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Diagrammatic analysis of the Hellmann-Feynman theorem
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We investigate the diagrammatic content of the Hellmann-Feynman theorem applied to nuclear matter
within the framework of the Brueckner-Bethe-Goldstone theory for various self-consistent choices of the
auxiliary potential. We identify cases in which one implicitly generates diagrams which are at odds with the
Bethe-Brandow-Petscheck theorem. We point out that similar problems also arise with the Brueckner-Landau
definition of the mean field. Finally, we characterize the structure exhibited by the potential energy diagrams
when expressed in terms & matrices and we provide the corresponding diagram rules.

PACS numbd(s): 21.65+f, 21.60—n

[. INTRODUCTION Sec. IV, we point out that problems similar to those dis-
cussed in Sec. Il also appear in the Brueckner-Landau defi-

The Hellmann-Feynman theorefdFT) states that iH, nition of the mean field felt by a nucleon in the nuclear
is a\ dependent Hamiltonian, then one has medium. Our results are summarized in Sec. V. In the ap-
pendix, we use the HFT to characterize the structure of the

(W, [dH, /d\ W) dE, (V)-diagrams when expressed in terms@®Mmatrices and to

(W, |W¥y) Codn @ derive the corresponding diagram rules.
where IIl. CALCULATION OF THE POTENTIAL ENERGY
H |‘I’ )—E |\I’ > ) EXPECTATION VALUE
N N T BN N/

Let us assume that we define the auxiliary potential self-
consistently for each value ok and that we use the
Hy=T+\V, 3) Brueckner-Hartree-Fock(BHF) approximation for the

ground state energy

the HFT yields the following exact expression for the expec-
tation value of the potential energy of the considered system:

_(‘I’|V|‘I’)_(dE)\) | with

By considering the ground state of the Hamiltonian

E,=E>HF 5

="y o @ - 1 ) )
Ex :2 niti+§Z nini(ij|Gy(exit e lij)a. (6)
where we have used a convention that we adopt throughout ' "
this paper: if no confusion can arise, the indexwill bé  The notations we use are the following ones. The momen-
suppressed when it is equal to 1. Hence in the above equgym, spin, and isospin of the single particle states are denoted
tion W) denotes the ground state kif=T+V. by a single roman letter, e.ca=(k,,04,7,); the subscript

In order to use Eq(4) in practice, one has to repla&g A refers to antisymmetrizatiom, is the occupation number

by some approximation. In this paper, we specialize t0yf the single particle state in the free Fermi gas
nuclear matter and we considés, calculated within the

framework of the Brueckner-Bethe-Goldsto{BBG) theory n,=1 for |k|<kg
which provides a diagrammatic expansion Ey written as
Ex=(®[H,|V)\)/(®|W¥,), where |D) is the uncorrelated =0 for [ky|>ke, @

ground statdsee Ref[1], and references thergirThis way . . . . .
of expressing the ground state energy only gives access ohe:_e Ke is the Fermi momentunt, is the single particle
(®|V|¥)/(®|W¥), which should not be confused witlV); inetic energy

in particular (see below these quantities require different kg2
diagram rules. As is well known, in the BBG theory, one has t,=

to introduce a so-called auxiliary potentldlwhich is deter-
mined by imposing some self-consistency requirement. |
Sec. Il where both the continuous and standard choiced for
are examined, we discuss the diagrammatic problems whi
might arise when the self-consistency requirement is im- e a=tat Uy a 9)
posed for each value of the parameler In Sec. Ill, we

consider the calculation of the kinetic energy expectatiorwhereU, , is the auxiliary potential. We begin our discus-
value. We discuss the diagrams yielded by the HFT whersion with the continuous auxiliary potential. Then, in the
used either within a conserving approximation or directly. InBHF approximation, we have

