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Exactly soluble model for nuclear liquid-gas phase transition
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Thermodynamical properties of nuclear matter undergoing multifragmentation are studied within a simpli-
fied version of the statistical model. An exact analytical solution has been found for the grand canonical
ensemble. Excluded volume effects are taken into account in the thermodynamically self-consistent way. In the
thermodynamic limit the model exhibits a first order liquid-gas phase transition with specific mixed phase
properties. An extension of the model including the Fisher’s term is also studied. The possibility of the second
order phase transition at or above the critical point is demonstrated. The fragment mass distributions in
different regions of the phase diagram are discussed.

PACS number~s!: 21.65.1f, 24.10.Pa, 25.70.Pq
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I. INTRODUCTION

Nuclear multifragmentation, i.e., multiple production
intermediate mass fragments, is one of the most spectac
phenomena in intermediate energy nuclear reactions.
statistical multifragmentation model~SMM! has been devel
oped during the past two decades~see@1,2# and references
therein!. Numerous comparisons with experimental da
~see, e.g., Refs.@3,4#! show that it is rather successful i
explaining many important features of nuclear multifragme
tation. Moreover, there are serious indications@4,5# that mul-
tifragmentation in equilibrated systems is related to a liqu
gas phase transition in nuclear matter. Recently a simpli
version of the SMM has been proposed@6,7# to study this
relationship. The calculations within the canonical ensem
of noninteracting fragments suggest the existence of a
order phase transition. This was demonstrated by increa
the total number of particles in the system up toA52800.
These numerical calculations appeared to be rather effic
due to the recursive formula@8# which explicitly expressed
the canonical partition function forA particles in terms of the
canonical partition functions for 1,2, . . . ,A-1 particles. The
recursive procedure essentially simplifies the numer
evaluations and makes them possible for rather large va
of A. However, the analytical studies of the system behav
in the thermodynamic limit, i.e., when both the system m
numberA and volumeV go to infinity, are still missing. On
the other hand, the investigation of the thermodynamic li
is crucial to proof the existence of a phase transition and
study its exact nature.

In the present paper we give an exact analytical solu
of the simplified version of the SMM performing its com
plete study in the thermodynamic limit. The accurate tre
ment of the excluded volume effects is an important par
our study. We work in the grand canonical ensemble wh
significantly simplifies the mathematical problems and le
to the explicit analytical solution in the thermodynamic lim

The paper is organized as follows. In Sec. II the simplifi
version of the SMM is formulated. In Sec. III we introduc
the isobaric partition function. The relationship between
0556-2813/2000/62~4!/044320~7!/$15.00 62 0443
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singularities and the phase transition existence is discu
in Sec. IV. Section V deals with the first order phase tran
tion and properties of the mixed phase. In Sec. VI the p
sibility of a second order phase transition is demonstra
Fragment mass distributions are discussed in Sec. VII. S
tion VIII is reserved for conclusions.

II. MODEL FORMULATION

Let us consider a system composed of many differ
nuclear fragments and characterized by the total numbe
nucleonsA, volumeV and temperatureT. The system states
are specified by the multiplicities$nk% (nk50,1,2, . . . ) of
k-nucleon fragments (k51,2, . . . ,A). The partition function
of a single fragment withk nucleons is assumed to have th
standard form@1# ~here and below the units\5c51 are
used!

vk5VS mTk

2p D 3/2

zk , ~1!

wherem is the nucleon mass and the fragment mass is
proximated asm k. The first two factors in Eq.~1! originate
from the nonrelativistic thermal motion of thek fragment in
the volumeV at temperatureT. The last factor,zk , represents
the intrinsic partition function of thek fragment. Fork51
~nucleon! we takez154 ~four internal spin-isospin states!
and for fragments withk.1 we use the expression mot
vated by the liquid drop model~see details in Ref.@1#!:

zk5expS 2
f k

T D , ~2!

where

f k5s~T!k2/32@Wo1T2/eo#k1tT ln~k! ~3!

