R-matrix fits involving levels of ⁸Be

F. C. Barker

Department of Theoretical Physics, Research School of Physical Sciences and Engineering, Australian National University,

Canberra ACT 0200, Australia

(Received 30 March 2000; published 8 September 2000)

R-matrix formulas are used to derive information about levels of ⁸Be and reactions involving ⁸Be. Data from the ⁴He(α ,p) ⁷Li, ⁴He(α ,n) ⁷Be, and ⁷Li(p, α) ⁴He reactions and from $\alpha + \alpha$ elastic scattering are fitted, and a value obtained for the zero-energy *S* factor for ⁷Li(p, α) ⁴He: *S*(0)=58 keV b. Recent measurements and analyses of the ⁷Li($d, \alpha \alpha$)n and ⁷Li(p, γ_0)⁸Be reactions, and calculations concerned with low-lying intruder states in ⁸Be, are discussed with reference to *R*-matrix fits.

PACS number(s): 24.30.-v, 24.10.-i, 21.10.Pc, 27.20.+n

I. INTRODUCTION

In a recent paper, Spitaleri *et al.* [1] used the Trojan-horse method to extract the zero-energy *S* factor for the ⁷Li(p, α)⁴He reaction from measurements of the ⁷Li($d, \alpha \alpha$)n cross section. The value derived by Spitaleri *et al.* differs considerably from that obtained in an *R*-matrix fit to earlier ⁷Li(p, α)⁴He data [2].

R-matrix formulas have been used to fit data for a variety of reactions involving levels of ⁸Be. In addition to this fit to the low-energy ⁷Li(p, α)⁴He data [2], measured values of the ⁷Li(p, α)⁴He total cross section, angular distribution, and analyzing power at higher proton energies have been fitted [3], involving ⁸Be levels in the excitation-energy region from about 16 to 25 MeV. Other ⁸Be levels in this energy range contributed to *R*-matrix fits to ⁷Li(p, γ_0)⁸Be data [4,5]. Lower-lying ⁸Be levels were involved in fitting data from $\alpha + \alpha$ elastic scattering and from reactions such as ⁹Be(p,d)⁸Be and ⁸Li and ⁸B β decay [6–8]; in addition to the well-known 0⁺ ground state, 2⁺ first-excited state at 3 MeV, and pair of isospin-mixed 2⁺ levels at 16.6 and 16.9 MeV, also very broad 0⁺ and 2⁺ intruder states at about 10 MeV were required.

Some of these *R*-matrix fits [2,3] are repeated and modified here, because of the availability of additional data. Other fits [4-8] are discussed in the light of new data and new calculations.

The *R*-matrix fit [2] found S(0)=65 keV b for the ⁷Li(p, α)⁴He zero-energy *S* factor. Later Rolfs and Kavanagh [9] gave $S(0)=52\pm 8$ keV b from their direct measurement of the ⁷Li(p, α)⁴He cross section. Spitaleri *et al.* [1] obtained $S(0)=36\pm 7$ keV b. In their analysis of the ⁷Li($d, \alpha \alpha$)*n* data using the Trojan-horse method, Spitaleri *et al.* made two approximations that seem to be incorrect; they used an l=0 transmission coefficient for the ⁷Li+pCoulomb barrier, and they excluded contributions from the 16.6 and 16.9 MeV levels of ⁸Be. Their approach is discussed in the next section.

The early *R*-matrix fit [2] to the low-energy ${}^{7}\text{Li}(p, \alpha)^{4}\text{He}$ data of Spinka *et al.* [10] gave only moderate agreement with the later measurement by Rolfs and Kavanagh [9]. This fit [2] used some parameter values obtained in the *R*-matrix fit to data over an extended energy range [3]; the latter fit was

subsequently criticized for predicting incorrectly $\alpha + \alpha$ elastic-scattering phase shifts [11] and the ⁴He(α,p)⁷Li(478 keV) cross section [12]. In Sec. III, we repeat and extend this fit [3] to include the more-recent data [11,12], and then repeat the low-energy fit [2] (with some modifications) to include the Rolfs and Kavanagh [9] and other relevant data, in order to get a better value of S(0).

In Sec. IV, we discuss the *R*-matrix fits to low-energy ${}^{7}\text{Li}(p, \gamma_{0})^{8}\text{Be}$ data [4,5] in relation to recent measurements and calculations [13]. Section V discusses calculations [14] that question the existence of the low-lying intruder states in ${}^{8}\text{Be}$ that are required by the *R*-matrix fits to data [6–8].

II. INFORMATION FROM THE ⁷Li($d, \alpha \alpha$)nREACTION

From their ⁷Li($d, \alpha \alpha$)n measurements, Spitaleri *et al.* [1] extracted values of the nuclear part of the ⁷Li(p, α)⁴He cross section by using the Trojan-horse method [15]. The usual two-body cross section was then obtained by multiplying by a Coulomb-barrier transmission coefficient, and normalizing to the measured cross section [9] at the ⁷Li+p c.m. energy $E \approx 300$ keV. For the transmission coefficient, they used the ⁷Li+p penetration factor for relative orbital angular momentum l=0. Decay to two α particles is possible, however, only from positive-parity states of the ⁸Be system, so that only odd values of l can contribute to the ⁷Li(p, α)⁴He cross section, and at low energies one should use the l=1 penetration factor (as was used in an earlier work [16] by the same group). The penetration factor increases with energy more rapidly for l=1 than for l=0, consequently use of the l = 1 factor would lead to an even smaller value of S(0).

