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Nuclear shape transition at finite temperature in a relativistic mean field approach
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The relativistic Hartree-BCS theory is applied to study the temperature dependence of nuclear shape and
pairing gap for*%®r and Y"%Er. For both the nuclei, we find that as temperature increases the pairing gap
vanishes leading to phase transition from superfluid to normal phase as is observed in nonrelativistic calcula-
tion. The deformation evolves from prolate shapes to spherical shapes a7 MeV. Comparison of our
results for heat capacity with the ones obtained in the nonrelativistic mean field framework indicates that in the
relativistic mean field theory the shape transition occurs at a temperature about 0.9 MeV higher and is
relatively weaker. The effect of thermal shape fluctuations on the temperature dependence of deformation is
also studied. Relevant results for the level density parameter are further presented.

PACS numbeps): 21.10.Ma, 21.60.Jz, 27.76q

[. INTRODUCTION tivistic prescription for the pairing interaction, it is intro-
duced phenomenologically. We take two representative sys-
The relativistic mean fieldfRMF) theory[1—3] has been tems, namely,'®%r and *"%r. We investigate the thermal

very successful in describing the ground staiero tempera- evolution of the nuclear shapes and the pairing gaps. The

ture) properties of nuclei over the entire periodic table intemperature dependence of the specific heat as a possible

recent years. The binding energies, charge radii, and theignature of phase transition in pairing and nuclear shapes is

ground state deformations are reproduced very well; th&xplored. The temperature variation of the nuclear level den-

charge distributions also compare extremely well with theSity parameter which has a preeminent role in understanding

experimental data. This theory has proved to be very fruitfunuclear reactions is further studied. Effects of thermal fluc-

in explaining[4—6] various details of exotic nuclei near the tuations of the nuclear shapes on the deformation and the

drip lines. In contrast to the nonrelativistic models, the RMFnature of the phase transition are also discussed.

theory uses a single set of parameters to explain all these The theoretical framework used is briefly discussed in

properties. To our knowledge, this approach has not yet bee®ec. . The results and discussions are presented in Sec. IlI

exploited to understand the properties of hot nuclei excepand the Sec. IV contains the concluding remarks.

some preliminary investigations for closed-shell nugl&i

The response of nuclear_ shapes to th_ermal excitations, for Il. EORMALISM

example, has been experimentally studied from the shapes of

the giant dipole resonancé&DR) built on excited states The Lagrangian density for the nucleon-meson many-

[8,9]. Theoretically such finite temperature effects have beetody systeni2] is taken as

studied till date in the nonrelativistic framework such as the

Hartree-Fock-BogoliuboyHFB) theory[10,11] and the Lan- _ 1 _

dau theory of phase transiti¢h2,13. Such theories qualita- £=Vi(iy*d,~M)¥i+ 5d*cd,oc—U(0)—g, VoV,

tively explain, for example, the temperature evolution of

nuclear shapes. Recent experiments indicate, however, thata 1 1, _ 1. .

quantitative estimate of the persistence of the ground state — 72*"Q,,+ ;M 0"0, =9, Vv 0, ¥i= 7R'R,,

deformation[14] with temperature may be missing in some

cases. 1 ... — .- 1 ,

Against this backdrop, we undertake the study of the ther- T+ §mpPMPM_ 9,Vivip,TVi— 4 FEF L

mal response to nuclear properties, particularly the deforma-

tion and the level density in the RMF framework. The HFB — (1-7y)

calculations employ a model Hamiltonian in a limited model —eWiy® 2 ALY @)

space with pairing-plus-quadrupole interaction. This may not

be very realistic once temperature comes into play. Mores

: . .~ ~The meson fields included are the isoscatameson, the
over, to make the calculations numerically tractable, an iner{

: : . soscalar-vectow meson, and the isovector-veciomeson.
core is assumed. This may be questionable at moderate

high temperatures. The RMF approach we use is effectivel he arrows 1n Eq'.(l) denotg the isovector qpant|t|e§. The
T .)ﬁargrang|an contains a nonlinear scalar self-interaction term
free from these limitations. The model space employed i (o) of the & meson:
sufficiently large and all the nucleons are treated on equa 7 7 '
footing.
In the present work, we employ the nonlinear w—p
version of the RMF theory2]. In absence of a simple rela-

