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Diagrammatic analysis of the Hellmann-Feynman theorem

R. Sartor
University of Liege, Institute of Physics B5, B-4000 Liege-1, Belgium

~Received 5 June 2000; published 20 September 2000!

We investigate the diagrammatic content of the Hellmann-Feynman theorem applied to nuclear matter
within the framework of the Brueckner-Bethe-Goldstone theory for various self-consistent choices of the
auxiliary potential. We identify cases in which one implicitly generates diagrams which are at odds with the
Bethe-Brandow-Petscheck theorem. We point out that similar problems also arise with the Brueckner-Landau
definition of the mean field. Finally, we characterize the structure exhibited by the potential energy diagrams
when expressed in terms ofG matrices and we provide the corresponding diagram rules.

PACS number~s!: 21.65.1f, 21.60.2n
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I. INTRODUCTION

The Hellmann-Feynman theorem~HFT! states that ifHl

is a l dependent Hamiltonian, then one has

^CludHl /dluCl&

^CluCl&
5

dEl

dl
, ~1!

where

HluCl&5EluCl&. ~2!

By considering the ground state of the Hamiltonian

Hl5T1lV, ~3!

the HFT yields the following exact expression for the exp
tation value of the potential energy of the considered syst

^V&[
^CuVuC&

^CuC&
5S dEl

dl D
l51

, ~4!

where we have used a convention that we adopt throug
this paper: if no confusion can arise, the indexl will be
suppressed when it is equal to 1. Hence in the above e
tion uC& denotes the ground state ofH5T1V.

In order to use Eq.~4! in practice, one has to replaceEl

by some approximation. In this paper, we specialize
nuclear matter and we considerEl calculated within the
framework of the Brueckner-Bethe-Goldstone~BBG! theory
which provides a diagrammatic expansion forEl written as
El5^FuHluCl&/^FuCl&, where uF& is the uncorrelated
ground state~see Ref.@1#, and references therein!. This way
of expressing the ground state energy only gives acces
^FuVuC&/^FuC&, which should not be confused witĥV&;
in particular ~see below! these quantities require differen
diagram rules. As is well known, in the BBG theory, one h
to introduce a so-called auxiliary potentialU which is deter-
mined by imposing some self-consistency requirement
Sec. II where both the continuous and standard choices fU
are examined, we discuss the diagrammatic problems w
might arise when the self-consistency requirement is
posed for each value of the parameterl. In Sec. III, we
consider the calculation of the kinetic energy expectat
value. We discuss the diagrams yielded by the HFT wh
used either within a conserving approximation or directly.
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Sec. IV, we point out that problems similar to those d
cussed in Sec. II also appear in the Brueckner-Landau d
nition of the mean field felt by a nucleon in the nucle
medium. Our results are summarized in Sec. V. In the
pendix, we use the HFT to characterize the structure of
^V&-diagrams when expressed in terms ofG matrices and to
derive the corresponding diagram rules.

II. CALCULATION OF THE POTENTIAL ENERGY
EXPECTATION VALUE

Let us assume that we define the auxiliary potential s
consistently for each value ofl and that we use the
Brueckner-Hartree-Fock~BHF! approximation for the
ground state energy

El.El
BHF ~5!

with

El
BHF5(

i
ni t i1

1

2(i , j ninj^ i j uGl~el,i1el, j !u i j &A . ~6!

The notations we use are the following ones. The mom
tum, spin, and isospin of the single particle states are den
by a single roman letter, e.g.,a[(ka ,sa ,ta); the subscript
A refers to antisymmetrization;na is the occupation numbe
of the single particle statea in the free Fermi gas

na51 for ukau<kF

50 for ukau.kF , ~7!

wherekF is the Fermi momentum,ta is the single particle
kinetic energy

ta5
ukau2

2m
~8!

~we take\51), andel,a is the total~i.e., kinetic plus poten-
tial! single particle energy

el,a5ta1Ul,a , ~9!

whereUl,a is the auxiliary potential. We begin our discu
sion with the continuous auxiliary potential. Then, in th
BHF approximation, we have
©2000 The American Physical Society18-1
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Ul,a5(
r

nr^aruGl~el,a1el,r !uar&A ~10!

for all single particle statesa.
Both Eqs. ~6! and ~10! involve the Brueckner reaction

matrix Gl(Wl) which satisfies the Bethe-Goldstone equat
that we write as

Gl~Wl!5lv1lvPl~Wl!Gl~Wl! ~11!

with

Pl~Wl!5(
p,q

~12np!~12nq!upq&^pqu
Wl2el,p2el,q

. ~12!

