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Statistical calculations of nuclear fragment distributions
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East Lansing, Michigan 48824
~Received 2 March 1999; revised manuscript received 18 January 2000; published 1 September 2000!

The recursive techniques developed by Mekjian and collaborators for exact calculations of canonical parti-
tion functions of fragmenting systems are extended to allow the determination of fragment multiplicity distri-
butions. The fragment multiplicity distribution is shown to become strongly super-Poissonian at the critical
temperature. This behavior is shown to be highly sensitive to Coulomb effects and to whether energy is strictly
conserved~the microcanonical ensemble!. Additionally, a method is presented for generating events from the
partition functions, which also permits the inclusion of hard-sphere interactions between fragments.

PACS number~s!: 25.70.Pq, 24.10.Pa, 64.60.My
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I. INTRODUCTION

Heavy ion collisions where excitation energies are of
order of 10 MeV per nucleon probe the energy regime wh
the nuclear liquid gas transition is expected to take pla
Below energies of approximately 50A MeV, symmetric col-
lisions are expected to produce sources that evaporate
ticles as would be expected from a hot liquid drop, wher
above this threshold, the excited source is expected to
plode, producing larger clusters through simultaneous mu
fragmentation. In this energy regime, the process of fragm
production is not clear, and comparisons with data have b
made with a disparate set of models, ranging in simplic
from percolation descriptions@1,2# and lattice gas model
@3#, to evaporative models@4#, dynamical simulations@5–9#,
and microcanonical samplings@11–13#.

Fluctuations behave in a special manner in the neighb
hood of a phase transition, so it should seem that the stud
fluctuations of fragmentation observables might prove
sightful for investigating multifragmentation. Moretto an
collaborators@14# have measured multiplicity distribution
of intermediate-mass fragments~IMFs! as a function of ex-
citation energy for a variety of projectile/target combinatio
utilizing beams with energies up to 60A MeV. The analysis
showed sub-Poissonian multiplicity distributions that cou
accurately be described with binomial distributions. The
observations have inspired a variety of explanations@15–18#.

Recently, Chase and Mekjian@19# have discovered a
method for exact calculation of the canonical partition fun
tion for noninteracting clusters. In this paper we extend t
approach to include fragmentation observables. We prese
method for exact determination of both multiplicity distrib
tions and their moments for both canonical and microcano
cal treatments. The canonical ensemble is appropriate f
system in contact with a large heat bath, while microcano
cal descriptions are valid for a system with a fixed energ

When raising the temperature while keeping the volu
fixed in a canonical treatment, we observe a sharp trans
for fragmentation at the same temperature where the spe
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heat peaks. At this threshold, the multiplicity distributio
becomes remarkably wide. We associate this behavior wi
first order phase transition. We find no such dramatic beh
ior for microcanonical calculations when plotted against
excitation energy. But, nonetheless the character of the m
tiplicity distributions does indeed change at the fragmen
tion threshold.

We also present a technique for generating random ev
consistent with the exact partition functions. By excludi
those events where fragments overlap, we explicitly incor
rate hard-sphere repulsion between fragments, and find
excluded volume arguments well account for the hard-sph
repulsions.

The status of statistical treatments of nuclear multifra
mentation is reviewed in the next section. The correlat
coefficient j, with which we parametrize the width of th
fragment multiplicity distribution, is described in the thir
section. The methods for calculating partition functions a
multiplicity distributions, and for generating random even
is described in Sec. IV. Results and conclusions are p
sented in Secs. V and VI, respectively.

II. STATISTICAL MODELS OF MULTIFRAGMENTATION

The challenge of handling statistics of a finite-sized s
tem that could fragment into arbitrary pieces has recei
great attention from the nuclear physics community dur
the last 20 years. Fragment yields were first calculated w
grand canonical ensembles@10#, which assume contact with
both a heat bath and a particle reservoir. This approac
simple to implement and should accurately calculate sing
particle yields in the limit of large systems where the size
not appreciably altered by the creation of a single fragme

The finite system suggests that canonical and micro
nonical treatments should be more appropriate. Koonin
Randrup @11# first developed a microcanonical treatme
based on Metropolis Monte Carlo methods. A microcano
cal approach was further pursued by Gross and collabora
and is referred to as MMMC~microcanonical statistical mul
tifragmentation model! @12#. A large number of comparison
to experimental observables have been performed with
model, including a study of the binomial nature of the fra
,
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ment multiplicity distributions. The method consists of sa
pling fissions and fusions of nuclear fragments within a fix
volume. Energy, charge, and baryon number are divi
amongst the various degrees of freedom. The advantag
this approach is thatN-body correlations and explicitN-body
interactions may be considered without computational p
alty. The only disadvantage to this treatment is that com
tational requirements can be high, especially when fluct
tions are of explicit interest and the event-to-eve
correlations of the Metropolis method must be eliminated

Bondorf and collaborators@13# developed an alternativ
statistical treatment SMM~statistical multifragmentation
model!, where all possible partitions of the system into fra
ments are considered without invoking a Monte Carlo p
cedure. However, division of the energy between the inte
and kinetic energy of the fragments does require Mo
Carlo methods. Since in SMM the internal excitation ene
is divided up amongst the fragments in proportion to
fragment mass, fluctuations of excitation energy are
treated as one would expect in a true microcanonical tr
ment. Furthermore, explicitN-body correlations and interac
tions are ignored.

A third approach invented by Mekjian@19,20# allows the
calculation of statistical partition functions using recursi
relations without invoking Monte Carlo methods. An a
proximate approach, also invoking an iterative procedu
was developed by Fai and Randrup@21#. The advantage o
Mekjian’s approach is that all partitions of the system a
considered without any of the technical difficulties asso
ated with Monte Carlo sampling. Furthermore, the appro
can incorporate arbitrary level densities of the internal fr
ments. The disadvantage of such recursive techniques is
explicit N-body interactions~beyond mean field and Wigner
Seitz treatments! are ignored.

Before further discussion, one should review the valid
of the physical assumptions in all statistical approach
First, they should not be applied at densities higher than'
one-fourth of normal nuclear density. The approaches
sume that the individual nuclei are well defined. As point
out by Gross, fission of a spherical drop into two equal dro
requires at least four times the volume of the original dr
At temperatures nearTc , where the density of the liquid
phase falls, the range of treatable densities might be pus
even lower. Although fission is an extreme example, one
understand the importance played by geometry in fragm
fragment correlations by considering the fission examp
The available volume for a large fragment clearly depe
on the fragmentative state of the remainder of the syst
The question of when the excluded-volume approximatio
valid remains an open and intriguing question.