®

2m

Nwe taket = 1), ande, 4 is the total(i.e., kinetic plus poten-
CEi1al) single particle energy
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derivatives amounts to calculatiqly) up to terms of order
G*. A straightforward calculation yield&v) as a sum of six
terms

for all single particle statea. 6
Both Egs.(6) and (10) involve the Brueckner reaction <V)=E V. (18)

matrix G, (W, ) which satisfies the Bethe-Goldstone equation =

that we write as

with
GA(W)) = v+ APy (W)) Gy (W) (11 1
with VFE%: nini(ij|G(ei+€)lij)a, (19
(1—np)(1- nq)|DQ><pQ| 1 nin;(1—ny)(1-ng)
P (W, )= 12 -Z P d
A(W)) % W= €rp— Erg 12 V, 7. 2;, P —— [(palG(&i+ €)]ij)al?
. . (20)

The formal solution of Eq(11) is given by

B 1 nnin.(1—ng,)(1—ng,)
Gy (Wy) =[ 1= Ao Py (Wy)] ™ Ao, (13 Va==5 2 letee-e)?

From s (1) and(13), one finds X|(palG(e+ el )alir |G+ €lir)a,
dG,(W,) 1 1 (21)
T:KGA(WXH— XG)\(W}\)P}\(W)\)G)\(W}\)

1 ninin.(1—ny)(1—ng,)
g V=2 j p 2q
Pr(W . e —e —
+G\(W)) )a()\ A)GX(WA)- (14 Ziirba (6t & &)
X|(palG(ei+ €)lij)al*(ar|G(eg+ €lar)a,
Because of the last term, Eql4) does not vyield (22
dG, (W,)/d\ explicitly. Indeed, one has
1 ninin.(1—ny)(1—ny)(1—ng)(1—ny)
APW) _ 5 (A=) (= ng)lpa(pal Vs=—7 F S R——
_— = > drpast (€t €—€p—€q)(€j+ € — €5~ €)
d\ p.q (W)\ €\, P — €, q)

X|(palG(e+e€))lij)al?[(stG(e+e)ir)al®, (23

dw, d d
A Exp  Ueng (15)
dA dA d\ 1

ninin, (1—np)(1—ng)(1—ng)(1—ny)

V=
which involves the derivative of the reaction matrix through 4iiibast (€1t €~ €p—€q)’(€qt &~ €s— &)
the derivatives of the single particle energies X|(pg|G(e+ Ej)|” >A|2|(St|G(eq+ e)lara?. (24

dE)\’a

dG, ' .
0 :Z n(ar| - (6rat € )lara, The termV; comes from the first term of E§14). This is

the BHF contribution tqV). It is represented by diagrata)

in Fig. 1.

where the right-hand side should be calculated using Eq. The termV, comes from the second term of EG4). It is
(14). This implies that the derivative of the single particle represented by diagraith) in Fig. 1. This diagram looks
energies will contairG matrices to all powers. For the mo- spurious because it contains two succesdivematrices
ment, we discard the contributions of third and higher pow-linked by two particle lines. As explained in the Appendix,
ers, i.e., we use this peculiar feature stems from the diagram rules pertaining
to (V). Diagram(b) is perfectly correct, it does not result
from a double counting error.

The termV3 is obtained by taking into account the first
term of Eq.(17) to calculate the derivative aiV/, contained
[see Eq(15)] in the third term of Eq(14). It is represented
by diagram(c) in Fig. 1. One should note that the bubble is
calculated on the energy shell. This is in keeping with the
Bethe-Brandow-Petsche¢BBP) theorem[2] which is thus
embodied in the HFT when we impose the self-consistency
Taking Egs.(4), (5), (6), (14), and (15) into account, one on the auxiliary potential for each value of the paramater
sees that this approximation for the single particle energfHowever, one might wonder why one obtains a contribution

(16)

de)\'a 1
ax :XZ n(ar|Gy(ey at ey larya

1
+ N Z n(ar|Gy(e, at+ €, )Pr(€y at € )

XG\(€yat € )|ara.

7
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represented by diagrafd) in Fig. 1. One should note that

the bubble is again calculated on the energy shell. This is a

problem however since the BBP theorem does not apply to
O’\/\/O bubbles inserted on particle lines. A discussion of this point

will be given below.
The termV; is obtained by taking into account the second
term of Eq.(17) to calculate the derivative diV, contained
[see Eq(15)] in the third term of Eq(14). It is represented
(a) (b) by diagram(e) in Fig. 1. The insertion which appears on the
right-hand side of the diagram has two succes&matrices
linked by two particle lines. As for diagrarth), this just

stems from the diagram rules pertaining(i). One should
also note that the BBP theorem is properly applied to this
insertion.