The formal solution of Eq.~11! is given by

Gl~Wl!5@12lvPl~Wl!#21lv. ~13!

From Eqs.~11! and ~13!, one finds

dGl~Wl!

dl
5

1

l
Gl~Wl!1

1

l
Gl~Wl!Pl~Wl!Gl~Wl!

1Gl~Wl!
dPl~Wl!

dl
Gl~Wl!. ~14!

Because of the last term, Eq.~14! does not yield
dGl(Wl)/dl explicitly. Indeed, one has

dPl~Wl!

dl
52(

p,q

~12np!~12nq!upq&^pqu

~Wl2el,p2el,q!2

3S dWl

dl
2

del,p

dl
2

del,q

dl D ~15!

which involves the derivative of the reaction matrix throu
the derivatives of the single particle energies

del,a

dl
5(

r
nr^aru

dGl

dl
~el,a1el,r !uar&A , ~16!

where the right-hand side should be calculated using
~14!. This implies that the derivative of the single partic
energies will containG matrices to all powers. For the mo
ment, we discard the contributions of third and higher po
ers, i.e., we use

del,a

dl
.

1

l (
r

nr^aruGl~el,a1el,r !uar&A

1
1

l (
r

nr^aruGl~el,a1el,r !Pl~el,a1el,r !

3Gl~el,a1el,r !uar&A . ~17!

Taking Eqs.~4!, ~5!, ~6!, ~14!, and ~15! into account, one
sees that this approximation for the single particle ene
04431
q.

-
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derivatives amounts to calculating^V& up to terms of order
G4. A straightforward calculation yieldŝV& as a sum of six
terms

^V&5(
i 51

6

Vi ~18!

with

V15
1

2(i , j ninj^ i j uG~e i1e j !u i j &A , ~19!

V25
1

4 (
i , j ,p,q

ninj~12np!~12nq!

e i1e j2ep2eq
u^pquG~e i1e j !u i j &Au2,

~20!

V352
1

2 (
i , j ,p,q,r

ninjnr~12np!~12nq!

~e i1e j2ep2eq!2

3u^pquG~e i1e j !u i j &Au2^ j r uG~e j1e r !u j r &A ,

~21!

V45
1

2 (
i , j ,r ,p,q

ninjnr~12np!~12nq!

~e i1e j2ep2eq!2

3u^pquG~e i1e j !u i j &Au2^qruG~eq1e r !uqr&A ,

~22!

V552
1

4 (
i , j ,r ,p,q,s,t

ninjnr~12np!~12nq!~12ns!~12nt!

~e i1e j2ep2eq!2~e j1e r2es2e t!

3u^pquG~e i1e j !u i j &Au2u^stuG~e j1e r !u j r &Au2, ~23!

V65
1

4 (
i , j ,r ,p,q,s,t

ninjnr~12np!~12nq!~12ns!~12nt!

~e i1e j2ep2eq!2~eq1e r2es2e t!

3u^pquG~e i1e j !u i j &Au2u^stuG~eq1e r !uqr&Au2. ~24!

The termV1 comes from the first term of Eq.~14!. This is
the BHF contribution tôV&. It is represented by diagram~a!
in Fig. 1.

The termV2 comes from the second term of Eq.~14!. It is
represented by diagram~b! in Fig. 1. This diagram looks
spurious because it contains two successiveG matrices
linked by two particle lines. As explained in the Appendi
this peculiar feature stems from the diagram rules pertain
to ^V&. Diagram ~b! is perfectly correct, it does not resu
from a double counting error.

The termV3 is obtained by taking into account the fir
term of Eq.~17! to calculate the derivative ofWl contained
@see Eq.~15!# in the third term of Eq.~14!. It is represented
by diagram~c! in Fig. 1. One should note that the bubble
calculated on the energy shell. This is in keeping with t
Bethe-Brandow-Petscheck~BBP! theorem@2# which is thus
embodied in the HFT when we impose the self-consiste
on the auxiliary potential for each value of the parameterl.
However, one might wonder why one obtains a contribut
8-2
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such as diagram~c! for ^V& whereas for the binding energyE
this diagram exactly cancels with the diagram obtained
replacing the bubble with aU insertion~see Fig. 2!. This is
again due to the diagram rules for^V&. Actually, when con-
sidered as contributions tôV&, diagrams~a! and~b! of Fig.
2 appear with extra weighting factors 3 and 2, respectiv
~see the Appendix!, and as a consequence a copy of diagr
~a! survives the cancellation process.

