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Statistical calculations of nuclear fragment distributions
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The recursive techniques developed by Mekjian and collaborators for exact calculations of canonical parti-
tion functions of fragmenting systems are extended to allow the determination of fragment multiplicity distri-
butions. The fragment multiplicity distribution is shown to become strongly super-Poissonian at the critical
temperature. This behavior is shown to be highly sensitive to Coulomb effects and to whether energy is strictly
conservedthe microcanonical ensembleddditionally, a method is presented for generating events from the
partition functions, which also permits the inclusion of hard-sphere interactions between fragments.

PACS numbds): 25.70.Pq, 24.10.Pa, 64.60.My

I. INTRODUCTION heat peaks. At this threshold, the multiplicity distribution
becomes remarkably wide. We associate this behavior with a
Heavy ion collisions where excitation energies are of thefirst order phase transition. We find no such dramatic behav-
order of 10 MeV per nucleon probe the energy regime wheréor for microcanonical calculations when plotted against the
the nuclear liquid gas transition is expected to take placeexcitation energy. But, nonetheless the character of the mul-
Below energies of approximately BOMeV, symmetric col- tiplicity distributions does indeed change at the fragmenta-
lisions are expected to produce sources that evaporate pafen threshold.
ticles as would be expected from a hot liquid drop, whereas e also present a technique for generating random events
above this threshold, the excited source is expected to eX%pnsistent with the exact partition functions. By excluding
plode, producing larger clusters through simultaneous multithose events where fragments overlap, we explicitly incorpo-
fragmentation. In this energy regime, the process of fragmenigte hard-sphere repulsion between fragments, and find that
production is not clear, and comparisons with data have beegxcluded volume arguments well account for the hard-sphere
made with a disparate set of models, ranging in simplicityrepyisions.
from percolation descriptionfl,2] and lattice gas models  The status of statistical treatments of nuclear multifrag-
[3], to evaporative model8t], dynamical simulationf5-9],  mentation is reviewed in the next section. The correlation
and microcanonical samplinga1-13. _ _ coefficient £, with which we parametrize the width of the
Fluctuations behave in a special manner in the neighborragment multiplicity distribution, is described in the third
hood of a phase transition, so it should seem that the study @fection. The methods for calculating partition functions and
fluctuations of fragmentation observables might prove inmytiplicity distributions, and for generating random events

sightful for investigating multifragmentation. Moretto and js described in Sec. IV. Results and conclusions are pre-
collaborators[14] have measured multiplicity distributions gented in Secs. V and VI, respectively.

of intermediate-mass fragmendiFs) as a function of ex-
citation energy for a variety of projectile/target combinations
utilizing beams with energies up to AOMeV. The analysis
showed sub-Poissonian multiplicity distributions that could
accurately be described with binomial distributions. These The challenge of handling statistics of a finite-sized sys-
observations have inspired a variety of explanati{d®s-18.  tem that could fragment into arbitrary pieces has received
Recently, Chase and Mekjiafil9] have discovered a great attention from the nuclear physics community during
method for exact calculation of the canonical partition func-the last 20 years. Fragment yields were first calculated with
tion for noninteracting clusters. In this paper we extend thisggrand canonical ensemblgg0], which assume contact with
approach to include fragmentation observables. We presentl®th a heat bath and a particle reservoir. This approach is
method for exact determination of both multiplicity distribu- simple to implement and should accurately calculate single-
tions and their moments for both canonical and microcanoniparticle yields in the limit of large systems where the size is
cal treatments. The canonical ensemble is appropriate for @ot appreciably altered by the creation of a single fragment.
system in contact with a large heat bath, while microcanoni- The finite system suggests that canonical and microca-
cal descriptions are valid for a system with a fixed energy. nonical treatments should be more appropriate. Koonin and
When raising the temperature while keeping the volumeRandrup[11] first developed a microcanonical treatment
fixed in a canonical treatment, we observe a sharp transitiobased on Metropolis Monte Carlo methods. A microcanoni-
for fragmentation at the same temperature where the specifal approach was further pursued by Gross and collaborators
and is referred to as MMM@microcanonical statistical mul-
tifragmentation model[12]. A large number of comparisons
*Permanent address: Physics Department, McGill Universityfo experimental observables have been performed with this
Montreal, Quebec, Canada H3A 2T8. model, including a study of the binomial nature of the frag-
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ment multiplicity distributions. The method consists of sam-volume as the faster lighter fragments. Of course angular
pling fissions and fusions of nuclear fragments within a fixedmomentum can play an important role in fragment emission.
volume. Energy, charge, and baryon number are divided Finally, the incorporation of Coulomb is problematic in a
amongst the various degrees of freedom. The advantage fatistical picture. In the MMMC model, where Coulomb is
this approach is that-body correlations and explicN-body explicitly included, the larger fragments push to the outside
interactions may be considered without computational penf the boundary so as to minimize the Coulomb energy. Dy-
alty. The only disadvantage to this treatment is that compuf@mics favor the opposite trend as large fragments require
tational requirements can be high, especially when fluctuaore time to move to the periphery. The Coulomb rearrange-
tions are of explicit interest and the event-to-eventMeNnt €nergies may be many tens of MeV, which is much less
correlations of the Metropolis method must be eliminated. than the overall excitation energy, but is much greater than
Bondorf and collaboratorgL3] developed an alternative the temperatures of interest. Simple Wigner-Seitz pictures, as
statistical treatment SMM(statistical multifragmentation Presented here or in the SMM model, can make only gross
mode), where all possible partitions of the system into frag-€Stimates of the effect of the Coqumb force. However, it is
ments are considered without invoking a Monte Carlo pro-n°t clear whether the more sophisticated Coulomb treatment

cedure. However, division of the energy between the interna®f theé MMMC model is more consistent with the true physi-
and kinetic energy of the fragments does require Monté&@l Situation. o o

Carlo methods. Since in SMM the internal excitation energy_ 1h€ immediate goals of this investigation are twofold.
is divided up amongst the fragments in proportion to theFirst, we wish to expllore whether the recursive approaches
fragment mass, fluctuations of excitation energy are nofan Pe extended to include microcanonical constraints and
treated as one would expect in a true microcanonical treaff@gment-fragment interactions, and whether the techniques
ment. Furthermore, explick-body correlations and interac- €an be developed to make exact calculations of multiplicity
tions are ignored. distributions, which are not trivially derived from the parti-