Secondly, one should keep in mind that nuclear collisio
are dynamic processes. At excitation energies per nuc
much less than 5 MeV, fragment production occurs
evaporation, and the picture of a sudden disassociation w
nucleons sample all states within a large volume is not r
sonable. Even when sufficient excitation energy allows
nucleus to explode, individual nucleons and light clust
have had the chance to evaporate from the expanding su
while larger clusters have not had time to sample the sa
04460
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volume as the faster lighter fragments. Of course angu
momentum can play an important role in fragment emissi

Finally, the incorporation of Coulomb is problematic in
statistical picture. In the MMMC model, where Coulomb
explicitly included, the larger fragments push to the outs
of the boundary so as to minimize the Coulomb energy. D
namics favor the opposite trend as large fragments req
more time to move to the periphery. The Coulomb rearran
ment energies may be many tens of MeV, which is much l
than the overall excitation energy, but is much greater th
the temperatures of interest. Simple Wigner-Seitz pictures
presented here or in the SMM model, can make only gr
estimates of the effect of the Coulomb force. However, it
not clear whether the more sophisticated Coulomb treatm
of the MMMC model is more consistent with the true phys
cal situation.

The immediate goals of this investigation are twofo
First, we wish to explore whether the recursive approac
can be extended to include microcanonical constraints
fragment-fragment interactions, and whether the techniq
can be developed to make exact calculations of multiplic
distributions, which are not trivially derived from the part
tion function. Secondly, we wish to investigate the possib
ity that fragmentation observables are related to fundame
properties of the liquid-vapor phase transition, and to und
stand how such signals are affected by energy conserva
Coulomb effects and interfragment interactions. In this p
per, the recursive approach is pursued for our studies. T
choice is motivated by the rapid calculation times, the lack
Monte Carlo methods, and the ability to compare canon
and microcanonical calculations of identical systems.

III. MULTIPLICITY DISTRIBUTIONS
AND THE CORRELATION COEFFICIENT

Multiplicity distributions are often described by two pa
rameters, the mean and variance. In this section we dis
the correlation coefficientj which parametrizes the varianc
relative to the mean in such a way that it can be viewed a
correlation. A super- or sub-Poissonian multiplicity distrib
tion is one whose variance exceeds or falls below its me
respectively. The difference of the variance and the mean
also be written as a correlation. We demonstrate this by c
sidering the emission into an arbitrarily large number
statesi, each of which is infinitesimally probable. A sta
could be defined as a specific type of IMF emitted into
arbitrarily small bin in momentum space. The difference
the variance and the mean is

s22^n&5(
i , j

(^ni2^ni&!~nj2^nj&!2(
i

^ni&

5(
iÞ j

(^ni2^ni&!~nj2^nj&!

1(
i

~^ni2^ni&!22^ni&. ~1!

If the bins are arbitrarily small, one may discard the terms
3-2
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the second sum proportional to^ni&
2, then use the fact tha

ni
25ni for ni50 or 1, to discard the remainder of the seco

term and obtain

j[
s22^n&

^n&2
5

(
iÞ j

^~ni2^ni&!~nj2^nj&!&

^n&2
. ~2!

Here, j can be interpreted as a correlation coefficient. It
positive if the emission into two different bins is positive
correlated. The only assumption going into this derivation
that the bins may be divided into arbitrarily small sizes.

The simplest examples of sub- and super-Poissonian m
tiplicity distributions are the binomial and negative-binom
distributions. The binomial distribution is defined in terms
two parametersp andN:

Pn5
N!

n! ~N2n!!
pn~12p!N2n, ~3!

wherep is the probability of success in one ofN tries. For
the binomial distribution the mean and correlation coe
cients become

^n&bin5pN, ~4!

jbin521/N, ~5!

and stays negative. As with most correlations it is prop
tional to the inverse of the system size.

The negative-binomial distribution is also defined by tw
parametersp andN,

Pn5
~N1n21!!

~N21!!n!

pn

~11p!N1n
. ~6!

The correlation coefficient in this case is opposite to tha
the binomial distribution:

^n&neg bin5pN, ~7!

jneg bin51/N. ~8!

Binomial and negative-binomial distributions result wh
one considers populatingN quantum levels with fermions o
bosons respectively withp representing the average popul
tion of each level.

Random emission from a large number of uncorrela
sources leads to a Poissonian distribution. The binomial
tribution suggests that conservation of particle number wo
give a negative correlation coefficient of order 1/N, where
N5A/a is the number of intermediate-mass fragments
characteristic sizea that could fit into the system. For suffi
ciently small systems, this negative contribution fro
particle-number conservation dominates, with the extre
case being wherea is more than half the system size mea
ing that no more than one IMF can be emitted. Other ne
tive correlations are expected due to energy conservatio
IMF emission requires energy, e.g., escaping a Coulomb
rier, energy conservation is expected to reduce the proba
04460
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ity of emitting a second IMF. We will see in the next se
tions that positive correlations can arise in canoni
treatments both in the region of the phase transition an
low temperature due to surface effects.

Aside from the size of the correlations, it is also of inte
est to understand whether the entire multiplicity distributio
is well described by a two-parameter fit to a binomial
negative-binomial distribution. If the reduction of the resu
to two parameters is valid, comparison of different mod
and data is greatly simplified.

IV. RECURSION RELATIONS FOR CALCULATING
FRAGMENTATION OBSERVABLES

A. The canonical ensemble

Chase and Mekjian have shown that canonical partit
functions can be easily calculated in terms of the partit
functions of single clusters. This allows the calculation
thermodynamic quantities for a system of fixed nucle
number without resorting to numerically intensive Mon
Carlo procedures. If the partition function for a single clus
of size ak is denoted byvk , the partition function for a
system of sizeA may be written

VA[ (
^Snkak5A&

)
k

vk
nk

nk!
5(

k
vk

ak

A
VA2ak

. ~9!

Thus,VA is expressed recursively in terms ofvk and VA8
for A8,A. Proof of this relation is given in the Appendix
The only shortcoming of this approach is that explicit~not
mean field! interactions between fragments are ignored.