The termV4 is obtained by taking into account the fir
term of Eq.~17! to calculate the derivatives ofel,p andel,q
contained@see Eq.~15!# in the third term of Eq.~14!. It is

FIG. 1. Diagrammatic representation of Eq.~18!. Wiggly lines
represent antisymmetrizedG matrices. Up and down going line
represent particle and hole states, respectively.

FIG. 2. Two contributions to the binding energy which compe
sate each other when the auxiliary potential~represented by a cross!
is chosen self-consistently in the BHF approximation.
04431
y

ly

represented by diagram~d! in Fig. 1. One should note tha
the bubble is again calculated on the energy shell. This
problem however since the BBP theorem does not apply
bubbles inserted on particle lines. A discussion of this po
will be given below.

The termV5 is obtained by taking into account the seco
term of Eq.~17! to calculate the derivative ofWl contained
@see Eq.~15!# in the third term of Eq.~14!. It is represented
by diagram~e! in Fig. 1. The insertion which appears on th
right-hand side of the diagram has two successiveG matrices
linked by two particle lines. As for diagram~b!, this just
stems from the diagram rules pertaining to^V&. One should
also note that the BBP theorem is properly applied to t
insertion.

The termV6 is obtained by taking into account the seco
term of Eq.~17! to calculate the derivatives ofel,p andel,q
contained@see Eq.~15!# in the third term of Eq.~14!. It is
represented by diagram~f! in Fig. 1. Note that the two right-
mostG-matrices are calculated on the energy shell althou
the BBP does not apply.

Thus except for the contributions represented by diagra
~d! and~f! in Fig. 1, the HFT yields results which could hav
been obtained by directly applying the diagram rules perta
ing to ^V& in conjunction with the BBP theorem. We now
show that the presence of diagrams~d! and ~f! does not in-
dicate that the HFT goes beyond the conventional ru
First, let us note that these diagrams are coming from
particle part ofdPl /dl, i.e., from the part corresponding t
d(el,p1el,q)/dl in Eq. ~15!. Let us also remark that if we
had not truncated the derivatives of the single particle en
gies at the orderG2, we would have obtained not two but a
infinite set of diagrams withG matrices improperly on the
energy shell. As can easily be seen from Eqs.~1!, ~5!, ~6!,
and ~14!, the sum of all the diagrams in this set is given b

Dpp5
1

2(i , j ninj^ i j uGl~el,i1el, j !

3S dPl~el,i1el, j !

dl D
pp

Gl~el,i1el, j !u i j &A , ~25!

where we used the subscriptpp to refer to the particle part o
dPl /dl. A simple calculation then yields

Dpp5
1

2 (
i , j ,p,q

ninj~12np!~12nq!

~el,i1el, j2el,p2el,q!2

3u^pquGl~el,i1el, j !u i j &Au2
dUl,q

dl
. ~26!

Let us emphasize that up to now we have applied Eq.~1!
with El calculated in the BHF approximation given by E
~6!. When we go beyond that approximation we encoun
the diagram depicted in Fig. 3 whose contribution is given

-

8-3



om

ar
n

y
F

io
ll

w
g

ha
at

m
rv

on
-

be
,

the

is
not

rk

es.
i

i
be

lcu-

ial
d
uld

m-
ill

in.

e
ne

of
one
unt
ding
.
ear

m

n-

cle

h

ns
a-

es
ole

en-

ith
ar-
w-
aux-

gy

en

o
fo
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El
U52

1

2 (
i , j ,p,q

ninj~12np!~12nq!

~el,i1el, j2el,p2el,q!2

3u^pquGl~el,i1el, j !u i j &Au2Ul,q ~27!

with Ul,q as defined in Eq.~10!. The derivative ofEl
U is

given by

dEl
U

dl
52

1

2 (
i , j ,p,q

ninj~12np!~12nq!