Spitaleri *et al.* [1] assumed that only the quasifree breakup part of the ⁷Li($d, \alpha \alpha$)n yield should be included in their calculation of the ⁷Li(p, α)⁴He cross section. They also assumed that sequential decay through the 16.6 and 16.9 MeV levels of ⁸Be "represents an undesired physical background which has to be subtracted ...," but this is open to question. Spitaleri *et al.* represented the quasifree breakup and the sequential decay through states of ⁸Be in their Figs. 1(a) and 1(b). We present these in slightly different form in Fig. 1, where it is assumed that the ⁷Li(d,n) reaction proceeds by stripping; in both parts of Fig. 1, the neutron can be considered as a spectator, so that both represent quasifree

FIG. 1. Representations of possible reaction mechanisms for the reaction ${}^{7}\text{Li}(d,\alpha\alpha)n$: (a) direct three-body breakup, (b) sequential decay through states of ${}^{8}\text{Be}$.

processes. Sequential decay through the 16.6 and 16.9 MeV states of ⁸Be should not be excluded on the grounds that it cannot be quasifree.

As an alternative to the Trojan-horse method, the ⁷Li($d, \alpha \alpha$)n data could be analyzed by using *R*-matrix formulas. The contribution to the cross section for the two-stage reaction ⁷Li(p, α)⁴He due to *N* levels of ⁸Be of given J^{π} can be written [17]

$$\sigma_{p\alpha} = (\pi g/k_p^2) \sum_{sl} \left| \sum_{\lambda,\mu=1}^N \Gamma_{\lambda psl}^{1/2} \Gamma_{\mu\alpha}^{1/2} A_{\lambda\mu} \right|^2$$
(1)

with

$$(\mathbf{A}^{-1})_{\lambda\mu} = (E_{\lambda} - E) \,\delta_{\lambda\mu} - \sum_{c} \,\gamma_{\lambda c} \,\gamma_{\mu c} L_{c}^{0}$$
(2)

and

$$\Gamma_{\lambda psl}^{1/2} = (2 P_l)^{1/2} \gamma_{\lambda psl}, \quad \Gamma_{\mu\alpha}^{1/2} = (2 P_{\alpha J})^{1/2} \gamma_{\mu\alpha}, \quad (3)$$

where s is the ⁷Li+p channel spin. The summations over λ and μ in Eq. (1) cover both bound and unbound levels in the ⁷Li+p channel. The summation over c in Eq. (2) covers all decay channels, including *psl* and α . The yield of the ⁷Li(d, $\alpha\alpha$)n reaction due to the same N levels can be written, as a function of E [18],

$$\sigma_{dn,\alpha} \propto \sum_{x} \left| \sum_{\lambda,\mu=1}^{N} G_{\lambda x}^{1/2} \Gamma_{\mu\alpha}^{1/2} A_{\lambda\mu} \right|^{2}, \qquad (4)$$

where $G_{\lambda x}^{1/2}$ is a feeding amplitude and x labels the quantum numbers for the formation process that give incoherent contributions. For sufficiently high deuteron energies, $G_{\lambda x}$ is a slowly-varying function of E. If the ⁷Li(d,n) reaction proceeds by stripping, then one has

$$G_{\lambda x}^{1/2} \propto \gamma_{\lambda psl}$$
 (5)

The formula (4) applies for energies *E* above and below the ${}^{7}\text{Li}+p$ threshold. For energies above the threshold, if only one *l*-value contributes significantly, one has from Eqs. (1), (3), (4), and (5)

$$\sigma_{p\alpha} \propto (1/E) P_l \sigma_{dn,\alpha}. \tag{6}$$

It may be noted that $\sigma_{dn,\alpha}$ contains contributions from ⁸Be levels above and below the threshold, and the same applies to $\sigma_{p\alpha}$. It seems that Spitaleri *et al.* [1] were not justified in excluding contributions from the subthreshold 16.6 and 16.9 MeV levels.

III. *R*-MATRIX FIT TO ${}^{7}\text{Li}(p, \alpha)^{4}\text{He}$ AND RELATED DATA

In the previous *R*-matrix fit to low-energy ${}^{7}\text{Li}(p,\alpha)^{4}\text{He}$ data [2], a three-level approximation was used, and the data consisted of values of the total cross section and angulardistribution coefficients for $E_{p} \lesssim 600 \text{ keV}$. Parameter values for one of the levels were taken from an earlier fit to moreextensive data, including analyzing-power coefficients, for $E_{p} \lesssim 7 \text{ MeV}$ [3].