1 1 1
U(o)= Emioz-i- §920’3+Zggo'4. (2
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This term is important for appropriate description of the sur-

face propertie$15]. The quantitiesv, m,,, m,,, andm, are p3=2i ”i‘I’iTTs‘I’i ,

the nucleon,s, o, and thep-meson masses, respectively,

while g,, 94, 9, ande?/4m=1/137 are the corresponding (1-74)

coupling constants for the mesons and the photon. The field pc=2 nw! 2 ;. (14
|

tensors of the vector mesons and of the electromagnetic 2

fields have the following structure: Here the sums are taken over the particle states only, i.e., the

QF’= gl o’ — g ok 3) negative-energy states are neglected. The partial occupancies

' (n;) at finite temperature in the constant pairing gap approxi-

s S - mation (BCS) is

R*"=0%p"—d"p*—g,(p*Xp"), 4
€ — )\

1 -
FAY=grAY— 9VAF. (5) ni:§ 1-——[1-2f(¢,T)]]|, (15
€j

The variational principle gives the equations of motion. - - -
The mean field approximation is introduced at this stage byvith f(e;, T)=1/(1+e%'T); = (¢ —\)>+A? is the qua-
treating the fields as numbers or classical fields. This re- siparticle energy where, is the single-particle energy for the
sults in a set of coupled equations, namely the Dirac equatioftatei. The chemical potentiak for protons(neutrong is
with potential terms for the nucleons and the Klein-Gordonobtained from the requirement
type equations with sources for the mesons and the photon.
For the static case, alpng with the t_ime revergal ir_]yariance z n=2(N). (16)
and charge conservation the equations get simplified. The i
resulting equations, known as RMF equations, have the fol-

lowing form. The Dirac equation for the nucleon is The sum is taken over protdimeutron states. The gap pa-
rameterA is obtained by minimizing the free energy

—ia-V+V(r)+B[M+S(r)}V,=¢V;, 6
{ @ (r)+8[ S( )]} i~ €t (6) F-E-TS 17)
hereV ts th t tential
whereV(r) represents thgector potentia where
V()= 8,001+, 7apo(1) + e L Ag), (D)
@0l T SpTaPo 2 ok E(T)=2 an+E,+EnutE,+E,+Ec
and S(r) is thescalar potential + Epair + Ecm—AM, (18)
S(r)=gg0(r), ®  and
which contributes to the effective mass as
Sz—Z [filnf,+(1—f,)In(1—-f,)], (19
M*(r)=M+S(r). (9) :
The Klein-Gordon equations for the mesons and the eIecWith
tromagnetic fields with the nucleon densities as sources are 1
EJ:_EQUJ dsrps(r)a-(r)1 (20)
{=A+m}o(r)=—g,pd(r)—go0(r) —gso®(r),
(10)
E =—1f d?’r[E (73(r)+1 a(r) (21)
{— A+ mZlog(N)=g,p,(1), (11) N T2) T 39 297 D)
_ 2 — 1
(= A+ My hpo(1)=0pps(r). 12 £,=— 50, | Fro06ln), @2
—AAg(r)=epc(r). (13 .
The corresponding densities are E,=— Eng d3r p3(r)p°(r), (23
_ e2
ps= S T, Eo=- oo | FrocnA’(), 24
_ 2 \I,T\I, Az
Pv= i n; i i Epair:_gy (25)
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0.4

3 3
_ —_ _ —-1/3
g fiwo=—74IA 1R,

cm.

E (26)

Here G andA are the pairing strength and the mass number,
respectively. The single-particle energies and the fields ap-
pearing in Egs.(18)—(23) are obtained from the self-
consistent solution of Eq$6)—(12). We generate these self-
consistent solutions using the well tested basis expansion
method as described in detail in Reffig,16).