A third approach invented by Mekjigi19,2 allows the _tion function. Secqndly, we wish to investigate the possibil-
calculation of statistical partition functions using recursion!ty that fragmentation observables are related to fundamental
relations without invoking Monte Carlo methods. An ap- properties of the Il'qU|d—vapor phase transition, and to undgr—
proximate approach, also invoking an iterative procedureStand how such signals are affected by energy conservation,
was developed by Fai and Randr[21]. The advantage of Coulomb effec';s and mterfra_gment interactions. In Fh|s pa-
Mekjian's approach is that all partitions of the system areP€r. the recursive approach is pursued for our studies. This
considered without any of the technical difficulties associ-Choice is motivated by the rapid calculation times, the lack of
ated with Monte Carlo sampling. Furthermore, the approacill\/lont‘:{Carlo me_thods, and Fhe ablll_ty to compare canonical
can incorporate arbitrary level densities of the internal frag&nd microcanonical calculations of identical systems.
ments. The disadvantage of such recursive techniques is that
explicit N-body interactiongbeyond mean field and Wigner- Ill. MULTIPLICITY DISTRIBUTIONS
Seitz treatmenjsare ignored. AND THE CORRELATION COEFFICIENT

Before further discussion, one should review the validity S .
of the physical assumptions in all statistical approaches, Multiplicity distributions are often described by two pa-

First, they should not be applied at densities higher than rameters, the mean and variance. In this section we discuss
one-;‘ourth of normal nuclear density. The approaches adhe correlation coefficieng which parametrizes the variance

sume that the individual nuclei are well defined. As pointedrelat've to the mean in such a way that it can be viewed as a

out by Gross, fission of a spherical drop into two equal dropé:_orre_lation. A super- or sub-Poissonian multiplicity (_jistribu-
requires at least four times the volume of the original dropt'on is one whose variance exceeds or falls below its mean,

At temperatures neaf,, where the density of the liquid respectively. The difference of the variance and the mean can
(k]

phase falls, the range of treatable densities might be push?dso be written as a correlation. We demonstrate this by con-

even lower. Although fission is an extreme example, one caﬁ'derlng the emission into an arbitrarily large number of

; ; tatesi, each of which is infinitesimally probable. A state

understand the importance played by geometry in fragmenl'é ) - : .
fragment correlations by considering the fission example.cou_Id b_e defined asa specific type of IMF em@ted Into an
rbitrarily small bin in momentum space. The difference of

The available volume for a large fragment clearly dependfl . -
on the fragmentative state of the remainder of the systerr"r.he variance and the mean is
The question of when the excluded-volume approximation is
valid remains an open and intriguing question. 2_/n\= _{n. —(n))— .
Secondly, one should keep in mind that nuclear collisions o= (n) IE] ((mi=(mip)(nj =) EI ()
are dynamic processes. At excitation energies per nucleon
much less than 5 MeV, fragment production occurs via => ((ni=(n))(n;—(n;))
evaporation, and the picture of a sudden disassociation where i %]
nucleons sample all states within a large volume is not rea-
sonable. Even when sufficient excitation energy allows the + ((ni—(n)H2—(n;). (1)
nucleus to explode, individual nucleons and light clusters i
have had the chance to evaporate from the expanding surface
while larger clusters have not had time to sample the sam# the bins are arbitrarily small, one may discard the terms in
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the second sum proportional {@;)?, then use the fact that ity of emitting a second IMF. We will see in the next sec-
n?=n; for n;=0 or 1, to discard the remainder of the secondtions that positive correlations can arise in canonical
term and obtain treatments both in the region of the phase transition and at
low temperature due to surface effects.

S (= () (n— () Aside from the size of the correlations, it is also of inter-
02—(n> = ! ! ! ! est to understand whether the entire multiplicity distribution,
&= = > : (2)  is well described by a two-parameter fit to a binomial or
(m (n) negative-binomial distribution. If the reduction of the results
to two parameters is valid, comparison of different models
and data is greatly simplified.

Here, ¢ can be interpreted as a correlation coefficient. It is

positive if the emission into two different bins is positively

correlated. The only assumption going into this derivation is

that the bins may be divided into arbitrarily small sizes. IV. RECURSION RELATIONS FOR CALCULATING
The simplest examples of sub- and super-Poissonian mul- FRAGMENTATION OBSERVABLES

tiplicity distributions are the binomial and negative-binomial

N : . T ; . A. The canonical ensemble
distributions. The binomial distribution is defined in terms of

two parameterg and N: Chase and Mekjian have shown that canonical partition
functions can be easily calculated in terms of the partition

N! N Nen functions of single clusters. This allows the calculation of

P”:—n!(N—n)! P(1-p ™" (3 thermodynamic quantities for a system of fixed nucleon

number without resorting to numerically intensive Monte
wherep is the probability of success in one bftries. For  Carlo procedures. If the partition function for a single cluster
the binomial distribution the mean and correlation coeffi-of size a, is denoted byw,, the partition function for a

cients become system of sizeéA may be written
(Mpin=PN, (4) w,X a,
Q= X Il 5= oz a9
Eoin=— 1N, 5 Erid=n) ki
and stays negative. As with most correlations it is propor-Thus, ., is expressed recursively in terms of and Q,
tional to the inverse of the system size. for A"<A. Proof of this relation is given in the Appendix.
The negative-binomial distribution is also defined by two The only shortcoming of this approach is that expligiot
parameterp andN, mean field interactions between fragments are ignored.
Moments of the multiplicity distribution may be ex-
(N+n—1)! p" pressed in terms of the partition functions. The moments can

(6)  then be used to derive the correlation coefficigqtdefined
in Eq. (2) or the multiplicity distribution as discussed below.