This earlier fit [3] involved two 0⁺ levels and four 2⁺ levels, with contributions from proton and neutron channels corresponding to the ground and first-excited states of ⁷Li and ⁷Be, as well as the $\alpha + \alpha$ channel. The formulas were modified to take account of very broad background levels, which contributed to the general trend of the real part of the $\alpha + \alpha$ phase shifts [6,7]. The imaginary parts of the phase shifts and sharp changes in the real parts were not included in the fitted data, also no data directly involving the ⁷Li excited state or either state of ⁷Be were included. Hence it is not surprising that the predictions of the phase shifts [11] and of cross sections for the ⁴He(α, p)⁷Li(478 keV) reaction [12].

Here the calculations of Ref. [3] are modified, with the fitted data including the ${}^{4}\text{He}(\alpha,p)^{7}\text{Li}$ total cross sections and angular distribution coefficients for both states of ⁷Li [12], the ⁴He(α , n)⁷Be total cross section (summed over the two ⁷Be states) [12], the $\alpha + \alpha$ elastic-scattering complex phase shifts [11], as well as the analyzing-power data used in Ref. [3]. These data are shown in Figs. 2–6, together with the *R*-matrix best fit. The ${}^{4}\text{He}(\alpha,p)$ and ${}^{4}\text{He}(\alpha,n)$ data cover the full range given in Ref. [12] (for E_{α} values from about 39 MeV to 49 MeV). In addition, because we are here particularly interested in the low-energy region, we include values of the ${}^{4}\text{He}(\alpha,p){}^{7}\text{Li}(g.s.)$ total cross section and angular-distribution coefficients for $E_{\alpha} \approx 35-38$ MeV obtained from the ⁷Li(p, α)⁴He data used in Ref. [3]. The analyzing-power measurements cover the range $E_{\alpha} = 36$ -47 MeV. These sets of data include values of the experimental uncertainties. The real parts of the phase shifts δ_I and the inelasticities η_J are given in Ref. [11] at closely spaced energies for $E_{\alpha} = 30 - 70$ MeV, without uncertainties. We use the values of δ_I and η_I (J=0,2,4) for E_{α} between 35

FIG. 2. Total cross section for the ${}^{4}\text{He}(\alpha,p)^{7}\text{Li}$ reaction as a function of α -particle energy. The experimental points [12] are for production of the ⁷Li ground state (circles) and first-excited state (crosses). The ground-state points are extended to lower energies by using ⁷Li(p, α)⁴He data [3] (squares). The curves are *R*-matrix best fits to the data shown in Figs. 2–6; ground state (solid line), excited state (dashed line).

and 49 MeV, at intervals of 0.5 or 1.0 MeV, measured from Fig. 1 of Ref. [11], with uncertainties assigned rather arbitrarily $(\pm 2^{\circ}, \pm 10^{\circ}, \text{ and } \pm 5^{\circ} \text{ for } \delta_0, \delta_2, \text{ and } \delta_4, \text{ respec-}$ tively, and ± 0.02 for each η_J).

 $E_{\alpha} \ (MeV)$

FIG. 4. Total cross section for the ${}^{4}\text{He}(\alpha, n)^{7}\text{Be}$ reaction (sum of ground-state and excited-state contributions), as a function of α -particle energy. The experimental points are from Ref. [12], and the curve is for the *R*-matrix best fit as in Fig. 2.

We include two 0^+ levels, four 2^+ levels, and one 4^+ level. As in Ref. [3], each level is assumed to be T=0. The lower 0^+ level at about 20 MeV and the three lowest 2^+ levels are closely related to those used in Ref. [3]. The lowest 2^+ level represents the known 2^+ levels at 16.6 and 16.9

FIG. 5. Analyzing-power coefficients A_L for the ${}^{7}\text{Li}(p,\alpha)^{4}\text{He}$ reaction, as functions of the equivalent α -particle energy for the inverse reaction. The experimental points are from Ref. [3], and the curves are for the *R*-matrix best fit of Fig. 2.

FIG. 6. (a) Real parts δ_J of the $\alpha + \alpha$ scattering phase shifts and (b) inelasticities η_J as functions of α -particle energy. The points are from Ref. [11], with the assigned uncertainties not shown when less than the symbol size.

MeV, which lie below the ⁷Li+*p* threshold, and the other two are at about 20 and 22 MeV. A feature of the present data not apparent in the data available in Ref. [3] is that each of the inelasticities η_0 and η_2 shows a steady decline from its low-energy value of unity as the energy increases, with rapid fluctuations due to narrow levels superimposed. These trends lead us to introduce broad background 0⁺ and 2⁺ levels, which we locate at $E_x=30$ MeV ($E_{\alpha}\approx60$ MeV). A 4⁺ level near 20 MeV is needed to fit the δ_4 and η_4 data. As in Ref. [3], trends in the real phase shifts δ_J are accounted for by factors $Q_{\alpha J}$ (J=0,2,4) attributed to additional broad

TABLE II. Background-parameter values for *R*-matrix fits to ${}^{4}\text{He}(\alpha, p){}^{7}\text{Li}$ and other data.