The self-consistent solutions for the RMF equations at a
given temperature is obtained by minimizing the free energy
F which yields the equilibrium or the most probable value of
the quadrupole deformatior]BE) and the proton(neutron
pairing gapsd, (Ap). To incorporate the effects of the ther-
mal fluctuations, a constrained calculation is performed to
generate the free energies for the deformations away from
the equilibrium value. Average value of a quantity then can
be obtained as

T(MeV)

FIG. 1. Variation of the most probable quadrupole deformation
J AF(By)IT B, as a function of temperature f3f%Er and 1"%r.
dB,0(B)e ~"'72
0=

(27)

sented. With increasing temperature, thermal fluctuations
build up which may shift the average values from the most

f dB,e SFBIT

where AF=F(,82)—F(B(2’) and O(B,) is the expectation
value of the operato® at a fixed value of3, and T. The

quantity e 27T is a measure of the probability for the
nucleus to have deformatigs, at the temperaturé.
[ll. RESULTS AND DISCUSSIONS

We have chosent®Er and %r as two representative

probable ones. In Sec. Ill B, we discuss the results with the
inclusion of thermal fluctuations. Fluctuations in both e
and y degrees of freedom of the nuclear shape should be
incorporated, however, because of simplicity and computa-
tional economy, we have included only tBe fluctuations in

the present calculations.

A. Mean field results

We have calculated the most probable values of the quad-

systems for our calculations. The results presented are obtpole deformation parameter, neutron and proton pairing

tained using the NLSH parameter $&6] for the values of

gaps, heat capacity, and the level density parameters for the

the coupling constants and masses for the mesons and nuckforesaid systems as a function of temperature.

ons. The pairing strengtB is taken to be 2% and 21A for

In Fig. 1, the variation of the quadrupole deformation pa-

protons and neutrons, respectively; they reasonably repraameter 8, as a function of temperature is shown. The
duce the observed pairing gaps at zero temperature obtaingdound state deformations obtained here are almost close to
from odd-even mass differences. The values of the chemicdhe ones calculated in Ref$10,11 using nonrelativistic
potential and the pairing gap are determined using all thenean field theory with pairing plus quadrupole{ Q) in-
single particle states up tohzv, above the Fermi surface teraction. The nature of the temperature dependence of the
without assuming any core, i.e., the mean field solution igleformation in the two cases are also not very different.
generated by taking into account all the nucleons in the sygslowever, whereas in the nonrelativistic case the phase tran-
tems considered. sition from prolate to spherical shape occur3atl1.8 MeV,

At finite temperatures, the nucleus is not strictly in ther-in the present case the said transition is found at a higher
mal equilibrium. In order to treat the system as an isolatedemperatureT ~2.7 MeV. The signature of the phase transi-
one in equilibrium, one has to take into account correctiongion can be inferred by examining other observables like heat
due to excitations of nucleons in the continuum. This is gen<apacity which we consider later.
erally done through a subtraction procedure, by treating the In Fig. 2, the results for the evolution of the neutron and
liquid plus vapor phase together and then the vapor phaggroton pairing gaps with temperature are displayed. For both
separately{17]. However, calculations of the nuclear level nuclei the pairing gaps monotonically decrease with the in-
density parameter at finite temperature show that the resultyease in temperature. It is seen that for both nuclei, the
are insensitivg 18] to the continuum corrections f@rup to  neutron pairing gaps vanish almost at the same temperature
~3 MeV; we have therefore not included the effects due tol ~0.4 MeV; similarly the proton pairing gaps vanish &t
the continuum in the present calculations as temperatures 0.45 MeV. These results are not much in variance with
above it are not relevant. those obtained in the nonrelativistR+Q model.

In Sec. Il A, the results for the most probable valies, The vanishing of the nuclear deformation and the pairing
the mean field valugsof the different observables are pre- gaps with temperature indicates that there is a shape transi-
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FIG. 2. Temperature evolution of neutron and proton pairing  FIG. 4. Temperature dependence of inverse level density param-
gaps for'%%Er and *"%r. etersKg and Kg determined from the excitation energy and the
entropy, respectively.
tion from prolate to spherical and also a transition from the
superfluid phase to the normal phase. To understand the ntat the heat capacities for the two systems have broad
ture of the transitions, the heat capacity at various temperdbumps atT~2.7 MeV. This signifies a weak second order
tures are calculated. The specific h€dbr a given tempera- phase transition corresponding to the transition of the nuclear
ture is obtained using shape. This result is at variance with those obtained in the
. P+ Q model or in the nonrelativistic calculatidi2] based
c(T)= £ 28 On the Landau theory of.phas.e transitions where a strong
aT "’ second order phase transition is observed.
We now present the results for the temperature dependent
whereE* is the excitation energy of the nucleus. In Fig. 3, level density paramete. The parametea can be obtained
the temperature variation of the specific heat t8%r and  using the excitation energy and the entropy as follows:
%Er nuclei is plotted. AtT~0.4 MeV, two closely sepa-

