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The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central
heavy ion reactions are parametrized in terms of time-dependent thermodynamical variables in the Fermi liquid
sense. This allows one to discuss dynamical trajectories in phase space. The nonequilibrium state is charac-
terized by nonisobaric, nonisochoric, etc., conditions, shortly called isonothing conditions. Therefore a com-
bination of thermodynamical observables is constructed which allows one to locate instabilities and points of
possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time
surface-dominated instability and later a spinodal-dominated volume instability. The latter one occurs only if
the incident energies do not exceed significantly the Fermi energy and might be attributed to spinodal decom-
position. In contrast the fast surface explosion occurs far outside the spinodal region and pertains also in the
cases where the system develops too fast to suffer a spinodal decomposition and where the system approaches
equilibrium outside the spinodal region.

PACS numbgs): 25.70.Pq, 05.70.Ln, 05.20.Dd, 24.10.Cn

[. INTRODUCTION netic theory without additional fluctuations of Langevin
sources. While this is perfectly microscopical controlled we
The collisions of heavy ions around the Fermi energy andchave to leave out the possibility of describing fragment pro-
the description of multifragmentation phenomena are thealuction. In contrast we will investigate the thermodynamical
subject of an enormous amount of literature. Mostly the mul4rajectories as arising straight from the solved kinetic equa-
tifragmentation is attributed to a hypothetical liquid-gastion as a Fermi liquid. Therefore no coalescence or other
phase transition which is partially supported by mean fieldcluster creation mechanisms are used. This allows us to re-
considerations in equilibrium where the nonlinear density destrict to the single particle distribution if the two-particle
pendence of the interaction energy leads to a liquid-gas-likgorrelations are included in the collision integral. This is per-
first order phase transition. Therefore, the phenomena havgrmed in the frame of the nonlocal kinetic theory. Since we
been investigated in terms of a spinodal decompositionyant to study the dynamical constraints of phase transitions
However this straightforward picture is overshadowed by aks necessary but not sufficient conditions we can expect al-
least two serious drawbacks. First_we have to deal wi_th ﬁnite;.eady from the kinetic theory an answer as to whether the
systems, where the phase transition appears modified andstem will undergo spinodal decomposition or other forms

less pronounced than in infinite bulk matter. Second, Wey jocomposition. In fact we will demonstrate that there is a

have to face the fact that the process evolves under eXUeME minant surface emission at higher energies than the Fermi

nonequilibrium qond|t|ons. For a critical discussion of r_ecentenergy while the spinodal decomposition can be accessed
models on multifragmentation see REL]. We want to in- . .
only for energies lower than or equal to the Fermi energy.

vestigate the latter two points here and will use a micro-F hiah ies th ¢ | too fast th h th
scopic approach which allows one to describe the time evo- OF MINEr energies the system evolves 1o 1ast through the

lution of the one-particle distribution function including SPincdal region to be influenced sufficiently by spinodal de-
binary correlations. We will suggest a possibility of analyz- omposition. _ _ _
ing phase transitions in terms of time-dependent thermody- 1here are two experimental hints for two different re-
namical variables and will be able, in this way, to see signalgimes of instability in heavy ion collisions around Fermi
of instability in nonequilibrium and finite systems. energy. The first one concerns the emulsion data recorded in
The standard treatment to investigate basic features d¢he experiment by Schussler al. which has been considered
multifragmentation processes is performed in terms of flucin Ref. [14]. There the fragments with charge>2 have
tuation analysis starting from the Landau equafi2r4] or  been grouped into two different velocities, one around ©.16
BUU equationg5,6]. Observing that these kinetic equations and the other with 0.25 A possible interpretation has been
do not lead to enough fluctuations to describe multifragmenadvocated that the higher velocity group comes from frag-
tation, additional stochasticity has been assumed and incoments emitted at an early stage from the surface. The TDHF
porated resulting in Boltzmann-Langevin picturgs-12]. calculations seemed to support this picture.
The large time scale of fluctuations has been analyzed in Ref. A second experimental signal comes from the production
[13]. Itis found that the large time evolution of the system isof hard photons as measured by the TAPS Collaboration
guided by cooperative effects and fluctuations in a universdll5]. The extracted source sizes by HBT interferometry have
manner. The crucial role of collision rate has been pointeeen found to be too large if two sources are not assumed.
out in that it enforces the diffusive regime. Moreover the calculated photon spectra shows a clear prompt
We will adopt here a straight microscopic picture of ki- source of hard photons besides later thermal photons. The
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latter second source vanishes for incident energies larg@msures that the conservation laws contain, in addition to the
than 60 MeV. This indicates already that there is a transitiormean-field correlations, the two particle correlations.
between two mechanisms of particle production and instabil- Despite its complicated form it is possible to solve this
ity if the bombarding energy exceeds 50—-60 MeV. kinetic equation with standard Boltzmann numerical codes
We will show that indeed there can be identified twoand to implement the shift20]. Therefore we have calcu-
mechanisms: at short times a surface dominated emissidated the shifts for different realistic nuclear potentig4].
and at later times a volume dominated spinodal decomposiFhe numerical solution of the nonlocal kinetic equation has
tion. For low energies we will find that the volume spinodal shown an observable effect in the dynamical particle spectra
effects are visible while for higher energies only the surfaceat around 10%. The high energetic tails of the spectrum are