J^{π}	E_0 (MeV)	α_J (deg)	β_J (deg MeV ⁻¹)
0^{+}	20.5	35.0	-4.50
2^{+}	20.5	424.0	-2.00
4+	20.5	152.0	-4.00

levels of ⁸Be with reduced widths large for the α channel and zero for all other channels [6,7]. Also, as in Ref. [3], *p*and *f*-wave nucleons are included (*l*=1,3), we use B_c equal to -l for nucleon channels and zero for α channels, and the channel radii are taken as 4.22 fm for nucleon channels and 6.0 fm for α channels. This value of the α channel radius was chosen to be reasonably near to the values obtained from fitting scattering and reaction data [6,7] (see Sec. V).

The best-fit level-parameter values are given in Table I. The notation is as in Ref. [3]; the level parameters are the eigenenergy E_{λ} of level λ for each J value, and reducedwidth amplitudes $\gamma_{\lambda psl}$ for the ⁷Li+p ground-state channel, $\gamma_{\lambda pl}$ for the excited-state channel (with s=1), and $\gamma_{\lambda \alpha}$ for the $\alpha + \alpha$ channel. In all, 35 parameters were varied, not all at the same time. Also slight adjustments were made to the background phase shifts $\overline{\delta}_J$, which are represented by [19]

$$\overline{\delta}_J = \alpha_J + \beta_J (E - E_0), \tag{7}$$

where *E* is here the c.m. energy in the $\alpha + \alpha$ channel; the best-fit values of α_J and β_J are shown in Table II. It is possible that better fits could be obtained with parameter values different from those in Tables I and II, but the present set seems to reproduce the data sufficiently well. The biggest systematic discrepancy, for the ${}^{4}\text{He}(\alpha,n){}^{7}\text{Be}$ cross section shown in Fig. 4, is presumably due mainly to the assumption of T=0 for all levels.

The previous fit [2] to the low-energy ${}^{7}\text{Li}(p,\alpha)^{4}\text{He}$ data assumed that contributions came only from three 2⁺ levels of ${}^{8}\text{Be}$, at 16.6, 16.9, and about 20 MeV, and that *f*-wave nucleon channels could be neglected. The parameter values for the 20 MeV level were taken from the earlier fit [3] to the higher-energy data, after allowance for a different choice of B_{c} values. For the 16.6 and 16.9 MeV levels, the nucleon

TABLE I. Level-parameter values for *R*-matrix fits to ${}^{4}\text{He}(\alpha,p){}^{7}\text{Li}$ and other data. $a_{l}=4.22$ fm, $a_{\alpha}=6.0$ fm, $B_{l}=-l$, $B_{\alpha}=0.0$. Eigenenergies are given in MeV, reduced-width amplitudes in MeV^{1/2}.

J^{π}	λ	E_{λ}	$\gamma_{\lambda p 11}$	$\gamma_{\lambda p 21}$	$\gamma_{\lambda p 13}$	$\gamma_{\lambda p23}$	$\gamma_{\lambda p1}$	$\gamma_{\lambda p3}$	$\gamma_{\lambda \alpha}$
0^+	1	21.01	0.033	0.0	0.0	0.0	-0.707	0.0	0.321
	2	30.0	2.047	0.0	0.0	0.0	0.314	0.0	-0.525
2^{+}	1	15.85	0.091	0.388	-0.332	-1.101	0.006	-0.472	0.225
	2	20.17	-0.170	0.270	-0.297	0.123	0.322	0.048	0.226
	3	22.29	-0.028	-0.397	-0.089	0.034	-0.080	0.115	-0.142
	4	30.0	0.834	0.172	0.638	0.064	0.468	1.506	-0.188
4+	1	20.42	0.0	0.0	-0.049	-0.008	0.0	0.072	0.305

TABLE III. Level-parameter values for 2⁺ states of ⁸Be. $a_1 = 4.22$ fm, $a_{\alpha} = 6.0$ fm, $B_1 = -1.60$, $B_{\alpha} = 0.0$. Eigenenergies are given in MeV, reduced-width amplitudes in MeV^{1/2}.

E_{λ}	$\gamma_{\lambda p 11}$	$\gamma_{\lambda p21}$	$\gamma_{\lambda p 1}$	$\gamma_{\lambda n 11}$	$\gamma_{\lambda n 21}$	$\gamma_{\lambda n 1}$	$\gamma_{\lambda lpha}$
16.76	0.605	1.137	0.093	0.264	0.378	0.041	0.103
16.85	-0.264	-0.378	-0.041	-0.605	-1.137	-0.093	0.081
20.75	-0.228	0.320	0.318	0.228	-0.320	-0.318	0.209
31.01	0.836	0.183	0.469	-0.836	-0.183	-0.469	-0.184

reduced-width amplitudes were assumed to be related by the two-state isospin-mixing model, with approximately maximal mixing, and values of small amplitudes were taken from shell-model calculations. The energies and α -particle reduced-width amplitudes of these levels were determined by fitting the positions and widths that had been obtained earlier [7]. Only three parameters were varied in fitting the ⁷Li(p, α)⁴He data, which included the total cross section measured by Spinka *et al.* [10] at four energies with $E_p = 130-561$ keV.