Moments of the multiplicity distribution may be ex
pressed in terms of the partition functions. The moments
then be used to derive the correlation coefficient,ja defined
in Eq. ~2! or the multiplicity distribution as discussed below
The first moment is the mean which is defined as

^nk&5vk

VA2ak

VA
. ~10!

Rather than considering moments^nb
m& it is more conve-

nient to consider factorial momentsFb,A,m defined as

Fb,A,m[^nb~nb21!•••~nb2m11!&. ~11!

Calculation of the factorial moments fornb defined in Eq.
~11! is simple if b refers to single speciesk:

Fk,A,m5vk
m

VA2mak

VA
. ~12!

However, ifb refers to a set of species,nb5SkPb nk , where
the various species that compriseb have different masses
Eq. ~12! is no longer valid. One must then generate the f
torial moments using the recursion relation

Fb,A,m5 (
kPb

vkFb,A2ak ,m21

VA2ak

VA
, ~13!
3-3
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SCOTT PRATT AND SUBAL DAS GUPTA PHYSICAL REVIEW C62 044603
which is true in general. The proofs of Eqs.~12! and~13! are
given in the second section of the Appendix.

As shown in the third subsection of the Appendix, fac
rial moments are sufficient for calculating the entire mu
plicity distribution via the relation

Pb,A,n5 (
m>n

Fb,A,m

1

~m2n!!n!
~21!m2n, ~14!

wherePb,A,n gives the probability of viewingn fragments of
type b in a system of sizeA. More directly, one may also
generate the multiplicity distribution, without knowing th
factorial moments, through the recursion relation

Pb,A,n5
1

n (
kPb

vkPb,A2ak ,n21

VA2ak

VA
. ~15!

Proof of Eq.~15! is presented in the Appendix. This dire
method of producing the multiplicity distribution has prove
more numerically stable than generating the distribut
from the factorial moments. This improvement can be tra
to the alternating signs in Eq.~14!.

Summarizing the technique, one starts by calculating p
tition functions for individual fragmentsvk . One may then
generate partition functions,VA , by using the recursion re
lation, Eq.~9!. The recursion relation for factorial moment
Eq. ~13!, then allows one to generate the factorial momen
which in turn allow the determination of the entire multipli
ity distribution using Eq.~14!. Alternatively, one may calcu
late the multiplicity distributions directly using Eq.~15!. The
obtained multiplicity distributions are exact. Although th
sums used in the recursion relation are performed num
cally, they require only a fraction of a second of compu
time.

B. Microcanonical calculations

A microcanonical approach, which considers configu
tions only at a specific energy, would be more realistic
application to nuclear phenomenology since nuclear co
sions do not take place with contact to a heat bath. T
importance of performing microcanonical calculations is e
phasized by the existence of the first order phase transi
which collapses a wide range of energy densities to a nar
range of temperatures. In this section we present express
for calculating fragmentation observables within a micro
nonical context.

It is straightforward to obtain the needed microcanoni
quantities from the expressions for partition functions
Fourier transforming corresponding canonical objects ove
range of complexb[1/T. For instance, the level density
r(E), may be obtained from the partition functions throu

r~E!5Tr ad~E2Ea!5
1

2pE dbVA~ ib!eibE. ~16!

One may calculate recursion relations for the facto
moments and for the multiplicity distributions at fixed e
ergy. First we considerf b,A,m( ib) andpb,A,n( ib), which are
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the canonical quantities without the normalization broug
on by dividing by V. As described in the Appendix, the
may be found via recursion relations

f b,A,m~b![VA~b!Fb,A,m~b!5 (
kPb

vkf b,A2ak ,m21~b!,

~17!

pb,A,n~b![VA~b!pb,A,n~b!5
1

n (
kPb

vkpb,A2ak ,n21~b!.

~18!

The factorial moments and multiplicity distributions
fixed energyE may then be expressed as

Fb,A,m~E!5

E db f b,A,m~ ib!eibE

2pr~E!
, ~19!

Pb,A,n~E!5

E dbpb,A,n~ ib!eibE

2pr~E!
.

However, the integrations overb needed to obtain the rel
evant microcanonical quantities do make the calculati
significantly more numerically intensive. It is not clear
what degree the stationary-phase approximation@22# might
allow one to avert the numerically costly integration, esp
cially given the first order phase transition which causes d
continuities as a function ofb.

If one is interested in the microcanonical distribution, f
a range of energies in the neighborhood ofE, rather than for
an exact value ofE, one may replace the delta function
Eq. ~16! by a Gaussian

d~E2Ea!→ 1

A2ph2
exp2

~E2Ea!2

2h2
, ~20!

where h defines the width of the neighborhood. One m
incorporate the broadening of thed function by modifying
the phase factors used in the Fourier transforms

eibE→eibE exp2
1

2
h2b2. ~21!

Numerical implementation of the Fourier transform simp
fies for broader widthsh, as it effectively narrows the re
quired integration range forb.

An alternative way to approach the constraint of ene
conservation is to discretize the energy and measure it w
integral values. One can then treat energy in the same m
ner with which one would treat other conserved charges.
instance, energy might by measured in steps of 0.5 M
with an integerQ measuring the energy. Ifv i ,qi

counts the
number of states available to a particle of typei with energy
qi and massai , the number of states of the system of massA
with net energyQ becomes
3-4



im
on
e

nd
ial

re
t,
f
y
on
x
V

e
em

iz

om

n
n

te
g

ef-
in

he

rst

ay

ble

in-
any
of

the
he
, it
g-

lis
C

for

the
rv-
ide
e
ace

rmi
in
ce
he

am-
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N~A,Q!5 (
^Sniai5A,Sniqi5Q&

P
v i ,qi

ni

ni !
. ~22!

One may then derive the recursion relation in a manner s
lar to the derivation of the recursion relation for the partiti
function shown in Sec. VII A. Since there are two conserv
‘‘charges,’’ two recursion relations may be derived,

N~A,Q!5(
i ,qi

ai

A
v i ,qi

N~A2ai ,Q2qi !, ~23!

5(
i ,qi

qi

Q
v i ,qi

N~A2ai ,Q2qi !.

~24!

In a manner similar to the derivations in Secs. VII B a
VII D one may derive recursion relations for the factor
moments and multiplicity distributions

Fb,A,Q,m5 (
kPb,qk

vk,qk
Fb,A2ak ,Q2qk ,m21

N~A2ak ,Q2qk!