~el,i1el, j2el,p2el,q!2

3u^pquGl~el,i1el, j !u i j &Au2
dUl,q

dl
1•••, ~28!

where the ellipsis stands for the contributions coming fr
the G matrices contained in Eq.~27!. One should note the
extra minus sign which appears in this equation as comp
to Eq. ~26!: this minus sign is responsible for the exact ca
cellation ofDpp , i.e., of the total contribution of the wrongl
on the energy shell diagrams generated by applying the H
with El approximated byEl

BHF .
Although the approximation

El.El
BHF1El

U ~29!

solves the problems stemming from the BHF approximat
to El , it will generate other wrongly on the energy she
contributions. These come from the derivatives of theG ma-
trices contained in Eq.~27!. It should be clear that these ne
wrong contributions will be exactly canceled by includin
diagrams with moreU insertions in the calculation ofEl and
that this situation repeats itself ad infinitum. We believe t
it is not sound to generate contributions to some quantity
given approximation and to cancel themexactly in the next
one. Therefore, we should avoid generating wrong diagra
from the beginning. To reach that goal, we simply obse
that all the problems come from thel dependence of the
auxiliary potential. With a fixedU, the derivative ofPl van-
ishes identically and we are left with the first two terms
the right-hand side of Eq.~14!. Then in the BHF approxima
tion for El , the HFT will only yield diagrams~a! and~b! of
Fig. 1. Of course, the fixed auxiliary potential should
taken as the one corresponding tol51. As we stated above
diagrams~c! and ~e! in Fig. 1 are true contributions tôV&

FIG. 3. Diagram used to exactly cancel an infinite series
diagrams in which the BBP theorem is wrongly applied. See text
details.
04431
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and this leads us to ask how they are generated since, in
fixed U context, the HFT withEl.El

BHF only yields dia-
grams~a! and ~b! in Fig. 1. The answer to this question
provided by the diagrams in Fig. 2 whose sum does
vanish any more~except forl51). A simple calculation
shows that when their contributions are added toEl

BHF , one
exactly retrieves diagrams~c! and ~e! of Fig. 1. Note that if
we just want to avoid wrong diagrams it is sufficient to wo
with a fixed potential for particle states while al dependent
self-consistent auxiliary potential may be kept for hole stat
Then, except forl51, Ul will display a gap at the Ferm
momentumkF . Let us just point out that close to the Ferm
surface, the single particle energy of hole states will
above that of particle states whenl,1 and one should take
care of the vanishing energy denominators when one ca
lates thel derivative.

Let us now consider the standard auxiliary potent
which is taken as in Eq.~10! for hole states and is identifie
to 0 for particle states. From the discussion above it sho
be obvious that neither thel dependent nor thel indepen-
dent standard auxiliary potentials will lead to any diagra
matic problems: all the diagrams generated by the HFT w
be correct diagrams with the BBP theorem properly built-
Again, diagrams such as diagrams~c! and ~e! in Fig. 1 are
generated by applying the HFT withEl.El

BHF if one uses
the l dependent standardU whereas one should take th
contributions of the diagrams in Fig. 2 into account if o
uses thel independent standardU. The actual problem with
the standardU is that the corresponding BBG expansion
the binding energy does not converge at the BHF level:
has to take the three hole line contributions into acco
@3–5#. As a consequence one expects that the correspon
approximation tô V& using the HFT will also be rather poor

In the above discussion, particles and holes do not app
to play a symmetrical role. We did not find any proble
stemming from the hole part ofdPl /dl i.e., from the part
corresponding todWl /dl in Eq. ~15!. This is only because
we considered the BHF contribution to the auxiliary pote
tial @see Eq.~10!#. In the terminology of@6# this is a contri-
bution with crossed legs for hole states but not for parti
states. Via the HFT, a contribution toUl with crossed legs
will generate ^V& diagrams containing insertions wit
crossed legs and vice versa@see, e.g., diagrams~c!–~f! in
Fig. 1#. Since the BBP theorem only applies to insertio
with crossed legs, this explains why in the BHF approxim
tion to Ul we had problems with insertions on particle lin
only. These problems will also appear for insertions on h
lines if we take into account contributions toUl which are
not with crossed legs for hole states. Conversely if we id
tify Ul with the Brandow auxiliary potential@6#, i.e., as the
sum of all the insertions with crossed legs, the problems w
the BBP theorem will disappear for both the hole and p
ticle insertions. The Brandow auxiliary potential leads ho
ever to the same convergence problems as the standard
iliary potential: the BBG expansion of the binding ener
may not be truncated at the BHF level.