emission survives. enhanced due to more energetic two-particle collisions in the
early phase of nuclear collision. Therefore the nonlocal cor-
Il. KINETIC DESCRIPTION rections lead to an enhanced production of preequilibrium

high energy particles.
We use for the description the recently derived nonlocal In addition to the nonlocal shifts and cross section which
kinetic equation[16] for the one-particle distribution func- have been calculated from realistic potentials we adopt here

tion the view that the self-energy is parametrized in terms of
the Skyrme potential for which we use a soft potential of the
(9f1 (?81 0"fl 0"81 (?fl form
gt ok g ar gk
d p2+A n)-‘rB n)g (3)
pdq €= 5m N n.l -
= g1t e0— 83— 84+ 2A)| Tapl? 2m No No
EI(ZWSﬁY(l 2= 83— 84+ 2A¢) | Ty
—[fafa(1—F)(1—Fp)—(1—Fa)(1—F4)f4fs], (1) For a derivation of collision integrals and the Skyrme poten-

tial (3) from the same microscopic footing, see Re2].

with Enskog-type shifts of argumentd6]: f,=f.(k,r,t),
fo=f,(p,r—A,,1), fy=fu(k—q—Ax,r—Az,t—A), and A. Balance equations
fi=fp(p+q—Ax,r—A4,t—A,). The effective scattering
measure, th€ matrix, is centered in all shifts. The quasipar-
ticle energys contains the mean field as well as the corre-
lated self-energy.

In agreement with Refd17,18, all gradient corrections
are given by derivatives of the scattering phase shift

=Im InTb(Qkpqtr)

By multiplying the kinetic equation with fb,e one ob-
tains the balance for the particle densitythe momentum
densityJ, and the energy density; Without nonlocal correc-
tions the collision integrals vanish for the density and mo-
mentum balance and we get the standard balance equations
for the quasiparticle parts:

ny(r,t) + J dp

J J 1% Jd ,r,t)=0,
At=_¢ , AZ _¢__¢__¢ ot (2 ﬁ)3 O’)p a(p )
o, ap aq k| .
1782 1782
&Ji(r,t) J
1d¢ 120) _qup_ (4)
—____7 An= — — (2) ot ar;
E 2 ) 3 Kk ) j
at g1te, J g1tey
with the quasiparticle density, the current, and the momen-
14¢ |9 a¢ tum tensor
K_E T ’ 4=
or g1tey &k q €l+82
_ f dp .
After derivatives,A’s are evaluated at the energy shéll Na= (2mh)3
—e3+e,. Neglecting these shifts the usual BUU scenario
appears.
The A’s in the arguments of the distribution functions in _ p
Eq. (1) remind the noninstant and nonlocal corrections in the I(r,H= (27h)3 Pfa(p.r.b),

scattering-in integral for classical particles. The displace-

ments of the asymptotic states are givendyys 4 The time

delay enters in an equal way with asymptotic states 3 and 4. dp de,

The momentum gain ¢ also appears only in states 3 and 4. PP=2 f —3( Pigy T 5|,8a) fa=8;E®, (5
Finally, there is the energy gain which is discussed in Ref. é (2h) Pi