The correlation coefficient in this case is opposite to that ofl "€ first moment is the mean which is defined as
the binomial distribution:

n

(N=1)In! (14 p)N+n

Oa s,
<n>neg pir= PN, (7) <nk>:ka—A- (10
&neg bir= 1/N. tS) Rather than considering momerts') it is more conve-

Binomial and negative-binomial distributions result when hient to consider factorial momenk, » m defined as

one considers populating quantum levels with fermions or

bosons respectively witp representing the average popula-

tion of each level. Calculation of the factorial moments far, defined in Eq.
Random emission from a large number of uncorrelatedy 1) js simple ifb refers to single specids

sources leads to a Poissonian distribution. The binomial dis-

tribution suggests that conservation of particle number would

give a negative correlation coefficient of ordeN1/where Fram=of

N=A/a is the number of intermediate-mass fragments of

characteristic size that could fit into the system. For suffi-

ciently small systems, this negative contribution from

particle-number conservation dominates, with the extrem (12) is no longer valid, One must then generate the fac-

case being whera is more than half the system size mean—to?i'al moments ugin the }ecursion relationg

ing that no more than one IMF can be emitted. Other nega- 9

tive correlations are expected due to energy conservation. If

IMF emission requires energy, e.g., escaping a Coulomb bar- Foam= D

rier, energy conservation is expected to reduce the probabil- T Keb

Fpam=(Np(np—1)---(npb—m-+1)). (11

QA—mak
Qa

(12)
However, ifb refers to a set of species,= ., Ny, Where
he various species that compribehave different masses,
QA—ak

kab,Afak,mflﬂ—Ay (13
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which is true in general. The proofs of Eq42) and(13) are  the canonical quantities without the normalization brought

given in the second section of the Appendix. on by dividing by Q. As described in the Appendix, they
As shown in the third subsection of the Appendix, facto-may be found via recursion relations

rial moments are sufficient for calculating the entire multi-

plicity distribution via the relation

foam(B)=Qa(BFoam(B)= 2 ofpa a .m 1(8),

keb

1
_ _qym- 17
Poan= 2 Foamm—pmr (CD™ " (149 (
1
wherePy, 5 , gives the probability of viewing fragments of ~ Pb.an(B)=Qa(B)Ppan(B) = gb Py, A-a, n-1(B).
type b in a system of sizéA\. More directly, one may also (18)
generate the multiplicity distribution, without knowing the
factorial moments, through the recursion relation The factorial moments and multiplicity distributions at
fixed energyE may then be expressed as
1 QAfak
Pban=r gb wkpb,Afak,nflﬂ—A- (15

| astsaniimes®

Proof of Eq.(15) is presented in the Appendix. This direct Foam(E)= 27p(E) '
method of producing the multiplicity distribution has proven

(19

more numerically stable than generating the distribution _
from the factorial moments. This improvement can be traced f dBpp.an(iB)erE
to the alternating signs in E¢14). =

Summarizing the technique, one starts by calculating par-
tition functions for individual fragments, . One may then
generate partition function$) 5, by using the recursion re-
lation, Eq.(9). The recursion relation for factorial moments,
Eq. (13), then allows one to generate the factorial moments
which in turn allow the determination of the entire multiplic-
ity distribution using Eq(14). Alternatively, one may calcu-
late the multiplicity distributions directly using E¢L5). The A X
obtained multiplicity distributions are exact. Although the continuities as a function gf.

sums used in the recursion relation are performed numeri- If one is interested in the microcanonical distribution, for
cally, they require only a fraction of a second of computer® @19 of energies in the neighborhoodptather than_ for_
time. an exact value oE, one may replace the delta function in

Eqg. (16) by a Gaussian

However, the integrations ovg# needed to obtain the rel-
evant microcanonical quantities do make the calculations
significantly more numerically intensive. It is not clear to
Wwhat degree the stationary-phase approximaf#] might
allow one to avert the numerically costly integration, espe-
cially given the first order phase transition which causes dis-

B. Microcanonical calculations
(E—E,)?

A microcanonical approach, which considers configura- 5(E—Ea)—>\/ﬁexp— PYrI (20
tions only at a specific energy, would be more realistic for ™ K
application to nuclear phenomenology since nuclear colli-
sions do not take place with contact to a heat bath. Th
importance of performing microcanonical calculations is em
phasized by the existence of the first order phase transitio
which collapses a wide range of energy densities to a narrow 1
range of temperatures. In this section we present expressions e'PE_, e'PE exp— = 522 (21)
for calculating fragmentation observables within a microca- 2
nonical context.

It is straightforward to obtain the needed microcanonicalNumerical implementation of the Fourier transform simpli-
quantities from the expressions for partition functions byfies for broader widths, as it effectively narrows the re-
Fourier transforming corresponding canonical objects over guired integration range fgs.
range of complex3=1/T. For instance, the level density, ~ An alternative way to approach the constraint of energy

p(E), may be obtained from the partition functions throughconservation is to discretize the energy and measure it with
integral values. One can then treat energy in the same man-

B 1 e ner with which one would treat other conserved charges. For
P(E)_Tra‘s(E_Ea)_ﬂf dBQA(iB)E"". (160  instance, energy might by measured in steps of 0.5 MeV,
with an integerQ measuring the energy. tﬁi,qi counts the
One may calculate recursion relations for the factorialnumber of states available to a particle of typeith energy
moments and for the multiplicity distributions at fixed en- g; and mass; , the number of states of the system of mass
ergy. First we consideit, o m(i8) andpy, A n(i8), which are  with net energyQ becomes

here » defines the width of the neighborhood. One may
Incorporate the broadening of thfunction by modifying
ﬁhe phase factors used in the Fourier transforms
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ol through experimental acceptances or for calculating the ef-
N(A,Q)= 2 i "qi. (22) fects of Coulomb trajectories on outgoing particles. Later in
' na=Azng=9) N this paper, random events will be utilized to calculate the

. . o _ effects of hard-sphere fragment-fragment interactions.
One may then derive the recursion relation in a manner simi- Events are generated fragment-by-fragment. The first

lar to the derivation of the recursion relation for the partitionfragment is generated from a system of sizaccording to
function shown in Sec. VII A. Since there are two conservedhe weight

“charges,” two recursion relations may be derived,

a ag QA—ak (29)

i Wi =—wg—~—.

