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Exactly soluble model for nuclear liquid-gas phase transition
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Thermodynamical properties of nuclear matter undergoing multifragmentation are studied within a simpli-
fied version of the statistical model. An exact analytical solution has been found for the grand canonical
ensemble. Excluded volume effects are taken into account in the thermodynamically self-consistent way. In the
thermodynamic limit the model exhibits a first order liquid-gas phase transition with specific mixed phase
properties. An extension of the model including the Fisher's term is also studied. The possibility of the second
order phase transition at or above the critical point is demonstrated. The fragment mass distributions in
different regions of the phase diagram are discussed.

PACS numbses): 21.65:+f, 24.10.Pa, 25.70.Pq

[. INTRODUCTION singularities and the phase transition existence is discussed
in Sec. IV. Section V deals with the first order phase transi-
Nuclear multifragmentation, i.e., multiple production of tion and properties of the mixed phase. In Sec. VI the pos-
intermediate mass fragments, is one of the most spectaculsibility of a second order phase transition is demonstrated.
phenomena in intermediate energy nuclear reactions. Thléragment mass distributions are discussed in Sec. VII. Sec-
statistical multifragmentation modéBMM) has been devel- tion VIl is reserved for conclusions.
oped during the past two decadeee[1,2] and references
therein. Numerous comparisons with experimental data Il. MODEL FORMULATION
(see, e.g., Refd.3,4]) show that it is rather successful in

explaining many important features of nuclear multifragmen- L&t us consider a system composed of many different
tation. Moreover, there are serious indicatipas] that mul- nuclear fragments and characterized by the total number of

tifragmentation in equilibrated systems is related to a liquid-"UcleonsA, volumeV and temperatur&. The system states

gas phase transition in nuclear matter. Recently a simplifie@'® Specified by the multiplicitiegn,} (n,=0,1,2....) of

version of the SMM has been proposgi7] to study this k-nucl_eon fragmentsk(=_ 1,2,... A). The partition function

relationship. The calculations within the canonical ensembl®f @ single fragment witlk nucleons is assumed to have the

of noninteracting fragments suggest the existence of a firsttandard form(1] (here and below the units=c=1 are

order phase transition. This was demonstrated by increasidgsed

the total number of particles in the system upAe 2800.

These numerical calculations appeared to be rather efficient w =V

due to the recursive formul@] which explicitly expressed

the canonical partition function fak particles in terms of the

canonical partition functions for 1,2. . A-1 particles. The Wherem is the nucleon mass and the fragment mass is ap-

recursive procedure essentially simplifies the numericaproximated asn k. The first two factors in E¢(l) originate

evaluations and makes them possible for rather large valudgom the nonrelativistic thermal motion of thefragment in

of A. However, the analytical studies of the system behaviothe volumeV at temperaturé. The last factorz, , represents

in the thermodynamic limit, i.e., when both the system masghe intrinsic partition function of thé fragment. Fork=1

numberA and volumeV go to infinity, are still missing. On  (nucleon we takez;=4 (four internal spin-isospin states

the other hand, the investigation of the thermodynamic limitand for fragments witrk>1 we use the expression moti-

is crucial to proof the existence of a phase transition and tvated by the liquid drop modékee details in Ref1]):

study its exact nature.

In the present paper we give an exact analytical solution . —exp( _ fk)

k= =

mTk 32
(ﬁ Zy, (1)

@

of the simplified version of the SMM performing its com- T
plete study in the thermodynamic limit. The accurate treat-
ment of the excluded volume effects is an important part ofvhere
our study. We work in the grand canonical ensemble which
significantly simplifies the mathematical problems and leads =0 (T)k?P—[W,+T?% e Jk+ 7T In(k) ©)
to the explicit analytical solution in the thermodynamic limit.
The paper is organized as follows. In Sec. Il the simplifiedis the internal free energy of thefragment. HereW,= 16
version of the SMM is formulated. In Sec. lll we introduce MeV is the volume binding energy per nucledif/ ¢, is the
the isobaric partition function. The relationship between itscontribution of the excited states taken in the Fermi-gas ap-
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proximation (,=16 MeV), and o(T) is the surface free - (" v
energy tension which is parametrized in the following form: Z(s,T,u)= 0 dve "2(V,T,u)

T—T?
S s

C

5/4 :devre—SV'E H 1
0

o(Tc—T), 4) fmd % N

X {V/ ¢k(T)e(ﬂ—st)k/T}nk

with o,=18 MeV andT.=18 MeV. Finally, 7T In(K) is the S < T
phenomenological Fisher's terfi9] (7 is a dimensionless :fo dve™>" exp V gl prelh =PI
constant which we introduce to generalize our discussion.