N~A,Q!
,

~25!

Pb,A,Q,n5 (
kPb,qk

vk,qk

1

n
Pb,A2ak ,Q2qk ,n21

3
N~A2ak ,Q2qk!

N~A,Q!
. ~26!

There are two practical differences between these exp
sions and the corresponding canonical expressions. Firs
extra index has been added that denotes the energy o
system. In practice this leads to a longer calculation b
factor of the number of energy steps squared. Thus if
wishes to perform a microcanonical calculation with an e
citation energy of one GeV, using energy steps of 1.0 Me
the required computer time would be expected to increas
106 as compared to a canonical calculation at a single t
perature.

Knowing the number of ways to arrange a system of s
A into energyQ allows one to determine the temperatureT:

1

T
5

] ln NA,Q

]Q
. ~27!

Mass distributions are straightforward to generate fr
NA,Q :

^nk&5
(qk

vk,qk
NA2ak ,Q2qk

NA,Q
. ~28!

C. Generating random events and including
hard-sphere interactions

Although the recursion relations of the previous sectio
allow the exact calculation of nearly any observable, o
may wish to randomly generate individual events consis
with the partition functions. This may be useful for filterin
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through experimental acceptances or for calculating the
fects of Coulomb trajectories on outgoing particles. Later
this paper, random events will be utilized to calculate t
effects of hard-sphere fragment-fragment interactions.

Events are generated fragment-by-fragment. The fi
fragment is generated from a system of sizeA according to
the weight

wk5
ak

A
vk

VA2ak

VA
. ~29!

After the first fragment is generated, a second fragment m
be generated usingA2ak in place ofA for the weight. Simi-
larly, one may generate events in a microcanonical ensem
using the weights

wk,qk
5

ak

A
vk,qk

NA2ak ,Q2qk

NA,Q
. ~30!

Hard-sphere interactions between fragments may be
cluded by generating a sample of events and discarding
event where two fragments overlap. The total number
events is then the original number,NA,Q in the microcanoni-
cal case, multiplied by the fraction of events that pass
filter. Given that this procedure entails randomly placing t
fragments in the volume and testing all pairwise overlaps
can certainly become numerically prohibitive when the fra
ment multiplicity becomes large. At some point Metropo
techniques such as those incorporated into the MMM
model become necessary.

V. RESULTS

A. A liquid-drop example in the canonical ensemble

For our purposes, we consider the partition function
individual fragments of massk as

vk5VH akMT

2p J 3/2

e2Fk, int /T, ~31!

Fk, int5 f bak1 f sak
2/31 f c

1

4
ak

5/3, ~32!

where the volume of the system isV, the mass of a single
nucleon isM, and the fragment’s internal free energyFk, int is
split into a bulk term and a surface term. One sees that
bulk term is irrelevant in determining fragmentation obse
ables since it factors out of the partition function. Thus, as
from the system sizeA, all fragmentation observables ar
determined by three parameters, the ratio of the surf
term to the temperaturef s /T, the specific entropy,s
[(V/A)(MT)3/2, and Coulomb term,f c . This implies that
many details of a system’s microscopic makeup, e.g., Fe
vs Bose nature of the internal excitation, are irrelevant
determining the statistics of fragmentation. If the surfa
term is negligible fragmentation is determined purely by t
specific entropy.

For the surface and Coulomb terms, we use the par
eters of the nuclear liquid-drop model
3-5
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SCOTT PRATT AND SUBAL DAS GUPTA PHYSICAL REVIEW C62 044603
f s517.2 MeV, ~33!

f c50.70S 12S r

r0
D 1/3DMeV, ~34!

where the form of the Coulomb term was taken to acco
for the screening of the Coulomb repulsion by the nucl
medium in a Wigner-Seitz-like parametrization@13# with r0

referring to nuclear saturation density ofr0
215(4p/3)r s

3 ,
wherer s51.2 fm.

All the calculations presented in this paper assume
density of one-sixth of nuclear matter density. The behav
at different densities is not qualitatively different, with th
exception of the relative importance of the Coulomb ter
The fragmentation transition described below occurs w
s5(1/r)(mT)3/2 is of order unity. Therefore a change o
density affects the temperature where fragmentation set
An excluded volume could easily be incorporated into
problem by replacingV with Veff . This is equivalent to
changing the density, and does not qualitatively affect
results. The surface energy is chosen to be a constanf s
517.2 MeV. One could imagine scalingf s as a function of
density or temperature, although one might object to inc
porating a temperature dependence that is not of the na
eE/T. The choice off s does affect the transition temperatu
and its width. Larger choices off s lead to sharper transitions
For these calculations we assume a density of one-sixth
mal nuclear density, but choose three-fourths of the volu
to account for exclude volume. Thus the volume is effe
tively 4.5 times the volume of a nucleus of sizeA. However,
the factor of one-sixth does come into play when consider
the Coulomb corrections.

In Fig. 1, the mass distributiondN/da is shown for three
temperaturesT58.0, 8.75, and 9.5 MeV. The overall size
the system was chosen to be 300 and Coulomb effects w
neglected in these calculations. The mass distribution
been multiplied bya to emphasize how the nucleons a
partitioned into the various sized drops. The mass distri
tion changes dramatically within a small temperature ran

FIG. 1. Mass distributions are displayed~scaled bya) at three
temperatures for anA5300 system. At the high temperature, 9
MeV ~short dashes!, the distribution is dominated by small frag
ments, while below the fragmentation threshold, at 8 MeV~solid
line!, most nucleons reside in one fragment. At the intermed
temperature, 8.75 MeV~dashed line!, the mass seems equally d
vided between the large cluster and small clusters. The trans
occurs over a remarkably narrow range of temperatures.
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The average multiplicity of intermediate-mass fragme
(5,a<40), denoted as IMFs, are shown in the upper pa
of Fig. 2 for a system of sizeA5100. Results are plotted
against the temperature, both for the case where the C
lomb term is included as well as for the case where it
neglected. The inclusion of Coulomb pushes fragmenta
down towards lower temperatures. The trend wou
strengthen if we were to consider larger systems. When
excitation energy exceeds the fragmentation threshold, a
age IMF multiplicities quickly climb to over a half-dozen pe
event. Correlation coefficients are shown in the lower pa
of Fig. 2. Coefficients are shown both for the case wh
Coulomb is included and for the case where Coulomb
neglected.