is the internal free energy of thek fragment. HereWo516
MeV is the volume binding energy per nucleon,T2/eo is the
contribution of the excited states taken in the Fermi-gas
©2000 The American Physical Society20-1
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proximation (eo516 MeV!, and s(T) is the surface free
energy tension which is parametrized in the following for

s~T!5soS Tc
22T2

Tc
21T2D 5/4

u~Tc2T!, ~4!

with so518 MeV andTc518 MeV. Finally,tT ln(k) is the
phenomenological Fisher’s term@9# (t is a dimensionless
constant! which we introduce to generalize our discussio
This form of zk ~with t50) was used in Refs.@6,7#. The
symmetry and Coulomb contributions to the free energy
neglected. Such a model, however, appears to be a g
starting point for the phase transition studies.

III. ISOBARIC PARTITION FUNCTION

The canonical partition function~CPF! of the ideal gas of
nuclear fragments has the following form:

ZA~V,T!5(
$nk%

)
k

vk
nk

nk!
dS A2(

k
knkD , ~5!

whered function takes care of the total baryon number co
servation. An important assumption of the model is that
fragments do not overlap in a coordinate space. This g
rise to the repulsive interaction which we take into acco
in the Van der Waals excluded volume approximation. T
is achieved by substituting the total volumeV in Eq. ~5! by
the free volume Vf[V2bA, where b51/ro
(ro50.16 fm23 is the normal nuclear density!. The calcula-
tion of the CPF~5! is difficult because of the restrictio
(kknk5A. This constraint can be avoided by calculating t
grand canonical partition function~GCPF!. Using the stan-
dard definition we can write

Z~V,T,m![ (
A50

`

emA/TZA~V2bA,T!Q~V2bA!

5(
$nk%

)
k

1

nk!
F S V2b(

k
knkDfk~T!emk/TGnk

3QS V2b(
k

knkD , ~6!

wherefk(T)[vk(T,V)/V.
The presence of theQ function in the GCPF~6! guaran-

tees that only configurations with positive value of the fr
volume are counted. However, similarly to the delta funct
restriction in Eq. ~5!, it makes again the calculation o
Z(V,T,m) ~6! to be rather difficult. This problem can b
solved @10# by performing the Laplace transformation
Z(V,T,m). This introduces the so-called isobaric partitio
function ~IPF!:
04432
:
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Ẑ~s,T,m![E
0

`

dVe2sVZ~V,T,m!

5E
0

`

dV8e2sV8(
$nk%

)
k

1

nk!

3$V8fk~T!e(m2sbT)k/T%nk

5E
0

`

dV8e2sV8 expH V8(
k51

`

fke
(m2sbT)k/TJ .

~7!

After changing the integration variableV→V8, the constraint
of Q function has disappeared. Then allnk were summed
independently leading to the exponential function. Now t
integration overV8 in Eq. ~7! can be straightforwardly done
resulting in

Ẑ~s,T,m!5
1

s2F~s,T,m!
, ~8!

where

F~s,T,m!5 (
k51

`

fk expF ~m2sbT!k

T G
5S mT

2p D 3/2Fz1 expS m2sbT

T D
1 (

k52

`

k3/22t expS ~n2sbT!k2sk2/3

T D G . ~9!

Here we have introduced the shifted chemical potentian
[m1Wo1T2/eo . From the definition of pressure in th
grand canonical ensemble

p~T,m![T lim
V→`

ln Z~V,T,m!

V
, ~10!

it follows that, in the thermodynamic limit, the GCPF of th
system approaches

Z~V,T,m!uV→`;expFp~T,m!V

T G . ~11!

An exponentially overV increasing part ofZ(V,T,m) in the
right-hand side of Eq.~11! generates the farthest-right sing
larity s* of the function Ẑ(s,T,m), because for
s,p(T,m)/T theV-integral forẐ(s,T,m) ~7! diverges at its
upper limit. Therefore, in the thermodynamic limit,V→`
the system pressure is defined by this farthest-right singu
ity, s* (T,m), of IPF Ẑ(s,T,m) ~7! ~see also Ref.@11# for
more details!:

p~T,m!5Ts* ~T,m!. ~12!