This form of z, (with 7=0) was used in Refd6,7]. The (7)

symmetry and Coulomb contributions to the free energy A oy changing the integration variablé— V', the constraint
neglected. Such a model, however, appears to be a god ’

starting point for the phase transition studies 0T © function has disappeared. Then al| were summed
gp P ' independently leading to the exponential function. Now the

integration oveV’ in Eq. (7) can be straightforwardly done
I1l. ISOBARIC PARTITION FUNCTION resulting in

The canonical partition functiofCPH of the ideal gas of

nuclear fragments has the following form: AsT.u)= s—F(s,T,u)’ ®)
where
a)Ek
Zav, =2 11 Fa(A—E knk), (5) - (w—sbTk
frg & M k FsT.u)=2 dpexg——-m
=] T
where é function takes care of the total baryon number con- mT) 32 u—sb
servation. An important assumption of the model is that the =\ 24 Z; X T

fragments do not overlap in a coordinate space. This gives
rise to the repulsive interaction which we take into account * (v—sbTk— ok?3

in the Van der Waals excluded volume approximation. This +> k3’27exp( ” 9
is achieved by substituting the total volurkiein Eq. (5) by k=2 T

the free volume Vi=V—-bA, where b=1/p,
(po=0.16 fm 2 is the normal nuclear densjtyThe calcula-
tion of the CPF(5) is difficult because of the restriction
>kng=A. This constraint can be avoided by calculating the

Here we have introduced the shifted chemical potential
=u+W,+T?/e,. From the definition of pressure in the
grand canonical ensemble

grand ca.n_o.nical partition.functiofGCPF). Using the stan- N2V, T,w)
dard definition we can write P(T,w)=T lim —————, (10
V—o
* it follows that, in the thermodynamic limit, the GCPF of the
Z(V,T,u)=>, e*NTZ,(V—bAT)O(V—bA) system approaches
A=0
T,u)V
1 N ~ p( 'Iu‘
2 1l og (V‘bE ) e AV T ex‘{ L
Ny k k- k

An exponentially oveV increasing part o£(V,T,u) in the
V—-b>, knk> , (6)  right-hand side of Eq(11) generates the farthest-right singu-
K

larity s* of the function Z(s,T,u), because for

s<p(T,u)/T the V-integral for Z(s,T,x) (7) diverges at its

where ¢y (T)=wy(T,V)/V. upper limit. Therefore, in the thermodynamic limi,— oo
The presence of th® function in the GCPH6) guaran- the system pressure is defined by this farthest-right singular-

tees that only configurations with positive value of the freejty, s*(T,u), of IPF Z(s,T,u) (7) (see also Ref[11] for
volume are counted. However, similarly to the delta functionmore detailg
restriction in Eq.(5), it makes again the calculation of
Z(V,T,u) (6) to be rather difficult. This problem can be pP(T,u)=Ts*(T,u). (12
solved [10] by performing the Laplace transformation of S _ )
Z(V,T,u). This introduces the so-called isobaric partition Note that this simple connection of the farthest-right
function (IPF): s-singularity of Z, Eq.(7), to the asymptoticy—o, behav-

X0
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ior of Z, Eq.(11), is a general mathematical property of the
Laplace transform. Due to this property the study of the sys-
tem behavior in the thermodynamic limit—o can be re-

duced to the investigation of the singularitiesfﬁf
IV. SINGULARITIES OF IPF AND PHASE TRANSITIONS F

The IPF, Eq.(7), has two types of singularities.
(1) The simple pole singularity defined by the equation

(2) The singularity of the functioF (s, T,u) itself at the S
point s; where the coefficient in linear ovés terms in the a)
exponent is equal to zero,
T o)== 14 | 1
ST )= 7. (14) i
‘4
The simple pole singularity corresponds to the gaseous i
phase where pressure is determined from the following tran- i
scendental equation: T ;
T 3/2 w— bp E
N 9 |
» _ 23 i
+ > kS’ZTeXp((V bRy k= ok ) . j -
k=2 T s s S
(15 b)
The singularitys; (T, u) of the function(s,T,u) (9) defines FIG. 1. Schematic view of singular points of the isobaric parti-
the liquid pressure tion function, Eq.(8), at T<T, (a) andT>T, (b). Full lines show
F(s,T,un) as a function ofs at fixed T and p, p1<po<pz<pga.
V . . . . . .
pi(T, ) =Ts(T,w) :B' (16) Dots an_d aste_rlsks indicate the_smlple polgg @nd t_he smgula_nty
of function F itself (s)). At uz=up*(T) the two singular points