NAQ=2 FwigNA-a.Q-q). (23 AT O

After the first fragment is generated, a second fragment may
< G be generated usiry—a, in place ofA for the weight. Simi-
A 6wi,qiN(A_ai Q). larly, one may generate events in a microcanonical ensemble
' (24)  Uusing the weights
In a manner similar to the derivations in Secs. VII B and ay Na-a,.Q-q,
VII D one may derive recursion relations for the factorial Wk,q, = A Pk Nao (30)

moments and multiplicity distributions
Hard-sphere interactions between fragments may be in-
N(A—a,,Q—qW cluded by generating a sample of events and discarding any
N(A,Q) ' event where two fragments overlap. The total number of
(25  events is then the original numbét, o in the microcanoni-
cal case, multiplied by the fraction of events that pass the

FbaQm= E oK. Fb,A-a ,0-q ,m-1
AQ, kEDia, A b, Q0

1 filter. Given that this procedure entails randomly placing the
Pb'A'Q'n:keEb,qk wk,qkﬁpb,Afak,Q*qkm*l fragments in the volume and testing all pairwise overlaps, it
can certainly become numerically prohibitive when the frag-
N(A—a,,Q—qy) ment multiplicity becomes large. At some point Metropolis
N(A,Q) : (26) techniques such as those incorporated into the MMMC

model become necessary.
There are two practical differences between these expres-
sions and the corresponding canonical expressions. First, an V. RESULTS
extra index has been added that denotes the energy of the
system. In practice this leads to a longer calculation by a
factor of the number of energy steps squared. Thus if one For our purposes, we consider the partition function for
wishes to perform a microcanonical calculation with an ex-individual fragments of masis as
citation energy of one GeV, using energy steps of 1.0 MeV,

A. A liquid-drop example in the canonical ensemble

the required computer time would be expected to increase by _v ayMT 3/26_Fk ol T (31)
10° as compared to a canonical calculation at a single tem- @k 21 S
perature.
Knowing the number of ways to arrange a system of size 23 1 .,
A into energyQ allows one to determine the temperatire Fiin= foaut fsai +chak , (32)
l: 91NN 27) where the volume of the system\§ the mass of a single

T dQ nucleon isM, and the fragment’s internal free eneffgy ., is
split into a bulk term and a surface term. One sees that the

Mass distributions are straightforward to generate frompulk term is irrelevant in determining fragmentation observ-

Nao: ables since it factors out of the partition function. Thus, aside
from the system sizé, all fragmentation observables are
2qk"’k,qk'\‘A—ak,Q—qk determined by three parameters, the ratio of the surface
(ng= Nao ' (28) term to the temperaturd /T, the specific entropy,s

=(V/IA)(MT)®? and Coulomb termf.. This implies that
many details of a system’s microscopic makeup, e.g., Fermi
vs Bose nature of the internal excitation, are irrelevant in
determining the statistics of fragmentation. If the surface
Although the recursion relations of the previous sectiongerm is negligible fragmentation is determined purely by the
allow the exact calculation of nearly any observable, onespecific entropy.
may wish to randomly generate individual events consistent For the surface and Coulomb terms, we use the param-
with the partition functions. This may be useful for filtering eters of the nuclear liquid-drop model

C. Generating random events and including
hard-sphere interactions
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FIG. 1. Mass distributions are displayéstaled bya) at three
temperatures for ak=300 system. At the high temperature, 9.5
MeV (short dashes the distribution is dominated by small frag-
ments, while below the fragmentation threshold, at 8 MgWdlid
line), most nucleons reside in one fragment. At the intermediate F|G. 2. The average multiplicity of IMFs, those fragments with
temperature, 8.75 MeVdashed ling the mass seems equally di- masses from 5 to 40, is shown in the upper panel as a function of
vided between the large cluster and small clusters. The transitiofemperature for a’A=100 system. Including Coulomtcircles
occurs over a remarkably narrow range of temperatures. lowers the threshold temperature for fragmentation compared to

when Coulomb is ignoredtriangles. Correlation coefficients are

fs=17.2 MeV, (33 displayed in the lower panel. The approximations described in the
text, which are represented by lines, describe the behavior at low
1/3 excitation. A positive correlation at the fragmentation threshold
fo= 0_7(< 1— (ﬂ) ) MeV, (34 arises from two classes of events with different exciation energies,
Po

those with and without a large cluster, which both contribute at the
fragmentation threshold.
where the form of the Coulomb term was taken to account

for the screening of the Coulomb repulsion by the nuclear
medium in a Wigner-Seitz-like parametrizatiftB] with pg
referring to nuclear saturation density p§ = (4m/3)r2,
wherer =1.2 fm.

The average multiplicity of intermediate-mass fragments
(5<a=40), denoted as IMFs, are shown in the upper panel
of Fig. 2 for a system of siz&=100. Results are plotted
against the temperature, both for the case where the Cou-
fomb term is included as well as for the case where it is
l'neglected. The inclusion of Coulomb pushes fragmentation
down towards lower temperatures. The trend would
'strengthen if we were to consider larger systems. When the
xcitation energy exceeds the fragmentation threshold, aver-

density of one-sixth of nuclear matter density. The behavio
at different densities is not qualitatively different, with the
exception of the relative importance of the Coulomb term
The fragmentation transition described below occurs whe

— 32 ;
3_ (;ip)(rf?-r)t ﬂ'f (t)f ordertunlty. hTherfefore atc?_ange tOf.age IMF multiplicities quickly climb to over a half-dozen per
ensity afiects the temperature where fragmentation Sets ket correlation coefficients are shown in the lower panel

An gxclu%ed VO:“”?e coulqhe?/sily g_i_inqorpora_\tecli into theof Fig. 2. Coefficients are shown both for the case where
probiem Dy rep ac[ng\/ WIth Vet IS Is equivalent 10 o, 1omp s included and for the case where Coulomb is
changing the density, and does not qualitatively affect th

ts. Th ; i< ch b o %eglected.
results. The suriace energy IS chosen o be a con 8Nt \When Coulomb is neglected super-Poissonian behavior
=17.2 MeV. One could imagine scalirfg as a function of

densi thouah iaht obi : ensues at lower excitations as evidenced by the positive val-
ensity or temperature, although one might object to INCOryaq o - At low temperatures, this behavior may be under-

pg,rTa“”g a temperature dependence that IS not of the natugg, g by considering the surface penalty for emitting a single
e~''. The choice off; does affect the transition temperature fragment of mass

and its width. Larger choices ¢f lead to sharper transitions.
For these calculations we assume a density of one-sixth nor-
mal nuclear density, but choose three-fourths of the volume d

to account for exclude volume. Thus the volume is effec- NA—A—-a)xexp —a —(Fqu/T) . (35
) ) ! dA

tively 4.5 times the volume of a nucleus of sizeHowever,

the factor of one-sixth does come into play when considering

the Coulomb corrections. If a second IMF is emitted, it feels the same penalty, except

n Fig. 1, ;h_e g‘gsg g?triblgig‘;’\l&d"’\‘/isﬁhown folrl three ¢ for the fact thadF/dA is evaluated at a smaller overall size
temperature§ =8.0, 8.75, and 9.5 MeV. The overall size of , _ - 114 correlation becomes

the system was chosen to be 300 and Coulomb effects were
neglected in these calculations. The mass distribution has

been multiplied bya to emphasize how the nucleons are _ _ _
partitioned into the various sized drops. The mass distribu- Equr™ T'(A-A—a)l(A—a—A—23) _
tion changes dramatically within a small temperature range. I'(A—A-a)?

