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Density fluctuations and multifragmentation of nuclear matter
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The density fluctuations of nuclear matter are studied within a mean-field model in which fluctuations are
generated by an external stochastic field. The constraints imposed on the random force by the fluctuation-
dissipation theorem are analyzed. It is shown that in the proximity of the borders of the spinodal region the
assumption of a white-noise stochastic field can be reliably used. The domain distribution of the liquid phase
in the spinodal decomposition of nuclear matter is derived. The related distribution of fragment sizes compares
favorably with the experimental fragment distribution observed in heavy ion collisions.

PACS numbgs): 21.65+f, 24.60.Ky, 25.70.Pq, 21.60.Jz

[. INTRODUCTION For simplicity we consider an infinite homogeneous system.
First, without introducing any particular assumption, we
Semiclassical kinetic equations for the one-body phaseprove that a white-noise stochastic field cannot satisfy the
space density provide a powerful tool for studying the dy-self-consistency condition in general. Then, with reference to
namics of complex processes occurring in heavy ion colli4nfinite nuclear matter and within a collisionless mean-field
sions [1-3]. However, these equations in their original approximation, we specify the particular conditions under
version give a deterministic description for the evolution ofwhich the white-noise assumption for the stochastic field can
the one-body phase-space density and their solution reprée retained. These conditions are fulfilled for values of den-
sents the mean value of this density at each time. Thus, thesity and temperature lying in the proximity of the boundary
are not able to account for phenomena such as the nucleaf the spinodal region in the phase diagram, both inside and
multifragmentation observed in heavy ion collisions. In thisoutside this region. Thus we consider nuclear matter in this
process fluctuations about the mean phase-space density qufgysical situation and are able to solve the stochastic equa-
believed to play an essential roléor a review of nuclear tion for the density fluctuations in a closed form.
multifragmentaion see, e.g., Ré¢#l]). In the last decade, to With respect to the previous works on this subjgst 7],
remedy this drawback, an extension of the transport theorpiere we consider a different source of fluctuations: Landau
has been proposd8-—7]. This approach, which incorporates damping. This source is present even when collisions have a
a fluctuating stochastic term into the kinetic equation, is usunegligible role in the evolution of the system.
ally known as the Boltzmann-Langevin equation, and was In Sec. Il we propose a procedure to determine the struc-
originally applied to the treatment of hydrodynamic fluctua-ture of domains formed within the system during a spinodal
tions in the theory of classical fluid§]. In Refs.[5—7] col-  decomposition. If the fragmentation phenomenon observed
lisions between nucleons in the nuclear medium are regarddad heavy ion collisions can be ascribed to a spinodal decom-
as random processes and the diffusion coefficient of th@osition of the bulk of nucl€il1], we are allowed to identify
Langevin (fluctuating term is ultimately related to the am- the pattern according to which nuclear matter is decompos-
plitude of the nucleon-nucleon scattering. The last step is &g, with the fragmentation pattern, and can compare the
particular case of the fluctuation-dissipation theorem. Moragesults of our nuclear matter calculations with the fragment
recently, a new method to take into account fluctuations hadistribution observed in heavy ion collisions. This compari-
also been proposd®]. In the approach of Ref9] the sta- son is made in Sec. lll. Finally in Sec. IV a brief summary
tistical fluctuations of the one-body phase-space density ar@nd conclusions are given.
directly introduced by assuming local thermodynamic equi- Many papers, both theoretical and experimental, have
librium. The white-noise nature of the stochastic term is thebeen devoted to the multifragmentation problem. Here we
basic assumption, generally shared by all works on this submention only a few theoretical ones representing different
ject. The authors of Ref.10], instead, have introduced an approaches. In the statistical models of REf2,13, a com-
extension of the Boltzmann-Langevin theory by including aplete statistical equilibrium of all degrees of freedom is as-
colored-noise term in the stochastic force; the occurrence cdumed in a freeze-out volume and the various exit channels
such a term has been ascribed to the finite nucleon-nucleare sorted according to their statistical weight in the micro-
collision time. Actual applications to nuclear problems of canonical ensemble. In Rdfl14] instead nuclear multifrag-
this interesting approach still have to be made. mentation has been described in terms of “reducibility” and
In the present paper, we study the density fluctuations antthermal scaling.” This means that fragments are emitted
their time evolution by introducing a self-consistent stochaspractically independently of each other and the one-fragment
tic field acting on the constituents of the system. The selfprobability is given by a Boltzmann factor. In the dynamical
consistency condition is provided by the fluctuation- models of Refs[5-7] clusters are constructed from the one-
dissipation theorem. The evolution of the fluctuations isbody phase-space density governed by the Boltzmann-
treated within a linear approximation for the stochastic field.Langevin equatiofl5-17. In order to take into account the
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guantal nature of the system and the requirement of antisynihe correlations of density fluctuations at equilibrium. Be-
metrization, the quantum molecular dynamics mof8] cause of the independence of the components of the multi-
and the more sophisticated fermioriantisymmetrizedmo-  variate Wiener proces#/,(t), only the terms withk’ = —k
lecular dynamics mod¢L9,20] have been developed. In ad- survive. Within a linear approximation, these correlations
dition, percolation21] and lattice-gas model®22,23 have can be expressed by means of the same quantities that appear
also been introduced. These models are particularly suitabie Eq. (2.1). This does, in a sense, correspond to the On-
to deal with the critical phenomena which can be expected tgsanger hypothesis about the decay of deviations from equi-
occur in multifragmantation. To conclude this nonexhaustivdibrium [25]. The equation for the equilibrium fluctuations is
survey, we mention the calculations of RE24], which are  obtained from Eq(2.1) by moving the initial time to— o,
based on classical nucleation theory. without including any particular condition at finite times.
Even if it should eventually turn out that multifragmenta- Then the correlations are given by the equatittre angular
tion must be ascribed to very complicated processes, wbrackets denote ensemble averaging
think that in any case our present approach could give some

