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Nuclear shape transition at finite temperature in a relativistic mean field approach
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The relativistic Hartree-BCS theory is applied to study the temperature dependence of nuclear shape and
pairing gap for166Er and 170Er. For both the nuclei, we find that as temperature increases the pairing gap
vanishes leading to phase transition from superfluid to normal phase as is observed in nonrelativistic calcula-
tion. The deformation evolves from prolate shapes to spherical shapes atT;2.7 MeV. Comparison of our
results for heat capacity with the ones obtained in the nonrelativistic mean field framework indicates that in the
relativistic mean field theory the shape transition occurs at a temperature about 0.9 MeV higher and is
relatively weaker. The effect of thermal shape fluctuations on the temperature dependence of deformation is
also studied. Relevant results for the level density parameter are further presented.

PACS number~s!: 21.10.Ma, 21.60.Jz, 27.70.1q
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I. INTRODUCTION

The relativistic mean field~RMF! theory @1–3# has been
very successful in describing the ground state~zero tempera-
ture! properties of nuclei over the entire periodic table
recent years. The binding energies, charge radii, and
ground state deformations are reproduced very well;
charge distributions also compare extremely well with
experimental data. This theory has proved to be very frui
in explaining@4–6# various details of exotic nuclei near th
drip lines. In contrast to the nonrelativistic models, the RM
theory uses a single set of parameters to explain all th
properties. To our knowledge, this approach has not yet b
exploited to understand the properties of hot nuclei exc
some preliminary investigations for closed-shell nuclei@7#.
The response of nuclear shapes to thermal excitations
example, has been experimentally studied from the shape
the giant dipole resonances~GDR! built on excited states
@8,9#. Theoretically such finite temperature effects have b
studied till date in the nonrelativistic framework such as
Hartree-Fock-Bogoliubov~HFB! theory@10,11# and the Lan-
dau theory of phase transition@12,13#. Such theories qualita
tively explain, for example, the temperature evolution
nuclear shapes. Recent experiments indicate, however, t
quantitative estimate of the persistence of the ground s
deformation@14# with temperature may be missing in som
cases.

Against this backdrop, we undertake the study of the th
mal response to nuclear properties, particularly the defor
tion and the level density in the RMF framework. The HF
calculations employ a model Hamiltonian in a limited mod
space with pairing-plus-quadrupole interaction. This may
be very realistic once temperature comes into play. Mo
over, to make the calculations numerically tractable, an in
core is assumed. This may be questionable at modera
high temperatures. The RMF approach we use is effectiv
free from these limitations. The model space employed
sufficiently large and all the nucleons are treated on eq
footing.

In the present work, we employ the nonlinears2v2r
version of the RMF theory@2#. In absence of a simple rela
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tivistic prescription for the pairing interaction, it is intro
duced phenomenologically. We take two representative s
tems, namely,166Er and 170Er. We investigate the therma
evolution of the nuclear shapes and the pairing gaps.
temperature dependence of the specific heat as a pos
signature of phase transition in pairing and nuclear shape
explored. The temperature variation of the nuclear level d
sity parameter which has a preeminent role in understand
nuclear reactions is further studied. Effects of thermal flu
tuations of the nuclear shapes on the deformation and
nature of the phase transition are also discussed.

The theoretical framework used is briefly discussed
Sec. II. The results and discussions are presented in Se
and the Sec. IV contains the concluding remarks.

II. FORMALISM

The Lagrangian density for the nucleon-meson ma
body system@2# is taken as

L5C̄ i~ igm]m2M !C i1
1

2
]ms]ms2U~s!2gsC̄ isC i

2
1

4
VmnVmn1

1

2
mv

2 vmvm2gvC̄ ig
mvmC i2

1

4
RW mnRW mn

1
1

2
mr

2rW mrW m2grC̄ ig
mrW mtWC i2

1

4
FmnFmn

2eC̄ ig
m
~12t3!