We now modify this fit in several respects. Later measurements of the ⁷Li(p, α)⁴He S factor by Rolfs and Kavanagh [9] covered the range $E_{c.m.} = 24.6 - 873$ keV $(E_p \approx 30)$ -1000 keV), with angular distributions measured for E_p =50-900 keV. Other measurements are available at these and even lower energies. Harmon [20] gave $S(0) = 49 \pm 2$ keV b from his cross section measurements for $E_p = 20$ -250 keV, but his results are normalized to the S factor for the ⁶Li(p, α)³He cross section, which he apparently assumed to have the same angular distribution as ⁷Li(p, α)⁴He. Engstler *et al.* [21] gave the S factor for $E_{\text{c.m.}} = 12.7 - 1000$ keV and the angular distribution for $E_{\text{c.m.}} = 26 - 1000 \text{ keV}$; for $E_{\text{c.m.}} \leq 50 \text{ keV}$, the S factor is enhanced considerably by electron screening. We fit the Rolfs and Kavanagh data [9], in addition to those of Spinka et al. [10] (including their values of the angular-distribution coefficient as given by Rolfs and Kavanagh). The positions and widths of the 16.6 and 16.9 MeV levels are now given very precisely by the $\alpha + \alpha$ elastic-scattering measurements of Hinterberger *et al.* [19]. They used a simplified two-level *R*-matrix formula to fit their data, and gave the resultant values of the level parameters. As we use R-matrix formulas that have energy-dependent penetration and shift factors, and include contributions from nucleon channels, we cannot make direct use of their parameter values. Instead we construct the $\alpha + \alpha$ d-wave phase shift for $E_{\alpha} = 32 - 36$ MeV $(E_{c.m.} \leq 654 \text{ keV})$ from the parameter values given in their Tables I and IV, and then include these phase shift values, with assigned uncertainties of $\pm 2^{\circ}$, in the fitted data.

In addition to the three 2^+ levels at 16.6, 16.9, and about 20 MeV that were used before [2], we include the broad

TABLE IV. Background-parameter values for 2^+ states of ⁸Be.

E_0 (MeV)	α_2 (deg)	$\beta_2 \; (\text{deg MeV}^{-1})$
16.84	77.61	-5.33

background 2⁺ level at about 30 MeV. The factors $Q_{\alpha 2}$ are included as before. Because of the additional data, we allow variations in more parameters than the three allowed before, but still relate neutron reduced-width amplitudes to proton reduced-width amplitudes in the same way.

The best-fit values of the parameters are given in Tables III and IV, and the corresponding fits to the data are shown in Figs. 7–9. It is interesting that the angular-distribution coefficient B_2 shown in Fig. 8 becomes negative for $E_{c.m.} \leq 100$ keV, although Rolfs and Kavanagh apparently assumed $B_2 \rightarrow 0$ as $E_{c.m.} \rightarrow 0$. The change of sign is in agreement with the measurements of Engstler *et al.* [21], which were not included in the fit. From our *R*-matrix fit we obtain S(0)=58 keV b. This agrees with the value 58.7 keV b given by Engstler *et al.* from a polynomial fit to previous data (essentially from Rolfs and Kavanagh) for $E_{c.m.} \ge 100$ keV. It seems that the value of S(0) obtained by Spitaleri *et al.* [1] is much too low.

IV. THE ⁷Li(p, γ_0)⁸Be S FACTOR

In a recent measurement, Spraker *et al.* [13] found a negative slope for the ⁷Li(p, γ_0)⁸Be *S* factor for proton energies between 40 and 100 keV. This appears to be not inconsistent with the measurement of Zahnow *et al.* [22] for $E_p = 100 - 1500$ keV; their *S* factor is approximately constant up to about 250 keV. Cecil *et al.* [23] found a constant *S* factor for $E_p = 40 - 170$ keV.

FIG. 7. *S* factor for the ${}^{7}\text{Li}(p,\alpha){}^{4}\text{He}$ reaction as a function of the ${}^{7}\text{Li}+p$ c.m. energy. The experimental points are from Ref. [9] (open circles) and Ref. [10] (filled squares). The curve is the *R*-matrix best fit to the data shown in Figs. 7–9.

FIG. 8. Angular-distribution coefficient B_2 (denoted by a_2 or A_2 in Ref. [9]) as a function of the ⁷Li+*p* c.m. energy. The points and curve have the same meaning as in Fig. 7.

An *R*-matrix fit to ${}^{7}\text{Li}(p, \gamma_{0})^{8}\text{Be}$ data, including the *S* factor, angular distribution, and analyzing power, over a wide energy range $(E_{p} \leq 1500 \text{ keV})$, found a positive slope of the low-energy *S* factor [5]. This fit included *M*1 contributions from two 1⁺ levels of ${}^{8}\text{Be}$ (the 17.64 and 18.15 MeV levels), and *E*1 contributions from two 1⁻ levels (the GDR and a lower-lying *T*=1 level). All of these levels lie above the region of low proton energies, and this is essentially the reason for the positive slope of the *S* factor.

