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Density fluctuations and multifragmentation of nuclear matter

F. Matera and A. Dellafiore
Dipartimento di Fisica, Universita` degli Studi di Firenze and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze,

L.go E. Fermi 2, I-50125 Firenze, Italy
~Received 28 April 2000; published 14 September 2000!

The density fluctuations of nuclear matter are studied within a mean-field model in which fluctuations are
generated by an external stochastic field. The constraints imposed on the random force by the fluctuation-
dissipation theorem are analyzed. It is shown that in the proximity of the borders of the spinodal region the
assumption of a white-noise stochastic field can be reliably used. The domain distribution of the liquid phase
in the spinodal decomposition of nuclear matter is derived. The related distribution of fragment sizes compares
favorably with the experimental fragment distribution observed in heavy ion collisions.

PACS number~s!: 21.65.1f, 24.60.Ky, 25.70.Pq, 21.60.Jz
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I. INTRODUCTION

Semiclassical kinetic equations for the one-body pha
space density provide a powerful tool for studying the d
namics of complex processes occurring in heavy ion co
sions @1–3#. However, these equations in their origin
version give a deterministic description for the evolution
the one-body phase-space density and their solution re
sents the mean value of this density at each time. Thus,
are not able to account for phenomena such as the nu
multifragmentation observed in heavy ion collisions. In th
process fluctuations about the mean phase-space densi
believed to play an essential role~for a review of nuclear
multifragmentaion see, e.g., Ref.@4#!. In the last decade, to
remedy this drawback, an extension of the transport the
has been proposed@5–7#. This approach, which incorporate
a fluctuating stochastic term into the kinetic equation, is u
ally known as the Boltzmann-Langevin equation, and w
originally applied to the treatment of hydrodynamic fluctu
tions in the theory of classical fluids@8#. In Refs.@5–7# col-
lisions between nucleons in the nuclear medium are rega
as random processes and the diffusion coefficient of
Langevin~fluctuating! term is ultimately related to the am
plitude of the nucleon-nucleon scattering. The last step
particular case of the fluctuation-dissipation theorem. M
recently, a new method to take into account fluctuations
also been proposed@9#. In the approach of Ref.@9# the sta-
tistical fluctuations of the one-body phase-space density
directly introduced by assuming local thermodynamic eq
librium. The white-noise nature of the stochastic term is
basic assumption, generally shared by all works on this s
ject. The authors of Ref.@10#, instead, have introduced a
extension of the Boltzmann-Langevin theory by including
colored-noise term in the stochastic force; the occurrenc
such a term has been ascribed to the finite nucleon-nuc
collision time. Actual applications to nuclear problems
this interesting approach still have to be made.

In the present paper, we study the density fluctuations
their time evolution by introducing a self-consistent stoch
tic field acting on the constituents of the system. The s
consistency condition is provided by the fluctuatio
dissipation theorem. The evolution of the fluctuations
treated within a linear approximation for the stochastic fie
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For simplicity we consider an infinite homogeneous syste
First, without introducing any particular assumption, w
prove that a white-noise stochastic field cannot satisfy
self-consistency condition in general. Then, with reference
infinite nuclear matter and within a collisionless mean-fie
approximation, we specify the particular conditions und
which the white-noise assumption for the stochastic field
be retained. These conditions are fulfilled for values of d
sity and temperature lying in the proximity of the bounda
of the spinodal region in the phase diagram, both inside
outside this region. Thus we consider nuclear matter in
physical situation and are able to solve the stochastic eq
tion for the density fluctuations in a closed form.

With respect to the previous works on this subject@5–7#,
here we consider a different source of fluctuations: Land
damping. This source is present even when collisions ha
negligible role in the evolution of the system.

In Sec. II we propose a procedure to determine the str
ture of domains formed within the system during a spino
decomposition. If the fragmentation phenomenon obser
in heavy ion collisions can be ascribed to a spinodal deco
position of the bulk of nuclei@11#, we are allowed to identify
the pattern according to which nuclear matter is decomp
ing, with the fragmentation pattern, and can compare
results of our nuclear matter calculations with the fragm
distribution observed in heavy ion collisions. This compa
son is made in Sec. III. Finally in Sec. IV a brief summa
and conclusions are given.