2
AmC i . ~1!

The meson fields included are the isoscalars meson, the
isoscalar-vectorv meson, and the isovector-vectorr meson.
The arrows in Eq.~1! denote the isovector quantities. Th
Largrangian contains a nonlinear scalar self-interaction te
U(s) of the s meson:

U~s!5
1

2
ms

2s21
1

3
g2s31

1

4
g3s4. ~2!
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This term is important for appropriate description of the s
face properties@15#. The quantitiesM, ms , mv , andmr are
the nucleon,s, v, and ther-meson masses, respective
while gs , gv , gr , ande2/4p51/137 are the correspondin
coupling constants for the mesons and the photon. The
tensors of the vector mesons and of the electromagn
fields have the following structure:

Vmn5]mvn2]nvm, ~3!

RW mn5]mrW n2]nrW m2gr~rW m3rW n!, ~4!

Fmn5]mAn2]nAm. ~5!

The variational principle gives the equations of motio
The mean field approximation is introduced at this stage
treating the fields asc numbers or classical fields. This re
sults in a set of coupled equations, namely the Dirac equa
with potential terms for the nucleons and the Klein-Gord
type equations with sources for the mesons and the pho
For the static case, along with the time reversal invaria
and charge conservation the equations get simplified.
resulting equations, known as RMF equations, have the
lowing form. The Dirac equation for the nucleon is

$2 i a•“1V~r !1b@M1S~r !#%C i5e iC i , ~6!

whereV(r ) represents thevectorpotential

V~r !5gvv0~r !1grt3r0~r !1e
~12t3!

2
A0~r !, ~7!

andS(r ) is thescalar potential

S~r !5gss~r !, ~8!

which contributes to the effective mass as

M* ~r !5M1S~r !. ~9!

The Klein-Gordon equations for the mesons and the e
tromagnetic fields with the nucleon densities as sources

$2D1ms
2%s~r !52gsrs~r !2g2s2~r !2g3s3~r !,

~10!

$2D1mv
2 %v0~r !5gvrv~r !, ~11!

$2D1mr
2%r0~r !5grr3~r !, ~12!

2DA0~r !5erc~r !. ~13!

The corresponding densities are

rs5(
i

niC̄ iC i ,

rv5(
i

niC i
†C i ,
04430
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niC i
†t3C i ,

rc5(
i

niC i
† ~12t3!

2
C i . ~14!

Here the sums are taken over the particle states only, i.e.
negative-energy states are neglected. The partial occupa
(ni) at finite temperature in the constant pairing gap appro
mation ~BCS! is

ni5
1

2 F12
e i2l

ẽ i

@122 f ~ ẽ i ,T!#G , ~15!

with f ( ẽ i ,T)51/(11eẽ i /T); ẽ i5A(e i2l)21D2 is the qua-
siparticle energy wheree i is the single-particle energy for th
state i. The chemical potentiall for protons ~neutrons! is
obtained from the requirement

(
i

ni5Z~N!. ~16!

The sum is taken over proton~neutron! states. The gap pa
rameterD is obtained by minimizing the free energy

F5E2TS, ~17!

where

E~T!5(
i

e ini1Es1EsNL1Ev1Er1EC

1Epair1Ec.m.2AM, ~18!

and

S52(
i

@ f i ln f i1~12 f i !ln~12 f i !#, ~19!

with

Es52
1

2
gsE d3rrs~r !s~r !, ~20!

EsNL52
1

2E d3r H 1

3
g2s3~r !1

1

2
g3s4~r !J , ~21!

Ev52
1

2
gvE d3rrv~r !v0~r !, ~22!

Er52
1

2
grE d3rr3~r !r0~r !, ~23!

EC52
e2

8pE d3rrC~r !A0~r !, ~24!

Epair52
D2

G
, ~25!
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Ec.m.52
3

4
\v052

3

4
41A21/3. ~26!

HereG andA are the pairing strength and the mass numb
respectively. The single-particle energies and the fields
pearing in Eqs.~18!–~23! are obtained from the self
consistent solution of Eqs.~6!–~12!. We generate these sel
consistent solutions using the well tested basis expan
method as described in detail in Refs.@2,16#.