1 (36
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5 10 S C
T (Mev) FIG. 4. Multiplicity distributions are shown at three tempera-
tures for theA=300 system. Below the fragmentation threshold at

FIG. 3. The evolution of the correlation coefficient is shown for & temperature of 8 MeVsquare the distribution is peaked at a

a small range of temperatures for increasingly large system sizes i multiplicity and is well described by a negative-binomial dis-
the lower panel. For large systems the peak narrows into a Singl}[lbutlon shown as a dashed line. At a high temperature of 9.5 MeV

larity, a signal of discontinuous behavior. Nearly identical behavior CI'cle9, the distribution is sub-Poissonian and well described by

is seen in the specific heat per particle which is displayed in thé"€ binomial distributioridashed ling At 8.75 MeV (triangles, the
upper panel. Coulomb has been neglected in these calculations. multiplicity distribution is strongly super-Poissonian and is not well

described by a negative binomial.

%a_z d°F sur =1000. Coulomb is ignored in these calculations. As the
T dA? system size increases a singularityéinlevelops at the boil-
) ing temperature. This is related to a discontinuity in the en-
_ 2afs —4/3 ergy vs temperature at constant voluf@6], which is char-
oT ' acteristic of this model but not necessarily characteristic of a
typical liquid-gas transition. In a liquid-gas transiti@y be-
The dashed line represents the surface contributichdnd  comes singular but na, . Since the peak ig vs T is linked
closely follows the statistical calculation at lower tempera-to the discontinuity in the energy density at the same tem-

tures. The average size of an IMF was usedafor perature, the peak might disappear in a microcanonical treat-
The inclusion of Coulomb reducefto negative values as ment.
seen in Fig. 2. The Coulomb contribution fomay be ap- The multiplicity distributions for thed =300 system with

proximated in a similar fashion as the surface contribution Coulomb ignored are shown in Fig. 4 for three temperatures.
They are compared to negative-binomial and binomial distri-
_ 3 butions, respectively, where the two parameters are chosen to
Ecouf~ ~ 9T AT (37 fit the mean and variance of the distributions. At the inter-
mediate temperature, the distribution’s shape is less well de-

The simple estimate of works well at low temperature scribed by a negative-binomial fit. This emphasizes that two
when Coulomb is neglected, as most of the particles reside inlasses of events, corresponding to the two phases, contrib-
a single fragment. The approximations foare poor for large ute at this temperature.
systems when Coulomb is included. This arises because a
large system does not wish to form a single drop when Cou- B. Microcanonical results

lomb is included. . ]
At high temperatures the sub-Poissonian behavior may be Analogous calculations to those of the previous subsec-

roughly understood as arising from particle conservation. Adion were performed for the microcanonical case. In order to

seen in Sec. IIl when considering binomial distributions, ongPerform the microcanonical calculations, energy was dis-

expects a negative correlation of ordeN1ivhereN is the cretized in units of 2:0 MeV. The internal nuclegr levels were

maximum number of IMFs that fit into the system. modeled by assuming each nucleus had uniformly spaced
The super-Poissoniafor nearly super-Poissonian when single-particle levels, W|th_ the single-particle level density

Coulomb is includeyibehavior at the fragmentation thresh- for @ nucleus of masay being

old is especially interesting. Perhaps this may be understood 5

by stating that the partition function is sampling two com- gk=(ak—1)77—, (38)

peting configurations, one with one large fragment sur- Beo

rounded by gas and a second one where numerous IMFs are

present. These configurations have significantly different enwith e, being equal to 12 MeV. The levels of the nuclear

ergies. At the fragmentation threshold, where the system isomposite were found by accounting for all ways to arrange

undergoing a transition, both configurations occur leading tandividual fermions in the uniformly spaced levels at a given

a broadened multiplicity distribution. Figure 3 displags total energy. This was accomplished through a simple count-

again scaled by, as a function of temperatures between 5ing algorithm[23,24]. Explicitly counting the levels gives

and 12 MeV, for three sizesA=100, A=300, and A the same answer as E@9) at high excitation:
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FIG. 6. Mass distributions generated from microcanonical cal-
FIG. 5. The temperature is plotted against the energy density foculations are shown for a system of si&e- 100 without Coulomb
the microcanonicafsolid line) calculation, canonicaldashed ling  for three different excitationsE/A=7, 9, and 11 MeV/nucleon.
calculation, and the low-temperature Fermi gas expangioited  The jagged lines result from the discretizaton of the energy.
line). The calculations were performed for a system of size
=100 without Coulomb. The transitions of the caloric curve are|ations, the microcanonical calculations always returned sub-
somewhat sharper in the microcanonical case. Poissonian multiplicity distributions.
The mean and correlation coefficient were generated from
1 the IMF multiplicity distributions and are presented in Fig. 8.
Pinteral E*) = Jae expy2aE*/ €. (39 Results are shown both for the case where Coulomb is in-
488 cluded and where it is neglected. The inclusion of Coulomb
lowers the threshold for fragmentation as expected. The cor-
For the monomersg, =1, a degeneracy of four was chosen. relation coefficient is of a different character when calculated
The density of states of single fragments was foundior a microcanonical calculation. When Coulomb is ne-
through convoluting the kinetic and internal energies: glected, the correlation coefficient is positive for canonical
calculations as was shown in the previous subsection. This
was related to the sharp change in the energy density as a
jdEkm\/kaEkm pk.inl E= Exin—Ep), function of temperature, which allowed the canonical en-
semble at a fixed temperature to include substantive weight-
(40) ings from a wide range of energies, thus sampling both lig-
uidlike and gaslike configurations simultaneously. The
whereE, , is the liquid-drop energy of the nucleus of tyke correlation coefficient for the microcanonical case also ex-
which includes a bulk term, a surface term and a Coulomlhibits a maximum at an excitation in the center of the liquid-
term. Oncep is calculated, the number of quantum statesgas transition region. However, this maximum does not be-
available to a single cluster within a discretized energy win-come increasingly sharp with increased system size and can
dow is determined. These form the basis for the recursiveherefore not be considered as a signal of a phase transition.
algorithms used to generate the number of states of thalso, the contribution from surface energy which yields a
many-particle system with a given energy. positive contribution in the canonical example has the oppo-
Temperatures were calculated by taking the logarithmigsite effect in the microcanonical example. For the microca-
derivative of the system’s level density with respect to thenonical case, the emission of a first fragment uses valuable
energy, and are shown in Fig. 5. The result is compared tenergy needed for the subsequent emission of a second frag-
the canonical equivalent, where the energy is determined by