Many papers, both theoretical and experimental, h
been devoted to the multifragmentation problem. Here
mention only a few theoretical ones representing differ
approaches. In the statistical models of Refs.@12,13#, a com-
plete statistical equilibrium of all degrees of freedom is a
sumed in a freeze-out volume and the various exit chan
are sorted according to their statistical weight in the mic
canonical ensemble. In Ref.@14# instead nuclear multifrag-
mentation has been described in terms of ‘‘reducibility’’ a
‘‘thermal scaling.’’ This means that fragments are emitt
practically independently of each other and the one-fragm
probability is given by a Boltzmann factor. In the dynamic
models of Refs.@5–7# clusters are constructed from the on
body phase-space density governed by the Boltzma
Langevin equation@15–17#. In order to take into account th
©2000 The American Physical Society11-1
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F. MATERA AND A. DELLAFIORE PHYSICAL REVIEW C 62 044611
quantal nature of the system and the requirement of antis
metrization, the quantum molecular dynamics model@18#
and the more sophisticated fermionic~antisymmetrized! mo-
lecular dynamics model@19,20# have been developed. In ad
dition, percolation@21# and lattice-gas models@22,23# have
also been introduced. These models are particularly suit
to deal with the critical phenomena which can be expecte
occur in multifragmantation. To conclude this nonexhaust
survey, we mention the calculations of Ref.@24#, which are
based on classical nucleation theory.

Even if it should eventually turn out that multifragment
tion must be ascribed to very complicated processes,
think that in any case our present approach could give s
insight into the underlying mechanism.

II. FORMALISM

A. White-noise assumption

The mean-field approximation allows us to obtain a se
consistent equation for the time evolution of the one-bo
density. We assume that the time scale of the terms negle
in the mean-field approximation is shorter than the char
teristic times of the mean-field dynamics. In order to ta
into account thermodynamic fluctuations, quantum effe
and short-range correlations, we add to the mean field a
chastic term similar to the random force in the Lange
equation. We assume that this additional field is a Gaus
white noise with vanishing mean. In this case the time e
lution of the density is a Markovian process. We will dete
mine the conditions in which the white-noise assumption
be considered reasonable.

The additional stochastic mean field will induce dens
fluctuations with respect to the mean density. To be m
specific, we assume that at the timet50 in the system is
present a density fluctuationd%(r ,t50), with d%(r ,t)
5%(r ,t)2%0 (%0 is the density of the reference homog
neous state, i.e., the state towards which the system rela!.
Within a linear approximation for the stochastic mean fie
the Fourier coefficients ofd%(r ,t) for t.0 are given by
~see, for example, Ref.@25#, Sec. 15 I!

d%k~ t !5d%k~ t50!2
d%k~ t50!

Dk~v50!
E

0

t

Dk~ t2t8! dt8

1E
0

t

Dk~ t2t8!Bk~ t8!dWk~ t8!, ~2.1!

whereDk(t2t8) is the response function of the nuclear m
dium andDk(v) its time Fourier transform. For symmetr
reasonsDk(t2t8) and its Fourier transform depend only o
the magnitude of the wave vector. In the second integ
Bk(t8)dWk(t8) gives the contribution of the stochastic fie
in the intervaldt8. The real and imaginary parts of the Fo
rier coefficientsWk(t8) are indipendent components of
multivariate Wiener process@26#. The fact that the stochasti
field is real requiresBk* (t)5B2k(t) andWk* (t)5W2k(t).

The stochastic part of the mean field is completely de
mined once the coefficientsBk(t) are known. In order to
gain information about these coefficients we concentrate
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the correlations of density fluctuations at equilibrium. B
cause of the independence of the components of the m
variate Wiener processWk(t), only the terms withk852k
survive. Within a linear approximation, these correlatio
can be expressed by means of the same quantities that a
in Eq. ~2.1!. This does, in a sense, correspond to the O
sanger hypothesis about the decay of deviations from e
librium @25#. The equation for the equilibrium fluctuations
obtained from Eq.~2.1! by moving the initial time to2`,
without including any particular condition at finite time
Then the correlations are given by the equation~the angular
brackets denote ensemble averaging!

^d%k~ t !d%2k~ t8!&5 E
2`

min(t,t8)
dt1 Dk~ t2t1!Dk~ t82t1!

3Bk~ t1!B2k~ t1!. ~2.2!

The time-translation invariance of the left-hand side
Eq. ~2.2! requires that the coefficientsBk(t) must be con-
stant. Taking the Fourier transform, Eq.~2.2! gives

^d%k~v!d%2k~v8!&52pd~v1v8! ^~d%kd%2k!~v!&

52pd~v1v8! Dk~v!Dk~v8! uBku2.

~2.3!

By exploiting the fluctuation-dissipation theorem

^~d%kd%2k!~v!&52
2

12e2bv
Im Dk~v!, ~2.4!

whereb51/T is the inverse temperature~we use units such
that \5c5kB51), we obtain for the coefficientsBk the
equation

uBku252
2

12e2bv

Im Dk~v!

uDk~v!u2
. ~2.5!

We have used the relationDk(2v)5Dk* (v). Equation~2.5!
can be satisfied only if the right-hand side does not dep
on v. This can occur only in particular situations; thus t
original white-noise assumption about the stochastic m
field is not correct in general. This result is quite general,
we can conclude that for a perturbed system approachin
equilibrium state, fluctuations about the average traject
cannot usually be accounted for by a white-noise stocha
force.