insight into the underlying mechanism. min(t,t")

(Sok(t)do _((t"))= f dt; Dy(t—1t)Dy(t"—ty)

Il. FORMALISM
o _ XB(t)Bi(ty). (2.2
A. White-noise assumption
The time-translation invariance of the left-hand side of
g. (2.2 requires that the coefficienB,(t) must be con-
nt. Taking the Fourier transform, H&.2) gives

The mean-field approximation allows us to obtain a self-
consistent equation for the time evolution of the one—bod)}E
density. We assume that the time scale of the terms neglecté&a
in the mean-field approximation is shorter than the charac- I\ /
teristic times of thepFr)nean-ﬁeId dynamics. In order to take (der(@)de-(0"))=2m 8w+ ') {(5ekde-)(@))
into account thermodynamic fluctuations, quantum effects, =278(w+w") Di(w)Dy(w’) |By|?
and short-range correlations, we add to the mean field a sto-
chastic term similar to the random force in the Langevin 2.3
equation. We assume that this additional field is a Gaussian By exploiting the fluctuation-dissipation theorem
white noise with vanishing mean. In this case the time evo-
lution of the density is a Markovian process. We will deter- 2
mine the conditions in which the white-noise assumption can (8080 _1)(w))=—————ImD(w), (2.9
be considered reasonable. Bo

The additional stochastic mean field will induce density _ ) _
fluctuations with respect to the mean density. To be mor&vhere=1/T is the inverse temperatufeve use units such
specific, we assume that at the time 0 in the system is thatZ=c=kg=1), we obtain for the coefficient8 the
present a density fluctuatiode(r,t=0), with So(r,t)  €quation
=po(r,t)— 0o (09 is the density of the reference homoge-
neous state, i.e., the state towards which the system relaxes 2 ImDy(w)

2_
Within a linear approximation for the stochastic mean field [Bi*= 1-e P |Dy(w)|? @9
the Fourier coefficients obo(r,t) for t>0 are given by
(see, for example, Ref25], Sec. 15 We have used the relatidhy(— o) =D} (w). Equation(2.5)
S04(t=0) [t can be satisfied only if the right-hand side does not depend
S0 (t)= 5Qk(tzo)_9k— D, (t—t") dt’ on w. This can occur only m_partlcular situations; thus the
Di(w=0) Jo original white-noise assumption about the stochastic mean

. field is not correct in general. This result is quite general, so
+f D (t—t")B(t" ) dWi(t'), (2. we _cgn_conclude that for a perturbed system approac_hmg an
0 equilibrium state, fluctuations about the average trajectory
cannot usually be accounted for by a white-noise stochastic
whereD,(t—t") is the response function of the nuclear me-fgrce.
dium andD(w) its time Fourier transform. For symmetry  Now, with reference to symmetric nuclear matter, we dis-
reasondD,(t—t") and its Fourier transform depend only on cuss particular physical situations in which E@.5 can
the magnitude of the wave vector. In the second integrahave a solution. Only in such conditions is the assumption of
Bi(t")dW(t") gives the contribution of the stochastic field a white-noise stochastic field valid. The relevant quantity is
in the intervaldt’. The real and imaginary parts of the Fou- the linear-response functio®,(w). We evaluateD ()
rier coefficientsW,(t') are indipendent components of a within a self-consistent mean-field approximation. In order
multivariate Wiener proceg26]. The fact that the stochastic to derive compact analytical expressions, here we use the
field is real require®; (t)=B_,(t) and W (t)=W_,(t). linearized Vlasov equation for calculating the response func-
The stochastic part of the mean field is completely detertion. This equation can be regarded as a semiclassical ap-
mined once the coefficientB,(t) are known. In order to proximation to the random phase approximation, valid in the
gain information about these coefficients we concentrate otong-wavelength limit. We also use a Skyrme-like form of
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the nucleon-nucleon effective interaction. Our self-consistentelocity) can be considered negligible. Moreover, the rel-
mean-field potential is given by evant values of the wave vectiturn out to be such that the
quantity kv g is of the same order of magnitude &sThus
the limit w/T<1 also impliesw/kv<1.