) o . coincide signaling a phase transition.
In the considered model the liquid phase is represented by

an infinite fragment, i.e., it corresponds to the macroscopic®(s;,T,u) =2 and the simple pole singularity(T,x) (13)

population of the single modie= . Here one can see the s always the farthest-right-singularity of Z (7) [see Fig.

analogy with the Bose condensation where the macroscopigb)]. At T>T., wherea(T) =0, the considered system can

population of a single mode occurs in the momentum spacexist only in the one-phase state. It will be shown below that
In the (T,u) regions wherev<<bpy(T,u) the gas phase for r>5/2 the condition(18) can be satisfied even at

dominates p4>p;), while the liquid phase corresponds to ¢(T)=0.

v>bpy(T,u). The liquid-gas phase transition occurs when

two singularities coincide, i.esq(T,u)=s/(T,u). A sche- V. FIRST ORDER PHASE TRANSITION

matic view of singular points is shown in Fig(a for T AND MIXED PHASE

<T., i.e., wheno>0. The two-phase coexistence region is

therefore defined by the equation At T<T, the system undergoes the first order phase tran-

sition across the lineu* = w*(T) defined by Eq.(17). Its
PI(T 0)=pg(T,n), i€, v=bpy(T,u). (17)  explicit form is given by the expressioM(=W,+T?/¢,)

3/2
One can easily see th#(s,T,«) is monotonously decreas- w*(T)=—W+ _) Th| z; ex;{ — V_V
ing function ofs. The necessary condition for the phase tran- 2 T
sition is that this function remains finite in its singular point o 213
_ . ok
s=v/Th: + 2 k32— ex;{ - } ] (19)
k=2

.7:(S|,T,/.L)<°O. (18)
The points on the ling.* (T) correspond to the mixed phase
The convergence oF is determined by ando. At =0 the  states. We first consider the case when0. The lineu* (T)
condition  (18) requires  o(T)>0. Otherwise, (19) for this case is shown in Fig. 2.
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i ) 3/2 i
: P%'X(T)Epid(T,M*(T)):(%) Z4) exi{ - ?)
20 .
I (e ]
| ok?/3
10 f . + >, K2 Texg — (23)
~ ! k=2 T
% I
e 0 7 This formula clearly shows that the butkee) energy acts in
= LIOUID I favor of the composite fragments, but the surface term favors
-10 Q . single nucleons.
: Since ato>0 the sum in Eq(23) converges at any, piq
=20 ¢ I is finite and according to Eq21) py<1/b. Therefore, the
GAS i baryonic density has a discontinuityp=p,—p,>0 across
-30 s m 15 'T 20 the line ,u*(T) (19). shqwn for7=0 in the upper panel of
T (MeV) Fig. 2. The discontinuities take place also for the energy and
entropy densities. The phase diagram of the system in the
' (T,p) plane is shown in lower panel of Fig. 2. The line
C ©*(T) (19 corresponding to the mixed phase states is trans-
L formed into the finite region in thel(p) plane. In this mixed
phase region of the phase diagram the baryonic depsisy
0.8 - ] a superposition of the liquid and gas baryonic densities:
Sost _ p=Npi+(1-N)pg. (24)
MIXED PHASE
ol | Here\ (0<A<1) is a fraction of the system volume occu-
’ pied by the liquid inside the mixed phase. A similar linear
combination is also valid for the energy density:
0.2 - GAS 4
e=Ng+(1-N)eg, (25
0 1 L L
0 5 10 15 T, 20 T .
T (MeV) with (i=1,9):
FIG. 2. Phase diagram iii—u (upper panglandT—p (lower T% ﬁ_ 26
pane) planes forr=0. The mixed phase is represented by the line JT Pi-
w*(T) in the upper panel and by the extended region in the lower
panel. Liquid phasdéshown by crossesexists at densityp=p,. One finds
Point C is the critical point.
T?le— W,
The baryonic density is calculated asp(du)r and is &= b ' (27)
given by the following formulas in the liquid and gas phases,
respectively: 1 3 T\ 372 do
S Y L I .
apl 1 g 1+bp|d{2pg ( (o] O)pld 277 dT
pI= a,u =5 (20 5 w
x|z, eX[{’u pg) + E kl3/(‘r7‘
p p ! e
g| _ id
Po= ( 8#) “1ibpg’ ey (v—bpy)k— ok??
T . (28
where the functiorp;q is defined as
The pressure on the phase transition lirie(T) (19) is a
mT) %3 w—bpg monotonously increasing function &f
Pia(T.w)=|5—] |zLex -
P*(T)=py(T,n*(T))
. (v—bpg)k—ok?? 312
52— 7 9 mT W
+|<§=:2k ex;< T ' =( ) zlex;{—?>
(22)

