , a(a,r,u) depends on the radial profiles of the meson fields,

r_r, : .
(C15 which are known only numerically.

In order to compute the contribution of the functisf®

to M2, we replace its spherical components in EG6).

AB(r)=f dkk2j,(kr)&g(k), (C16  Making the transformatiom— 7 'a (see Appendix B the
dependence of the integrand on the azimuthal orientation of

the vectora is restricted to the terma;a, andaja;a,, al-
BB(f)ZJ dkiCaw (k) jq(kr)ég(k), (C17  lowing us to perform the integration ovef, analytically.
The contribution ofF(®) to the Coulomb amplitude can then
and be written as
N(a,Q)=(¢n(A)|U(QR(Q)|¢n(N)) (C19 V10w

] 1
MC2V(q)= - 5 Npa 2 C daaZJ ds
is the transition overlap of thi and theA intrinsic hedge- (2m) ‘ 0 -1
hogs, derived in Appendix B.
Expanding the productsr (),(r);, the function(C12) Xf dODYZ ., 1)1 (a,s,0),

unfolds in three terms:
(C29

Fi(aQ)=F%a0)+FM(a0)+F?(a,0),
(C19 wheres= cos#, is the cosine of the polar angle afand
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27
1= J dgp.FO(T a,0). (C26)
0

The integration over the azimuthal angle afcan now be

performed analytically, as the dependence on this variable

only appears in the vector component products suc?t] as
etc. The cartesian components of the isovector fundtidh
are then

5
11%(a,s,0) =i\ 7 x(1-x)a’Spa)n(a)N(a,s,2)

1
X:3P4(S)Ti(9)_ 3[Po(s)=Pa(s)]
XXi(€2) = Pa(s)Wi(Q)

+i[7PO(s)—10P2(s)—|—3P4(s)]
35
3
X[2Yi(Q)+X(D) ]+ Z[Pa(S) ~Pu(s)]

X[2Z;(Q)+2Vi(Q)+W;(Q2)+U;(D) ]y,
(C27
where
N(a,s,Q)=N(7 1a0Q) (C28

(see Appendix Band the following isovectors, functions of
the Euler angles alone, have been introduced:

Ti(Q) = €k Ra(Q) T3 (Q) T3 () T34 Q),

Ui(Q) = xRy (Q) T54Q),

PHYSICAL REVIEW C 62 045202

Vi(Q) = €k Ria(2) T55(Q) Ta3(Q),
Wi(Q) = € Ri () T3 (Q) T3 (L),
Xi(Q)= €k Ryj(L2),
Yi(Q) = €i3Rys(€2),

Zi(Q) = €3kR(Q2) T3 (2) Ta(Q).

In these definitionsT;; are the matrix elements of the trans-
formation 7. We now note thatRyTg =T, Tee R Ti3!
=Ty, becausel g Ry Tj3*=R% = 8 is the rotation ma-
trix transformed to the frame in which theaxis is along the
axis of rotation. Then, we immediately obtaih=0, W,;

=0 andZ;= €3, T3 T33. Finally, we reconstruct the spheri-
cal components of(®), replace the result in EqC25 and,
after the contraction with the Wigner matricéy the inte-
gration over the Euler angles can proceed analytically, along
the lines followed in Ref[11]. The final result is

o

M2 ) = 6\/EX(1_X)NNAJ:daa4n(a)SOZ(a)

X[Tio(a) = Ti(@) = Tao(a) + Ta(@) ],
(C29
with T,, defined by

1 e ?
To@- [ o n@Ps. (€30

wherel, are the modified Bessel functions of the first kind,
depending on the parameteintroduced in Eq(B14). Using

a similar procedure we computed the two remaining contri-
butions to the scalar amplitude. The whole method can be
applied to obtain formulas for the magnetic dipole amplitude
[37].
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