The noninteracting particle-hole propagaf{®(w) ac-

_ _ _ quires a very simple form in the long-wavelengi¥asov)
whereg.q is the saturation density of nuclear matter. For thejimit. The imaginary part is

parameters in Eq2.6) we take the values

U= a£+b

€q

a+1
i) —d V?p, (2.6)

Qeq

1 w an w
(0) - 2 P _
ImD”(w) m K f dspaspa(l )

1
a=—356.8 MeV, b=303.9 MeV, a=—, am kv
6 (2.10)
d=130 MeV fnr. where
The values ofa, b, and « reproduce the binding energy 4
(15.75MeV) of nuclear matter at saturation. M= e
=0.16 fm3) and give an incompressibility modulus of ener +1
201 MeV. For the values af we follow the prescriptions of ) o
Ref. [27]. is the mean occupation number of nucleons with kinetic en-
The response function is given by ergy e,= p2/2m andv = p/m. The effective chemical poten-
tial w is measured with respect to the uniform mean fléjd
DO (w) For w/kve<1 the imaginary part ob{*)() is given by
Di(@)= —— 55— 2.7
1-AD (o) 1 3
) B ,® 1 o
0 _ _ ) ) ImD,’(w)=——m"- ————+0O| | —| |,
WhereDf( )(w) is the noninteracting particle-hole propagator, m ke Bryy ke
and (2.12
1 b 1 ) while the real part OD(kO)(w) in the long-wavelength limit
»Ak:ag_eq + WegqﬂQoer k (2.8 takes the form
are_the Fourier coefficients of the effective interaction. Here ReD(kO)(w)= _ if dp pZ%
Qo is the density of the reference homogeneous state. 272 dey
By substituting the expressiof2.7) for Dy (w) into Eq.
(2.5), we obtain w| —14 E ﬂln 1+ wlkv (2.13
2kv |1-w/kv|) ’

2 ImDP(w)
1 e Bw |D(k0)(w)|2 : (2.9 ForT. sufficiently onv with respect tou, the most important
contribution to the integral in Eq2.13) comes from a small
This equation shows that the coefficiefig do not explic- domain ofe, aroundu. So we can take/kv <1 in evalu-
itely depend on the nucleon-nucleon effective interactionating the integral, and obtain
However, we remark thdd(*)(w) is the propagator of inde-

|By|?=—

pendent particles that are moving in the mean field of the ©), ~__ 90 o |?
reference homogeneous state, ReD ()=~ E +0 kg | (2.14
Q0 0o\t b DO W) ai iht-
Up=a—+b|— , (2.10 With Di’(w) given by Eqs(2.12 and(2.14), the right
eq CQeq hand side of Eq(2.9) is independent ofw to the lowest

. . . ignificant order inw/T. Thus, forw/T<1 the magnitude of
and thus the interaction between constituents does enter, q—% coefficientss, is given by rs 9
k

though not explicitly, into the expression Bf, .
We shall now show that in the classical linit T<1, the 5
right-hand side of Eq(2.9) does not depend oa; thus the By |2==m?
assumption of a white-noise stochastic field can be consid- ™

ered valid in that limit.

In the actual physical situations considered in this papefhe phases oB,, instead, remain unknown. However, we
the values of the temperature are small enough with respedtill see that only the quantitieB,|? are needed to deter-
to the Fermi temperature so that the Pauli principle is stillmine the probability distribution of density fluctuations. Fi-
operating. Therefore the strength of the particle-hole excitanally, we remark thatB,| for a givenk is determined solely
tions having energies much higher tharn: (vg is the Fermi by the density and temperature of nuclear matter.

.

Z
e Artl

d0g

1
K (2.15
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12 1 of the spinodal region, we negle@%f/&QélT with respect to

I A in evaluatingD (t). Furthermore, in actual calculations
the typical values ok which come into play are such that the
termd k? is smaller thar).Ao|; thus we also neglect this term
with respect to.Aq|. This approximation is consistent with
the long-wavelength limit adopted in the calculation of
Dk(w).