Now, with reference to symmetric nuclear matter, we d
cuss particular physical situations in which Eq.~2.5! can
have a solution. Only in such conditions is the assumption
a white-noise stochastic field valid. The relevant quantity
the linear-response functionDk(v). We evaluateDk(v)
within a self-consistent mean-field approximation. In ord
to derive compact analytical expressions, here we use
linearized Vlasov equation for calculating the response fu
tion. This equation can be regarded as a semiclassical
proximation to the random phase approximation, valid in
long-wavelength limit. We also use a Skyrme-like form
1-2
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DENSITY FLUCTATIONS AND MULTIFRAGMENTATION . . . PHYSICAL REVIEW C62 044611
the nucleon-nucleon effective interaction. Our self-consist
mean-field potential is given by

U5 a
%

%eq
1b S %

%eq
D a11

2d ¹2%, ~2.6!

where%eq is the saturation density of nuclear matter. For t
parameters in Eq.~2.6! we take the values

a52356.8 MeV, b5303.9 MeV, a5
1

6
,

d5130 MeV fm5.

The values ofa, b, and a reproduce the binding energ
(15.75 MeV) of nuclear matter at saturation (%eq
50.16 fm23) and give an incompressibility modulus o
201 MeV. For the values ofd we follow the prescriptions of
Ref. @27#.

The response function is given by

Dk~v!5
Dk

(0)~v!

12AkDk
(0)~v!

, ~2.7!

whereDk
(0)(v) is the noninteracting particle-hole propagato

and

Ak5a
1

%eq
1

b

a11

1

%eq
a11

%0
a1d k2 ~2.8!

are the Fourier coefficients of the effective interaction. H
%0 is the density of the reference homogeneous state.

By substituting the expression~2.7! for Dk(v) into Eq.
~2.5!, we obtain

uBku252
2

12e2bv

Im Dk
(0)~v!

uDk
(0)~v!u2

. ~2.9!

This equation shows that the coefficientsBk do not explic-
itely depend on the nucleon-nucleon effective interacti
However, we remark thatDk

(0)(v) is the propagator of inde
pendent particles that are moving in the mean field of
reference homogeneous state,

U05 a
%0

%eq
1b S %0

%eq
D a11

, ~2.10!

and thus the interaction between constituents does ente
though not explicitly, into the expression ofBk .

We shall now show that in the classical limitv/T!1, the
right-hand side of Eq.~2.9! does not depend onv; thus the
assumption of a white-noise stochastic field can be con
ered valid in that limit.

In the actual physical situations considered in this pa
the values of the temperature are small enough with res
to the Fermi temperature so that the Pauli principle is s
operating. Therefore the strength of the particle-hole exc
tions having energies much higher thankvF (vF is the Fermi
04461
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velocity! can be considered negligible. Moreover, the r
evant values of the wave vectork turn out to be such that the
quantity kvF is of the same order of magnitude asT. Thus
the limit v/T!1 also impliesv/kvF!1.

The noninteracting particle-hole propagatorDk
(0)(v) ac-

quires a very simple form in the long-wavelength~Vlasov!
limit. The imaginary part is

Im Dk
(0)~v!5

1

4p
m2

v

k E d«p

]np

]«p
uS 12

v

kv D ,

~2.11!

where

np5
4

eb(ep2m̃)11

is the mean occupation number of nucleons with kinetic
ergy ep5p2/2m andv5p/m. The effective chemical poten
tial m̃ is measured with respect to the uniform mean fieldU0.

For v/kvF!1 the imaginary part ofDk
(0)(v) is given by

Im Dk
(0)~v!52

1

p
m2

v

k

1

e2bm̃11
1OS S v

kvF
D 3D ,

~2.12!

while the real part ofDk
(0)(v) in the long-wavelength limit

takes the form

ReDk
(0)~v!52

1

2p2 E dp p2
]np

]«p

3S 211
1

2

v

kv
ln

11v/kv
u12v/kvu D . ~2.13!

For T sufficiently low with respect tom̃, the most important
contribution to the integral in Eq.~2.13! comes from a small
domain of«p aroundm̃. So we can takev/kv!1 in evalu-
ating the integral, and obtain

ReDk
(0)~v!52

]%0

]m̃
1OS S v

kvF
D 2D . ~2.14!

With Dk
(0)(v) given by Eqs.~2.12! and ~2.14!, the right-

hand side of Eq.~2.9! is independent ofv to the lowest
significant order inv/T. Thus, forv/T!1 the magnitude of
the coefficientsBk is given by

uBku25
2

p
m2S ]m̃

]%0
D 2

T

e2bm̃11

1

k
. ~2.15!