The termVg is obtained by taking into account the second
term of Eq.(17) to calculate the derivatives @f, , ande, g
contained[see Eq.(15)] in the third term of Eq(14). It is

represented by diagraff) in Fig. 1. Note that the two right-
(c) (d) mostG-matrices are calculated on the energy shell although
the BBP does not apply.
Thus except for the contributions represented by diagrams

(d) and(f) in Fig. 1, the HFT yields results which could have
been obtained by directly applying the diagram rules pertain-
ing to (V) in conjunction with the BBP theorem. We now
show that the presence of diagrafa$ and (f) does not in-
dicate that the HFT goes beyond the conventional rules.
First, let us note that these diagrams are coming from the
particle part ofdP, /d\, i.e., from the part corresponding to
d(e\ pt€\,g)/dN in Eq. (15). Let us also remark that if we
(e) (f) had not truncated the derivatives of the single particle ener-

gies at the orde®?, we would have obtained not two but an
infinite set of diagrams witlG matrices improperly on the
energy shell. As can easily be seen from E(ds, (5), (6),
and (14), the sum of all the diagrams in this set is given by

FIG. 1. Diagrammatic representation of EG8). Wiggly lines
represent antisymmetrize@ matrices. Up and down going lines
represent particle and hole states, respectively.

such as diagrartc) for (V) whereas for the binding ener@y
this diagram exactly cancels with the diagram obtained by

replacing the bubble with b insertion(see Fig. 2 This is Dpp:EE nin(ij|Gy(ey i+ ey,

again due to the diagram rules o). Actually, when con- 217 ’ '

sidered as contributions (¢/), diagramsa and(b) of Fig. AP\ (e, i+ €, 1)

2 appear with extra weighting factors 3 and 2, respectively (M) Gy(&r i+ € ij)a) (25
(see the Appendjxand as a consequence a copy of diagram dx pp ’ !

(a) survives the cancellation process.

The termV, is obtained by taking into account the first
term of Eq.(17) to calculate the derivatives @ , ande, ,  Where we used the subscripp to refer to the particle part of
contained[see Eq.(15)] in the third term of Eq(14). Itis  dP,/d\. A simple calculation then yields

1 nini(1—ny)(1—ny)
_____ >< T i | AP N, q
oo L,dUy
x|(palGy(en+ e lif)al®—gr" - (20

(a) (b)

Let us emphasize that up to now we have applied(Eg.

FIG. 2. Two contributions to the binding energy which compen-Wwith E, calculated in the BHF approximation given by Eqg.
sate each other when the auxiliary potentiapresented by a cross  (6). When we go beyond that approximation we encounter
is chosen self-consistently in the BHF approximation. the diagram depicted in Fig. 3 whose contribution is given by
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and this leads us to ask how they are generated since, in the
fixed U context, the HFT withE,=EZ"" only yields dia-
grams(a) and (b) in Fig. 1. The answer to this question is
provided by the diagrams in Fig. 2 whose sum does not
vanish any morgexcept forA=1). A simple calculation
""" X shows that when their contributions are added&§5", one
exactly retrieves diagramsg) and(e) of Fig. 1. Note that if
we just want to avoid wrong diagrams it is sufficient to work
with a fixed potential for particle states whilexadependent
self-consistent auxiliary potential may be kept for hole states.
Then, except foin=1, U, will display a gap at the Fermi
FIG. 3. Diagram used to exactly cancel an infinite series ofmomentumke. Let us just point out that close to the Fermi
diagrams in which the BBP theorem is wrongly applied. See text forsurface, the single particle energy of hole states will be
details. above that of particle states whar<1 and one should take
care of the vanishing energy denominators when one calcu-
lates then derivative.
E;J= — 1 E nin; (1= np) (1= Ne) Let us now consider the standard auxiliary potential
2i15.0 (€r,i+€rj— €xp— €rg)’ which is taken as in Eq10) for hole states and is identified
o\ 12 to O for particle states. From the discussion above it should
X[(pa[Gy(erit e lii)al"Usq (27 be obvious that neither the dependent nor tha indepen-
dent standard auxiliary potentials will lead to any diagram-
matic problems: all the diagrams generated by the HFT will