Note that this simple connection of the farthest-rig
s-singularity ofẐ, Eq. ~7!, to the asymptotic,V→`, behav-
0-2
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EXACTLY SOLUBLE MODEL FOR NUCLEAR LIQUID- . . . PHYSICAL REVIEW C 62 044320
ior of Z, Eq. ~11!, is a general mathematical property of th
Laplace transform. Due to this property the study of the s
tem behavior in the thermodynamic limitV→` can be re-
duced to the investigation of the singularities ofẐ.

IV. SINGULARITIES OF IPF AND PHASE TRANSITIONS

The IPF, Eq.~7!, has two types of singularities.
~1! The simple pole singularity defined by the equation

sg~T,m!5F~sg ,T,m!. ~13!

~2! The singularity of the functionF(s,T,m) itself at the
point sl where the coefficient in linear overk terms in the
exponent is equal to zero,

sl~T,m!5
n

Tb
. ~14!

The simple pole singularity corresponds to the gase
phase where pressure is determined from the following tr
scendental equation:

pg~T,m!5S mT

2p D 3/2

TFz1 expS m2bpg

T D
1 (

k52

`

k3/22t expS ~n2bpg!k2sk2/3

T D G .

~15!

The singularitysl(T,m) of the functionF(s,T,m) ~9! defines
the liquid pressure

pl~T,m![Tsl~T,m!5
n

b
. ~16!

In the considered model the liquid phase is represente
an infinite fragment, i.e., it corresponds to the macrosco
population of the single modek5`. Here one can see th
analogy with the Bose condensation where the macrosc
population of a single mode occurs in the momentum spa

In the (T,m) regions wheren,bpg(T,m) the gas phase
dominates (pg.pl), while the liquid phase corresponds
n.bpg(T,m). The liquid-gas phase transition occurs wh
two singularities coincide, i.e.,sg(T,m)5sl(T,m). A sche-
matic view of singular points is shown in Fig. 1~a! for T
,Tc , i.e., whens.0. The two-phase coexistence region
therefore defined by the equation

pl~T,m!5pg~T,m!, i.e., n5bpg~T,m!. ~17!

One can easily see thatF(s,T,m) is monotonously decreas
ing function ofs. The necessary condition for the phase tra
sition is that this function remains finite in its singular poi
sl5n/Tb:

F~sl ,T,m!,`. ~18!

The convergence ofF is determined byt ands. At t50 the
condition ~18! requires s(T).0. Otherwise,
04432
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F(sl ,T,m)5` and the simple pole singularitysg(T,m) ~13!

is always the farthest-rights-singularity of Ẑ ~7! @see Fig.
1~b!#. At T.Tc , wheres(T)50, the considered system ca
exist only in the one-phase state. It will be shown below t
for t.5/2 the condition ~18! can be satisfied even a
s(T)50.

V. FIRST ORDER PHASE TRANSITION
AND MIXED PHASE

At T,Tc the system undergoes the first order phase tr
sition across the linem* 5m* (T) defined by Eq.~17!. Its
explicit form is given by the expression (W[Wo1T2/eo)

m* ~T!52W1S mT

2p D 3/2

TbFz1 expS 2
W

T D
1 (

k52

`

k3/22t expS 2
sk2/3

T D G . ~19!

The points on the linem* (T) correspond to the mixed phas
states. We first consider the case whent50. The linem* (T)
~19! for this case is shown in Fig. 2.