[19]. These nonlocal corrections to the usual Boltzmann

equation are a compact form of gradient corrections. lwhere the quasiparticle energy is given by
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dp p? 1 dk dpdq
£P= f —f P =— f—qf +0):A,
2 J (2mh)32m @ 1288 ) (27 (P a)idy
1 f dk dp - e, kpOft (6) + (K= 0)iAz—pidy)),
24 (27Tﬁ)6 an(e1te2,k,p,0)f,fp
B dk dpdg
and the pressure is as usual I f (2mh)% WA, (12
S (7 where W=|TR|22m8(s,+ep—e5—en)f1fo(1—f5—1,) is
3 the probability for forming a molecule during the delay time
N _ A
The quasiparticle energy of the system varies as While these correlated parts are present in the numerical
results and can be shown to contribute to the conservation
dp o8P laws we will only discuss the thermodynamical properties in
55qp=f (2mh)? ST(purD of(p,r,t) terms of quasiparticle quantities to compare as closely as

possible with the mean field or local BUU expressions. The

dp discussions of these correlated two-particle quantities are de-
= f (2ah)3° of(p,r,t) (8)  voted to a separate consideration.
and since we adopt the parametrization of quasiparticle en- B. Dynamical thermodynamical variables

ergy (3), the quasiparticle part of the total energy density \ye want now to construct the time-dependent global ther-

reads modynamical variables. From the distribution function
, , f(p,r,t) the local density, current, and energy densities are
dp p n“(r,t) given by
EW(r,t)= f——f JH+A
(r=2 @y 2m PO A0, dp
n(r,t)= f(p,r,t),
n r,t o+1 f 3
gD cgom © (2t)
(o+1)ng
dp
Please note that besides the mean fi@dwe have also a J(f,t)=f Py sPf(p.r.t),
Born correlation tern€ 8™ coming from the second term of (27rh)
Eq. (6), see Ref[23],
etrn= [ > o) 13
2|n2_11m K r! = o pvrl ’
gBorn(t):(S'Z: =03 FU+O(T3)' (10) (2mh)® 2m

The bal f th . icl £ th densi which are computed directly from the numerical solution of
e balance of the quasiparticle part of the energy density, \inetic equation in terms of test particles. Please note that

reads from the kinetic equation the above kinetic energy includes the Fermi motion.

dEM(r 1) -I—i D f dp sa%fa(p,l’,t)=0. 1. Temperature
at T ) (2mh)® T Ip The global variables per particle number such as kinetic
(11 energy, Fermi energy, and collective energy are obtained by
spatial integration:
The correlational parts of the density, pressure, and en-

ergy are coming from genuine two-particle correlations be-

yond Born approximation which are also derived from the f dr E(r,t)
balance equations of nonlocal kinetic equatioh6]. It has Ex(t)= ,
been shown that they establish the complete conservation Jdr n(r,t)

laws. TheseA contributions following from the nonlocality ’

of the scattering integral read for the energy, pressure tensor,
and density as

fdref[n(r,t)]n(r,t)
1 dk dpdq Er(t)=
50—5 a,b f

mq’(el'f'ez)At, f dr n(r,t)
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FIG. 1. The time evolution of central collisions NiAu at 25 MeV per nucleon. The density contours in the spatial pjan@ are plotted
in the left figure where the arrows characterize the values of the local curemtording to Eq(13). The middle figure gives the density
profile of the beam directiotisolid line) and perpendicular to the beafdotted ling in terms of nuclear densitpo=0.16 fm 3. The
corresponding right panel shows the global density ratio to nuclear density defined in a sphere versus the radius of the sphere. The mean
square radius is marked explicitly by a dot on the radius axes.

J(r,t)? This seems to be a good measure for higher energetic colli-
f rm sions in the relativistic regime. Since we restrict here to col-
Eeol(t) = —, (14)  lisions in the Fermi energy domain and do not want to add
f drn(r,t) coalescence models we will not use the slope temperature.
Moreover we define the global temperature in terms of glo-

bal energies which are obtained by local quantities rather
than defining a local temperature itself. This has the advan-
tage that we do not consider local energy fluctuations but
only a mean evolution of temperature.

where we have used the local density approximafia4.
Now we adopt the picture of Fermi-liquid theory which con-
nects the temperature with the kinetic energy as

772

2
45F(t)T(t) (15 2. Energy and pressure

The mean field part of the energy is given by

3
&)= ESF(t) + Econ(t) +

from which we deduce the global temperature. The definition
of temperature is by no means obvious since it is in principle