with U, 4 as defined in Eq(10). The derivative ofEy is

given by be correct diagrams with the BBP theorem properly built-in.
U Again, diagrams such as diagraittg and (e) in Fig. 1 are
dgy 1 3 ninj(1—np)(1—-ngy) generated by applying the HFT witk, =E2F if one uses

d» 215 (enit€rnj— €np— Eng)’ the N dependent standard whereas one should take the

contributions of the diagrams in Fig. 2 into account if one
2 AUy g uses the\ independent standatd. The actual problem with
X[palGrlenit e lii)al® =55+ -+ (28 the standardU is that the corresponding BBG expansion of
the binding energy does not converge at the BHF level: one
where the ellipsis stands for the contributions coming fromhas to take the three hole line contributions into account
the G matrices contained in E¢27). One should note the [3—5]- As a consequence one expects that the corresponding
extra minus sign which appears in this equation as comparedPProximation tqV) using the HFT will also be rather poor.
to Eq.(26): this minus sign is responsible for the exact can-, N the above discussion, particles and holes do not appear
cellation ofD,, i.e., of the total contribution of the wrongly to play a symmetrical role. We did not find any problem

: : temming from the hole part aP, /d\ i.e., from the part
on the energy shell d'agraglﬁ generated by applying the HI:iorresponding taW, /d\ in Eq. (15). This is only because

with E, approximated t»ER . we considered the BHF contribution to the auxiliary poten-
Although the approximation tial [see Eq(10)]. In the terminology of6] this is a contri-
bution with crossed legs for hole states but not for particle
states. Via the HFT, a contribution td, with crossed legs
solves the problems stemming from the BHF approximatiorﬁvr'(l)lss%%n?ég;e egrYd> V?(l:zg\rgrrn;eg ogtglnlg?aglrgsrﬁg)cirzg i\;]wth
to E, , it will generate other wrongly on the energy shell £ig "1} "since the BBP theorem only applies to insertions

cgntributiong. Th.ese come from the derivatives of Gma- with crossed legs, this explains why in the BHF approxima-
trices contained in E¢27). It should be clear that these new tjon to U, we had problems with insertions on particle lines

wrong contributions will be exactly canceled by including only. These problems will also appear for insertions on hole
diagrams with mor&J insertions in the calculation &, and  jines if we take into account contributions th, which are

that this situation repeats itself ad infinitum. We believe thatot with crossed legs for hole states. Conversely if we iden-

it is not sound to generate contributions to some quantity at @fy U, with the Brandow auxiliary potentidB], i.e., as the
given approximation and to cancel thezractlyin the next  sum of all the insertions with crossed legs, the problems with
one. Therefore, we should avoid generating wrong diagramtghe BBP theorem will disappear for both the hole and par-
from the beginning. To reach that goal, we simply observdicle insertions. The Brandow auxiliary potential leads how-
that all the problems come from the dependence of the ever to the same convergence problems as the standard aux-
auxiliary potential. With a fixedJ, the derivative ofP, van- iliary potential: the BBG expansion of the binding energy
ishes identically and we are left with the first two terms onmay not be truncated at the BHF level.

the right-hand side of Eq14). Then in the BHF approxima-
tion for E, , the HFT will only yield diagramga) and(b) of
Fig. 1. Of course, the fixed auxiliary potential should be
taken as the one correspondingte 1. As we stated above,  The exact expectation value of the kinetic energy is given
diagrams(c) and(e) in Fig. 1 are true contributions t6v) by

E,=ESHP+EY (29)

Ill. CALCULATION OF THE KINETIC ENERGY
EXPECTATION VALUE
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and

Pr(ex,it€rj)