— 2
rated peaks in th€(T) curves are seen. They correspond to *=aTs, (29
the dissolution of the neutron and proton pairing gaps. These
are the characteristic signatures of second order phase tran- S=2aT. (30)

sitions from superfluid to normal phase. It is further noted

The parametea obtained using Eq€$29) and(30) would be
equal provided it is independent of temperatii8]. In Fig.

80 4, the inverse level density parameles A/a (A is the mass
60 | number of the nucleyss plotted as a function of tempera-
ture. The subscriptE and S are used to distinguish the two
a0 | definitions given by Eqs(29) and (30), respectively. At
lower temperature, botkg andK g shoot up due to the col-
20 b Teog, lapse of the pairing gaps. At higher temperatukgsandK g
e are quite close to each other and there is no appreciable
3 0 : variations in their values in the temperature range consid-
ered. This is due to the weak transition of the nuclear shapes
60 | from deformed to spherical at~2.7 MeV.
In order to test the sensitivity of the results presented
40 | above to the choice of the parameter set and the model space,
o we have repeated the calculations for the nuci3sr with
20 | the NL3 parameter s¢20,21. In comparison to the results
for NLSH parameter set it is found that the NL3 parameter
0 0 1 set gives slightly larger£10%) value of the ground state

T(MeV)

deformation. ForT>1.5 MeV, the values of deformation
obtained in both NLSH and NL3 parameter sets are almost

FIG. 3. Variation of specific heat as a function of temperatureidentical. The temperature evolution of the pairing gaps and

for 1%Er and Y"%r.

level density parameters are practically the same with the
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levels for the different proton orbitals around the Fermi sur-
or o, — 3, ™er]  face for the nucleus’Er atT=3.0 MeV are displayed. Also
e the proton single-particle energies in the Q) model are
~ shown at this temperature. In both models the orbits are
A R — ] spherical at this temperature. The striking difference between
the orbitals in the two models is the large energy gap across
- the Fermi surface in the RMF model. Similar is the case for
19 neutrons. These tend to reduce the entropy and the excitation
-2 1 energy and hence the level density parameter. The increase
in the shape transition temperatuiley ~0.9 MeV) in the
RMF model as compared to the+ Q model may be traced
back to the specific level structure and the gap across the

o Fermi surface in the two models and their thermal response.

£(MeV)

B. Results with thermal fluctuations

Experimental data on giant dipole resonances built on ex-
cited states give estimates of the average values of nuclear
deformation at finite temperatures. They can be calculated by
8l ] taking into account the thermal fluctuation effects around the
“most probable” value. Nuclei being finite systems, one ex-

~ pects that thermal fluctuations would play an important role
», . in the quantitative estimation of various nuclear observables
-10 | RMF P+Q 1 at finite temperatures. In fact, it has been shown in ]
that the experimental data on GDR built on the excited states
can be explained reasonably only if the effects from the ther-

FIG. 5. Spectra of the proton single-particle energies around th&al fluctuations of all the quadrupole degrees of freedom for
Fermi surface for'”Er at T=3.0 MeV in the RMF and theR  nuclear shape are included. In the following, we consider the
+ Q) models. The single-particle energiesare shown relative to  thermal fluctuations only in thg, degree of freedom. Inclu-
the respective chemical potentials. sion of fluctuations in they degrees of freedom is very in-
volved and computer intensive and therefore not considered