The self-consistent solutions for the RMF equations a
given temperature is obtained by minimizing the free ene
F which yields the equilibrium or the most probable value
the quadrupole deformation (b2

0) and the proton~neutron!
pairing gapsDp (Dn). To incorporate the effects of the the
mal fluctuations, a constrained calculation is performed
generate the free energies for the deformations away f
the equilibrium value. Average value of a quantity then c
be obtained as

Ō5

E db2O~b2!e2DF(b2)/T

E db2e2DF(b2)/T

, ~27!

where DF5F(b2)2F(b2
0) and O(b2) is the expectation

value of the operatorÔ at a fixed value ofb2 and T. The
quantity e2DF/T is a measure of the probability for th
nucleus to have deformationb2 at the temperatureT.

III. RESULTS AND DISCUSSIONS

We have chosen166Er and 170Er as two representativ
systems for our calculations. The results presented are
tained using the NLSH parameter set@16# for the values of
the coupling constants and masses for the mesons and n
ons. The pairing strengthG is taken to be 29/A and 21/A for
protons and neutrons, respectively; they reasonably re
duce the observed pairing gaps at zero temperature obta
from odd-even mass differences. The values of the chem
potential and the pairing gap are determined using all
single particle states up to 2\v0 above the Fermi surfac
without assuming any core, i.e., the mean field solution
generated by taking into account all the nucleons in the s
tems considered.

At finite temperatures, the nucleus is not strictly in the
mal equilibrium. In order to treat the system as an isola
one in equilibrium, one has to take into account correctio
due to excitations of nucleons in the continuum. This is g
erally done through a subtraction procedure, by treating
liquid plus vapor phase together and then the vapor ph
separately@17#. However, calculations of the nuclear lev
density parameter at finite temperature show that the res
are insensitive@18# to the continuum corrections forT up to
;3 MeV; we have therefore not included the effects due
the continuum in the present calculations as temperat
above it are not relevant.

In Sec. III A, the results for the most probable values~i.e,
the mean field values! of the different observables are pr
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sented. With increasing temperature, thermal fluctuati
build up which may shift the average values from the m
probable ones. In Sec. III B, we discuss the results with
inclusion of thermal fluctuations. Fluctuations in both theb2
and g degrees of freedom of the nuclear shape should
incorporated, however, because of simplicity and compu
tional economy, we have included only theb2 fluctuations in
the present calculations.

A. Mean field results

We have calculated the most probable values of the qu
rupole deformation parameter, neutron and proton pair
gaps, heat capacity, and the level density parameters fo
aforesaid systems as a function of temperature.

In Fig. 1, the variation of the quadrupole deformation p
rameter b2 as a function of temperature is shown. Th
ground state deformations obtained here are almost clos
the ones calculated in Refs.@10,11# using nonrelativistic
mean field theory with pairing plus quadrupole (P1Q) in-
teraction. The nature of the temperature dependence of
deformation in the two cases are also not very differe
However, whereas in the nonrelativistic case the phase t
sition from prolate to spherical shape occurs atT;1.8 MeV,
in the present case the said transition is found at a hig
temperature,T;2.7 MeV. The signature of the phase tran
tion can be inferred by examining other observables like h
capacity which we consider later.

In Fig. 2, the results for the evolution of the neutron a
proton pairing gaps with temperature are displayed. For b
nuclei the pairing gaps monotonically decrease with the
crease in temperature. It is seen that for both nuclei,
neutron pairing gaps vanish almost at the same tempera
T;0.4 MeV; similarly the proton pairing gaps vanish atT
;0.45 MeV. These results are not much in variance w
those obtained in the nonrelativisticP1Q model.

The vanishing of the nuclear deformation and the pair
gaps with temperature indicates that there is a shape tra

FIG. 1. Variation of the most probable quadrupole deformat
b2 as a function of temperature for166Er and 170Er.
7-3
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tion from prolate to spherical and also a transition from
superfluid phase to the normal phase. To understand the
ture of the transitions, the heat capacity at various temp
tures are calculated. The specific heatC for a given tempera-
ture is obtained using

C~T!5
]E*

]T
, ~28!

whereE* is the excitation energy of the nucleus. In Fig.
the temperature variation of the specific heat for166Er and
170Er nuclei is plotted. AtT;0.4 MeV, two closely sepa
rated peaks in theC(T) curves are seen. They correspond
the dissolution of the neutron and proton pairing gaps. Th
are the characteristic signatures of second order phase
sitions from superfluid to normal phase. It is further not

FIG. 2. Temperature evolution of neutron and proton pair
gaps for166Er and 170Er.