mG
2w

pk(E)=

taking the derivative of the canonical partition function with T ]
respect toT, with the canonical partition functions being F AE/A=7 ]
generated with the same set of nuclear states. The canonical N 0.3 :/' ' E*/A=Q E
and microcanonical results are similar, but the microcanoni- = 1 ‘1,&\/;0 ]
cal curve is characterized by a somewhat sharper transition. I 0.2 i ‘\‘ ,*A 3
Finer energy discretizations of 1.0 MeV were also tried and z F g YN 9E/A=]
gave identical results for the caloric curve. 01 AN E
Mass distributions, multiplied by the size of the fragment ‘E_g" B A %]
a, are shown in Fig. 6 at three excitations. As expected, at 0.0 0 5" 10' '
low excitation most of the mass exists in the form of large n
clusters while at high excitation most of the mass resides IMF
within small fragments. FIG. 7. Multiplicity distributions of IMFs as generated from a

Multiplicity distributions were generated with the use of microcanonical ensemble are displayed for three excitatiBhg,
Eqg. (26) and are displayed in Fig. 7 for three excitations.=7 Mev ~ (square§ 9 MeV/nucleon (triangle3,  and
They are well fit by binomial distributions where the bino- 11 MeV/nucleon(circles. Calculations assumed a size= 100 and
mial parameterp andN were determined by fitting the mean ignored Coulomb effects. The distributions are fairly well described
and variance of the distributions. Unlike the canonical calcuby binomial distributiongdashed lines
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NN L minute. Calculating the multiplicity distribution required ap-
6 proximately 10 min. These calculations were performed for a
A § system of mass 100, without inclusion of isospin. We esti-
y 4 S gy mate that doubling the system size and including isospin
v could increase the computational requirements by two to
2 three orders of magnitude. Calculations of the multiplicity
distribution might then require as much as a few days of
0 2 CPU time, while calculations of the partition functions, mass
0 F distributions or lower moments would require a few hours.
10 B We emphasize that the recursive nature of these calculations
w implies that the quantities are always calculated at every ex-
—20 ¢ / citation at once, thus one does not need to repeat the calcu-
-30 E A lation for every energy. Of course, if the volume varies with
40 AT excitation[26], one would still need to run the calculation

several times. It should be noted that since calculations re-
quire a time proportional to the square of the maximum ex-
citation energy, calculations proceed quite rapidly if range of

FIG. 8. The average number of IMFs and the correlation coef-eXC|tatlon energies remains less than 8 MeV per nucleon.

ficient as generated from a microcanonical calculation for a mass
A=100 system are shown witttirlces and without (triangles C. Repulsive spheres and excluded volume

Coulomb. The inclusion of Coulomb reduces the amount of energy The calculations of the previous two sections assumed the

needed for f.ragmemat'on' .Whereas. (.:anon'cfal Calcma.t'ons yield &vailable volume for all fragments was 4.5 times the volume
sharp peak in the correlation coefficient, microcanonical calcula- f A nucleons:

tions reveal a broad maximum. Even when Coulomb is neglected‘,)
the IMF multiplicity distributions remain sub-Poissonian at all ex- 3
citations. VeﬁzZ

o

5 0 15
E*/A (MeV)

6ArZ, (42)

ment. A noticeable peak resulted for the microcanonical cal- . .
. - . whererg w hosen 1.2 fm. Choosin nsi f
culation of¢ with Coulomb. However, we note that this peak erers was chosen to be Choosing a density 0

- . . o/6 is somewhat arbitrary, but is consistent with the density
was rather sensitive to details of the breakup density an@lc the MMMC model. Excluding one-fourth of the volume
might well be related to fissionlike geometries. ) 9

Even though the sharp peak disappears in the microc was motivated by the empirical observation that randomly

nonical case, the behavior of the correlation coefficient in th?eneiated events survived without overlap with a factor

critical region is interesting. The coefficient approaches zerol3/4)" 1, whereN is the average multiplicity. o
and if fit to a binomial distribution would suggest that the __ 1hus, the procedure for including hard-sphere repulsion is
limiting number of fragments & would surpass the cutoff (1) calculate the microcanonical partition functiomg, e«
due to particle-number conservation. Furthermore, the be2SSUming a breakup density of one-sixth normal nuclear den-
havior of¢ with energy is qualitatively different from whatis Sity: (2) generate events according to the procedure described
predicted from percolation calculatiofias]. in Eq. (30), (3) discard any eve.‘n'ts where the s%%aratlllon be-
In nuclear experiments one can directly adjust the excitalVeen any two fragmentsandj is less tharrs(a;~+r; )
tion energy, and since there is no external heat bath, micro= s, (4) modify the partition function according to the frac-
canonical descriptions are more appropriate. However, onton f of events that survive the overlap criterd, g«
could justify a canonical language by binning events accord=fNa g+, (5) use the generated events to find multiplicity
ing to the kinetic energy of the fragments while tak|ng distributions and moments. As mentioned abOVe, the fraction
samples from events with a wide variety of excitations. Onedf events that survived the overlap criteria was approxi-
could then treat the kinetic component of the energy as a heatately (3/4)", which motivated our choice of excluded
bath for the fragmentative degrees of freedom. This is rathevolume in the previous subsections.
artificial and the finite size of the kinetic energy would not  Figure 9 displays the caloric curve for the case where
truly represent a heat bath, but such an analysis might wellard-sphere repulsion is included, and is compared to the
result in discontinuous observables plotted against an effeacesults where the excluded-volume approximation was ap-
tive temperature. plied. The two results are remarkably similar. Unlike the
Finally, we remark on the computational time required toresults presented here, the temperature calculated from the
perform microcanonical calculations using the recursiveMMMC model fell with temperaturd27] in the transition
techniques listed above. While canonical calculations for oneegion. The temperature rose monotonically with excitation
temperature can be performed in a fraction of a second oanergy in all the calculations performed in this study. The
any modern workstation, microcanonical calculations requireanonotonic behavior is a requirement in a canonical model,
significantly more computational effort. Using a 500 MHz but is not so clear in a microcanonical treatment. This quali-
Pentium CPU, microcanonical calculations of the calorictative difference in behavior might be due to different treat-
curve and mass distributions required approximately onenent of Coulomb in the two pictures. Since the MMMC
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- A=100

RV A The process of generating random events from the parti-
tion function is extremely quick, and might replace the pro-
cess of exact generation of the multiplicity distributions
which was rather numerically intensive. However, invoking
j the fragment-overlap criteria greatly slowed the process of
. generating events at high temperatures when multiplicities
— were high. For multiplicities of 40, only one in 100000

] events might survive the overlap criteria.