III. CALCULATION OF THE KINETIC ENERGY
EXPECTATION VALUE

The exact expectation value of the kinetic energy is giv
by

f
r

8-4
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^T&[
^CuTuC&

^CuC&
5E2^V& ~30!

and it is tempting to use this equation to calculate appro
mations to^T&. One would simply replaceE by some ap-
proximation and^V& by the corresponding approximatio
obtained from the HFT. This is the procedure followed
Ref. @7#. It has the advantage to deal~by construction! with
approximations toE, ^T& and ^V& which are conserving in
the sense that Eq.~30! is satisfied. One should note howev
that in general such approximations to^T& cannot be repre-
sented by the usual Goldstone diagrams. Let us take fo
stanceEl.El

BHF and let us work with al independent aux-
iliary potential. The corresponding contribution to^T& will
then be given by the free Fermi gas kinetic energy, which
represented by the first diagram in Fig. 4, minus the con
bution of diagram~b! in Fig. 1. Except when one uses n
auxiliary potential at all, the latter contribution cannot
written in terms of the usual kinetic energy diagrams whi
like those depicted in Fig. 4, contain a kinetic energy ins
tion.

The usual kinetic energy diagrams can however be
tained by an application of the HFT independent of the o
used for^V& @8#. We show this in detail. Let us multiply th
mass of each nucleon by 1/l; this leads us to consider th
following l dependent Hamiltonian

Hl5lT1V. ~31!

The HFT then yields

^T&5S dEl

dl D
l51

, ~32!

whereEl is the ground state energy of the Hamiltonian
Eq. ~31!. For simplicity, let us work again in the BHF ap
proximation with al independent auxiliary potential. Now
we have

El
BHF5l(

i
ni t i1

1

2(i , j ninj^ i j uGl~el,i1el, j !u i j &A

~33!

with

Gl~el,i1el, j !5v1vPl~el,i1el, j !Gl~el,i1el, j !
~34!

FIG. 4. Diagrammatic representation of Eq.~39!. The squares
represent kinetic energy insertions. The first diagram correspon
the kinetic energy of the free Fermi gas.
04431
i-
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e

f

and

Pl~el,i1el, j !

5(
p,q

~12np!~12nq!upq&^pqu
l~ t i1t j2tp2tq!1~Ui1U j2Up2Uq!

, ~35!

where we have written the single particle energies as

el,a5lta1Ua . ~36!

For definiteness, we work with the continuous auxiliary p
tential so that the latter equation applies for all single parti
statesa.

The HFT will again involve thel-derivative of theG
matrix. Now, we have@compare with Eq.~14!#

dGl~el,i1el, j !

dl

5Gl~el,i1el, j !
dPl~el,i1el, j !

dl
Gl~el,i1el, j !

~37!

with

dPl~el,i1el, j !

dl

52(
p,q

~12np!~12nq!upq&^pqu
~l~ t i1t j2tp2tq!1~Ui1U j2Up2Uq!!2

3~ t i1t j2tp2tq!. ~38!

From Eqs.~32!, ~33!, ~37!, and~38!, one obtains

^T&5(
i

ni t i2
1

2 (
i , j ,p,q

ninj~12np!~12nq!

~e i1e j2ep2eq!2

3t i u^pquG~e i1e j !u i j &Au2

1
1

2 (
i , j ,p,q

ninj~12np!~12nq!

~e i1e j2ep2eq!2

3tpu^pquG~e i1e j !u i j &Au2. ~39!

This expression is represented by the diagrams with kin
energy insertions depicted in Fig. 4. Since in any contrib
tion to El , the parameterl only multiplies the kinetic en-
ergy part of some single particle energy, it is clear that
results we have obtained in the BHF approximation gene
ize to any other approximation toEl : every contribution to
^T& generated by using the HFT with the Hamiltonian of E
~31! will correspond to some usual kinetic energy diagra
The converse is also true: every usual kinetic energy diag
can be obtained from the contribution of some diagram p
taining toEl by means of the HFT. The latter diagram ca
be constructed from the considered kinetic energy diagram
the following way. First, suppress the kinetic energy ins
tion. If the resulting diagram does not contain two success
G matrices linked by particle lines, then it is the looked f

to
8-5
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El diagram. The HFT will give back the considered kine
energy diagram when one calculates thel derivative of the
energy denominator corresponding to the former location
the kinetic energy insertion. If the diagram resulting from t
suppression of the kinetic insertion contains two succes
G matrices linked by particle lines, then one obtains
looked forEl diagram by collapsing these two successiveG
matrices into a single one. The HFT will give back the co
sidered kinetic energy diagram when one calculates, via
~37!, the l derivative of theG matrix which resulted from
the collapse.

IV. THE BRUECKNER-LANDAU DEFINITION
OF THE MEAN FIELD

In this section which is somewhat out of the main line
this paper, we point out that we might encounter proble
similar to those of Sec. II if we define the mean fieldMk felt
by a nucleon in the nuclear medium, as the functional der
tive of the binding energy with respect to the occupat
number@9,10#

Mk5
dE

dnk
2tk . ~40!