The phases ofBk , instead, remain unknown. However, w
will see that only the quantitiesuBku2 are needed to deter
mine the probability distribution of density fluctuations. F
nally, we remark thatuBku for a givenk is determined solely
by the density and temperature of nuclear matter.
1-3
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The white-noise assumption is justified if the excitati
strength is concentrated in a narrow range of energy clos
zero. This condition requires that ImDk(v) be a sharply
peaked function in the proximity ofv50 and be negligible
elsewhere. The imaginary part ofDk(v) displays this feature
for values of temperature and density near the borders o
spinodal region, since the pole ofDk(v) lying on the imagi-
nary axis moves towardsv50 as the system approaches t
mechanical instability. This is shown in Fig. 1, where w
report ImDk(v) calculated with Eq.~2.7! using the complete
expression ofDk

(0)(v). With our effective interaction, forT
55 MeV the spinodal region starts at%c50.617%eq . The
values of%0 used in Fig. 1 are close to this critical value.

B. Distribution of fluctuations

We now derive from Eq.~2.1! the probability distribution
for d%k(t) in the limit v/T!1, and for values of tempera
ture and density in the proximity of the spinodal region. T
response functionDk(v) has a pole in the lower part of th
imaginaryv axis, at a position given by

iGk5 i
p

m2
~11e2bm̃!

]%0

]m̃

S ]2f

]%0
2U

T

1dk2D
Ak

k. ~2.16!

We have used the relation

]m̃

]%0
U

T

5
]2f

]%0
2U

T

2A0 , ~2.17!

wheref is the free-energy density andA05Ak50.
In Eq. ~2.16! the relevant quantity is the isothermal stif

ness]2f /]%0
2uT , which vanishes on the boundary of the sp

odal region. Since we limit our calculations to the proxim

FIG. 1. Imaginary part of the response functionDk(v) of Eq.
~2.7! for hot nuclear matter (T55 MeV) at different densities ap
proaching the critical value%c50.617%eq ~dotted line, %0

50.70%eq ; dashed line,%050.65%eq ; solid line, %050.63%eq).
The value ofk is 0.1kF .
04461
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of the spinodal region, we neglect]2f /]%0
2uT with respect to

A0 in evaluatingDk(t). Furthermore, in actual calculation
the typical values ofk which come into play are such that th
termd k2 is smaller thanuA0u; thus we also neglect this term
with respect touA0u. This approximation is consistent wit
the long-wavelength limit adopted in the calculation
Dk(v).

Substituting into Eq.~2.1! the response functionDk(t
2t8) calculated with these approximations, the equation
the fluctuationsd%k(t) becomes

d%k~ t !5d%k~ t50!eGkt1B̃k E
0

t

eGk(t2t8) dWk~ t8!,

~2.18!

where

uB̃ku5
1

uA0uA2pT

m2
~11e2bm̃! k, ~2.19!

and Gk is given by Eq.~2.16!, neglecting the termd k2 in
Ak . We recall thatGk is negative, so thatuGku represents the
damping rate of fluctuations, which vanishes for long wav
lengths when]2f /]%0

2uT→0.
Equation~2.18! represents an Ornstein-Uhlenbeck proce

@26# with uGku as drift coefficient andB̃k as diffusion coeffi-
cient. The corresponding Fokker-Planck equation for
probability distributionP@d%k(t)# reads

]

]t
P@d%k~ t !#5uGku

]

]d%k~ t !
d%k~ t !P@d%k~ t !#

1
1

2
uB̃ku2

]2

]d%k
2~ t !

P@d%k~ t !#.

~2.20!

For simplicity we assume the state of the system att50
to be homogeneous on average„^d%k(t50)&50 for kÞ0….
Equation ~2.18! says that this property holds during tim
evolution. In this case the solution of Eq.~2.20! is a Gauss-
ian distribution with zero mean value. Whenever it is nec
sary, a nonvanishing mean value can easily be introdu
The explicit expression of the distributionP@d%k(t)# is

P@d%k~ t !#5N1expS 2
1

2 (
k

d%k* ~ t !
1

sk
2~ t !

d%k~ t !D ,

~2.21!

with the variancesk
2(t) given by

sk
2~ t !5sk

2~ t50! e2Gkt1
T

f 91d k2
~12e2Gkt!. ~2.22!

Here the constantN1 is a normalization factor and we hav
introduced the abbreviation
1-4
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f 95
]2f

]%0
2U

T

.

For t→`, Eq. ~2.21! reproduces the usual Gaussian appro
mation with variance

sk
2~ t5`!5

T

f 91d k2
~2.23!

for the equilibrium thermodynamical fluctuations@28#. We
furthermore remark that Eq.~2.22! for the time evolution of
the variance is similar to that obtained with different a
proaches in previous works on this subject@7,29#.

For later purposes we report also the distribution of
fluctuations in ordinary space:

P@d%~r ,t !#5 N2expS 2
1

2E dr dr 8d%~r ,t !