FIG. 1. Schematic view of singular points of the isobaric pa
tion function, Eq.~8!, at T,Tc ~a! andT.Tc ~b!. Full lines show
F(s,T,m) as a function ofs at fixed T and m, m1,m2,m3,m4.
Dots and asterisks indicate the simple poles (sg) and the singularity
of function F itself (sl). At m35m* (T) the two singular points
coincide signaling a phase transition.
0-3
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The baryonic density is calculated as (]p/]m)T and is
given by the following formulas in the liquid and gas phas
respectively:

r l[S ]pl

]m D
T

5
1

b
, ~20!

rg[S ]pg

]m D
T

5
r id

11br id
, ~21!

where the functionr id is defined as

r id~T,m!5S mT

2p D 3/2Fz1 expS m2bpg

T D
1 (

k52

`

k5/22t expS ~n2bpg!k2sk2/3

T D G .

~22!
Due to the condition~17! this expression is simplified in

the mixed phase:

FIG. 2. Phase diagram inT2m ~upper panel! andT2r ~lower
panel! planes fort50. The mixed phase is represented by the l
m* (T) in the upper panel and by the extended region in the lo
panel. Liquid phase~shown by crosses! exists at densityr5ro .
Point C is the critical point.
04432
,

r id
mix~T![r id„T,m* ~T!…5S mT

2p D 3/2Fz1 expS 2
W

T D
1 (

k52

`

k5/22t expS 2
sk2/3

T D G . ~23!

This formula clearly shows that the bulk~free! energy acts in
favor of the composite fragments, but the surface term fav
single nucleons.

Since ats.0 the sum in Eq.~23! converges at anyt, r id
is finite and according to Eq.~21! rg,1/b. Therefore, the
baryonic density has a discontinuityDr5r l2rg.0 across
the line m* (T) ~19! shown fort50 in the upper panel of
Fig. 2. The discontinuities take place also for the energy
entropy densities. The phase diagram of the system in
(T,r) plane is shown in lower panel of Fig. 2. The lin
m* (T) ~19! corresponding to the mixed phase states is tra
formed into the finite region in the (T,r) plane. In this mixed
phase region of the phase diagram the baryonic densityr is
a superposition of the liquid and gas baryonic densities:

r5lr l1~12l!rg . ~24!

Herel (0,l,1) is a fraction of the system volume occu
pied by the liquid inside the mixed phase. A similar line
combination is also valid for the energy density:

«5l« l1~12l!«g , ~25!

with ( i 5 l ,g):

« i[T
]pi

]T
1m

]pi

]m
2pi . ~26!

One finds

« l5
T2/eo2Wo

b
, ~27!

«g5
1

11br id
H 3

2
pg1~T2/eo2Wo!r id1S mT

2p D 3/2S s2T
ds

dTD
3Fz1 expS m2bpg

T D1 (
k52

`

k13/62t

3expS ~n2bpg!k2sk2/3

T D G J . ~28!

The pressure on the phase transition linem* (T) ~19! is a
monotonously increasing function ofT

p* ~T![pg„T,m* ~T!…

5S mT

2p D 3/2

TFz1 expS 2
W

T D
1 (

k52

`

k3/22t expS 2
sk2/3

T D G . ~29!

r

0-4
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EXACTLY SOLUBLE MODEL FOR NUCLEAR LIQUID- . . . PHYSICAL REVIEW C 62 044320
Figure 3 shows the pressure isotherms as functions of
reduced densityr/ro for t50. Inside the mixed phase th
obtained pressure isotherms are horizontal straight line
accordance with the Gibbs criterion. These straight lines
up to infinity whenT→Tc20. This formally corresponds to
the critical point,T5Tc , r5rc51/b andpc5`, in the con-
sidered case oft50. ForT.Tc the pressure isotherms nev
enter into the mixed phase region. Note that, ifs(T) would
never vanish, the mixed phase would extend up to infin
temperatures.