Spraker *et al.* [13] seek to explain their observed negative slope by including an *E*2 contribution from the 2^+ , 16.6 MeV level of ⁸Be, which lies below the ⁷Li+*p* threshold. They say "The influence of this state has not been included in previous work." In Ref. [4], however, possible contributions from the 16.6 and 16.9 MeV levels were considered, and estimated to be less than 1% of the observed *S* factor. This upper limit is reduced by using more-recent experimental values for the *E*2 ground-state γ widths of the 16.6 and 16.9 MeV levels [24].

FIG. 9. Real part δ_2 of the $\alpha + \alpha$ *d*-wave scattering phase shift as a function of α -particle energy. The points are obtained from the parameter values in Ref. [19]. The curve has the same meaning as in Fig. 7.

Nevertheless, Spraker *et al.* claim that they can obtain agreement with their observed negative slope, in a model that contains contributions only from direct *E*1 capture and from the 16.6 MeV level; however, this model and extensions of it do not describe other observed quantities such as the angular distribution and analyzing power for ${}^{7}\text{Li}(p, \gamma_{0})^{8}\text{Be}$ [13].

Spraker *et al.* assumed a linear function of energy to fit their low-energy *S* factor

$$S(E_{\rm c.m.}) = S_0 + S_1 E_{\rm c.m.} \,. \tag{8}$$

With their data normalized to those of Zahnow *et al.* [22] at $E_p = 98.3 \text{ keV}$, they obtained $S_0 = 0.50 \pm 0.07 \text{ keV}$ b and $S_1 = (-9.5 \pm 3.2) \times 10^{-4}$ b, giving $S_1/S_0 = -1.9 \text{ MeV}^{-1}$. [For ⁷Li(p, γ_1)⁸Be, they obtained $S_1/S_0 = -1.3 \text{ MeV}^{-1}$.] The *R*-matrix fit [5] gave $S_1/S_0 = 0.5 \text{ MeV}^{-1}$.

In support of their negative slope, Spraker et al. gave their results for the S factor for ${}^{7}\text{Li}(p,\alpha)^{4}\text{He}$, which they measured at the same time-with normalization to the results of Rolfs and Kavanagh [9], they found $S_0 = 49 \pm 4.4$ keV b and $S_1 = 0.036 \pm 0.003$ b, or $S_1/S_0 = 0.7$ MeV⁻¹. They say that their results are in excellent agreement with those of Rolfs and Kavanagh, who gave $S_0 = 52 \pm 8$ keV b, but did not give a value of S_1 . The *R*-matrix fit to the Rolfs and Kavanagh data shown in Fig. 7 gives $S_1/S_0 = 2.9 \text{ MeV}^{-1}$ for the energy range $E_p = 40 - 100$ keV. Similarly the polynomial fit of Engstler et al. [21] gives $S_1/S_0 = 3.2 \text{ MeV}^{-1}$. The discrepancy for ⁷Li(p, α)⁴He between the S_1/S_0 values of Spraker et al. (0.7) and the fits to the Rolfs and Kavanagh data (2.9 and 3.2) is about the same as that for ${}^{7}\text{Li}(p, \gamma_{0}){}^{8}\text{Be}$ between the S_1/S_0 values of Spraker *et al.* (-1.9) and the *R*-matrix calculation [5] (0.5). This might lead one to question the claim by Spraker et al. that "there is not a systematic problem in this technique which produces negative slopes.'

Spraker *et al.* [13] also measured the ⁷Li(p, γ_0)⁸Be analyzing power at 90°. From their Fig. 5, this decreases from 0.42 to 0.12 as E_p decreases from 80 to 40 keV (although the text says the decrease is from 0.4 to about 0.25). From the formulas in Ref. [5], $A_y(90^\circ) = b_1/(1 - \frac{1}{2}a_2) \approx b_1$ (since a_2 is very small), and the *R*-matrix fit [5] to higher-energy data predicts a decrease from 0.38 to 0.35 as E_p decreases from 80 to 40 keV.

V. USE OF *R*-MATRIX FORMULAS IN CALCULATIONS FOR ⁸Be BELOW THE ⁷Li+*p* THRESHOLD

The *R*-matrix fits of Secs. III and IV depend explicitly on properties of ⁸Be levels in the energy region near and above the ⁷Li+*p* threshold. The fits of Sec. III also involve properties of ⁸Be levels below this threshold; the factors $Q_{\alpha J}$ are attributed [3] to broad levels of ⁸Be that were required in earlier *R*-matrix fits [6,7]. These fits were made to $\alpha + \alpha$ elastic-scattering phase shifts and to data from reactions in which ⁸Be is an unstable product nucleus, decaying to two α particles, e.g., ⁹Be(p,d)⁸Be(α) ⁴He, and from ⁸Li and ⁸B β decay. In order to obtain consistent fits to the scattering and reaction data, the $\alpha + \alpha$ channel radius a_{α} needed to be large, about 6.5 or 7.0 fm, and this large value implied the existence of excited 0^+ and 2^+ states of ⁸Be at about 10 MeV excitation energy. These states were very broad, and had to be interpreted as intruder states, as they could not belong to the lowest $(1s^41p^4)$ shell-model configuration. Warburton [25] sought to avoid such low-lying intruder states by using a smaller channel radius (4.5 fm), but he could not then consistently fit the scattering and reaction data with the same values of the *R*-matrix parameters.