3M ~r ,r 8,t !d%~r 8t ! D , ~2.24!

where

M ~r ,r 8,t !5
1

V (
k

eik (̇r2r8)
1

sk
2~ t !

,

andN2 is an appropriate normalization factor.
The diffusion coefficients of Eq.~2.19! are derived by

means of the fluctuation-dissipation theorem, which conce
only fluctuations about equilibrium. In Ref.@30# a way has
been suggested to extend the treatment of stable cas
processes where instabilities can develop. Following t
suggestion we include in our approach the case of nuc
matter merged in the spinodal region. In practice, we s
assume the validity of Eq.~2.21! for the probability distribu-
tion of the density fluctuations, with the variancesk

2(t) of
Eq. ~2.22! calculated with the values of temperature and d
sity of the new situation. This amounts to treating the dif
sion coefficients for the unstable case as an analytic cont
ation of the stable-case coefficients in the (%,T) plane. The
reliability of such a procedure lies in the fact that both t
growing rate Gk and the diffusion coefficientB̃k change
smoothly when the system crosses the stability boundary
enters the spinodal region. The pole ofDk(v), in turn, con-
tinuously moves along the imaginary axis from the low
part to the upper part of the complexv plane @see Eq.
~2.16!#. In order to preserve causality, the integral for calc
lating the Fourier antitransformDk(t) must be performed
along a path which cuts the imaginary axis above the po

In the unstable case, the time behavior of the varia
sk

2(t) in Eq. ~2.22! is similar to that predicted by linear theo
ries of the spinodal decomposition of alloys and fluids~for
an extensive review on this subject see Ref.@31#!. The vari-
ance grows exponentially for the fluctuations with wa
number
04461
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while it tends to the aymptotic valuesk(t5`) of Eq. ~2.23!
for k.kc . In particular the growth rateGk presents a maxi-
mum for k5kM5kc /A3. This means that the pattern of th
regions which contain coherently correlated fluctuations
asymptotically characterized by the wavelengthlM
52p/kM . These features for the growth rate of unstab
modes are analogous to those obtained in Ref.@16# within a
different scheme.

C. Size of fragments

Starting from the probability distribution for density fluc
tuations given by Eq.~2.24!, we can determine the corre
sponding distribution for the size of the correlation domai
It has already been recalled that the stable and unstable c
can be treated within the same scheme. Thus we shall inv
gate two different situations which could be explored
nuclear matter during a nucleus-nucleus collision: in o
case the system is in the metastable region and relaxe
wards a local minimum of the free energy, while in the oth
case the system is merged in the spinodal zone and deve
density fluctuations which grow with time and will eventu
ally lead to decomposition. According to our approxim
tions, we limit our analysis in both cases to values of te
perature and density in the proximity of the borders of t
spinodal region. Moreover, we consider homogenous nuc
matter in both cases, and still assume that^d%k(t50)&50
for kÞ0.

Before performing explicit calculations, we make a fe
remarks. It is known that linear theories are unable to
scribe the late stages of the spinodal decomposition of al
and fluids~see Ref.@31# and references quoted therein!. In
particular, they predict a limiting value for the length sca
that characterizes the pattern of the correlation domains. T
value is given by the wavelengthlM for which the growth
rate of fluctuations has a maximum. Instead, Monte Ca
simulations and experimental results@32# show a continuous
coarsening of the domains with increasing time. However
has been argued in Ref.@33# that the early-time Monte Carlo
results are consistent with a linear theory, provided tha
stochastic force is included.

In the physical situations considered in the present pa
~heavy ion collisions!, the value of the characteristic wave
length lM is larger than 10 fm, beyond the size of th
nuclear system involved. Moreover, the correspond
growth time 1/GkM

is of the same order of magnitude as t
characteristic times of the nucleus-nucleus collisions in
energy range considered here. Thus the fluctuations w
wave numberkM are still far from being the predominan
ones in this time interval. This means that the processes
we are investigating correspond to an early stage of the s
odal decomposition. Then we can expect reliable res
from our approach, at least at a qualitative level.

From Eq. ~2.24! we obtain the usual expression for th
equilibrium correlation function:
1-5
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G~ ur2r 8u!5
1

4p

T

d

e2ur2r8u/j

ur2r 8u
, ~2.26!

where

j5Ad

f 9

is the correlation length. This quantity, which represents
average extension of the correlation domains, can be
tained by an appropriately weighted integral of the corre
tion function:

j5E drdr 8F~r ,r 8!G~ ur2r 8u!. ~2.27!

The functionF(r ,r 8) is a suitable weight function. Here w
extend this relation between averaged quantities to fluct
ing quantities, for systems both at equilibrium and out
equilibrium. We then assume that the size of correlation
mains at timet is given by a quadratic functional of th
fluctuationsd%(r ,t):

b5L~ t !
E drdr 8d%~r ,t !F~r ,r 8!d%~r 8,t !