Substituting into Eqg.(2.1) the response functio®,(t
—1t') calculated with these approximations, the equation for
the fluctuationsdp (t) becomes

ImD(w) (fm?)

~ t ’
Soi(t)=do(t=0)e" '+ B, f e dw(t),
0

(2.18
where
FIG. 1. Imaginary part of the response functibp(w) of Eq.
(2.7) for hot nuclear matter{=5 MeV) at different densities ap- . 1 27T -
proaching the critical valueg,=0.617¢., (dotted line, g, |Bk|:w ?(14'9 Pr) K, (2.19

=0.700¢q; dashed linep,=0.650.4; solid line, 0,=0.63Q¢).
The value ofk is 0.1k . o ) )
andT'y is given by Eq.(2.16, neglecting the ternd k? in

The white-noise assumption is justified if the excitation-Ax. We recall thal is negative, so thdt'y| represents the

strength is concentrated in a narrow range of energy close @amping rate of fluctuations, which vanishes for long wave-

zero. This condition requires that B (w) be a sharply lengths whenyf/gef|—0.

peaked function in the proximity ab=0 and be negligible Equation(2.18 represents an Ornstein-Uhlenbeck process

elsewhere. The imaginary part D (w) displays this feature [26] with |T",| as drift coefficient and, as diffusion coeffi-

for values of temperature and density near the borders of theient. The corresponding Fokker-Planck equation for the

spinodal region, since the pole Df(w) lying on the imagi-  probability distributionP[ 5o, (t)] reads

nary axis moves towards=0 as the system approaches the

mechanical instability. This is shown in Fig. 1, where we d d

report ImD,(w) calculated with Eq(2.7) using the complete EP[(Sgk(t)]: |Fk|m se(t)PLée(1)]

expression OD(kO)(w). With our effective interaction, fol’

=5 MeV the spinodal region starts gi.=0.617%0.,. The 1. 52
in Fi s crit + 5By’ PLoeK(1)].
values ofg used in Fig. 1 are close to this critical value. 2 1Pk 9804(1) k
k
B. Distribution of fluctuations (2.20

We now derive from Eq(2.1) the probability distribution For simplicity we assume the state of the systerh=ad
for 60,(t) in the limit w/T<1, and for values of tempera- i, pe homogeneous on averagée(t=0))=0 for k#0).
ture and density in the proximity of the spinodal region. TheEquation (2.18 says that this property holds during time
response functio(w) has a pole in the lower part of the eyoution. In this case the solution of E@.20) is a Gauss-
imaginaryw axis, at a position given by ian distribution with zero mean value. Whenever it is neces-
sary, a nonvanishing mean value can easily be introduced.

2
(a_f +dK2 The explicit expression of the distributid®{ 5o (t)] is
2
~d J0¢
Tymi (e M2l Tk (2.1 1 1
m Z ‘ PLSeW(]=Naexp| =5 20KV 7 deut |
We have used the relation (2.2
op | o1 with the variancer2(t) given by
S| = — A, (2.17
9ol dggl;

. . oR(t)=of(t=0) e+
wheref is the free-energy density and,= Ay . f7+dk?
In Eqg. (2.16 the relevant quantity is the isothermal stiff-
nessazf/dggh, which vanishes on the boundary of the spin- Here the constaril; is a normalization factor and we have
odal region. Since we limit our calculations to the proximity introduced the abbreviation

(1—e?'). (2.22
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(92f f/l
Ll (2.25

f”_ d ’

905

Fort—oo, Eq.(2.21) reproduces the usual Gaussian approxi-While it tends to the aymptotic valug,(t=c) of Eq.(2.23
mation with variance for k>k.. In particular the growth rat&', presents a maxi-
mum fork=ky =k./\/3. This means that the pattern of the
regions which contain coherently correlated fluctuations is
O'E(t=00)= P (2.23 asymptotically characterized by the wavelengthy,
f'+dk =2mwlky . These features for the growth rate of unstable

o _ i modes are analogous to those obtained in Ref] within a
for the equilibrium thermodynamical fluctuation8]. We  ifferent scheme.