When Coulomb is neglected super-Poissonian beha
ensues at lower excitations as evidenced by the positive
ues ofj. At low temperatures, this behavior may be und
stood by considering the surface penalty for emitting a sin
fragment of massa,

G~A→A2a!}expH 2a
d

dA
~Fsurf/T!J . ~35!

If a second IMF is emitted, it feels the same penalty, exc
for the fact thatdF/dA is evaluated at a smaller overall siz
A2a. The correlation becomes

jsurf'
G~A→A2a!G~A2a→A22a!

G~A→A2a!2
21 ~36!

e

n

FIG. 2. The average multiplicity of IMFs, those fragments wi
masses from 5 to 40, is shown in the upper panel as a functio
temperature for anA5100 system. Including Coulomb~circles!
lowers the threshold temperature for fragmentation compared
when Coulomb is ignored~triangles!. Correlation coefficients are
displayed in the lower panel. The approximations described in
text, which are represented by lines, describe the behavior at
excitation. A positive correlation at the fragmentation thresh
arises from two classes of events with different exciation energ
those with and without a large cluster, which both contribute at
fragmentation threshold.
3-6
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'
a2

T

d2Fsurf

dA2

5
2a2f s

9T
A24/3.

The dashed line represents the surface contribution toj and
closely follows the statistical calculation at lower tempe
tures. The average size of an IMF was used fora.

The inclusion of Coulomb reducedj to negative values a
seen in Fig. 2. The Coulomb contribution toj may be ap-
proximated in a similar fashion as the surface contributio

jCoul'2
5a2f c

9T
A21/3. ~37!

The simple estimate ofj works well at low temperature
when Coulomb is neglected, as most of the particles resid
a single fragment. The approximations forj are poor for large
systems when Coulomb is included. This arises becau
large system does not wish to form a single drop when C
lomb is included.

At high temperatures the sub-Poissonian behavior ma
roughly understood as arising from particle conservation.
seen in Sec. III when considering binomial distributions, o
expects a negative correlation of order 1/N, whereN is the
maximum number of IMFs that fit into the system.

The super-Poissonian~or nearly super-Poissonian whe
Coulomb is included! behavior at the fragmentation thres
old is especially interesting. Perhaps this may be underst
by stating that the partition function is sampling two com
peting configurations, one with one large fragment s
rounded by gas and a second one where numerous IMF
present. These configurations have significantly different
ergies. At the fragmentation threshold, where the system
undergoing a transition, both configurations occur leading
a broadened multiplicity distribution. Figure 3 displaysj,
again scaled byA, as a function of temperatures between
and 12 MeV, for three sizesA5100, A5300, and A

FIG. 3. The evolution of the correlation coefficient is shown f
a small range of temperatures for increasingly large system siz
the lower panel. For large systems the peak narrows into a si
larity, a signal of discontinuous behavior. Nearly identical behav
is seen in the specific heat per particle which is displayed in
upper panel. Coulomb has been neglected in these calculation
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51000. Coulomb is ignored in these calculations. As
system size increases a singularity inj develops at the boil-
ing temperature. This is related to a discontinuity in the e
ergy vs temperature at constant volume@20#, which is char-
acteristic of this model but not necessarily characteristic o
typical liquid-gas transition. In a liquid-gas transitionCp be-
comes singular but notCV . Since the peak inj vs T is linked
to the discontinuity in the energy density at the same te
perature, the peak might disappear in a microcanonical tr
ment.

The multiplicity distributions for theA5300 system with
Coulomb ignored are shown in Fig. 4 for three temperatu
They are compared to negative-binomial and binomial dis
butions, respectively, where the two parameters are chose
fit the mean and variance of the distributions. At the int
mediate temperature, the distribution’s shape is less well
scribed by a negative-binomial fit. This emphasizes that t
classes of events, corresponding to the two phases, con
ute at this temperature.

B. Microcanonical results

Analogous calculations to those of the previous subs
tion were performed for the microcanonical case. In orde
perform the microcanonical calculations, energy was d
cretized in units of 2.0 MeV. The internal nuclear levels we
modeled by assuming each nucleus had uniformly spa
single-particle levels, with the single-particle level dens
for a nucleus of massak being

gk5~ak21!
p2

6e0
, ~38!

with e0 being equal to 12 MeV. The levels of the nucle
composite were found by accounting for all ways to arran
individual fermions in the uniformly spaced levels at a giv
total energy. This was accomplished through a simple cou
ing algorithm @23,24#. Explicitly counting the levels gives
the same answer as Eq.~39! at high excitation:

in
u-
r
e

FIG. 4. Multiplicity distributions are shown at three temper
tures for theA5300 system. Below the fragmentation threshold
a temperature of 8 MeV~squares!, the distribution is peaked at a
low multiplicity and is well described by a negative-binomial di
tribution shown as a dashed line. At a high temperature of 9.5 M
~circles!, the distribution is sub-Poissonian and well described
the binomial distribution~dashed line!. At 8.75 MeV~triangles!, the
multiplicity distribution is strongly super-Poissonian and is not w
described by a negative binomial.
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r internal~E* !5
1

A48E*
expA2akE* /e0. ~39!

For the monomers,ak51, a degeneracy of four was chose
The density of states of single fragments was fou

through convoluting the kinetic and internal energies:

rk~E!5
Vmk

2p2\3E dEkinA2mkEkin rk, int~E2Ekin2ELD!,

~40!

whereELD is the liquid-drop energy of the nucleus of typek
which includes a bulk term, a surface term and a Coulo
term. Oncer is calculated, the number of quantum sta
available to a single cluster within a discretized energy w
dow is determined. These form the basis for the recurs
algorithms used to generate the number of states of
many-particle system with a given energy.

Temperatures were calculated by taking the logarithm
derivative of the system’s level density with respect to
energy, and are shown in Fig. 5. The result is compare
the canonical equivalent, where the energy is determined
taking the derivative of the canonical partition function wi
respect toT, with the canonical partition functions bein
generated with the same set of nuclear states. The cano
and microcanonical results are similar, but the microcano
cal curve is characterized by a somewhat sharper transi
Finer energy discretizations of 1.0 MeV were also tried a
gave identical results for the caloric curve.

Mass distributions, multiplied by the size of the fragme
a, are shown in Fig. 6 at three excitations. As expected
low excitation most of the mass exists in the form of lar
clusters while at high excitation most of the mass resi
within small fragments.