Due to the conditior(17) this expression is simplified in
the mixed phase:

+> k3’2‘7exp< -
k=2

2/3
T ) } . (29
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that the energy density is continuous at the boundary of the
mixed phase and the gas phase, and the sharpness of the peak
in Cy, is entirely due to the strong temperature dependence of
N(T) near this boundary. A narrow peak of the specific heat
was observed in the canonical ensemble calculations of Refs.
[6,7]. However, in contrast to the expectation in Ré&7],

the height of theC,,(T) peak is not equal to infinity and its
width is not zero in the thermodynamic limit considered in
our study. Note also that the shape of @ig(T) depends
strongly on the parameter and on the chosen value of the
baryon densityp.

(3]
T

p (MeV/fm’)

LIQUID

MIXED PHASE ¥

‘ . . VI. POSSIBILITY OF SECOND ORDER PHASE

0 0.2 0.4 06 08 1 TRANSITION
PP,

FIG. 3. Pressure isotherntthin solid lines as functions of re- The results presented in Figs. 2-4 are obtainedrfe0.
duced density/p, for 7— 0. The isotherms are shown for4. 8, New possibilities appear at nonzero values of the parameter

10, 14, 18, and 22 MeV from bottom to top. The boundary of the”: At 0<7<5/2 the qualitative picture remains the same as
. .&Ilscussed above, although there are some quantitative
phase is indicated by crosses. The critical pdintT,=18 MeV, changes. For>5/2 the cond|t|0n(18)_|s also satisfied at _
p=p, corresponds to infinite pressure. }TC wherea(T)=0. Therefore, the liquid-gas phase transi-
tion extends now to all temperatures. Its properties are, how-

Figure 3 shows the pressure isotherms as functions of thgVer, different forr>7/2 and forr<7/2 (see Fig. 5 If 7
reduced density/p, for 7=0. Inside the mixed phase the >7/2 the gas d(.ans'lty IS always !ower thab HSP!“ IS f|n|t¢.
obtained pressure isotherms are horizontal straight lines ifnerefore, the liquid-gas transition &t T, remains the first

accordance with the Gibbs criterion. These straight lines gQ'der phase transition with discontinuities of baryonic den-
up to infinity whenT—T,— 0. This formally corresponds to sity, entropy, and energy densities. The pressure isotherms as
the critical point.T=T,, p=p,=1/b andp.=2, in the con- functions of the reduced densityp, are shown for this case

sidered case of=0. ForT>T_ the pressure isotherms never in Fig. 6. , ) ,

enter into the mixed phase region. Note thair{fT) would /At 5/2<7<7/2 the baryonic density of the gas in the

never vanish, the mixed phase would extend up to infinitdixed phase, Eqs21) and(23), becgir)r)es equal to that of the

temperatures. liquid at T>T, sincepijg—> andp, "= 1lb=p,. Itis easy
Inside the mixed phase at constant dengithe param- O prove that the entropy and energy densities for the liquid

eter \ is temperature dependent as shown in Figh @T) and gas phases are also equal to each other. There are dis-

drops to zero in the narrow vicinity of the boundary separat_continuities only in the derivatives of these densities olver

ing the mixed phase and the pure gaseous phase. This sgdld#, i-€.,p(T,x) has discontinuities of its second deriva-

cific behavior of\ (T) causes a strong increase of the energyfives. Therefore, the liquid-gas transition BT, for 5/2

density (25) and as its consequence a narrow peak of the~ 7<7/2 becomes the second order phase transition. Accord-

specific heatCy(T)=(ds/dT),. It should be emphasized N9 to standard definition, the poifit="T,, p=1/b separat-
ing the first and second order transitions is the tricritical

1 . . . . point. One can see that this point is now at a finite pressure.
Figure 7 shows the pressure isotherms as functions of the
reduced density/p,.

08 - ] It is interesting to note that at>0 the mixed phase
boundary shown in Fig. 5 is not so steep a functioif @k in

the caser=0 presented in Fig. 3. Therefore, the peak in the
specific heat discussed above becomes less pronounced.