furthermore remark that E@2.22 for the time evolution of
the variance is similar to that obtained with different ap-

proaches in previous works on this subjE¢R9]. C. Size of fragments
For later purposes we report also the distribution of the  starting from the probability distribution for density fluc-
fluctuations in ordinary space: tuations given by Eq(2.24), we can determine the corre-
1 sponding distribution for the size of the correlation domains.
. ot , It has already been recalled that the stable and unstable cases
PLoe(r.n]= NZeXF{ Zf drdr’de(r,t) can be treated within the same scheme. Thus we shall invesi-

gate two different situations which could be explored by
XM(r,r’,t)&g(r’t)), (2.24 nuclear matter dl_JI’ir_]g a nucleus-nucleus_ collision: in one
case the system is in the metastable region and relaxes to-
wards a local minimum of the free energy, while in the other
where case the system is merged in the spinodal zone and develops
density fluctuations which grow with time and will eventu-
1 N | ally lead to decomposition. According to our approxima-
M(r,r',t)= v > eiklrr ) —5—, tions, we limit our analysis in both cases to values of tem-
K oi(t) perature and density in the proximity of the borders of the
spinodal region. Moreover, we consider homogenous nuclear

andN, is an appropriate normalization factor. matter in both cases, and still assume thég,(t=0))=0
The diffusion coefficients of Eq(2.19 are derived by for k0.

means of the fluctuation-dissipation theorem, which concerns Before performing exp|icit Ca|cu|ations' we make a few
only fluctuations about equilibrium. In Reff30] a way has  remarks. It is known that linear theories are unable to de-
been suggested to extend the treatment of stable cases dgribe the late stages of the spinodal decomposition of alloys
processes where instabilities can develop. Following thagnd fluids(see Ref[31] and references quoted thergiin
suggestion we include in our approach the case of nucleajarticular, they predict a limiting value for the length scale
matter merged in the spinodal region. In practice, we stilkhat characterizes the pattern of the correlation domains. This
assume the Valldlty of EC{ZZ.D for the probablllty distribu- value is given by the Wave|engﬂhM for which the growth
tion of the density fluctuations, with the varianog(t) of  rate of fluctuations has a maximum. Instead, Monte Carlo
Eq. (2.22 calculated with the values of temperature and densimulations and experimental resyl82] show a continuous
sity of the new situation. This amounts to treating the diffu-coarsening of the domains with increasing time. However, it
sion coefficients for the unstable case as an analytic continthas been argued in R¢B3] that the early-time Monte Carlo
ation of the stable-case coefficients in thg, T) plane. The results are consistent with a linear theory, provided that a
reliability of such a procedure lies in the fact that both thestochastic force is included.
growing rateT’, and the diffusion coefficienB, change In the physical situations considered in the present paper
smoothly when the system crosses the stability boundary ari@eavy ion collisions the value of the characteristic wave-
enters the spinodal region. The pole®f(w), in turn, con-  length A, is larger than 10 fm, beyond the size of the
tinuously moves along the imaginary axis from the lowernuclear system involved. Moreover, the corresponding
part to the upper part of the complex plane [see Eq. growth time 1FkM is of the same order of magnitude as the
(2.16]. In order to preserve causality, the integral for calcu-characteristic times of the nucleus-nucleus collisions in the
lating the Fourier antitransfornd,(t) must be performed energy range considered here. Thus the fluctuations with
along a path which cuts the imaginary axis above the pole.wave numberk,, are still far from being the predominant

In the unstable case, the time behavior of the variancenes in this time interval. This means that the processes that
o2(t) in EqQ.(2.22) is similar to that predicted by linear theo- we are investigating correspond to an early stage of the spin-
ries of the spinodal decomposition of alloys and fluitr  odal decomposition. Then we can expect reliable results
an extensive review on this subject see R8L]). The vari-  from our approach, at least at a qualitative level.
ance grows exponentially for the fluctuations with wave From Eq.(2.24 we obtain the usual expression for the
number equilibrium correlation function:
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1 Telr-rle in order to simplify the notation.
G(|r—r’|)=4— PRI (2.26 With the distribution of Eq(2.24) and using the integral
mad |r—r’| representation of thé function,
where 1
- i 97X
- 5(x)=5— f dnel ™,
&=\

f” the equation for the distributioR(b,t) takes the form

is the correlation length. This quantity, which represents the N, _

average extension of the correlation domains, can be ob- P(b,t)z—j dr;e'”bf diso(r,t)]

tained by an appropriately weighted integral of the correla- 2

tion function: 1

Xex;{— Ef dr dr’5Q(r,t)( M(r,r',t)
§=f drdr'F(r,r")G(|r—r'|). (2.27 Lt

+2i nﬂf(r)f(r')) 5Q(r’,t)}. (2.32

The functionF(r,r") is a suitable weight function. Here we C

extend this relation between averaged quantities to fluctuat- _ ) _ )

ing quantities, for systems both at equilibrium and out of The functional integral is _of Gausgap type and allows us to

equilibrium. We then assume that the size of correlation do€XPress the result of the integration in closed form:

mains at timet is given by a quadratic functional of the

fluctuationsso(r,t): 1

171 - L(t),\ 172
detz—ﬂ_ M+ 2i ﬂTF}
(2.28 (2.33

N _
P(b,t)zﬁf dne'”b(

fdrdr’5Q(r,t)F(r,r’)5Q(r’,t)

b=L(t)

fdrdr’F(r,r’)G(lr—r’l,t) L - o .
The quantitiesM and F are infinite-dimensional operators,