FIG. 3. Variation of specific heat as a function of temperat
for 166Er and 170Er.
04430
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that the heat capacities for the two systems have br
bumps atT;2.7 MeV. This signifies a weak second ord
phase transition corresponding to the transition of the nuc
shape. This result is at variance with those obtained in
P1Q model or in the nonrelativistic calculation@12# based
on the Landau theory of phase transitions where a str
second order phase transition is observed.

We now present the results for the temperature depen
level density parametera. The parametera can be obtained
using the excitation energy and the entropy as follows:

E* 5aT2, ~29!

S52aT. ~30!

The parametera obtained using Eqs.~29! and~30! would be
equal provided it is independent of temperature@19#. In Fig.
4, the inverse level density parameterK5A/a (A is the mass
number of the nucleus! is plotted as a function of tempera
ture. The subscriptsE andS are used to distinguish the tw
definitions given by Eqs.~29! and ~30!, respectively. At
lower temperature, bothKE andKS shoot up due to the col
lapse of the pairing gaps. At higher temperatures,KE andKS
are quite close to each other and there is no appreci
variations in their values in the temperature range con
ered. This is due to the weak transition of the nuclear sha
from deformed to spherical atT;2.7 MeV.

In order to test the sensitivity of the results presen
above to the choice of the parameter set and the model sp
we have repeated the calculations for the nucleus166Er with
the NL3 parameter set@20,21#. In comparison to the result
for NLSH parameter set it is found that the NL3 parame
set gives slightly larger (;10%) value of the ground stat
deformation. ForT.1.5 MeV, the values of deformation
obtained in both NLSH and NL3 parameter sets are alm
identical. The temperature evolution of the pairing gaps a
level density parameters are practically the same with

e

FIG. 4. Temperature dependence of inverse level density par
etersKE and KS determined from the excitation energy and t
entropy, respectively.
7-4
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two parameter sets. We extend the model space to inc
single particle states up to 3\v0 above the Fermi surfac
instead of 2\v0 as used above. For this extended mo
space the pairing strengthG is adjusted to reproduce th
ground state pairing gap. We do not find significant chan
in the values of deformation parameter and the pairing
ergy in the temperature range of interest (T;3 MeV!. In the
extended model space, the value of the inverse level den
parameter is also nearly the same. The model space us
thus found to be sufficient for our calculations. To estim
the importance of the continuum corrections to the inve
level density parameter we calculated the occupancy,n(1),
of the single-particle states with positive energy. ForT,1
MeV practically there is no particle in the positive ener
states (n(1)50) and at the highest temperature of inter
studiedn(1)/A50.018 which is very small. Thus it is ex
pected that the continuum corrections may not play an
portant role in the temperature range we study. The c
tinuum effects may grow stronger forT.3 MeV, however,
this is beyond the transition temperatures and so we have
taken this into account.

The shape transition temperature and the inverse l
density parameter obtained in the present model are hi
compared to those calculated in the (P1Q) model @10,11#.
Moreover, in the later model, the deformation falls to ze
sharply whereas in the present case, this fall is comparati
a little slower. The origin of these differences can be attr
uted to the single-particle level spectra. In Fig. 5, the ene

FIG. 5. Spectra of the proton single-particle energies around
Fermi surface for170Er at T53.0 MeV in the RMF and the (P
1Q) models. The single-particle energiese are shown relative to
the respective chemical potentials.
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levels for the different proton orbitals around the Fermi s
face for the nucleus170Er atT53.0 MeV are displayed. Also
the proton single-particle energies in the (P1Q) model are
shown at this temperature. In both models the orbits
spherical at this temperature. The striking difference betw
the orbitals in the two models is the large energy gap acr
the Fermi surface in the RMF model. Similar is the case
neutrons. These tend to reduce the entropy and the excita
energy and hence the level density parameter. The incr
in the shape transition temperature~by ;0.9 MeV! in the
RMF model as compared to theP1Q model may be traced
back to the specific level structure and the gap across
Fermi surface in the two models and their thermal respon