E drdr 8F~r ,r 8!G~ ur2r 8u,t !
, ~2.28!

where L(t)5^b& is the length scale that characterizes t
pattern of the domains, andG(ur2r 8u,t) is the correlation
function for systems out of equilibrium. The latter quantity
the space Fourier transform of the variance of Eq.~2.22!.

In order to simplify calculations, we further choose f
F(r ,r 8) a separable form. The requirement thatb should be
positive for any functiond%(r ,t) enforces a symmetric form

F~r ,r 8!5 f ~r ! f ~r 8! ~2.29!

of the weight function. This form allows us to obtain
closed expression for the probability distribution ofb. In
addition, with this choice the final results are entirely ind
pendent of the functionf (r ).

Now we derive the probability distribution forb as a func-
tion of the length scaleL(t). Later we shall give a procedur
for determiningL(t).

For a given probability distributionP@d%(r ,t)#, the re-
lated probability distribution forb, at a given timet, can be
obtained by means of the functional integral

P~b,t !5E d@d%~r ,t !#dS b2
L~ t !

C E drd%~r ,t !

3F~r ,0!d%~0,t ! D P@d%~r ,t !#, ~2.30!

where we have put

C5E drdr 8 f ~r !G~ ur2r 8u,t ! f ~r 8! ~2.31!
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in order to simplify the notation.
With the distribution of Eq.~2.24! and using the integra

representation of thed function,

d~x!5
1

2pE dheihx,

the equation for the distributionP(b,t) takes the form

P~b,t !5
N2

2pE dheihbE d@d%~r ,t !#

3expF2
1

2E dr dr 8d%~r ,t !S M ~r ,r 8,t !

12ih
L~ t !

C
f ~r ! f ~r 8! D d%~r 8,t !G . ~2.32!

The functional integral is of Gaussian type and allows us
express the result of the integration in closed form:

P~b,t !5
N2

2pE dheihb
1

S det
1

2p F M̂12ih
L~ t !

C
F̂ G D 1/2.

~2.33!

The quantitiesM̂ and F̂ are infinite-dimensional operators
with matrix elementsM (r ,r 8,t) and f (r ) f (r 8), respectively,
in the coordinate representation.

The determinant in the last equation can be factorized

det
1

2p F M̂12ih
L~ t !

C
F̂ G5detF M̂

2p
GdetF112ih

L~ t !

C
M̂ 21F̂ G ,

~2.34!

where1 is the unit matrix. The square root of the first fact
on the right-hand side and the normalization constantN2 of
Eq. ~2.33! coincide and cancel. What remains to be evalua
is the inverse of the square root of the second determin
For this purpose we write the determinant in exponen
form and expand the exponent in a power series. Thus,
obtain the following formal expression:

S detF112ih
L~ t !

C
M̂ 21F̂ G D 21/2

5expF2
1

2
Tr lnS 112ih

L~ t !

C
M̂ 21F̂ D G

5expF2
1

2 (
1

n
~21!11nS 2ih

L~ t !

C D n

Tr~M̂ 21F̂ !nG .
~2.35!

We recall that the matrix elementM 21(r ,r 8,t) and the cor-
relation functionG(ur2r 8u,t) coincide. Because of the sepa
rable form chosen for the functionF(r ,r 8), Eq. ~2.29!, the
trace operation on the genericn term of Eq.~2.35! simply
1-6
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yields Cn. Thus the series can be resummed and gives@1
12ihL(t)#. Then the probability distributionP(b,t) acquires
the form

P~b,t !5
1

2pE dh
eihb

@112ihL~ t !#1/2
.

A simple integration in the complexh plane gives the fina
result

P~b,t !5
1

Ap

1

A2L~ t !b
e2b/[2L(t)] . ~2.36!

From the probability distribution of the domain size w
can derive the distribution of the number of nucleonsA that
are contained in a correlation domain, assumed to be sp
cal. For a homogeneous liquid the relation betweenA and the
size b is b52r 0A1/3, wherer 0 is determined by the actua
density. With a simple transformation of variables we obta
for the probability distribution ofA, P(A,t), the equation

P~A,t !5
1

3

1

Ap
A r 0

2L~ t !
A25/6e2[ r 0 /L(t)]A1/3

. ~2.37!

Further, to take into account thatA is a discrete variable we
express the probability of finding a correlation domain co
taining A nucleons,Y(A), through the integral

Y~A!5E
A21

A

dA P~A,t !. ~2.38!

For largeA, Y(A) tends to coincide withP(A,t).