Recently, Fayache et al. [14] have queried the existence of low-lying intruder states in ⁸Be. They carried out shellmodel calculations including higher configurations [(0+2)] $(+4)\hbar\omega$ and also made deformed-oscillator model calculations; they did not find any low-lying intruder states in ⁸Be, although they did in the neighboring nuclei ¹⁰Be and ¹²C. In a Comment [26] on this work, it was argued that their models were not sufficiently realistic for a decision to be possible on whether or not such intruder states exist in ⁸Be, but a Reply [27] to the Comment argued that the calculations were relevant. In particular, the Reply says "We therefore feel that we made ... a very solid case to the effect that there are no low-lying intruders in ⁸Be." If such states do not exist, the justification for the calculations of Sec. III would be considerably weakened. It seems, however, that several of the arguments used by Fayache et al. [27] to support their conclusion are open to question.

Fayache *et al.* [27] claim that more-realistic shell-model calculations using the Arizona interaction [28] give results that completely agree with theirs. These calculations for ⁸Be and similar ones for ¹⁰Be [29] do give results that agree with those that Fayache *et al.* [14] obtained for their interaction (c), for which the lowest calculated intruder state was near 30 MeV for both ⁸Be and ¹⁰Be, but do not agree at all with the results for their interactions (a) and (b), on which Fayache *et al.* based their conclusion that finding low-lying intruder states in ¹⁰Be does not prove that they are also present in ⁸Be. As is said in the Comment [26], such shell-model calculations [14,28,29] using a harmonic-oscillator basis would not be expected to predict states of the type suggested by the *R*-matrix fits to ⁸Be data [6,7], as they are very unbound.

Also Fayache *et al.* [27] suggest ambiguity in the *R*-matrix analysis [6,7], by saying that there is uncertainty in how the parameters should be chosen and referring to a recent analysis of *s*-wave $\alpha + \alpha$ scattering by Humblet *et al.* [30], which found no evidence for the existence of a resonance near 9 MeV. This analysis [30] adopted a channel radius of 6 fm and consequently the values of the *R*-matrix parameters were comparable with those in Ref. [6], including an *R*-matrix pole near 9 MeV. At this pole energy, the resonant phase shift $\beta = \delta - \phi$ increases through 90°. Humblet *et al.* [30] defined a physical resonance by requiring the total phase shift δ to increase through 90°, and it is obvious that there is no "resonance" near 9 MeV, but this does not imply any ambiguity in the *R*-matrix parameter values.

In seeking to understand why some of their calculations gave low-lying intruder states in ¹⁰Be and ¹²C but not in ⁸Be, Fayache *et al.* [14] considered the Nilsson diagram. They said that intruder states in ¹⁰Be and ¹²C are formed by

FIG. 10. Nilsson diagram (from Ref. [31]). Eigenenergies (in units of $\hbar \omega_0$) as functions of the deformation parameter β . The arrows indicate nucleon excitations involved in the formation of intruder states in ⁸Be (β >0) and ¹²C (β <0).

taking nucleons from upward-going lines, whereas for ⁸Be the nucleons must be taken from a down-going line, which costs much more energy. To illustrate this they show, however, only the prolate side of the Nilsson diagram. Since their ¹⁰Be ground state is triaxial and ¹²C is oblate, it is not at all clear that their argument is valid, even though the Reply [27] insists that it is. For ¹²C on the oblate side, the line from which the nucleons must come is also down-going (for increasing $|\beta|$); as illustrated in Fig. 10, the excitation energy required to form an intruder state in ¹²C is about the same as that for ⁸Be on the prolate side, for the same value of $|\beta|$.

Fayache *et al.* [27] say that an intruder state in ⁸Be can be formed only by exciting one of the α particles. If, however, the ⁸Be ground state is regarded as a 3*s* oscillation of two α particles, then a 0⁺ intruder state can be formed by a 4*s* oscillation, without exciting either α particle.

It seems that model calculations of the type performed by Fayache *et al.* [14] and the supporting arguments that they give [14,27] are not adequate for reliable conclusions to be drawn on whether or not there are low-lying intruder states in ⁸Be. The situation remains that consistent *R*-matrix fits to scattering and reaction data require such states.

VI. SUMMARY

R-matrix formulas have been used and can be used to fit data for various reactions involving ⁸Be and to give information about levels of ⁸Be.

The ⁷Li($d, \alpha \alpha$)n measurements of Spitaleri *et al.* [1] could be fitted and the ⁷Li(p, α)⁴He *S* factor derived using the *R*-matrix formulas of Sec. II, as an alternative to the Trojan-horse method that they adopted.