B. Results with thermal fluctuations

Experimental data on giant dipole resonances built on
cited states give estimates of the average values of nuc
deformation at finite temperatures. They can be calculated
taking into account the thermal fluctuation effects around
‘‘most probable’’ value. Nuclei being finite systems, one e
pects that thermal fluctuations would play an important r
in the quantitative estimation of various nuclear observab
at finite temperatures. In fact, it has been shown in Ref.@22#
that the experimental data on GDR built on the excited sta
can be explained reasonably only if the effects from the th
mal fluctuations of all the quadrupole degrees of freedom
nuclear shape are included. In the following, we consider
thermal fluctuations only in theb2 degree of freedom. Inclu-
sion of fluctuations in theg degrees of freedom is very in
volved and computer intensive and therefore not conside
presently. We perform constrained calculations for free
ergy at fixed deformationsb2. The free energy surface show
multiple minima for temperatures below the shape transit
temperature. The average value ofb2 is calculated using Eq
~27!. In Fig. 6, we have displayed the plots of free ener
surfaceDF for 170Er at a few temperatures ranging from 2
to 3.0 MeV whereDF is measured from the lowest min
mum ~prolate in the present case! at the corresponding tem
perature. ForT52.0 MeV, the free energy surface ha
minima atb2520.16 and 0.23. The free energy differen
between these two minima is 0.70 MeV~i.e., DF/T50.35).
As the temperature approaches the shape transition tem
ture (T;2.7 MeV!, both the minima in the free energy su
face merge and flatten the bottom part of the free ene
surface. This is evident from the middle panel of Fig. 6 c
responding toT52.65 MeV. With further increase in tem
perature, the free energy surface with single minimum
zero deformation broadens. The variation of the average
formation (b̄2) as a function of temperature obtaine
through Eq.~27! for 170Er is shown in Fig. 7. The averag
value ofb2 differs significantly from its most probable valu
~see Fig. 1! for temperatures above 1 MeV. The reason
such differences can be understood as follows. The free
ergy surface for170Er at low temperatures (T,2 MeV!
shows two well separated minima. One of these minima
at prolate deformation (Fp) and the other one is at oblat
deformation (Fo). Their differenceDF05Fo2Fp as a func-
tion of temperature is shown in Fig. 8. ForT.0.5 MeV,

e

7-5



n

y
th
o
d
bl

th
se

of
the
ttom

of
be

per-

e at
al
pe-

f
a-
he
or-

ur
ur

io

the

e
for
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DF0 decreases monotonically to zero. The initial rise ofDF0

can be attributed to the quenching of the pairing correlatio
it is seen that without pairing,DF0 decreases uniformly with
temperature. The decrease inDF0 enhances the probabilit
of finding the nucleus with oblate deformation and hence
average deformation is smaller than the most probable
for temperatures below the transition temperature. The
viation of the average deformation from the most proba
value is also governed byDb25b2

p2b2
o . Here,b2

p andb2
o

are the deformations corresponding to the prolate and
oblate minima. With rise in temperature, they come clo

FIG. 6. Plots for the free energy surface at various temperat
for 170Er. The free energies at different temperatures are meas
from the respective lowest minimum.

FIG. 7. Average value of quadrupole deformation as a funct
of temperature for170Er.
04430
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and ultimately merge as shown in Fig. 9. The persistence
b̄2 beyond the transition temperature is attributed to
asymmetry in the free energy surface as seen in the bo
panel of Fig. 6. A similar behavior for166Er is also seen.