Multiplicity distributions were generated with the use
Eq. ~26! and are displayed in Fig. 7 for three excitation
They are well fit by binomial distributions where the bin
mial parametersp andN were determined by fitting the mea
and variance of the distributions. Unlike the canonical cal

FIG. 5. The temperature is plotted against the energy density
the microcanonical~solid line! calculation, canonical~dashed line!
calculation, and the low-temperature Fermi gas expansion~dotted
line!. The calculations were performed for a system of sizeA
5100 without Coulomb. The transitions of the caloric curve a
somewhat sharper in the microcanonical case.
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lations, the microcanonical calculations always returned s
Poissonian multiplicity distributions.

The mean and correlation coefficient were generated fr
the IMF multiplicity distributions and are presented in Fig.
Results are shown both for the case where Coulomb is
cluded and where it is neglected. The inclusion of Coulo
lowers the threshold for fragmentation as expected. The
relation coefficient is of a different character when calcula
for a microcanonical calculation. When Coulomb is n
glected, the correlation coefficient is positive for canonic
calculations as was shown in the previous subsection. T
was related to the sharp change in the energy density
function of temperature, which allowed the canonical e
semble at a fixed temperature to include substantive wei
ings from a wide range of energies, thus sampling both
uidlike and gaslike configurations simultaneously. T
correlation coefficient for the microcanonical case also
hibits a maximum at an excitation in the center of the liqu
gas transition region. However, this maximum does not
come increasingly sharp with increased system size and
therefore not be considered as a signal of a phase transi
Also, the contribution from surface energy which yields
positive contribution in the canonical example has the op
site effect in the microcanonical example. For the micro
nonical case, the emission of a first fragment uses valua
energy needed for the subsequent emission of a second

or
FIG. 6. Mass distributions generated from microcanonical c

culations are shown for a system of sizeA5100 without Coulomb
for three different excitations,E/A57, 9, and 11 MeV/nucleon.
The jagged lines result from the discretizaton of the energy.

FIG. 7. Multiplicity distributions of IMFs as generated from
microcanonical ensemble are displayed for three excitations,E/A
57 MeV ~squares!, 9 MeV/nucleon ~triangles!, and
11 MeV/nucleon~circles!. Calculations assumed a sizeA5100 and
ignored Coulomb effects. The distributions are fairly well describ
by binomial distributions~dashed lines!.
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ment. A noticeable peak resulted for the microcanonical c
culation ofj with Coulomb. However, we note that this pea
was rather sensitive to details of the breakup density
might well be related to fissionlike geometries.

Even though the sharp peak disappears in the micro
nonical case, the behavior of the correlation coefficient in
critical region is interesting. The coefficient approaches ze
and if fit to a binomial distribution would suggest that th
limiting number of fragments 1/j, would surpass the cutof
due to particle-number conservation. Furthermore, the
havior ofj with energy is qualitatively different from what i
predicted from percolation calculations@25#.

In nuclear experiments one can directly adjust the exc
tion energy, and since there is no external heat bath, mi
canonical descriptions are more appropriate. However,
could justify a canonical language by binning events acco
ing to the kinetic energy of the fragments while takin
samples from events with a wide variety of excitations. O
could then treat the kinetic component of the energy as a
bath for the fragmentative degrees of freedom. This is ra
artificial and the finite size of the kinetic energy would n
truly represent a heat bath, but such an analysis might
result in discontinuous observables plotted against an ef
tive temperature.

Finally, we remark on the computational time required
perform microcanonical calculations using the recurs
techniques listed above. While canonical calculations for
temperature can be performed in a fraction of a second
any modern workstation, microcanonical calculations requ
significantly more computational effort. Using a 500 MH
Pentium CPU, microcanonical calculations of the calo
curve and mass distributions required approximately

FIG. 8. The average number of IMFs and the correlation co
ficient as generated from a microcanonical calculation for a m
A5100 system are shown with~cirlces! and without ~triangles!
Coulomb. The inclusion of Coulomb reduces the amount of ene
needed for fragmentation. Whereas canonical calculations yie
sharp peak in the correlation coefficient, microcanonical calcu
tions reveal a broad maximum. Even when Coulomb is neglec
the IMF multiplicity distributions remain sub-Poissonian at all e
citations.
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minute. Calculating the multiplicity distribution required ap
proximately 10 min. These calculations were performed fo
system of mass 100, without inclusion of isospin. We e
mate that doubling the system size and including isos
could increase the computational requirements by two
three orders of magnitude. Calculations of the multiplic
distribution might then require as much as a few days
CPU time, while calculations of the partition functions, ma
distributions or lower moments would require a few hou
We emphasize that the recursive nature of these calculat
implies that the quantities are always calculated at every
citation at once, thus one does not need to repeat the ca
lation for every energy. Of course, if the volume varies w
excitation @26#, one would still need to run the calculatio
several times. It should be noted that since calculations
quire a time proportional to the square of the maximum
citation energy, calculations proceed quite rapidly if range
excitation energies remains less than 8 MeV per nucleon

C. Repulsive spheres and excluded volume

The calculations of the previous two sections assumed
available volume for all fragments was 4.5 times the volu
of A nucleons:

Veff5
3

4
6Ars

3 , ~41!

where r s was chosen to be 1.2 fm. Choosing a density
r0/6 is somewhat arbitrary, but is consistent with the dens
of the MMMC model. Excluding one-fourth of the volum
was motivated by the empirical observation that random
generated events survived without overlap with a fac
(3/4)N̄21, whereN̄ is the average multiplicity.

Thus, the procedure for including hard-sphere repulsio
~1! calculate the microcanonical partition functions,NA,E* ,
assuming a breakup density of one-sixth normal nuclear d
sity, ~2! generate events according to the procedure descr
in Eq. ~30!, ~3! discard any events where the separation
tween any two fragmentsi and j is less thanr s(ai

1/31r j
1/3)

2r s , ~4! modify the partition function according to the frac
tion f of events that survive the overlap criteriaNA,E*→ f NA,E* , ~5! use the generated events to find multiplici
distributions and moments. As mentioned above, the frac
of events that survived the overlap criteria was appro
mately (3/4)N̄21, which motivated our choice of exclude
volume in the previous subsections.