— B
an equilibrium quantity. One has several possibilities to de- V(1) =EM() — &(t) = €77(L)

fine a time-dependent equivalent temperature which should n(r,H)2  n(r,t)stt

approach the equilibrium value when the system approaches f d ( S)
equilibrium. In Refs[25,2€] the definition of slope tempera- _ 2N (s+1)ng (16)
tures has been discussed and compared to local space depen-

dent temperature fits of the distribution function of matter. f drn(r.t)
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FIG. 2. The time evolution of central collisions X&n at 50 MeV per nucleon analogous to Fig. 1.

from which one deduces the pressure per particle 3. Density

Defining the density is to some extent a problem. To il-
lustrate this fact we have plotted in Figs. 1 and 2 the density
evolution. We see that depending on the considered volume
sphere we obtain different global densities. We follow here

2 4
P(t)= §[5K(t)—gco”(t)]+ 55 Born(t)

f dr An(r,t) sn(r,t)° the point of view that the mean square radius will be used as
S . , C

2ng (st1)ng a sphere to define the global density. This is also supported

+ : 17 by the observation that the mean square radius follows the

f dr n(r,t) visible compression. This becomes evident in Fig. 2 for a

symmetric reaction at higher energies where at 40cfmé

see a clear compression. If we define the volume by a density
cutn>ny/10 in spatial domain we will not see compression
€t all since the matter is evaporating and this volume in-
creases correspondingly with compression. Therefore we

think that the sphere with the mean square radius is a good
E(t) = E(t) = Ecan() +U(L). (18 compromise.

In order to compare now the local BUU with the nonlocal
BUU scenario we consider the energy which would be th
total energy in the local BUU without Coulomb energy

This expression does not contain the two-particle correla-
tion energy which is zero for BUU and the Coulomb energy.
The reason for considering this energy for dynamical trajec- Let us first recall the figures of mean field isotherms in
tories is that we want to follow the trajectories in the pictureequilibrium. The mean field Skyrme and Born correlational
of mean field and usual spinodal plots. energy is

III. ISONOTHING CONDITIONS IN EQUILIBRIUM
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FIG. 3. The isotherms for the pressure density versus vol@aneve and for the product of pressure and energy density versus energy
density (below). The temperatures afe=1,4,7,10,13,16,19 MeV.

3 fsp A, B et eBom _ The_ idea of plotting Combinatio_ns of_ pressure and energy
E=onTe—+ 5 —n"+ s+ ng" +& (190 is similar to the one of softest poifi27] in analyzing QCD
312 0 0 phase transitions. There the simple pressure over energy ratio
Jeads to a temperature independent plot due to ultrarelativis-
tic energy-temperature relations. In our case we have a Fermi
liquid behavior at low temperatures and have to scale differ-
g ently. In particular we have used in Fig. 4 the temperature-
n= ng,z (200  dependent polynomials

with the kinetic energy in terms of standard Fermi integral
and the density

x  x? x* x®
with g the spin, isospin. . . ,degeneracy. The corresponding g[x=T/MeV]=1.2+ —~+ + + ,
pressure reads 30 310 410 510

2 4 6

X X X
s+l f[X=T/MEV]=l.2+§)+31034-41654-251(?,

d(én)y  _f5p A Bs

=nT—+ —n+ —
dn : fap 2non (s+1)n0n

P=n?

1) (22)

which are producing a temperature independent plot in Fig. 4

_We obtain the typical van der Waals curves in Fig. 3.tq; the specific used mean field potential parametrization.
Since we have neither isothermal nor isochoric nor isobaric

conditions in simulations, in short since we have isonothing
conditions, we have to find a representation of the phase
transition curves, which are independent of temperature, but | et us now inspect the dynamical trajectories for the
which reflect the main features of phase transitions. This CaBbhove defined temperature, density, and energy. In F|g 5 we
be achieved by the product of energy and pressure density
versus energy density in Fig. 3. This plot shows that all 40
instable isotherms exhibit a minimum in the left lower quar-

ter. There the energy is negative denoting bound state con
ditions but the pressure is already positive which means the 20
system is unstable. The first isotherm above the critical one
does not touch this quarter but remains in the right uppe
quarter where the energy and pressure are both positive anu 9
the system is expanding and decomposing unboundly. Thé&
left upper quarter denotes negative pressure and energy ind
cating that the system is bound and stable.