two parameter sets. We extend the model space to incmdgesentl_y. We perform constrained calculations for free en-
single particle states up tofids, above the Fermi surface €9y atfixed deformations,. The free energy surface shows
instead of Zw, as used above. For this extended modelMultiple minima for temperatures b_elow the shape_tran5|t|on
space the pairing strengts is adjusted to reproduce the temperature. The average.valueﬂ%fls calculated using Eq.
ground state pairing gap. We do not find significant change§27)- In Fig. 6,1\7/ve have displayed the plots of free energy
in the values of deformation parameter and the pairing ensurfaceAF for *%r at a few temperatures ranging from 2.0
ergy in the temperature range of interegt(3 MeV). Inthe 0 3.0 MeV vv_hereAF is measured from the Iowgst mini-
extended model space, the value of the inverse level densiffum (prolate in the present casat the corresponding tem-
parameter is also nearly the same. The model space usedAgrature. ForT=2.0 MeV, the free energy surface has
thus found to be sufficient for our calculations. To estimateMinima atB,=—0.16 and 0.23. The free energy difference
the importance of the continuum corrections to the invers®etween these two minima is 0.70 Mé\e., AF/T=0.35).
level density parameter we calculated the occupan€y),  As the temperature approaches the shape transition tempera-
of the single-particle states with positive energy. Fer1  ture (T—~2.7 MeV), both the minima in the free energy sur-
MeV practically there is no particle in the positive energy face merge and flatten the bottom part of the free energy
states ((*)=0) and at the highest temperature of interestsurface. This is evident from the middle panel of Fig. 6 cor-
studiedn(*)/A=0.018 which is very small. Thus it is ex- responding tol =2.65 MeV. With further increase in tem-
pected that the continuum corrections may not play an imperature, the free energy surface with single minimum at
portant role in the temperature range we study. The conZ€ro deform_at|on broadens. The variation of the average de-
tinuum effects may grow stronger fdr>3 MeV, however, formation (3,) as a function of temperature obtained
this is beyond the transition temperatures and so we have ntirough Eq.(27) for Y"%r is shown in Fig. 7. The average
taken this into account. value of 8, differs significantly from its most probable value
The shape transition temperature and the inverse levdkee Fig. 1 for temperatures above 1 MeV. The reason for
density parameter obtained in the present model are higheuch differences can be understood as follows. The free en-
compared to those calculated in theé{ Q) model[10,11. ergy surface for'™%Er at low temperaturesT(<2 MeV)
Moreover, in the later model, the deformation falls to zeroshows two well separated minima. One of these minima lies
sharply whereas in the present case, this fall is comparativelgt prolate deformationH;) and the other one is at oblate
a little slower. The origin of these differences can be attrib-deformation £,). Their differenceAF%=F,— Fp, as a func-
uted to the single-particle level spectra. In Fig. 5, the energyion of temperature is shown in Fig. 8. Fdr>0.5 MeV,

19,
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T T 8
4 "y R
2t T=2.00 MeV - L
| \ :

4
ulf.l 5 T=2.65 MgV
0 +
4 L
[ 3
2l T=3.00 MeV | T(MeV)
r ] FIG. 8. The free energy difference between the prolate and the
0 s . oblate minima as a function of temperature f8fEr.
-0.5 0.0 0.5 1.0
B, and ultimately merge as shown in Fig. 9. The persistence of

FIG. 6. Plots for the free energy surface at various temperature§2 Peyond the transition temperature is attributed to the
for 1. The free energies at different temperatures are measuredSymmetry in the free energy surface as seen in the bottom
from the respective lowest minimum. panel of Fig. 6. A similar behavior fot®Er is also seen.

In the mean field approximation, the thermal evolution of
AF? decreases monotonically to zero. The initial riseA¢®®  the most probable value of the deformation is seen to be
can be attributed to the quenching of the pairing correlationsassociated with two phase transitions, the first being a super-
it is seen that without pairingy F° decreases uniformly with fluid phase to normal phase transitioriTat 0.4 MeV and the
temperature. The decreaseAr® enhances the probability other a weak second order phase transition in the shape at
of finding the nucleus with oblate deformation and hence thd ~2.7 MeV. It would be interesting to see how thermal
average deformation is smaller than the most probable onfuctuations affect these phase transitions. In Fig. 10, the spe-
for temperatures below the transition temperature. The desific heat for the systemt’%Er is displayed as a function of
viation of the average deformation from the most probabldemperature with inclusion of fluctuations. At low tempera-
value is also governed h¥B,=B5—B5. Here, 85 andB3  tures forT<1.0 MeV, there is no perceptible change in the
are the deformations corresponding to the prolate and thepecific heat and thus the transition from superfluid to nor-