Consider again the BHF approximation toE

EBHF5(
i

ni t i1
1

2(i , j ninj^ i j uG~e i1e j !u i j &A ~41!

with

G~e i1e j !5v1vP~e i1e j !G~e i1e j ! ~42!

and

P~e i1e j !5(
p,q

~12np!~12nq!upq&^pqu
e i1e j2ep2eq1 ih

, ~43!

where the infinitesimal quantityih is responsible for the
imaginary part of the mean field. It has been repeatedly
phasized~see, e.g., Chap. 6 in Ref.@1#! that the calculation of
the mean field requires a continuous auxiliary potent
Hence in the BHF approximation, we should use

ea5ta1Ua ~44!

with

Ua5(
r

nr^aruG~ea1e r !uar&A ~45!

for all single particle statesa. From Eqs.~40! and ~42!, one
obtains
04431
f

e
e
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-

l.

Mk.(
j

nj^k j uG~ek1e j !uk j&A

1
1

2(i , j ninj^ i j u
dG~e i1e j !

dnk
u i j &A , ~46!

where

dG~e i1e j !

dnk
5G~e i1e j !

dP~e i1e j !

dnk
G~e i1e j !. ~47!

Calculating the functional derivative ofP from Eq. ~43!
yields

dP~e i1e j !

dnk
52(

q

~12nq!ukq&^kqu
e i1e j2ek2eq1 ih

2(
p

~12np!upk&^pku
e i1e j2ep2ek1 ih

2(
p,q

~12np!~12nq!upq&^pqu
~e i1e j2ep2eq!2 S de i

dnk
1

de j

dnk
D

1(
p,q

~12np!~12nq!upq&^pqu
~e i1e j2ep2eq!2 S dep

dnk
1

deq

dnk
D .

~48!

Since the auxiliary potential@see Eq.~45!# is also a func-
tional of the occupation number one has

dea

dnk
5^akuG~ea1ek!uak&A1(

r
nr^aru

dG~ea1e r !

dnk
uar&A .

~49!

Comparing with Eqs.~47! and ~48!, one sees thatMk will
involve G matrices to all powers. This is of course remini
cent of a similar situation encountered in Sec. II. By on
keeping terms up to orderG2 in dea /dnk , i.e., by taking

dea

dnk
5^akuG~ea1ek!uak&A1(

r ,q

nr~12nq!

ea1e r2ek2eq1 ih

3u^kquG~ea1e r !uar&Au2, ~50!

one easily finds that

Mk5(
i 51

6

Mk,i ~51!

with
8-6
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Mk,15(
j

nj^k j uG~ek1e j uk j&A , ~52!

Mk,252
1

2 (
i , j ,q

ninj~12nq!

e i1e j2ek2eq1 ih
u^kquG~e i1e j !u i j &Au2, ~53!

Mk,352
1

2 (
i , j ,p,q

ninj~12np!~12nq!

~e i1e j2ep2eq!2 u^pquG~e i1e j !u i j &Au2^ ikuG~e i1ek!u ik&A , ~54!

Mk,45
1

2 (
i , j ,p,q

ninj~12np!~12nq!

~e i1e j2ep2eq!2 u^pquG~e i1e j !u i j &Au2^pkuG~ep1ek!upk&A , ~55!

Mk,55
1

2 (
i , j ,p,q,r ,s

ninjnr~12np!~12nq!~12ns!

~e i1e j2ep2eq!2~e i1e r2ek2es1 ih!
u^pquG~e i1e j !u i j &Au2u^ksuG~e i1e r !u ir &Au2, ~56!

Mk,652
1

2 (
i , j ,p,q,r ,s

ninjnr~12np!~12nq!~12ns!

~e i1e j2ep2eq!2~ep1e r2ek2es1 ih!
u^pquG~e i1e j !u i j &Au2u^ksuG~ep1e r !upr&Au2. ~57!
t

.

th

.
q.

n

q

o

q
q.

o

s
e
g
io sent

.

The termMk,1 is simply the first term of Eq.~46!. This is
the BHF contribution toMk . It is represented by diagram~a!
in Fig. 5.

The termMk,2 comes from the contribution of the firs
two terms of Eq.~48! to the second term of Eq.~46!. It is
represented by diagram~b! in Fig. 5. This is the so-called
Pauli rearrangement contribution to the mean field.