. . with matrix elementsvi(r,r’,t) andf(r)f(r"), respectively,

where L(t)=(b) is the length scale that characterizes the the coordinate repre(senta%ion (DT’ P y

pattern of the domains, arﬂ(|.r_—r. |\1) is the correlauqn . The determinant in the last equation can be factorized as

function for systems out of equilibrium. The latter quantity is

the space Fourier transform of the variance of &522).

In order to simplify calculations, we further choose for detzi K1+ 2i ﬂL(t)FA: =de{M de{ Lo nL(t)M—ll’i
F(r,r') a separable form. The requirement thaghould be ™ C 2m C ’
positive for any functionse(r,t) enforces a symmetric form (2.34

F(r,r")y=f(r)f(r") (2.29  wherelis the unit matrix. The square root of the first factor

on the right-hand side and the normalization conshinof
of the weight function. This form allows us to obtain a Eq.(2.33 coincide and cancel. What remains to be evaluated
closed expression for the probability distribution lof In is the inverse of the square root of the second determinant.
addition, with this choice the final results are entirely inde-For this purpose we write the determinant in exponential

pendent of the functiori(r). form and expand the exponent in a power series. Thus, we
Now we derive the probability distribution fdras a func-  obtain the following formal expression:

tion of the length scalé&(t). Later we shall give a procedure
for determiningL (t).

For a given probability distributioP[ so(r,t)], the re-
lated probability distribution fob, at a given time, can be
obtained by means of the functional integral ;{

=ex

L(t) . -1/2

de{1+2inTM1f:}

1T|
Ern

1+2i77%t)|\7|1f:”

L(t)
P(b,t)sz[éQ(r,t)]ﬁ(b—TJ dréo(r,t) 1 1 L\ .
:ex;{—zz ﬁ(—1)1+“(2in?) Tr(MlF)“}.
XF(r,O)cSQ(O,t))P[ée(r,t)], (2.30 (2.39

where we have put We recall that the matrix elemeM ~*(r,r’,t) and the cor-
relation functionG(|r—r’|,t) coincide. Because of the sepa-
_ , o , rable form chosen for the functioR(r,r’), Eq. (2.29, the
C_f drdr'f(nG(r—r'.Hf(r’) (2:31 trace operation on the genenicterm of Eq.(2.35 simply
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yields C". Thus the series can be resummed and givEs In 05 ¢
+2i7L(t)]. Then the probability distributioR(b,t) acquires 045 ¢
the form o~ 04k
£ 035
1 gimd S 03¢
Pbt)=o—| dp———5- $ 025
2m) "1 2igL(t) V2 2
A simple integration in the compley plane gives the final 2;; 0.15
0.1 E
result e
0.05 |
o:.....‘..\....

—b/[2L(1)] (2.36

11
V= 2Lb . ' r (fm)

From the probability distribution of the domain size we  FIG. 2. Spatial behavior of the time-dependent correlation func-
can derive the distribution of the number of nuclednthat  tion G(r,t) for nuclear matter on the stable side of the spinodal
are contained in a correlation domain, assumed to be sphegurve (@,=0.65¢.4, T=5 MeV). The three curves correspond to
cal. For a homogeneous liquid the relation betwAemd the  different values oft (solid line, t=50 fm/c; dashed line,t
size b is b=2ry A3 wherer, is determined by the actual =100 fmic; dotted line,t=200 fmfc).
density. With a simple transformation of variables we obtain,
for the probability distribution ofA, P(A,t), the equation spinodal zone to justify our assumption of a white-noise sto-

chastic field. In Figs. 2 and 3 we show the behavior of
li Mo Sl [ro/L(DIAY (2.37) G(r,t_) as a function ofr at three _diffe_rent values of time,
3 Jm V2L(1) ' ' both in the stable and unstable situations. In the stable case
of Fig. 2, a simple inspection of the behavior Gfr,t)
Further, to take into account thAtis a discrete variable we shows that it is reasonably well reproduced by a function like
express the probability of finding a correlation domain con-that on the right-hand side of E¢.26 [obviously with &