Figure 9 displays the caloric curve for the case wh
hard-sphere repulsion is included, and is compared to
results where the excluded-volume approximation was
plied. The two results are remarkably similar. Unlike t
results presented here, the temperature calculated from
MMMC model fell with temperature@27# in the transition
region. The temperature rose monotonically with excitat
energy in all the calculations performed in this study. T
monotonic behavior is a requirement in a canonical mod
but is not so clear in a microcanonical treatment. This qu
tative difference in behavior might be due to different tre
ment of Coulomb in the two pictures. Since the MMM
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method is based on Metropolis sampling, explicit fragme
fragment interactions can be incorporated including the lo
range Coulomb force. Running the MMMC model witho
Coulomb interactions might clarify the issue.

The IMF multiplicity and correlation coefficients are di
played in Fig. 10. Again the results are very similar to t
calculations using the excluded-volume approximation,
though one expects the excluded-volume approximation
fail at higher densities. These calculations were perform
with 160 thousand events, and the statistical error bars
smaller than the size of the symbols in the plot. One sho
emphasize that other forms of fragment-fragment inter
tions might affect the correlation coefficient more noticab
Hard-sphere interactions are the simplest to incorporate
the partition functions as those events that are not disca
do not have their energy affected by the interaction.

FIG. 9. The caloric curve is shown both for the case wh
hard-sphere interactions are accounted for by randomly gener
events and discarding those with spatial overlaps~circles! and for
the case where the excluded-volume approximation is impleme
~solid line!. The dashed line represents the Fermi-gas approxi
tion. The excluded volume approximation appears quite succes
for describing the caloric curve at one-sixth saturation density.

FIG. 10. The average number of IMFs and the correlation co
ficient as generated from a microcanonical calculation for a m
A5100 system are shown for the calculations using the exclu
volume approximation~solid line! and for the case where fragmen
fragment overlaps are excluded by sampling randomly gener
events. The geometrical constraints of hard-sphere potentials
to be well accounted for with the excluded volume approximat
for these calculations which are done at one-sixth saturation
sity.
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The process of generating random events from the pa
tion function is extremely quick, and might replace the pr
cess of exact generation of the multiplicity distributio
which was rather numerically intensive. However, invoki
the fragment-overlap criteria greatly slowed the process
generating events at high temperatures when multiplici
were high. For multiplicities of 40, only one in 100 00
events might survive the overlap criteria.

VI. CONCLUSIONS

This paper had two principal aims. First, we wished
determine the limits to which Mekjian’s recursive metho
could be extended to calculate fragmentation observables
that end, several new recursion relations were discove
that make possible the exact calculation of the entire mu
plicity distribution as well as the associated factorial m
ments. Expressions were also derived that allow the gen
tion of random events that are statistically consistent with
partition functions. By discarding events where fragme
spatially overlapped with one another, it becomes possibl
account for hard-sphere fragment-fragment interactions.

The recursive techniques were extremely quick when
plied to the canonical case. However, significant compu
tional effort would be required for microcanonical calcul
tions should isospin conservation be added to the descrip
Calculations of the partition functions might then requ
many hours to cover the entire excitation-energy range
interest, and might require days if one wishes exact calc
tions of the multiplicity distributions. The generation of ra
dom events from the partition functions was also extrem
quick, unless hard-sphere interactions were included,
could be used to bypass the potentially lengthy calculati
of the multiplicity distributions. Even though calculation
have the potential to be somewhat lengthy, the method
an appeal in that all configurations, including all divisions
excitation energy and particle number, were accounted
thus bypassing some of the uncertainties inherent to Mo
Carlo sampling.

Our second goal was to study whether fragmentation
servables, especially those related to fluctuations of the I
multiplicity distributions, carried a signal regarding th
liquid-vapor phase transition. The correlation coefficientj
was defined to describe the width of the IMF multiplici
distribution relative to it’s mean in such a way that it
positive or negative for super- or sub-Poissonian distri
tions. The correlation coefficient developed a singularity
the critical point when plotted against the temperature
canonical calculations; whereas in microcanonical calcu
tions j reached a gentle maximum for excitation energies
the fragmentation region. Even though the singular beha
of j was muted in a microcanonical treatment, the behav
of j as a function of the excitation energy was unique to
process of statistical fragmentation.

The sensitivity of the calculations to hard-sphere inter
tions and Coulomb interactions was also investigated. Ha
sphere interactions were fully implemented, but were fou
to be well accounted for by excluded-volume approximatio
at one sixth saturation density. One expects the exclud
volume approximation to fail at higher density, not only b
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cause of the complex geometrical constraints of fitting h
spheres together, but because the physical picture of w
defined fragments becomes unreasonable at some p
Coulomb interactions were found to lower the fragmentat
threshold as expected and to also lower the IMF correla
coefficients. However, we emphasize that the role of C
lomb might be poorly accounted for in this approach wh
only a Wigner-Seitz approximation was implemented. Co
parison of equivalent calculations with the MMMC a
proach, which fully accounts for Coulomb, would be we
comed. However, it should be kept in mind that
equilibrium large fragments move to the periphery of t
system which is opposite to the reality of the experimen
situation where the short time of the explosion favors
expansion of lighter fragments. Such problems are inhe
to statistical models incorporating the long-range Coulo
force. Long-range forces imply long-range correlatio
which require long times to develop.

The recursive techniques described here can be m
more realistic in two ways. First, the sum over intrins
states, which here was performed in a liquid-drop conte
can be replaced by a sum over realistic nuclear states wit
a significant cost in the time of the calculation. Second
isospin conservation may be included. It is straightforward
extend the recursion relations to two conserved charges@28#
without significantly increasing the complexity of the a
proach, although the calculational times would likely i
crease from minutes to hours should both neutron and pr
conservation be enforced in a microcanonical calculation

Despite previous efforts such as the MMMC and SM
models as well as the efforts described in this work, sev
qualitative questions remain regarding statistical multifra
mentation. Most importantly, the MMMC calculations show
ing a nonmonotonic dependence of the temperature with
spect to excitation energy have not been observed from o
calculations where the volume is kept fixed. The role
long-range Coulomb forces might explain this behavior, o
might arise from some other more mundane aspect of
modeling such as the choice of how to parametrize the le
densities of individual nuclei. Understanding how the pred
tions of the models are affected by various assumptions
parameters is a prerequisite to making insightful comp
sons with experimental data.
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APPENDIX: DERIVATION OF RECURSIONS RELATIONS
USED IN CANONICAL ENSEMBLES

1. Recursion relation for the partition function

The recursion relation described here was first prese
by Lee and Mekjian@29#, and was first applied in a liquid
drop context by Chase and Mekjian@19#. The general rela-
tion for the partition function of noninteracting species is
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VA5 (
^Snkak5A&

)
k

vk
nk

nk!
, ~A1!

wherevk is the partition function for a single particle of th
speciesk which has sizeak . For each term in the sum, on
can factor a termvk out of the partition function. By using
the fact thatSnkak /A51, one may rewrite the partition
function

VA5(
k

(
^Sniai5A&

nkak

A

vk
nk

nk!
)
iÞk

v i
ni

ni !
~A2!