The termMk,3 is obtained by using the first term of Eq
~50! to calculate the contribution of the third term of Eq.~48!
to the second term of Eq.~46!. It is represented by diagram
~c! in Fig. 5. One should note that the middleG matrix is
calculated on the energy shell. This is in keeping with
BBP theorem.

The termMk,4 is obtained by using the first term of Eq
~50! to calculate the contribution of the fourth term of E
~48! to the second term of Eq.~46!. It is represented by
diagram~d! in Fig. 5. The middleG matrix is again calcu-
lated on the energy shell although the BBP theorem does
apply.

The termMk,5 is obtained by using the second term of E
~50! to calculate the contribution of the third term of Eq.~48!
to the second term of Eq.~46!. It is represented by diagram
~e! in Fig. 5. The BBP theorem is properly applied to the tw
leftmostG matrices.

The termMk,6 is obtained by using the second term of E
~50! to calculate the contribution of the fourth term of E
~48! to the second term of Eq.~46!. It is represented by
diagram~f! in Fig. 5. The two leftmostG matrices are cal-
culated on the energy shell although the BBP theorem d
not apply.

Thus as in Sec. II, we have obtained two diagram
namely diagrams~d! and ~f!, whose contributions cannot b
calculated by means of the usual diagram rules pertainin
Mk . Once more, this is an artifact due to the approximat
we used for the binding energyE. Indeed, if we take the
04431
e

ot

.

.

es

,

to
n

FIG. 5. Diagrammatic representation of Eq.~51!. Although we
always draw the external lines from below, the diagrams repre
contributions to the mean field for both hole and particle states
8-7
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diagram of Fig. 3 into account to calculateE, we shall obtain
an additional contribution toMk given by

Mk
U52

1

4 (
i , j ,p,q

ninj~12np!~12nq!

~e i1e j2ep2eq!2

3u^pquG~e i1e j !u i j &Au2S dep

dnk
1

deq

dnk
D1•••,

~58!

where the ellipsis stands for the contributions coming fr
the G matrices contained in the diagram. One notes that
cancels not only the contributions of diagrams~d! and~f! of
Fig. 5 but also all the contributions we would have obtain
from the fourth term of Eq.~48! if we had not truncated the
functional derivative of the single particle energies at
orderG2. Thus as in Sec. II, the wrong diagrams which a
generated at some approximation level forE are exactly can-
celed at the next level. To avoid this~generation-exact can
cellation! process, it suffices to use a fixed auxiliary pote
tial, i.e., one without any functional dependence upon
occupation numbernk . In that case the diagrams~c! and~e!
of Fig. 5 where the BBP is correctly applied will be gene
ated by the functional derivative of the first diagram
Fig. 2.

V. SUMMARY

In this paper, we have discussed the implicit diagra
matic content of the HFT within the framework of the BB
theory. We have found that if one uses al dependent aux-
iliary potential, there are cases in which one generates
grams where the BBP theorem is wrongly applied. We h
shown that this is due to the fact that one has to use s
approximation to the binding energyEl in order to apply the
HFT in practice. The wrong diagrams can always beexactly
canceled by improving the approximation toEl at the ex-
pense, however, of generating other wrong diagrams. T
has led us to advocate the use of al independent auxiliary
potential in order to retrieve a situation which is cleaner fro
a diagrammatic point of view. We have also discussed
distinct applications of the HFT to the calculation of th
kinetic energy of nuclear matter^T&. The usual kinetic en-
ergy diagrams, i.e., the diagrams with a kinetic energy ins
tion on a particle or a hole line cannot be obtained by us
the HFT within the conserving definition of^T& except in the
academic case in which one uses no auxiliary potential at
Finally we have pointed out that analogous problems a
with the Brueckner-Landau definition of the mean field.

The following appendix extends the discussion of the^V&
diagrams given in Ref.@11#.

APPENDIX

In Ref. @11#, the existence of diagrams such as diagr
~b! in Fig. 1 was justified by directly resumming a series
^V& diagrams expressed in terms of the bare interactionv.
We remind the reader that these diagrams are in one to
correspondence with those pertaining to the binding ene
04431
is

d

e

-
e

-

a-
e
e

is

o

r-
g

ll.
e

f

ne
y

E ~more precisely with those pertaining toE2TF whereTF
is the free Fermi gas kinetic energy! but that the diagram
rules are different: to calculate the contribution of a^V&
diagram containingn bare interactions, one has to multip
by n the contribution one obtains using the rules whi
would apply if it were anE diagram.