P(b,t)=

P(At)=

taining A nucleons,Y(A), through the integral replaced byl (t)]. We adopt such a form foG(r,t); then,
. by comparison with its true behavior shown in Fig. 2, we can
_ determineL(t). For the unstable case shown in Fig. 3, the
Y(A)= fA,ldA PAD). (239 situation is slightly more involved because the asymptotic
regime is reached only after a very long time. For this case,
For largeA, Y(A) tends to coincide withP(A,t). we simply assume thdt(t) does coincide with the distance
at which the value o6(r,t) is reduced by 80% with respect
. RESULTS to its value ar=1 fm (because of our approximations, we

cannot expect the present approach to be reliable for dis-
The distribution P(A,t) and the probabilityY(A) are  tances shorter than 1 fm).
completely determined once the ratio between the length At a given timet the value of the length scale(t) de-
scaleL (t) and the mean interparticle spacingis fixed. The  pends strongly on the distance from the boundary of the
parameteL (t) sets the scale for the decrease of the correlaspinodal zone; the shorter this distance, the largex(i$. In
tion function G(r,t) with increasingr. We can obtain an Fig. 4 the calculated length(t) is displayed as a function of

estimate ofL(t) by analyzing the behavior oB(r,t) as a t for the two chosen sets of parameters. The valug¢sd in
function ofr at a givent. The correlation function is initially

determined by the varianceﬁ(t=0); then, in the stable 0.5

case, it asymptotically assumes the form given in 6, f

with the appropriate correlation lengé+ L (t= =), while in . 04 -

the unstable case, it acquires a damped oscillatory behavic? ENG

characterized by the asymptotic wavelenygf. In order to E o3 E

illustrate the general features of the functioft), we simply > o2 b

assume that the initial fluctuations are negligibié(tzO) S C o

~0. In this case the functio®(r,t) is completely deter- =X o1 [ e e

mined by the density and temperature of nuclear matter.g E e LTI
Here we consider two sample values for the denspy ( or

=0.65%,qandp,=0.58) and a single value for the tem- o b
perature T=5 MeV). This temperature is in the range of 1 2 3 4 5 6
values expected for the nuclear multifragmentation proces: r (fm)

[4]. The two corresponding points in the phase diagram
(e.T) lie in the metastable region and in the spinodal region, FIG. 3. Same as Fig. 2, but for the unstable casgg (
respectively, and are sufficiently close to the boundary of the=0.58¢.).
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0.250.50.75 1 1.251.51.75 2 7
2,
t (1 0 fm/c) FIG. 5. Fragment distributioi¥(Z) calculated for different val-
ues of the ratioL(t)/ry. Solid line, L(t)/ro=4; dashed line,

FIG. 4. Behavior of the length scaleg(t) within the spinodal L(t)/ro=3: dotted line.L (t)/ry=2.

region (solid line, 0,=0.58¢¢,) and outside it(dashed line,o

=0.65¢0¢).
eral experimental studies of multifragmentati®ee, for ex-

the range that is relevant for nuclear fragmentafibh Fig-

ure 4 shows that fot~200 fm/c, L(t) practically reaches
its asymptotic valu¢L()~3.0 fm] in the metastable situ-
ation, whereas in the unstable cagg) is still much smaller

ample, the recent papers|[i84,35). The observed values of
the exponent are in the interval 1.2— 1.5 for nuclear rec-

tions with beam energies lower than4d0A MeV, whereas

they exceed the value of 2 at higher enerdig4,35. A

thanL()~12 fm. value of the exponent.;;=2 can be unlikely reproduced by

In the two physical situations considered here, two differ-our calculations because we would need an unreasonably
ent processes could drive nuclear matter towards a spinodidw value for the ratioL(t)/r,. However, in various papers
decomposition. In the metastable case, if the density fluctug35—37 it has been remarked that the effects of collective
tions are large enough, the nuclear system can explore thwotions, which have not been taken into account by our
unstable region for a time sufficiently long to move towardspresent approach, should become more important with in-
a phase separation. In the unstable case instead, fluctuatiocreasing beam-energy.
grow with time until they cause the decomposition of the Figures 6 and 7 show a comparison between the charge
nuclear system. In both cases we expect that the pattern distributions predicted by our approac¥(Z), and recent
domains containing the liquid phase is determined by thexperimental data obtained by the Multics/Miniball Collabo-
probability distributionP(b,t) or P(A,t) of Egs.(2.36 and  ration for Aut+Au collisions at an incident energy dt
(2.37. =35A MeV [38] and by the INDRA Collaboration for

In order to assess the degree of validity of our approach??Xe+Sn and**Gd+ 23U collisions atE=32A MeV and
we compare the results of our calculations with the correE=36A MeV, respectivelyf39]. The calculations have been
sponding experimental data by identifying the probability
Y(A) of Eq. (2.38 with the distribution of the fragment
yield. Since experimentally the fragments are detected ac
cording to their charge, we have to transfo(A,t) and
Y(A) into the corresponding functions & We assume a
homogeneous distribution also for the char@e=[(1
—a)l2]A, with a=(N—-Z)/A, and usea=0.2, which cor- g
responds to the average asymmetry of the nuclear systen>"
considered. !