oblate minima. With rise in temperature, they come closer
0.8

04

170,
Er

170,
Er

03

e 0.2

01 |

0.0 - -
0 1 2 3 T(MeV)
T(MeV)
FIG. 9. The differenceA B8, between the deformations at the
FIG. 7. Average value of quadrupole deformation as a functionprolate and the oblate minima as a function of temperature for
of temperature for"°Er. 7%,
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= ®
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FIG. 10. Var7iation of average specific heat as a function of £ 11 The inverse level density parameter for the system
temperature for"Er. 7%, The full and the dashed lines correspondktg and K,
respectively. The lines with filled circles represent the correspond-

mal phase is not affected by fluctuations. At a little highering results with inclusion of thermal fluctuations.
temperature, however, the broad bump seen in Fig-32a7
MeV is seen to be shifted te 1.6 MeV and becomes also a Pairing gaps. The deformation remains close to its ground
little sharper. The phase transition in nuclear shape thus ogfate value g,~0.3) for T less than 1.5 MeV and falls to
curs at a lower temperature and is not as weak as seen in t§8r0 quite sharply af~2.7 MeV. Pairing gaps vanish at
mean field approximation. Normally, one would expect the=0-4—0.5 MeV leading to transition from a superfluid phase
phase transition to get diluted due to presence of fluctuationd® normal phase. Compared with the results obtained in the
Here one sees the opposite. The evolution of the free energ}pnrelqtlwstlc mean fleld_f_ramework, the rela_1t|V|st|c calcula-
and the energy profiles with temperature showing twotions yield vanishing pairing gaps at practically the same
minima (One pr0|ate and the other Ob|atm deformation temperature and the fall is a bit slower. The evolution of the
space is responsible for this observation. Here the role dfeat capacity with temperature and the transition from super-
thermal fluctuations becomes significant only in the intermefluid to normal phase do not behave very differently. The
diate temperature domaitemperature in the range 1 — 2.5 nature of the shap_e transition obtaine_d in the two approaches
MeV, approximately due to decrease inF® andA B, (see  are also not too different except tha; in the_ present case, 'Fhe
Figs. 8 and @ The delicate interplay of these quantities in @PProach of the deformation to zero is relatively slower. This
the averaging augurs a change in the heat capacity signalirijower fall results in a broad bump in the specific heat
a somewhat sharper shape transition at a lower temperatuggound the shape transition temperature-@.7 MeV).
compared to the most probable one. Fluctuations are expected to influence the phase transi-

The effect of thermal fluctuations of the shape coordinatdions. To explore these aspects, we have taken into consid-
B on the inverse level density parametérfor the system eration thermal fluctuations in thg, degrees of freedom.
7%y js shown in Fig. 11. The full line and the dashed line The effects of fluctuations are found to be imperceptible be-
correspond to results of our calculations ¢ and K¢,  low T~1 MeV and therefore the pairing transitions are not
respectively. The corresponding lines with circles represengffected. However, the influence on the shape transitions is
those with inclusion of the fluctuations. It is seen that thefound to be very significant; the transition temperature drops
fluctuations shift the minima foKs andKg from 2.7 to 1.6~ down from ~2.7 to ~1.6 MeV with inclusion of thermal
MeV, the corresponding transition temperature. Beyond théuctuations. It also becomes a little sharper. The specific
transition temperature, the upward slope ois also found ~nature of the free energy surface in the deformation space
to be higher with fluctuations included. Similar is the behay-and its evolution with temperature are responsible for such a
ior for 1%er. behavior. Fluctuations in the degrees of freedom would
also have a role to play in the phase transitions mentioned.
We have not included these presently as they are computa-
tionally too intensive.

The relativistic mean-field approach together with pairing
effects mc!uded through the constant gap approximation has ACKNOWLEDGMENTS
been applied to study some properties of axially deformed
186y and 1%r nuclei at finite temperature. The temperature  The authors gratefully acknowledge Professor P. Ring for
dependence of the quadrupole shape for both the nuclei aproviding them with the computer code to generate RMF
found to be practically the same; similar is the case for thesolutions for axially deformed nuclei at zero temperature.

IV. CONCLUSIONS
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