[O _ (1_np)(1_nq)|pq><pq| (35)
S MEt—t—tg) (Uit Uj—Up—Uy)’

where we have written the single particle energies as

FIG. 4. Diagrammatic representation of H§9). The squares €y a=MNaTU,. (36

represent kinetic energy insertions. The first diagram corresponds to o ) . N
the kinetic energy of the free Fermi gas. For definiteness, we work with the continuous auxiliary po-

tential so that the latter equation applies for all single particle
(V[T|W) statesa . . _
<T)EW=E—(V> (30 The HFT will again involve the\-derivative of theG
matrix. Now, we havgcompare with Eq(14)]

and it is tempting to use this equation to calculate approxi-

mations to(T). One would simply replac& by some ap- M

proximation and({V) by the corresponding approximation dx

obtained from the HFT. This is the procedure followed in dP, (e, i+ €, 1)

Ref.[7]. It has the advantage to de@d@ly constructioh with =Gy(€,,t €, )) & 3)'\ M Gy(erit e
approximations tc&E, (T) and (V) which are conserving in

the sense that Eq30) is satisfied. One should note however (37

that in general such approximations(f®) cannot be repre-
sented by the usual Goldstone diagrams. Let us take for invith
stanceE, =E2H" and let us work with & independent aux- . N
iliary potential. The corresponding contribution ¢@) will M
then be given by the free Fermi gas kinetic energy, which is d
represented by the first diagram in Fig. 4, minus the contri-

bution of diagram(b) in Fig. 1. Except when one uses no =—
auxiliary potential at all, the latter contribution cannot be
written in terms of the usual kinetic energy diagrams which,
like those depicted in Fig. 4, contain a kinetic energy inser-

tion. o _ From Egs.(32), (33), (37), and(38), one obtains
The usual kinetic energy diagrams can however be ob-

(1-np)(1—ng)[pa)(pq|
P.d (7\(ti+tj—tp—tq)+(Ui+Uj—Up_Uq))Z

X (ti+t—tp—tg). (39)

tained by an application of the HFT independent of the one 1 nin;(1—n,)(1—ng)
used for(V) [8]. We show this in detail. Let us multiply the <T>:2i niti—3 i E (e+e—e—eg)?
mass of each nucleon by\I/this leads us to consider the ppa R e
following N dependent Hamiltonian Xti|(palG(e + €)]ij)al?
Hy=AT+V. (31 +1 nin;(1—ny)(1—ngy)

2 ifpag (ete—e,— eq)2
Xtol(palG(ei+€))ij)al?. (39

dE,
(M= dan ' 32 This expression is represented by the diagrams with kinetic
A=l energy insertions depicted in Fig. 4. Since in any contribu-

whereE, is the ground state energy of the Hamiltonian of ion to Ey, the parametek only multiplies the kinetic en-
Eq. (31). For simplicity, let us work again in the BHF ap- €9y part of some single particle energy, it is clear that the

proximation with ax independent auxiliary potential. Now, results we have obtaingd in_the BHF approxima_tion. general-
we have ize to any other approximation , : every contribution to

(T) generated by using the HFT with the Hamiltonian of Eq.
1 (31) will correspond to some usual kinetic energy diagram.
EPF=NY nity +§Z nini(ij|Gy(exit e Dlii)a The converse is also true: every usual kinetic energy diagram
' b (33)  can be obtained from the contribution of some diagram per-
taining toE, by means of the HFT. The latter diagram can
with be constructed from the considered kinetic energy diagram in
the following way. First, suppress the kinetic energy inser-
Gr(erit e )=v+vP(€it€ ))G\(€ i€ tion. If the resulting diagram does not contain two successive
(34 G matrices linked by particle lines, then it is the looked for

The HFT then yields
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E, diagram. The HFT will give back the considered kinetic
energy diagram when one calculates thelerivative of the M= 2 ni(kj|G(e+ €)|Ki)a
energy denominator corresponding to the former location of J

the kinetic energy insertion. If the diagram resulting from the

suppression of the kinetic insertion contains two successive + 2 nin; ('J|
G matrices linked by particle lines, then one obtains the
looked forE, diagram by collapsing these two successi/e
matrices into a single one. The HFT will give back the con-where
sidered kinetic energy diagram when one calculates, via Eq.

(37), the \ derivative of theG matrix which resulted from

the collapse.