Inside the mixed phase at constant densityr the param-
eter l is temperature dependent as shown in Fig. 4:l(T)
drops to zero in the narrow vicinity of the boundary separ
ing the mixed phase and the pure gaseous phase. This
cific behavior ofl(T) causes a strong increase of the ene
density ~25! and as its consequence a narrow peak of
specific heatCV(T)[(]«/]T)r . It should be emphasize

FIG. 3. Pressure isotherms~thin solid lines! as functions of re-
duced densityr/ro for t50. The isotherms are shown forT54, 8,
10, 14, 18, and 22 MeV from bottom to top. The boundary of
mixed and gaseous phases is shown by the thick solid line. Liq
phase is indicated by crosses. The critical pointT5Tc518 MeV,
r5ro corresponds to infinite pressure.

FIG. 4. Volume fraction of the liquid phasel(T) for t50
shown as a function of temperature at densitiesr/ro

51/6, 1/3, 1/2, 2/3, 5/6~from bottom to top!.
04432
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that the energy density is continuous at the boundary of
mixed phase and the gas phase, and the sharpness of the
in CV is entirely due to the strong temperature dependenc
l(T) near this boundary. A narrow peak of the specific h
was observed in the canonical ensemble calculations of R
@6,7#. However, in contrast to the expectation in Refs.@6,7#,
the height of theCV(T) peak is not equal to infinity and its
width is not zero in the thermodynamic limit considered
our study. Note also that the shape of theCV(T) depends
strongly on the parametert and on the chosen value of th
baryon densityr.

VI. POSSIBILITY OF SECOND ORDER PHASE
TRANSITION

The results presented in Figs. 2–4 are obtained fort50.
New possibilities appear at nonzero values of the param
t. At 0,t<5/2 the qualitative picture remains the same
discussed above, although there are some quantita
changes. Fort.5/2 the condition~18! is also satisfied atT
.Tc wheres(T)50. Therefore, the liquid-gas phase tran
tion extends now to all temperatures. Its properties are, h
ever, different fort.7/2 and fort,7/2 ~see Fig. 5!. If t
.7/2 the gas density is always lower than 1/b asr id is finite.
Therefore, the liquid-gas transition atT.Tc remains the first
order phase transition with discontinuities of baryonic de
sity, entropy, and energy densities. The pressure isotherm
functions of the reduced densityr/ro are shown for this case
in Fig. 6.

At 5/2,t,7/2 the baryonic density of the gas in th
mixed phase, Eqs.~21! and~23!, becomes equal to that of th
liquid at T.Tc , sincer id→` andrg

mix51/b[ro . It is easy
to prove that the entropy and energy densities for the liq
and gas phases are also equal to each other. There are
continuities only in the derivatives of these densities oveT
andm, i.e., p(T,m) has discontinuities of its second deriv
tives. Therefore, the liquid-gas transition atT.Tc for 5/2
,t,7/2 becomes the second order phase transition. Acc
ing to standard definition, the pointT5Tc , r51/b separat-
ing the first and second order transitions is the tricritic
point. One can see that this point is now at a finite press
Figure 7 shows the pressure isotherms as functions of
reduced densityr/ro .

It is interesting to note that att.0 the mixed phase
boundary shown in Fig. 5 is not so steep a function ofT as in
the caset50 presented in Fig. 3. Therefore, the peak in t
specific heat discussed above becomes less pronounced

VII. FRAGMENT MASS DISTRIBUTIONS

The density of fragments withk nucleons can be obtaine
by differentiating the gas pressure~15! with respect to the
k-fragment chemical potentialmk5km. This leads to the
fragment mass distributionP(k) in the gas phase

Pg~k!5aok
3/22t exp~2a1k2a2k2/3!, ~30!

wherea1[(bpg2n)/T>0, a2[s/T, andao is the normal-
ization constant. Since the coefficientsao ,a1 ,a2 depend on

id
0-5
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BUGAEV, GORENSTEIN, MISHUSTIN, AND GREINER PHYSICAL REVIEW C62 044320
T and m the distributionP(k) ~30! has different shapes in
different points of the phase diagram. In the mixed phase
condition ~17! leads toa150 and Eq.~30! is transformed
into

FIG. 5. Phase diagrams inT2r plane fort53.6 ~upper panel!
andt52.6 ~lower panel!. PointC in the lower panel is the tricritica
point. Crosses correspond to the liquid phase of the first order p
transition and dots correspond to the states of the second order

FIG. 6. The same as Fig. 3, but fort53.6. There is no critical
point in this case.
04432
e Pg
mix~k!5aok

3/22t exp~2a2k2/3!. ~31!