One can immediately convince oneself by consider
other examples, that because of the extra weighting facton,
this direct resummation technique is rather unconvenient
particular, it is hard to see what the general structure of
^V& diagrams will be when we express them in terms ofG
matrices. In addition, the corresponding diagram rules
not obvious. In this Appendix, we show how the HFT can
used to solve these problems in a straightforward man
More precisely, we prove that the following properties ho

Property 1. A spurious looking pair, i.e., two successiv
G matrices linked by two particle lines, can only appear on
in a diagram.

Property 2. The contribution of a diagram containing
spurious looking pair is calculated as usual, i.e., by mean
the diagram rules which apply to theE diagrams when they
are expressed in terms ofG matrices.

Property 3. The contribution of a diagram containing n
spurious looking pair is obtained by multiplying the cont
bution calculated as usual, by the number ofG matrices con-
tained in the diagram.

Indeed, consider anyE diagram D(E;G) expressed in
terms ofG matrices. It is the sum of a series ofE diagrams
Di(E;v) expressed in terms of the bare interactionv:

D~E;G!5(
i

Di~E;v !. ~A1!

Let us now consider theE diagramsDi(E;v) as ^V& dia-
gramsDi(V;v). The HFT gives

(
i

Di~V;v !5(
i

S dDi~E;lv !

dl D
l51

5S d

dl(
i

Di~E;lv ! D
l51

5S dD~E;Gl!

dl D
l51

~A2!

with

Gl~W!5lv1lvP~W!Gl~W!, ~A3!

where

P~W!5(
p,q

~12np!~12nq!upq&^pqu
W2ep2eq

. ~A4!

Equations~A3! and~A4! should be compared with Eqs.~11!
and~12!: now neitherW nor P depend onl because we use
a fixed auxiliary potential. Note that in Eq.~A2!, D(E;Gl) is
just the contribution of theE diagram we started from with
8-8
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each of itsG matrices replaced byGl . Calculating thel
derivative by the Leibniz rule and using@compare with
Eq. ~14!#

S dGl~W!

dl D
l51

5G~W!1G~W!P~W!G~W!, ~A5!

we obtain the above mentioned properties at once. Th
properties can be used to prove the following

Corollary. Assume that the auxiliary potential is define
in the BHF approximation~at least! for hole states. Take an
^V& diagramV containing bubbles on hole lines and consid
the setS of diagrams containingV together with the dia-
grams one can construct from it by replacing the bubbles
U insertions in all possible ways. Then the total contributi
CS of the diagrams contained inS vanishes except whenV
contains a single bubble and no spurious looking pair. In
latter case,CS is given by the contribution ofV calculated as
if it were an E diagram, i.e., without any extra weightin
factor.

Indeed, letn be the number of bubbles on hole lines andp
the number of the otherG matrices contained inV. Consider
first the case in whichV contains a spurious looking pair. It
contribution CV is calculated without any extra weightin
factor ~see property 2! and this also applies to all the othe
diagrams inS. Taking into account that the replacement ok
bubbles byk U insertions introduces a factor (21)k, we
have
ev

do

04431
se

r

y

e

CS5CV (
k50

n

~21!kS n

kD 50, ~A6!

where (k
n) is the usual binomial coefficient. Consider now th

case in whichV contains no spurious looking pair. The
according to property 3 above, its contribution is given
(n1p)CE whereCE is the contribution calculated by mean
of the E-diagram rules. The contribution of a diagram o
tained fromV by replacingk bubbles byk U insertions will
now be given by (21)k(n1p2k)CE . Hence, we have

CS5CE(
k50

n

~21!k~n1p2k!S n

kD . ~A7!

This can be written as

CS5CE lim
x→1

d

dx
@xp~x21!n# ~A8!

which yields

CS5CE for n51

50 for n.1. ~A9!

This completes the proof. The survival of diagram~c! of Fig.
1 illustrates the corollary in a particular case.
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@7# H. Müther and A. Polls, Phys. Rev. C61, 014304~1999!.
@8# B. H. Brandow, Rev. Mod. Phys.39, 771 ~1967!.
@9# K. A. Brueckner and D. T. Goldman, Phys. Rev.117, 207

~1960!.
@10# G. Baym and C. Pethick,Landau Fermi-Liquid Theory~Wiley,

New York, 1991!.
@11# C. Mahaux and R. Sartor, Phys. Rev. C19, 229 ~1979!.
8-9