5G(e + 61
| J>A1 (46)

5G(eitej) OP(€i+ €))
5—nk—G(ei+ej)5—nkG(€i+Ej)- (47)

IV. THE BRUECKNER-LANDAU DEFINITION
OF THE MEAN FIELD Calculating the functional derivative oP from Eq. (43

In this section which is somewhat out of the main line of yields
this paper, we point out that we might encounter problems
similar to those of Sec. Il if we define the mean filg felt ~ 5P(e;+ ;) (1—ng)|ka)(kq|
by a nucleon in the nuclear medium, as the functional deriva-(;—nk ="
tive of the binding energy with respect to the occupation
number[9,10] > (1—ny)|pk)(pk|

P EiTE—€e—ETin

q €it€E—e—€qtin

SE (1—np)(1- nq)lpqquw 56j)

M —t 40 _|__

k= 5nk ke (40 % (€it+€—€p— eq) \5 SNy

S (1=np)(1=ng)|pa)(pal( e, %)

Consider again the BHF approximation fo ba (ete—ep—eg)®  \on ony)
(48)

1 . .
EBHF:Z niti+§2 nini(ij|G(ei+€)lij)a (41
' b Since the auxiliary potentidlsee Eq.(45)] is also a func-
it tional of the occupation number one has
wi

se, 5G(eat
gfi(:(ak|G(ea+ek)|ak>A+2 n.(ar| ( )|ar>A-

and (49)

G(eit+e€)=v+vP(e+€)G(€+€) (42

Plete)=3 (1—np)(1—nq)|pq)_(pq| . (43  Comparing with Eqs(47) and (48), one sees thal will
pa  €T€E—€e€qtiy involve G matrices to all powers. This is of course reminis-
cent of a similar situation encountered in Sec. Il. By only
where the infinitesimal quantityy is responsible for the keeping terms up to orde®? in de,/dn, i.e., by taking
imaginary part of the mean field. It has been repeatedly em-

phasizedsee, e.g., Chap. 6 in R¢fl]) that the calculation of . n(1—n.)
the mean field requires a continuous auxiliary potential. —2=(ak|G(e,+ €)|akia+ > :
Hence in the BHF approximation, we should use ong rq €at €~ € €gTI7
X|(kq|G(ea+ €)|ar)al? 50
Ea:ta+ Ua (44) |< ql (63 EI’)| >A| ( )
with one easily finds that
=3 6
U,= - nr<ar|G(Ea+Er)|ar>A (45) Mk:_z M, (51)

for all single particle statea. From Eqgs.(40) and(42), one
obtains with
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Mkf; ni(kilG (et €ki)a, (52)
My o= — % i’]z’q Ei_,_:ijn_j(i::::i " [(kalG (e +€))ij)al? (53
Ms=—3,3 ”;:jf;ff::q?;‘) (paiG e+ &)l al(iKIG e+ €0k}, (59
Moy S ”(”J(: f‘;)::qr)'g) (palG(e+ &)]i1)al A PKIG( &+ 0 [PK)A (55

1 ninin (1 =np)(1—ng)(1—ny)

M == G(e+€)|ij)al?l(ks|G(e+€,)|ir)al?, 56
k,5 2i,j,p,q,r,s(ei+ej—ep—eq)2(6i+er—ek—es+i77)|<pq| (I j)|l>A| |< | (| r)| >A| ( )

M __E ninjnr(l_np)(l_nq)(l_ns)
k6 20 par.s (6+€—€p— eq)2(6p+ € — €—€stin)

[(palG(€i+ €))lij >A|2|<kS|G(€p+ €)|pryal?. (57)

The termM, ; is simply the first term of Eq(46). This is
the BHF contribution taVl.. It is represented by diagraa)
in Fig. 5.

The termM, , comes from the contribution of the first
two terms of Eq.(48) to the second term of Eq46). It is
represented by diagraif) in Fig. 5. This is the so-called
Pauli rearrangement contribution to the mean field.

The termM, 3 is obtained by using the first term of Eq.
(50) to calculate the contribution of the third term of E48) k
to the second term of E@46). It is represented by diagram
(c) in Fig. 5. One should note that the middE matrix is
calculated on the energy shell. This is in keeping with the
BBP theorem.