0 5 10 15 VI. CONCLUSIONS
E*/A (MeV)

This paper had two principal aims. First, we wished to

FIG. 9. The caloric curve is shown both for the case wheredetermine the limits to which Mekjian's recursive methods
hard-sphere interactions are accounted for by randomly generatingould be extended to calculate fragmentation observables. To
events and discarding those with spatial overlegcles and for  that end, several new recursion relations were discovered
the case where the excluded-volume approximation is implementethat make possible the exact calculation of the entire multi-

(solid lineg). The dashed line represents the Fermi-gas approximaplicity distribution as well as the associated factorial mo-
tion. The excluded volume approximation appears quite successfyhents. Expressions were also derived that allow the genera-
for describing the caloric curve at one-sixth saturation density.  tjon of random events that are statistically consistent with the
partition functions. By discarding events where fragments

method is based on Metropolis sampling, explicit fragment-gpaiia|ly overlapped with one another, it becomes possible to
fragment interactions can be incorporated including the 1ongz.count for hard-sphere fragment-fragment interactions.

range Coulomb force. Running the MMMC model without e yecursive techniques were extremely quick when ap-
Coulomb interactions might clarify the issue. . plied to the canonical case. However, significant computa-

The IMF multiplicity and correlation coefficients are dis- {iona| effort would be required for microcanonical calcula-
played in Fig. 10. Again the results are very similar to thegjons should isospin conservation be added to the description.
calculations using the excluded-volume approximation, altgiculations of the partition functions might then require
though one expects the excluded-volume approximation tghany hours to cover the entire excitation-energy range of
fail at higher densities. These calculations were performehierest, and might require days if one wishes exact calcula-
with 160 thousand events, and the statistical error bars argyns of the multiplicity distributions. The generation of ran-
smaller than the size of the symbols in the plot. One shouldiom events from the partition functions was also extremely
emphasize that other forms of fragment-fragment interacqick, unless hard-sphere interactions were included, and
tions might affect the correlation coefficient more noticably. .5ui1d be used to bypass the potentially lengthy calculations
Hard-sphere interactions are the simplest to incorporate intgs the multiplicity distributions. Even though calculations
the partition functions as those events that are not discardgg,ye the potential to be somewhat lengthy, the method has
do not have their energy affected by the interaction. an appeal in that all configurations, including all divisions of
excitation energy and particle number, were accounted for,
thus bypassing some of the uncertainties inherent to Monte
Carlo sampling.

Our second goal was to study whether fragmentation ob-
servables, especially those related to fluctuations of the IMF
multiplicity distributions, carried a signal regarding the
liquid-vapor phase transition. The correlation coefficiént
was defined to describe the width of the IMF multiplicity
distribution relative to it's mean in such a way that it is
positive or negative for super- or sub-Poissonian distribu-
tions. The correlation coefficient developed a singularity at
the critical point when plotted against the temperature in
canonical calculations; whereas in microcanonical calcula-
tions ¢ reached a gentle maximum for excitation energies in
the fragmentation region. Even though the singular behavior
FIG. 10. The average number of IMFs and the correlation coef-of ¢ was muted in a microcanonical treatment, the behavior

ficient as generated from a microcanonical calculation for a mas8f & @s @ function of the excitation energy was unique to the

A=100 system are shown for the calculations using the exclude®0C€SS Of statistical fragmentation. _

volume approximatiotsolid line) and for the case where fragment- 1 he sensitivity of the calculations to hard-sphere interac-

fragment overlaps are excluded by sampling randomly generatedions and Coulomb interactions was also investigated. Hard-
events. The geometrical constraints of hard-sphere potentials seepphere interactions were fully implemented, but were found

to be well accounted for with the excluded volume approximationto be well accounted for by excluded-volume approximations

for these calculations which are done at one-sixth saturation derat one sixth saturation density. One expects the excluded-
sity. volume approximation to fail at higher density, not only be-

<Ny

0 5 10 15
E*/A (MeV)
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cause of the complex geometrical constraints of fitting hard o'k
spheres together, but because the physical picture of well- Qp= —k' (A1)
defined fragments becomes unreasonable at some point. (Enac=A) kM

Coulomb interactions were found to lower the fragmentation : . . . .
. Wherew, is the partition function for a single particle of the

threshold as expected and to also lower the IMF correlation . . . :
- . speciek which has sizea, . For each term in the sum, one
coefficients. However, we emphasize that the role of Cou-

lomb miaht b | ted for in thi h wherec2! factor a termw, out of the partition function. By using
omb might be poorly accounted Tor In this approach WNerGy,, ¢, .y that>na,/A=1, one may rewrite the partition
only a Wigner-Seitz approximation was implemented. Com

‘ : : ; Function
parison of equivalent calculations with the MMMC ap-
proach, which fully accounts for Coulomb, would be wel- na, o o
comed. However, it should be kept in mind that at Q=2 > M—kl 1= (A2)
equilibrium large fragments move to the periphery of the K @Ena=a A idion!
system which is opposite to the reality of the experimental o
situation where the short time of the explosion favors the ay o,
expansion of lighter fragments. Such problems are inherent :Ek @kp <2n-aZA—a) H n_.'
to statistical models incorporating the long-range Coulomb H : (A3)
force. Long-range forces imply long-range correlations
which require long times to develop. From combining this expression with EGA1), one can ex-