III. RESULTS

The distribution P(A,t) and the probabilityY(A) are
completely determined once the ratio between the len
scaleL(t) and the mean interparticle spacingr 0 is fixed. The
parameterL(t) sets the scale for the decrease of the corre
tion function G(r ,t) with increasingr. We can obtain an
estimate ofL(t) by analyzing the behavior ofG(r ,t) as a
function of r at a givent. The correlation function is initially
determined by the variancesk

2(t50); then, in the stable
case, it asymptotically assumes the form given in Eq.~2.26!,
with the appropriate correlation lengthj5L(t5`), while in
the unstable case, it acquires a damped oscillatory beha
characterized by the asymptotic wavelengthlM . In order to
illustrate the general features of the functionL(t), we simply
assume that the initial fluctuations are negligible,sk

2(t50)
'0. In this case the functionG(r ,t) is completely deter-
mined by the density and temperature of nuclear mat
Here we consider two sample values for the density (%0
50.65%eq and%050.58%eq) and a single value for the tem
perature (T55 MeV). This temperature is in the range
values expected for the nuclear multifragmentation proc
@4#. The two corresponding points in the phase diagr
(%,T) lie in the metastable region and in the spinodal regi
respectively, and are sufficiently close to the boundary of
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spinodal zone to justify our assumption of a white-noise s
chastic field. In Figs. 2 and 3 we show the behavior
G(r ,t) as a function ofr at three different values of time
both in the stable and unstable situations. In the stable c
of Fig. 2, a simple inspection of the behavior ofG(r ,t)
shows that it is reasonably well reproduced by a function l
that on the right-hand side of Eq.~2.26! @obviously with j
replaced byL(t)]. We adopt such a form forG(r ,t); then,
by comparison with its true behavior shown in Fig. 2, we c
determineL(t). For the unstable case shown in Fig. 3, t
situation is slightly more involved because the asympto
regime is reached only after a very long time. For this ca
we simply assume thatL(t) does coincide with the distanc
at which the value ofG(r ,t) is reduced by 80% with respec
to its value atr 51 fm ~because of our approximations, w
cannot expect the present approach to be reliable for
tances shorter than 1 fm).

At a given timet the value of the length scaleL(t) de-
pends strongly on the distance from the boundary of
spinodal zone; the shorter this distance, the larger isL(t). In
Fig. 4 the calculated lengthL(t) is displayed as a function o
t for the two chosen sets of parameters. The values oft are in

FIG. 2. Spatial behavior of the time-dependent correlation fu
tion G(r ,t) for nuclear matter on the stable side of the spino
curve (%050.65%eq , T55 MeV). The three curves correspond
different values of t ~solid line, t550 fm/c; dashed line, t
5100 fm/c; dotted line,t5200 fm/c).

FIG. 3. Same as Fig. 2, but for the unstable case (%0

50.58%eq).
1-7
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the range that is relevant for nuclear fragmentation@4#. Fig-
ure 4 shows that fort;200 fm/c, L(t) practically reaches
its asymptotic value@L(`)'3.0 fm# in the metastable situ
ation, whereas in the unstable caseL(t) is still much smaller
thanL(`)'12 fm.

In the two physical situations considered here, two diff
ent processes could drive nuclear matter towards a spin
decomposition. In the metastable case, if the density fluc
tions are large enough, the nuclear system can explore
unstable region for a time sufficiently long to move towar
a phase separation. In the unstable case instead, fluctua
grow with time until they cause the decomposition of t
nuclear system. In both cases we expect that the patter
domains containing the liquid phase is determined by
probability distributionP(b,t) or P(A,t) of Eqs.~2.36! and
~2.37!.

In order to assess the degree of validity of our approa
we compare the results of our calculations with the cor
sponding experimental data by identifying the probabil
Y(A) of Eq. ~2.38! with the distribution of the fragmen
yield. Since experimentally the fragments are detected
cording to their charge, we have to transformP(A,t) and
Y(A) into the corresponding functions ofZ. We assume a
homogeneous distribution also for the chargeZ5@(1
2a)/2#A, with a5(N2Z)/A, and usea50.2, which cor-
responds to the average asymmetry of the nuclear sys
considered.

In Fig. 5 the probabilityY(Z) is displayed as a function o
Z on a double logarithmic scale for three different values
the ratioL(t)/r 0. The range of values forL(t)/r 0 has been
chosen in accordance with that ofL(t) in Fig. 4. Figure 5
shows thatY(Z) can be fit with good accuracy by a pow
law Y(Z)5Y0Z2te f f. The values of the effective expone
te f f lie between 1.17 forL(t)/r 054 and 1.42 forL(t)/r 0
52.