0.6 - 1

VII. FRAGMENT MASS DISTRIBUTIONS

The density of fragments witk nucleons can be obtained
by differentiating the gas pressut&5) with respect to the
k-fragment chemical potentigh,=ku. This leads to the
fragment mass distributioR (k) in the gas phase

10

T (MeV)

Py(k)=aok¥? "exp(—ask—ayk??), (30)
FIG. 4. Volume fraction of the liquid phasg(T) for 7=0

shown as a function of temperature at densitigdp, Wherea;=(bp,—»)/T=0, a,=0/T, anda, is the normal-

=1/6, 1/3, 1/2, 2/3, 5/&from bottom to top. ization constant. Since the coefficiersg,a; ,a, depend on
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FIG. 5. Phase diagrams ih—p plane forr= 3.6 (upper panel P/Po

and 7= 2.6 (lower pane). PointC in the lower panel is the tricritical

FIG. 7. The same as Fig. 3, but fer=2.6. PointC in the upper
point. Crosses correspond to the liquid phase of the first order pha% g PP
r

nel is the tricritical point. The lower panel differs by the scale.
osses correspond to the liquid phase of the first order phase tran-
sition and dots correspond to the states of the second order one.

transition and dots correspond to the states of the second order o

T and u the distributionP(k) (30) has different shapes in
different points of the phase diagram. In the mixed phase the PMIX k) = a k%2~ 7 exp( — a,k??) (31)

e = . g .
::nc;(r;dnmn (17) leads t0a, =0 and Eq.(30) is transformed The liquid inside the mixed phase is one infinite fragment

which occupies a fractioln of the total system volume.
Therefore, in a large system with nucleons in volume/
(A/V=p) the mixed phase consists of one big fragment with
AVp, nucleons(liquid) and (1—\)Vp4 nucleons distributed

08 - in differentk-fragments according to E(31) (ga9. Atlow T
most nucleons are inside one big liquid-fragment with only
= 06 L few small gas fragments distributed according to E3{)
s O . . . .
£ with large a,. At increasing temperature the fraction of the
< gas fragments increases and their mass distribution becomes
2045 broader since,(T) in Eq. (31) decreases. Outside the mixed

phase region the liquid disappears and the fragment mass
MIXED PHASE distribution acquires an exponential falloff, E®0). There-
fore, the fragment mass distribution is widest at the boundary
of the mixed phase. At even higher temperatufes;T, the
h ol ) 03 v oS coefficie_ntaz vanishes. S

oo, Details of the fragment mass distribution depend on the

parameterr. At 7<<5/2 we observe a sudden transformation

FIG. 6. The same as Fig. 3, but for=3.6. There is no critical  of the large liquid fragment into light and intermediate mass

point in this case. fragments in the narrow vicinity of the mixed phase bound-

0.2
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ary. This sudden change of the fragment composition has thisobaric partition function. In this way we have exactly
same origin as a narrow peak in the specific heat, i.e., a shagolved the model in the thermodynamic limit. The excluded
drop of A\(T) near the mixed phase boundaigee Fig. 4  volume effects are fully taken into account.
For largerr all these changes are getting smoother. The model clearly demonstrates the first order phase tran-
An interesting possibility opens when 5/2<7/2. As  sijtion of the liquid-gas type. It is rather surprising that in
shown in Fig. 7 the mixed phase in this case ends at thehermodynamic limit the liquid phase emerges as an infinite-
tricritical point T=Tc, p=p,. In this point both the coeffi- mass fragment. The structure of the mixed phase and some
cientsa; anda, vanish and the mass distribution becomes ayeculiar properties near its boundary are discussed in details.
pure power law The phase diagram appears to be rather sensitive to the value
P, (k) =ak¥? 7 (32 of the parameter in the Fisher’s free energy term included
9 d . ) . . L
in our treatment. New interesting possibilities for the phase
At 7>7/2 the mixed phase exists at dll Thus the mass diagram emerge for>5/2 in comparison with the case
distribution of gaseous fragments inside the mixed phase fuwhen7<5/2. The case 5R 7<7/2 is particularly interesting

fills a power law(32) at all T>T.. because of the appearance of the tricritical point separating
the first and second order phase transitions.
VIIl. CONCLUSIONS The results presented in this paper will be further devel-

oped taking into account additional physical inp(gsg., fi-

~ We have used a simplified version of the statistical mul-njte size effects, Coulomb interactions and symmetry en-
tifragmentation mode(SMM) [1] to establish the relation- ergy) to make the model closer to reality.

ship between multifragmentation phenomenon and a liquid-

gas phase transition in nuclear matter. Recently, in Refs.

[6,7]_ intergsting peculiarities of this model were found nu- ACKNOWLEDGMENTS
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