In Fig. 5 the probabilityy (Z) is displayed as a function of
Z on a double logarithmic scale for three different values of g
the ratioL(t)/ry. The range of values fdc(t)/ry has been o
chosen in accordance with that bft) in Fig. 4. Figure 5 10 %3 30 0
shows thaty(Z) can be fit with good accuracy by a power
law Y(Z)=YqyZ T"eff. The values of the effective exponent
Tefs lie between 1.17 fol(t)/ro=4 and 1.42 forL(t)/ry FIG. 6. Comparison of fragment distribution(Z) calculated
=2. for L(t)/rq=6 (solid line), 4 (dashed ling and 2(dotted ling with

The power-law behavior of the fragment yield and theexperimental distribution for the reaction Au\u at 35A MeV.
determination of the exponent have been the subject of sebata from Ref[38] have been normalized to 1.
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stochastic term can be retained. These conditions include hot
nuclear matter at a temperatufe=5 MeV, where the sys-
tem can be still considered degenerate. We have found that
for a Fermi system the treatment of density fluctuations by
means of a white-noise stochastic term is justified when the
limit w/T<1 gives a reasonable approximation to the
density-density response. This condition is better satisfied
when the density and temperature of the system are close to
the borders of the spinodal region in the,T) plane. Thus,
in the limit o/T<1 the equilibrium fluctuations can be ad-
equately described by means of thermodynamic functions
and we can expect that in this limit the purely quantum fluc-
z tuations will play a negligible role also for systems not too
FIG. 7. Same as Fig. 6, but for the reactioii®e+sn ate  far from equilibrium. We have extended the results obtained
—32A MeV (triangles and %Gd+28U at E=36A Mev  for the probability distribution of a metastable system to un-
(circles. Data from Ref[39] have been normalized to 1. stable situations. This has been achieved by extrapolating the
relevant quantities across the boundary of the spinodal re-
performed for three values of the paramelst)/r,. We  gion. Because of the linear approximation used for evaluat-
have normalized the experimental distributions to one in oring the response of the system to the stochastic force, the
der to perform the comparison on an absolute scale. We cdfctuations have a Gaussian probability distribution.
see that the agreement between experimental data and theln the final part of this paper we have introduced a pro-
calculated charge distributions is quite satisfactory for cedure to determine the size and mass distributions of the
< 30— 35 and that for the lighter fragments the experimentaldomains containing correlated density fluctuations; then we
points are better reproduced with larger values of the rati®/@ve compared the obtained mass distribution to the yield of
L(t)/ro. For Z>30— 35 the observed distribution presents alight fragments observed in the multifragmentation of heavy
slope steeper than that predicted by our calculations. Thiguclei. The procedure proposed here is quite general and can
faster decrease should be ascribed to finite-size effdéls be applied to any Gaussian fluctuation distribution.

which have not been included in our nuclear matter treat- Our approach can account both for the observed power-
ment. law distribution and for the value of the effective exponent

found experimentally, but for the exponent the agreement is
limited to collisions with beam energies lower than
~40A MeV. This discrepancy between our predictions and
We have studied the density fluctuations associated with the observed values of the effective exponent in collisions of
one-body treatment of nuclear dynamics. In our approach thiigher energies deserves further investigations. A detailed
fluctuations are generated by adding a stochastic term to thgomparison with experiment has shown that our approach
mean field. This additional random force is determined by dairly reproduces the measured charge distributions Zor
self-consistency condition required by the fluctuation-<30—35. Since we are dealing with infinite nuclear matter,
dissipation theorem. We have treated the effects of the stowe expect to overestimate the number of fragments having a
chastic field in linear approximation and this has allowed udarge fraction of the mass of the emitting source.
to express the time evolution of the fluctuations in a closed Finally, we remark that the obtained mass distribution
form. contains only one parameter, the ratio between the time-
First we have analyzed the nature of the stochastic fieldlependent length scale of domain&) and the mean inter-
and have shown that in general a white-noise assumption fgrarticle spacingro. This ratio can become large. A more
the stochastic field is not consistent with the fluctuation-detailed comparison of the present model with experimental
dissipation theorem. Then we have studied the particuladata could also give an estimate of the time required by the
physical conditions in which the white-noise nature of thesystem to break up.
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