The power-law behavior of the fragment yield and t
determination of the exponent have been the subject of

FIG. 4. Behavior of the length scaleL(t) within the spinodal
region ~solid line, %050.58%eq) and outside it~dashed line,%0

50.65%eq).
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eral experimental studies of multifragmentation~see, for ex-
ample, the recent papers in@34,35#!. The observed values o
the exponent are in the interval;1.221.5 for nuclear rec-
tions with beam energies lower than;40A MeV, whereas
they exceed the value of 2 at higher energies@34,35#. A
value of the exponentte f f>2 can be unlikely reproduced b
our calculations because we would need an unreason
low value for the ratioL(t)/r 0. However, in various paper
@35–37# it has been remarked that the effects of collect
motions, which have not been taken into account by
present approach, should become more important with
creasing beam-energy.

Figures 6 and 7 show a comparison between the cha
distributions predicted by our approach,Y(Z), and recent
experimental data obtained by the Multics/Miniball Collab
ration for Au1Au collisions at an incident energy ofE
535A MeV @38# and by the INDRA Collaboration for
129Xe1Sn and155Gd1238U collisions atE532A MeV and
E536A MeV, respectively@39#. The calculations have bee

FIG. 5. Fragment distributionY(Z) calculated for different val-
ues of the ratioL(t)/r 0. Solid line, L(t)/r 054; dashed line,
L(t)/r 053; dotted line,L(t)/r 052.

FIG. 6. Comparison of fragment distributionY(Z) calculated
for L(t)/r 056 ~solid line!, 4 ~dashed line!, and 2~dotted line! with
experimental distribution for the reaction Au1Au at 35A MeV.
Data from Ref.@38# have been normalized to 1.
1-8
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performed for three values of the parameterL(t)/r 0. We
have normalized the experimental distributions to one in
der to perform the comparison on an absolute scale. We
see that the agreement between experimental data an
calculated charge distributions is quite satisfactory forZ
,30235 and that for the lighter fragments the experimen
points are better reproduced with larger values of the r
L(t)/r 0. For Z.30235 the observed distribution presents
slope steeper than that predicted by our calculations. T
faster decrease should be ascribed to finite-size effects@40#
which have not been included in our nuclear matter tre
ment.

IV. SUMMARY AND CONCLUSIONS

We have studied the density fluctuations associated wi
one-body treatment of nuclear dynamics. In our approach
fluctuations are generated by adding a stochastic term to
mean field. This additional random force is determined b
self-consistency condition required by the fluctuatio
dissipation theorem. We have treated the effects of the
chastic field in linear approximation and this has allowed
to express the time evolution of the fluctuations in a clos
form.

First we have analyzed the nature of the stochastic fi
and have shown that in general a white-noise assumption
the stochastic field is not consistent with the fluctuatio
dissipation theorem. Then we have studied the partic
physical conditions in which the white-noise nature of t

FIG. 7. Same as Fig. 6, but for the reactions129Xe1Sn atE
532A MeV ~triangles! and 155Gd1238U at E536A MeV
~circles!. Data from Ref.@39# have been normalized to 1.
0
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stochastic term can be retained. These conditions include
nuclear matter at a temperatureT'5 MeV, where the sys-
tem can be still considered degenerate. We have found
for a Fermi system the treatment of density fluctuations
means of a white-noise stochastic term is justified when
limit v/T!1 gives a reasonable approximation to t
density-density response. This condition is better satis
when the density and temperature of the system are clos
the borders of the spinodal region in the (%,T) plane. Thus,
in the limit v/T!1 the equilibrium fluctuations can be ad
equately described by means of thermodynamic functi
and we can expect that in this limit the purely quantum flu
tuations will play a negligible role also for systems not t
far from equilibrium. We have extended the results obtain
for the probability distribution of a metastable system to u
stable situations. This has been achieved by extrapolating
relevant quantities across the boundary of the spinodal
gion. Because of the linear approximation used for evalu
ing the response of the system to the stochastic force,
fluctuations have a Gaussian probability distribution.

In the final part of this paper we have introduced a p
cedure to determine the size and mass distributions of
domains containing correlated density fluctuations; then
have compared the obtained mass distribution to the yield
light fragments observed in the multifragmentation of hea
nuclei. The procedure proposed here is quite general and
be applied to any Gaussian fluctuation distribution.

Our approach can account both for the observed pow
law distribution and for the value of the effective expone
found experimentally, but for the exponent the agreemen
limited to collisions with beam energies lower tha
;40A MeV. This discrepancy between our predictions a
the observed values of the effective exponent in collisions
higher energies deserves further investigations. A deta
comparison with experiment has shown that our appro
fairly reproduces the measured charge distributions foZ
,30235. Since we are dealing with infinite nuclear matt
we expect to overestimate the number of fragments havin
large fraction of the mass of the emitting source.

Finally, we remark that the obtained mass distributi
contains only one parameter, the ratio between the tim
dependent length scale of domainsL(t) and the mean inter-
particle spacingr 0. This ratio can become large. A mor
detailed comparison of the present model with experime
data could also give an estimate of the time required by
system to break up.
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