(a)
The termM 4 is obtained by using the first term of Eq.

(50) to calculate the contribution of the fourth term of Eq.

(48) to the second term of Eq46). It is represented by

diagram(d) in Fig. 5. The middleG matrix is again calcu-

lated on the energy shell although the BBP theorem does no

apply. y
(c)
(e)

[

(b)

&

The termM, 5 is obtained by using the second term of Eq. k
(50) to calculate the contribution of the third term of E48)
to the second term of E@46). It is represented by diagram
(e) in Fig. 5. The BBP theorem is properly applied to the two
leftmostG matrices.

The termM, ¢ is obtained by using the second term of Eq.
(50) to calculate the contribution of the fourth term of Eq.
(48) to the second term of Eq46). It is represented by
diagram(f) in Fig. 5. The two leftmostG matrices are cal-
culated on the energy shell although the BBP theorem doe:
not apply.

Thus as in Sec. Il, we have obtained two diagrams,
namely diagramgd) and (f), whose contributions cannot be (f)

calculated by means of the usual diagram rules pertaining to g 5. Diagrammatic representation of H§1). Although we

M. Once more, this is an artifact due to the approximationyays draw the external lines from below, the diagrams represent
we used for the binding enerdy. Indeed, if we take the contributions to the mean field for both hole and particle states.

(d)

B

k
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diagram of Fig. 3 into account to calculdEewe shall obtain  E (more precisely with those pertaining Eo— T whereTg

an additional contribution td1, given by is the free Fermi gas kinetic enefgiut that the diagram
rules are different: to calculate the contribution of(\#)
v 1 nin;(1—np)(1—ng) diagram containing bare interactions, one has to multiply
Mk__Zilj]p]q (€i+€j—6p—€q)2 by n the contribution one obtains using the rules which
would apply if it were arE diagram.

.\ 1o 9€p  O€q One can immediately convince oneself by considering
X[(palG(ei+€)lij)al er N, oo other examples, that because of the extra weighting fagtor

this direct resummation technique is rather unconvenient. In

(58) particular, it is hard to see what the general structure of the

where the ellipsis stands for the contributions coming fr0m<V> diagrams will be when we express them in termsGof

the G matrices contained in the diagram. One notes that thigna;tnge;. In ladt(::.tlog, the d(;orresp%ndlnr? d|3g];ra|_r|nFTruIes gre
cancels not only the contributions of diagrafds and (f) of not obvious. In this Appendix, we snow how the can be

Fig. 5 but also all the contributions we would have obtaineof‘jsecj to sqlve these problems in a strq|ghtforwarq manner.
from the fourth term of Eq48) if we had not truncated the More precisely, we prove that the following properties hold.

functional derivative of the single particle energies at theG mpg?ﬁceég"%] QdSFk))UFL\(I)VléS Igr?[:(cllnegligzg, é:r.]'(;[\rﬁllo aSUCngSO'xie
orderG2. Thus as in Sec. II, the wrong diagrams which are. " diaaram y P ' Yy app
generated at some approximation level foare exactly can- g .

celed at the next level. To avoid thigeneration-exact can- S li:gﬁgrltc))/oiir?—hea?rﬂrs]tggﬁztlz?gtecg :S?Jggg?Tecogta:g;nfnsof
cellation process, it suffices to use a fixed auxiliary poten- P 9p 1€, Dy

tial, i.e., one without any functional dependence upon thé[he diagram rules which apply to ttigdiagrams when they

occupation numben, . In that case the diagrants) and(e) are expressed in terms OF matrices.

of Fig. 5 where the BBP is correctly applied will be gener- Pfoperty 3_The c_omributio_n of a diag“’?‘m .containing no
ated by the functional derivative of the first diagram of spurious looking pair is obtained by multiplying the contri-

: bution calculated as usual, by the numbeGafatrices con-
Fig. 2. . . )
tained in the diagram.
Indeed, consider an¥{ diagramD(E;G) expressed in
V. SUMMARY terms of G matrices. It is the sum of a series Bfdiagrams