5(
k

vk

ak

A (
^Sniai5A2ak&

)
i

v i
ni

ni !
.

~A3!

From combining this expression with Eq.~A1!, one can ex-
tract the recursion relation

VA5(
k

vk

ak

A
VA2ak

. ~A4!

2. The recursion relation for factorial moments

Factorial moments allow convenient calculation of t
multiplicity distribution as seen in the subsequent subsect
Given the partition functionVA , the momentsFk,A,m are
trivial to calculate for an individual speciesk:

Fk,A,m[^nk~nk21!~nk22!•••~nk2m11!&

5
1

VA
(

^Sniai5A&
nk~nk21!•••~nk2m11!)

i

v i
ni

ni !

5vk
n
VA2mak

VA
. ~A5!

However, they are more difficult to obtain when they a
defined in terms ofnb comprised of several species wit
different masses

nb5 (
kPb

nk . ~A6!

However, in this case one may proceed with the help o
recursion relation for the factorial moments. To derive t
recursion relation, we consider the functionf:

f A,m~b![ (
^Snk5A&

)
k

vk
nk

n!
nb~nb21!•••~nb2m11!,

~A7!

Fb,A,n5
f A,n~b!

VA
. ~A8!

For the first termnb5(kPbnk in the sequence ofm terms
nb(nb21)•••(nb2m11), each power ofnk may be used to
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cancelnk in the factorial. By then factoringvk outside the
sum over configurations, one may rewritef as

f A,m~b!5 (
kPb

vk (
^Snk85A2ak8&

)
k8

v
k8

nk8

nk8!
nb8~nb821!

3~nb822!•••~nb82m!, ~A9!

wherenb8 represents the number ofb-type fragments in the
setk8, which differs from the previous set by the reductio
of one fragment of typek. From the definition off, one may
rewrite Eq.~A9!,

f A,m~b!5 (
kPb

vkf A2ak ,m21 , ~A10!

which leads to the recursive expression forF,

Fb,A,m5 (
kPb

vkFb,A2ak ,m21

VA2ak

VA
. ~A11!

This recursion relation allows one to calculate factorial m
ments of increasing order and for increasingly large nu
given knowledge of the partition function.

3. Obtaining the multiplicity distribution
from the factorial moments

One can express the multiplicity distributionPb,A,n in
terms of the factorial moments. Here,Pb,A,n is the probabil-
ity of observingn fragments of typeb in an event from a
system of massA. The desired expression, which we deri
further below, has the simple form,

Pb,A,n5 (
m>n

Fb,A,m

1

~m2n!!n!
~2 !m2n, ~A12!

where Fb,A,m5^nb(nb21)•••(nb2m11)&. Only factorial
moments of ordern or greater contribute toPb,A,n since
events with multiplicitynb,m do not contribute toFb,A,m .

To prove Eq.~A12! we rewrite the right-hand side of Eq
~A12! using the definition of factorial moments

(
m>n

Fb,A,m

1

~m2n!!n!
~2 !m2n

5 (
m>n

(
l>m

Pb,A,l

l !

~ l 2m!!

1

~m2n!!n!
~2 !m2n

5(
l>n

(
m50

l 2n

Pb,A,l

l !

~ l 2n2m!!

1

m!n!
~2 !m, ~A13!

where, in practice, the sums do not extend to` due to the
finite size of the system. The sum overm can now be elimi-
nated by using the identity

(
m50

k
k!

~k2m!!m!
~2 !m5~121!k5dk,0 , ~A14!
04460
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to obtain Eq.~A12!. Although Eq.~A12! is easy to imple-
ment numerically, it is susceptible to problems with nume
cal accuracy due to the alternating signs. Our experienc
that such problems set in when the multiplicities approach
exceed 10. However, a recursion relation for the multiplic
distribution, which is derived in the next section, allows c
culation of the multiplicity distribution without first calculat
ing the moments. Such an expression does not have alte
ing signs and therefore is less susceptible to numer
problems.

4. The recursion relation for the multiplicity distribution

In the previous sections of the Appendix, relations ha
been derived that give a recursion relation for the facto
moments, and also give the multiplicity distribution in term
of the factorial moments. In this section we derive a rec
sion relation for the multiplicity distribution, that will allow
the calculation of the multiplicity distribution without firs
calculating the moments.

By inserting the recursion relation for factorial momen
Eq. ~A11!, into the formula for deriving the multiplicity dis-
tribution in terms of factorial moments, Eq.~A12!, one ob-
tains

Pb,A,n5 (
m>n

1

~m2n!!n!
~2 !m2n(

kPb
vkFb,A2ak ,m21

VA2ak

VA

5 (
kPb

vk

VA2ak

VA
(

m>0

1

m!n!
~2 !mFb,A2ak ,n1m21 .

~A15!

By replacingFb,A2ak ,n1m21 in the above expression with it
definition in terms of the multiplicity distribution

Pb,A,n5 (
kPb

vk

VA2ak

VA
(

m>0

1

m!n!
~2 !m

3 (
m8>0

Pb,A2ak ,n1m1m821

~n1m1m821!!

m8!)

5 (
kPb

vk

VA2ak

VA
(

M>0
Pb,A2ak ,n1M21

~n1M21!!

n!

3 (
0<m<M

~2 !m
1

m! ~M2m!!

5 (
kPb

vk

VA2ak

VA
Pb,A2ak ,n21

1

n
, ~A16!

where the last step utilized the identity, Eq.~A14!.
In practice, the multiplicity distributions are calculated f

small A, then for successively largerA using the recursion
relation above. However, calculation of then50 term can-
not be determined from the recursion relation and must
determined through the constraint(nPn51.
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