The recursive techniques described here can be madgact the recursion relation
more realistic in two ways. First, the sum over intrinsic
states, which here was performed in a liquid-drop context, ay
can be replaced by a sum over realistic nuclear states without Qp= Ek: “’kKQA* a’ (A4)
a significant cost in the time of the calculation. Secondly,
isospin conservation may be included. It is straightforward to _ _ )
extend the recursion relations to two conserved chai2@ls 2. The recursion relation for factorial moments
without significantly increasing the complexity of the ap-  Factorial moments allow convenient calculation of the
proach, although the calculational times would likely in- multiplicity distribution as seen in the subsequent subsection.
crease from minutes to hours should both neutron and protogiven the partition functior(),, the momentsFy A are
conservation be enforced in a microcanonical calculation. trivial to calculate for an individual speciés
Despite previous efforts such as the MMMC and SMM
models as well as the efforts described in this work, several Fxam={(Nk(Nx—1)(Nx—2)---(ny—m+1))

gualitative questions remain regarding statistical multifrag- n,
mentation. Most importantly, the MMMC calculations show- _ 1 S =1 - (ne=m+ D] @i
ing a nonmonotonic dependence of the temperature with re- Qo (snia=A) Kk K i on!
spect to excitation energy have not been observed from other

calculations where the volume is kept fixed. The role of nQAfmak

long-range Coulomb forces might explain this behavior, or it SOk, (A5)

might arise from some other more mundane aspect of the

modeling such as the choice of how to parametrize the levalowever, they are more difficult to obtain when they are

densities of individual nuclei. Understanding how the predic-defined in terms ofn, comprised of several species with
tions of the models are affected by various assumptions angifferent masses

parameters is a prerequisite to making insightful compari-
sons with experimental data.

ny= 2 Ny. (A6)
keb
ACKNOWLEDGMENTS However, in this case one may proceed with the help of a

This work was supported by the National Science Foun_recursion relation for the factorial moments. To derive the
dation. Grant No. PHY-96-05207. recursion relation, we consider the functibn

Nk

w
fam(b)= > H_knb(nb_l)"'(nb_m+l)y

APPENDIX: DERIVATION OF RECURSIONS RELATIONS Ehea kNt
USED IN CANONICAL ENSEMBLES (AT)
1. Recursion relation for the partition function fan(b)
) . . . Fpan=—— (A8)
The recursion relation described here was first presented AN O,

by Lee and Mekjiar{29], and was first applied in a liquid-
drop context by Chase and Mekjiah9]. The general rela- For the first termny,==,_yny in the sequence o terms
tion for the partition function of noninteracting species is ny(ny,—1)---(ny,—m+ 1), each power of, may be used to

044603-11



SCOTT PRATT AND SUBAL DAS GUPTA PHYSICAL REVIEW G52 044603

cancelny in the factorial. By then factoring outside the to obtain Eq.(A12). Although Eg.(A12) is easy to imple-
sum over configurations, one may rewritas ment numerically, it is susceptible to problems with numeri-
cal accuracy due to the alternating signs. Our experience is
o that such problems set in when the multiplicities approach or
fam(b)= 2 Wy E H —n(ni—1) exceed 10. However, a recursion relation for the multiplicity

keb (Snpw=A-ay) K Ny! distribution, which is derived in the next section, allows cal-

X (nf—2)-- - (n,—m), (A9) _culation of the multiplicity distributio_n without first calculat-

ing the moments. Such an expression does not have alternat-

ing signs and therefore is less susceptible to numerical
problems.

Ny

wheren|, represents the number bftype fragments in the
setk’, which differs from the previous set by the reduction
of one fragment of typ&. From the definition of, one may
rewrite Eq.(A9), 4. The recursion relation for the multiplicity distribution

In the previous sections of the Appendix, relations have

fam(0)=2> ofa-a m 1, (A10)  been derived that give a recursion relation for the factorial
' keb K moments, and also give the multiplicity distribution in terms
of the factorial moments. In this section we derive a recur-

which leads to the recursive expression For sion relation for the multiplicity distribution, that will allow

Q the calculation of the multiplicity distribution without first
= _ E = A~ (A11) calculating the moments.
bAMT & THbATa ML g By inserting the recursion relation for factorial moments,

Eqg. (All), into the formula for deriving the multiplicity dis-
This recursion relation allows one to calculate factorial mo-tribution in terms of factorial moments, E¢A12), one ob-
ments of increasing order and for increasingly large nucletains
given knowledge of the partition function.
1 n Qp- ay
3. Obtaining the multiplicity distribution Pb.an= mZ/ m Z okFpa-a m-17— QO
from the factorial moments

One can express the multiplicity distributid®y, 5 , in _2 o
terms of the factorial moments. Her, 4 , is the probabil- = NS
ity of observingn fragments of typeb in an event from a

system of mas#. The desired expression, which we derive

further below, has the simple form,

_\m
i m!n!( ) Fb,Afak,nerfl-

(A15)

By replacinng,A_akynm_l in the above expression with its

Pp an= z Foa i _—__(—ymmn (A12) definition in terms of the multiplicity distribution
' (m—=n)!n!
A,
where Fy o m={Np(Np—1)- - - (N,—m+1)). Only factorial Py, 1= > ka_ak S ()m
moments of ordem or greater contribute tdy, 5 , since keb A m=0 M:N:
events with multiplicityn,<<m do not contribute td=y, A . 1))
To prove Eq(A12) we rewrite the right-hand side of Eq. x 2 PoA a memen 71(” m+m’'—1)!
(A12) using the definition of factorial moments m' =0 ke m'!)
1 Qp-a, (N+M—1)!
. (_\m-n _
mEzn Fb‘A'm(m—n)!n! (=) _k;b Wk Qp MEBO Pb,A—ak,n+M—1 nl
I 1 1
= P m—n % _\m
22 ATt (m-minr sy () m! (M —m)!
I—-n
I! 1 Qp s 1
= —_\m _ k -
= Pb,A,| (I _n_m)| min! ( ) ’ (AlS) k}g:b Wy QA Pb,A*ak,n*lni (A16)

where, in practice, the sums do not extendtalue to the
finite size of the system. The sum ovarcan now be elimi-
nated by using the identity

where the last step utilized the identity, E&.14).

In practice, the multiplicity distributions are calculated for
small A, then for successively largéx using the recursion
relation above. However, calculation of the=0 term can-
(—)M=(1-1)k= Scor (A14) not be _determined from the recursion relation and must be
m=0 (k—m)!m! determined through the constralP,=1.
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