In this paper, we have discussed the implicit diagramPi(E;v) expressed in terms of the bare interaction
matic content of the HFT within the framework of the BBG
.theory. We .have found that if one usg& alependent aux- _ D(E:G)=>, Di(E;v). (A1)
iliary potential, there are cases in which one generates dia- i
grams where the BBP theorem is wrongly applied. We have
shown that this is due to the fact that one has to use somleet us now consider th& diagramsD;(E;v) as(V) dia-
approximation to the binding enerdgy in order to apply the gramsD;(V;v). The HFT gives
HFT in practice. The wrong diagrams can alwayselactly
canceled by improving the approximation i at the ex- 2 D\ (V: )_E (dDi(E;)\U))
pense, however, of generating other wrong diagrams. This = )= i d\ B
has led us to advocate the use ok andependent auxiliary Mt
potential in order to retrieve a situation which is cleaner from _
a diagrammatic point of view. We have also discussed two = JEI Di(EiAv)
distinct applications of the HFT to the calculation of the A=1
kinetic energy of nuclear mattéi). The usual kinetic en- dD(E;G,)
ergy diagrams, i.e., the diagrams with a kinetic energy inser- :(T)
tion on a particle or a hole line cannot be obtained by using A
the HFT within the conserving definition ¢T) except in the
academic case in which one uses no auxiliary potential at allV
Finally we have pointed out that analogous problems arise
with the Brueckner-Landau definition of the mean field.

The following appendix extends the discussion of ¢ki¢
diagrams given in Ref11].

(A2)
=1

ith
G\ (W)=Av+XvP(W)G, (W), (A3)

where

APPENDIX PW) =D, (1=n,)(1=ng)Pa)pd . (Ad)
b W—e€,— ¢
In Ref. [11], the existence of diagrams such as diagram
(b) in Fig. 1 was justified by directly resumming a series of EquationgA3) and(A4) should be compared with Egdl.l)
(V) diagrams expressed in terms of the bare interaation and(12): now neitherW nor P depend o\ because we use
We remind the reader that these diagrams are in one to oreefixed auxiliary potential. Note that in EGA2), D(E;G,) is

correspondence with those pertaining to the binding energjust the contribution of thé& diagram we started from with
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each of itsG matrices replaced b, . Calculating then n n
derivative by the Leibniz rule and usinfgompare with Cs=Cy >, (—1)k( )20, (AB)
k=0 k
Eq. (14)]
dG, (W) where {) is the usual binomial coefficient. Consider now the

=G(W)+G(W)P(W)G(W), (A5  case in which) contains no spurious looking pair. Then
according to property 3 above, its contribution is given by

we obtain the above mentioned properties at once. Thedd+P)Ce WhereCe is the contribution calculated by means
properties can be used to prove the following of the E-diagram rules. The contribution of a diagram ob-

Corollary. Assume that the auxiliary potential is defined tained from) by replacingk bubbles byk U insertions will
in the BHF approximatioriat least for hole states. Take any NOW be given by ¢-1)(n+p—k)Cg. Hence, we have
(V) diagramV’ containing bubbles on hole lines and consider N .
the setS of diagrams containing’ together with the dia- . K
grams one can construct from it by replacing the bubbles by Cs= CEKZO (=D)n+p- k)( k) ' (A7)
U insertions in all possible ways. Then the total contribution
C; of the diagrams contained ifi vanishes except whel  This can be written as
contains a single bubble and no spurious looking pair. In the

d» ),

latter caseC is given by the contribution of calculated as . d N
if it were an E diagram, i.e., without any extra weighting Cs=Cg Iim d—[Xp(X—l) ] (A8)
Xx—1 X
factor.
Indeed, leth be the number of bubbles on hole lines gnd which vields
the number of the othe® matrices contained iw. Consider y
first the case in whichy contains a spurious looking pair. Its _ _
Lo . . e Cs=Cg for n=1
contribution Cy, is calculated without any extra weighting
factor (see property Rand this also applies to all the other =0 for n>1. (A9)

diagrams inS. Taking into account that the replacemenkof
bubbles byk U insertions introduces a factor-(1)X, we  This completes the proof. The survival of diagréenof Fig.
have 1 illustrates the corollary in a particular case.
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