In order to achieve now a temperature independent plot
we scale both axes of Fig. 3 with a temperature-dependen 40
polynomial and achieve the collapsing of all critical iso- -4 2 0 2 4 6 8 10
therms on one curve in the left lower quarter, see Fig. 4. The E ol
first isotherms above the critical one does not enter the left FiG. 4. The isotherms of the product of pressure and energy
lower quarter. We consider this scaling as adequate fogensity versus energy density scaled by a temperature polynomial
isonothing conditions. A phase transition should be possiblé(T),g(T). The temperatures ar€=1,4,7,10,13,16,19 MeV, re-
to observe if there occurs a minimum in the left half of this spectively. All critical isotherms collapse on one line in the left
plot at negative energies. lower quarter.

IV. NONEQUILIBRIUM THERMODYNAMICS
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FIG. 5. The dynamical trajec-
tories of the energy18), density,
and temperaturél5) in the nonlo-
cal (gray thick and in the local
BUU (black thin scenario. The
considered reaction ig?°Xe on
119%5n at 25 MeV lab energy. The
dots mark the times in steps of 20
fm/c up to total of 300 fmé. To
guide the eye the zero temperature
mean field energythick line) and
the pressuréthin line) are plotted
in the upper left picture and in the
right figures the spinodal line for
infinite matter is given. The scaled
combinational plot analogous to
Fig. 4 is given in the left lower
plane.

have plotted the dynamical trajectories for a chargeplane that the point of highest compression is reached around
symmetric reaction of Xe on Sn at 25 MeV lab energy. The60 fm/c with a temperature of 9 MeV.

solution of the nonlocal kinetic equation is compared to the After this point of highest overlap or fusion phase we
local BUU one. One sees in the temperature versus densityave an expansion phase where the density and temperature

FIG. 6. The same as Fig. 5 but
60 : : : : : 4 : : : for 33 MeV lab energy.
20fm/c
40 + 1
-1 r 200 fm/c h
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E 20 15
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o O0r 1w
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20 I | =11  20imec E
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FIG. 7. The same as Fig. 5 but

40 ; : : , : for 50 MeV lab energy.
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are decreasing. While the compression phase is developirtggher than the local BUU result. This is due to the release of
similarly for the BUU and for the nonlocal kinetic equation correlation energy into kinetic energy which is not present in
we see now differences in the development. First the temthe local BUU scenario. After this expansion stage until
perature of the nonlocal kinetic equation is around 2 MeVtimes of 120 fm¢ we see that the BUU trajectories come to

-1 300 fm/c
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3
E -l
w _
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-16 0'1
f. < FIG. 8. The same dynamical
n [fm trajectories as in Fig. 5 but for a
60 . . . reaction®®Ni on *"°Au at 25 MeV
20fmk 1 lab energy.
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FIG. 9. The same as in Fig. 8
but for 33 MeV lab energy.

rest inside the spinodal region while the nonlocal scenaridieat the system more due to Coulomb acceleration. This
leads to a further decay. This can be seen by the continuoueads to the enhancement of temperature compared to BUU.
decrease of density and increase of energy. Since matter An oscillating behavior occurs at later times which reflects

more decomposed with the nonlocal kinetic equation we alsan interplay between short-range correlation and long-range

1 1

5 10
T [MeV]
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FIG. 10. The same as in Fig. 8
but for 50 MeV lab energy. Please
note that the time point of highest
compression is between 20 and 40
fm/c and not resolved.
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TABLE I. The prediction of the leading mechanisms of matter see that the trajectories come at rest outside the spinodal
disintegration for two reactions with equal total charge but asymvegion whatever plot is used and no second minima is seen
metric entrance channels. Surface compression is denot€ebgl  anymore in the isonothing plot. But the surface emission
spinodal decomposition bg instability is still very pronounced and is probably here the
leading mechanism of matter disintegration.