A large amount of data from the ${}^{4}\text{He}(\alpha,p){}^{7}\text{Li}$, ${}^{4}\text{He}(\alpha,n){}^{7}\text{Be}$, and ${}^{7}\text{Li}(p,\alpha){}^{4}\text{He}$ reactions and from $\alpha + \alpha$ scattering is fitted in Sec. III, and a value obtained for the

zero-energy *S* factor for the ⁷Li(p, α)⁴He reaction *S*(0) = 58 keV b. This is somewhat less than the value 65 keV b obtained in an earlier *R*-matrix fit [2], but much larger than the recent value 36±7 keV b given by Spitaleri *et al.* [1].

The suggestions by Spraker *et al.* [13] that the slope of the low-energy *S* factor for the ⁷Li(p, γ_0)⁸Be reaction is negative, in contradiction with the prediction of an *R*-matrix

- C. Spitaleri, M. Aliotta, S. Cherubini, M. Lattuada, Dj. Miljanić, S. Romano, N. Soic, M. Zadro, and R. A. Zappalà, Phys. Rev. C 60, 055802 (1999).
- [2] F. C. Barker, Astrophys. J. 173, 477 (1972).
- [3] N. Kumar and F. C. Barker, Nucl. Phys. A167, 434 (1971).
- [4] F. C. Barker, Aust. J. Phys. 48, 813 (1995).
- [5] F. C. Barker, Aust. J. Phys. 49, 1081 (1996).
- [6] F. C. Barker, H. J. Hay, and P. B. Treacy, Aust. J. Phys. 21, 239 (1968).
- [7] F. C. Barker, Aust. J. Phys. 22, 293 (1969).
- [8] F. C. Barker, G. M. Crawley, P. S. Miller, and W. F. Steele, Aust. J. Phys. 29, 245 (1976).
- [9] C. Rolfs and R. W. Kavanagh, Nucl. Phys. A455, 179 (1986).
- [10] H. Spinka, T. Tombrello, and H. Winkler, Nucl. Phys. A164, 1 (1971).
- [11] A. D. Bacher, F. G. Resmini, H. E. Conzett, R. de Swiniarski, H. Meiner, and J. Ernst, Phys. Rev. Lett. 29, 1331 (1972).
- [12] C. H. King, S. M. Austin, H. H. Rossner, and W. S. Chien, Phys. Rev. C 16, 1712 (1977).
- [13] M. Spraker, R. M. Prior, M. A. Godwin, B. J. Rice, E. A. Wulf, J. H. Kelley, D. R. Tilley, and H. R. Weller, Phys. Rev. C 61, 015802 (1999).
- [14] M. S. Fayache, E. Moya de Guerra, P. Sarriguren, Y. Y. Sharon, and L. Zamick, Phys. Rev. C 57, 2351 (1998).
- [15] G. Baur, Phys. Lett. B 178, 135 (1986).
- [16] G. Calvi et al., Nucl. Phys. A621, 139c (1997).

fit to higher-energy data [5], and that this can be attributed to a contribution from the subthreshold 16.6 MeV level of ⁸Be, are questioned in Sec. IV.

It is suggested in Sec. V that arguments [14,27] against the existence of low-lying intruder states in ⁸Be, which are required by consistent *R*-matrix fits to scattering and reaction data, are not convincing.

- [17] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
- [18] F. C. Barker, Aust. J. Phys. 20, 341 (1967).
- [19] F. Hinterberger, P. D. Eversheim, P. von Rossen, B. Schüller, R. Schönhagen, M. Thenée, R. Görgen, T. Braml, and H. J. Hartmann, Nucl. Phys. A299, 397 (1978).
- [20] J. F. Harmon, Nucl. Instrum. Methods Phys. Res. B 40/41, 507 (1989).
- [21] S. Engstler, G. Raimann, C. Angulo, U. Greife, C. Rolfs, U. Schröder, E. Somorjai, B. Kirch, and K. Langanke, Z. Phys. A 342, 471 (1992); Phys. Lett. B 279, 20 (1992).
- [22] D. Zahnow, C. Angulo, C. Rolfs, S. Schmidt, W. H. Schulte, and E. Somorjai, Z. Phys. A 351, 229 (1995).
- [23] F. E. Cecil, D. Ferg, H. Liu, J. C. Scorby, J. A. McNeil, and P. D. Kunz, Nucl. Phys. A539, 75 (1992).
- [24] L. de Braeckeleer et al., Phys. Rev. C 51, 2778 (1995).
- [25] E. K. Warburton, Phys. Rev. C 33, 303 (1986).
- [26] F. C. Barker, Phys. Rev. C 59, 2956 (1999).
- [27] M. S. Fayache, E. Moya de Guerra, P. Sarriguren, Y. Y. Sharon, and L. Zamick, Phys. Rev. C 59, 2958 (1999).
- [28] S. Karataglidis (private communication).
- [29] P. Navrátil and B. R. Barrett, Phys. Rev. C 57, 3119 (1998).
- [30] J. Humblet, A. Csótó, and K. Langanke, Nucl. Phys. A638, 714 (1998).
- [31] J. P. Davidson, Collective Models of the Nucleus (Academic, New York, 1968), p. 190.