In the mean field approximation, the thermal evolution
the most probable value of the deformation is seen to
associated with two phase transitions, the first being a su
fluid phase to normal phase transition atT;0.4 MeV and the
other a weak second order phase transition in the shap
T;2.7 MeV. It would be interesting to see how therm
fluctuations affect these phase transitions. In Fig. 10, the s
cific heat for the system170Er is displayed as a function o
temperature with inclusion of fluctuations. At low temper
tures forT,1.0 MeV, there is no perceptible change in t
specific heat and thus the transition from superfluid to n

es
ed

n

FIG. 8. The free energy difference between the prolate and
oblate minima as a function of temperature for170Er.

FIG. 9. The differenceDb2 between the deformations at th
prolate and the oblate minima as a function of temperature
170Er.
7-6
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NUCLEAR SHAPE TRANSITION AT FINITE . . . PHYSICAL REVIEW C 62 044307
mal phase is not affected by fluctuations. At a little high
temperature, however, the broad bump seen in Fig. 3 at;2.7
MeV is seen to be shifted to;1.6 MeV and becomes also
little sharper. The phase transition in nuclear shape thus
curs at a lower temperature and is not as weak as seen i
mean field approximation. Normally, one would expect t
phase transition to get diluted due to presence of fluctuati
Here one sees the opposite. The evolution of the free en
and the energy profiles with temperature showing t
minima ~one prolate and the other oblate! in deformation
space is responsible for this observation. Here the role
thermal fluctuations becomes significant only in the interm
diate temperature domain~temperature in the range 1 – 2
MeV, approximately! due to decrease inDF0 andDb2 ~see
Figs. 8 and 9!. The delicate interplay of these quantities
the averaging augurs a change in the heat capacity sign
a somewhat sharper shape transition at a lower tempera
compared to the most probable one.

The effect of thermal fluctuations of the shape coordin
b2 on the inverse level density parameterK for the system
170Er is shown in Fig. 11. The full line and the dashed li
correspond to results of our calculations forKS and KE ,
respectively. The corresponding lines with circles repres
those with inclusion of the fluctuations. It is seen that t
fluctuations shift the minima forKS andKE from 2.7 to 1.6
MeV, the corresponding transition temperature. Beyond
transition temperature, the upward slope forK is also found
to be higher with fluctuations included. Similar is the beha
ior for 166Er.

IV. CONCLUSIONS

The relativistic mean-field approach together with pairi
effects included through the constant gap approximation
been applied to study some properties of axially deform
166Er and 170Er nuclei at finite temperature. The temperatu
dependence of the quadrupole shape for both the nucle
found to be practically the same; similar is the case for

FIG. 10. Variation of average specific heat as a function
temperature for170Er.
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pairing gaps. The deformation remains close to its grou
state value (b2;0.3) for T less than 1.5 MeV and falls to
zero quite sharply atT;2.7 MeV. Pairing gaps vanish atT
50.420.5 MeV leading to transition from a superfluid pha
to normal phase. Compared with the results obtained in
nonrelativistic mean field framework, the relativistic calcul
tions yield vanishing pairing gaps at practically the sa
temperature and the fall is a bit slower. The evolution of t
heat capacity with temperature and the transition from sup
fluid to normal phase do not behave very differently. T
nature of the shape transition obtained in the two approac
are also not too different except that in the present case,
approach of the deformation to zero is relatively slower. T
slower fall results in a broad bump in the specific he
around the shape transition temperature (T;2.7 MeV!.

Fluctuations are expected to influence the phase tra
tions. To explore these aspects, we have taken into con
eration thermal fluctuations in theb2 degrees of freedom
The effects of fluctuations are found to be imperceptible
low T;1 MeV and therefore the pairing transitions are n
affected. However, the influence on the shape transition
found to be very significant; the transition temperature dro
down from ;2.7 to ;1.6 MeV with inclusion of thermal
fluctuations. It also becomes a little sharper. The spec
nature of the free energy surface in the deformation sp
and its evolution with temperature are responsible for suc
behavior. Fluctuations in theg degrees of freedom would
also have a role to play in the phase transitions mention
We have not included these presently as they are comp
tionally too intensive.
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f FIG. 11. The inverse level density parameter for the syst
170Er. The full and the dashed lines correspond toKS and KE ,
respectively. The lines with filled circles represent the correspo
ing results with inclusion of thermal fluctuations.
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