25 MeV 33 MeV 50 MeV . . :

We might now search for a situation where we have the
2oNi+33°Au S Cs (S opposite extreme, that is we search for a reaction with as
" n little as possible surface emission instability and as much as
53 Xe+35o°Sn Cs C® C possible spinodal decomposition. For this reason we might

15 MeV 33 MeV 60 MeV think about asymmetric reactions since the different sizes of
1576 4+ 238 cs c the colliding nuclei might suppress the surface emission. In-
64 92 . . . .
deed as can be seen in Fig. 8 for an asymmetric reaction of
Bia+33'Au CcCs c(o C Ni on Au at 25 MeV lab energy with nearly the same total

charge as in the reaction before that the surface emission
instability is less pronounced while the spinodal instability is

Coulomb repulsion. The decomposition leads almost to fre§Uch more important. There appears even a third minimum
gaseous matter after 300 fomAs can be seen in the energy showing that the matter suffers spln.odal decomposmon per-
versus density plot. haps more than once if the bombarding energy is low enough
Please note that although the trajectories seem to equil@Nd & long oscillating piece of matter is developing.
brate inside the spinodal region when one considers the tem- 1he higher bombarding energies now show the same
perature versus density plane, we see that in the correspongiu@litative effect in that they pronounce the surface emission
ing energy versus temperature plane the trajectories alreadstability and reduce the importance of the spinodal decom-
travel outside the spinodal region. This underlines the imporPOsition as can be seen in Figs. 9 and 10. Please note that

tance of investigating the region of spinodal decompositiouch smaller compression densities and temperatures are
in terms of a three-dimensional plot instead of a two-reached in these reactions compared to the more symmetric

dimensional one such as in the recently discussed calorig2S€ of Xe on Sn.

curve plots. Different experimental situations lead to differ-

ent curves as long as the third coordingteessure or den-

sity) remains undetermined. V. SUMMARY

The isonothing plot analog to Fig. 4 in the lower Ieft 10 nonjocal kinetic theory leads to a different nonequi-
corner shows that the point of highest compression is “nkeﬂbrium thermodynamics compared to the local BUU. We see

to a first instability seen as a pronounced minimum of the,gjca|ly a higher energetic particle spectra and a higher tem-
trajectory in the left lqu.arter. This is connegted with a pro- erature of 2 MeV. This is attributed to the conversion of
nounced surface emission and connected with anomalous v vo-particle correlation energy into kinetic energy which is

!ocity p_rofiles[28]. We will call this phase surface e_m.ission of course absent in the local BUU scenario.

instability further on. At 180 fmé we see a second minimum gy consiructing a temperature independent combination
which is taking place inside the spinodal region. This insta< thermodynamical variables we are able to investigate the
bility we might now attribute to spinodal decomposition gjqnais of phase transitions under isonothing conditions. Two
since the trajectories develop slower and remain inside thg,echanisms of instability have been identified: surface emis-

spinodal region. The BUU shows the same qualitativegjoy instability and spinodal decomposition. We predict for
minima but the matter rebounds and the trajectories MOVge ¢y rrently investigated reactions seen in Table | that the

towards negative energies again. In opposition the nonlocalttect should be the leading one for matter decomposition.
scenario leads to a further decomposition of matter as de- |, the reactions with bombarding energies higher than the
scrlbed_ above. ) .. Fermi energy the fast surface eruption happens outside the
In Fig. 6 we have plotted the same reaction as in Fig. 3pinadal region. For even higher energies there is not enough
but at a higher energy of 33 MeV. We recognize a highetjne for the system to rest at the spinodal region. The trajec-
compression density and temperature than compared to thgieg simply move through the spinodal and the system de-

lower bombarding energy. Consequently the trajectories d&says pefore it comes to an equilibriumlike state inside the
velop further towards the unbound region of positive energpinodal region.

after 300 fm£. While the first surface emission instability is
strongly pronounced we see that the second minimum in the
isonothing plot is already weaker indicating that the role of
spinodal decomposition is diminished. The trajectories in the
temperature versus density plot still come in the spinodal | thank B. Tamain for reading the manuscript and helpful
region at rest but travel already outside the spinodal region ifEomments. Especially | am obliged to S. Toneev who
the energy versus temperature plot is considered. This shovisought the idea of softest poif27] to my attention.
that the trajectories start to develop too fast to suffer muclAlso the discussions with R. Bougault, F. Gulminelli, M.
spinodal decomposition. Ptoszajczak, and J. P Wieleczko are gratefully acknowl-
If we now plot the same reaction at 50 MeV in Fig. 7 we edged.
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