The liquid inside the mixed phase is one infinite fragme
which occupies a fractionl of the total system volume
Therefore, in a large system withA nucleons in volumeV
(A/V5r) the mixed phase consists of one big fragment w
lVro nucleons~liquid! and (12l)Vrg nucleons distributed
in differentk-fragments according to Eq.~31! ~gas!. At low T
most nucleons are inside one big liquid-fragment with on
few small gas fragments distributed according to Eq.~31!
with large a2. At increasing temperature the fraction of th
gas fragments increases and their mass distribution beco
broader sincea2(T) in Eq. ~31! decreases. Outside the mixe
phase region the liquid disappears and the fragment m
distribution acquires an exponential falloff, Eq.~30!. There-
fore, the fragment mass distribution is widest at the bound
of the mixed phase. At even higher temperatures,T.Tc , the
coefficienta2 vanishes.

Details of the fragment mass distribution depend on
parametert. At t,5/2 we observe a sudden transformati
of the large liquid fragment into light and intermediate ma
fragments in the narrow vicinity of the mixed phase boun

se
ne.

FIG. 7. The same as Fig. 3, but fort52.6. PointC in the upper
panel is the tricritical point. The lower panel differs by the sca
Crosses correspond to the liquid phase of the first order phase
sition and dots correspond to the states of the second order on
0-6
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EXACTLY SOLUBLE MODEL FOR NUCLEAR LIQUID- . . . PHYSICAL REVIEW C 62 044320
ary. This sudden change of the fragment composition has
same origin as a narrow peak in the specific heat, i.e., a s
drop of l(T) near the mixed phase boundary~see Fig. 4!.
For largert all these changes are getting smoother.

An interesting possibility opens when 5/2,t,7/2. As
shown in Fig. 7 the mixed phase in this case ends at
tricritical point T5Tc , r5ro . In this point both the coeffi-
cientsa1 anda2 vanish and the mass distribution become
pure power law

Pg~k!5aok
3/22t. ~32!

At t.7/2 the mixed phase exists at allT. Thus the mass
distribution of gaseous fragments inside the mixed phase
fills a power law~32! at all T.Tc .

VIII. CONCLUSIONS

We have used a simplified version of the statistical m
tifragmentation model~SMM! @1# to establish the relation
ship between multifragmentation phenomenon and a liqu
gas phase transition in nuclear matter. Recently, in R
@6,7# interesting peculiarities of this model were found n
merically in the canonical ensemble formulation. In pres
paper this simplified SMM is solved analytically by consi
ering the thermodynamic limitV→` in the grand canonica
ensemble. The progress has been achieved by applyin
elegant mathematical method which reduces the descrip
of phase transitions to the investigation of singularities of
d
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isobaric partition function. In this way we have exact
solved the model in the thermodynamic limit. The exclud
volume effects are fully taken into account.

The model clearly demonstrates the first order phase t
sition of the liquid-gas type. It is rather surprising that
thermodynamic limit the liquid phase emerges as an infin
mass fragment. The structure of the mixed phase and s
peculiar properties near its boundary are discussed in det
The phase diagram appears to be rather sensitive to the v
of the parametert in the Fisher’s free energy term include
in our treatment. New interesting possibilities for the pha
diagram emerge fort.5/2 in comparison with the cas
whent,5/2. The case 5/2,t,7/2 is particularly interesting
because of the appearance of the tricritical point separa
the first and second order phase transitions.

The results presented in this paper will be further dev
oped taking into account additional physical inputs~e.g., fi-
nite size effects, Coulomb interactions and symmetry
ergy! to make the model closer to reality.
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