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Nucleon-nucleon scattering in a three dimensional approach
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The nucleon-nucleon~NN! t matrix is calculated directly as function of two vector momenta for different
realistic NN potentials. To facilitate this a formalism is developed for solving the two-nucleon Lippmann-
Schwinger equation in momentum space without employing a partial wave decomposition. The total spin is
treated in a helicity representation. Two different realisticNN interactions, one defined in momentum space and
one in coordinate space, are presented in a form suited for this formulation. The angular and momentum
dependence of the full amplitude is studied and displayed. A partial wave decomposition of the full amplitude
it carried out to compare the presented results with the well-known phase shifts provided by those interactions.

PACS number~s!: 21.45.1v, 13.75.Cs
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I. INTRODUCTION

Experience in three- and four-nucleon calculations@1–3#
shows that the standard treatment based on a partial w
projected momentum space basis is quite successful but
rather tedious, since each building block requires exten
algebra. For example, the representation of the various
mutation operators~i.e., the transformations among angul
momenta belonging to different Jacobi momenta! is very in-
volved @4# and requires intricate numerical realizations@5#.
On the other hand, we demonstrated in Ref.@6# the relative
ease with which a three-boson bound state could be ca
lated in the Faddeev scheme avoiding an angular momen
decomposition altogether. Instead of solving a large se
coupled two dimensional integral equations in the stand
partial wave framework, in a three dimensional~3D! formu-
lation only one single integral equation in three dimensio
had to be solved. We had the same positive experience
the scattering of three bosons@7#, where the algebraic for
mulation and numerical implementation of the one Fadde
equation was much simpler than the machinery of the
proach based on partial wave decomposition.

The input to these three-body calculations without angu
momentum decomposition is two-bodyt matrices, which are
off the energy shell. In addition to the off-shell energy th
depend on the magnitudes of the initial and final mome
and the angle between the two momenta. In Ref.@8# we
showed that the two-bodyt matrices can be obtained ver
easily by solving a two dimensional Lippmann-Schwing
~LS! equation instead of preparing and handling quite a f
one dimensional LS equations for each angular momen
state separately. The off-shell energies required in a th
body calculation lie between the total three-body energy
minus infinity. Interestingly we found in Ref.@8# that thet
matrix at large negative energies is nearly equal to the
part of thet matrix at corresponding positive energy. Th
insight, which was also pointed out in Ref.@9#, explains di-
rectly that for bound state calculations a surprisingly la
number of partial waves is necessary for convergence
addition, recent three-nucleon~3N! Faddeev calculations
@10# based on realistic nucleon-nucleon~NN! forces and per-
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formed between 100 and 200-MeV nucleon laboratory
ergy reach the very limits of present day computational
sources, since the number of angular momentum st
involved increases dramatically. Regarding all the abo
considerations it is a challenge to incorporate spin into
previous calculations@6–8# and perform few-nucleon calcu
lations without angular momentum decomposition. As
aside, in the Monte Carlo calculations in configuration spa
@11# this is anyhow a standard procedure.

In the case ofNN scattering calculations without partia
wave decomposition have already been realized sev
times@12,13#. In those studies the spin states were treated
their individual m representations. A different approach
based on a helicity representation@14#, where the helicity
related to the total two-nucleon spin was introduced. In
present work we follow this basic philosophy, however, w
end up with somewhat different final equations to be solv
We apply our formulation to the realisticNN potentials
Bonn-B @15#, as well as the Argonne AV18@16# potential
and check the accuracy of our calculations by comparing
phase shift parameters obtained from corresponding pa
wave calculations. The potentials we chose for implemen
tion are given in an operator form, and thus directly app
cable to our formulation without partial wave decompositio
Other modernNN forces, like Nijm I and II~Ref. @17#! or
CD-Bonn~Ref. @18#!, are parametrized for each angular m
mentum state separately and thus are not as useful fo
approach without partial wave decomposition.

This article is structured in the following way: In Sec.
we present the formalism. The helicity representation of
potentials and the final form of the Lippmann-Schwing
equations are displayed in Sec. III. The implementation
two modern realisticNN forces into our formulation is given
in Sec. IV. The connection to the standard partial wave r
resentation is given in Sec. V. Our calculations and res
are presented in Sec. VI, and we conclude in Sec. VII.

II. FORMULATION FOR TWO NUCLEON SCATTERING
BASED ON HELICITIES

First, we introduce a helicity basis for the total spinS of
two nucleons. For thez axis being quantization axis, the tota
©2000 The American Physical Society02-1
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spin state has the well-known form

uẑsL&5 (
m1m2

CS 1

2

1

2
S;m1m2L D Uẑ1

2
m1L Uẑ1

2
m2L .

~2.1!

Applying the rotation operator

R~ q̂!5e2 iSzfe2 iSyu, ~2.2!

whereSz , Sy are components of the spin operatorS5 1
2 (s1

1s2), leads to the general state

uq̂SL&5R~ q̂!uẑSL&. ~2.3!

This is eigenstate to the helicity operatorS•q̂:

S•q̂uq̂SL&5Luq̂SL&. ~2.4!

This follows simply fromR(q̂)S• ẑR21(q̂)5S•q̂. Next we
define momentum-helicity states as

uq;q̂SL&[uq&uq̂SL&, ~2.5!

whereq is the relative momentum of the two nucleons.
The parity operatorP acts as

Puq;q̂SL&5u2q;q̂SL& ~2.6!

on the momentum helicity eigenstates. Consequently pa
eigenstates are given as

uq;q̂SL&p5
1

A2
~11hpP!uq;q̂SL&, ~2.7!

wherehp561.
Combining Eq.~2.7! with two-body isospin statesutmt&,

we introduce antisymmetrized two-nucleon states as

uq;q̂SL;t&pa5
1

A2
~12P12!

1

A2
~11hpP!uq;q̂SL&ut&

5
1

A2
@12hp~2 !S1t#ut&uq;q̂SL&p . ~2.8!

To arrive at Eq.~2.8! we use well-known properties of two
nucleon spin and isospin states.

In order to evaluate the normalization of the states in
~2.8! we need the relation betweenuq̂SL& andu2q̂SL&. We
use the definition of Eq.~2.3! for u2q̂SL& and the WignerD
function, namely

DL8L
S

~ q̂!5^ ẑSL8uR~ q̂!uẑSL&5e2 iL8fdL8L
S

~u!,
~2.9!

to obtain
04400
ty

.

u2q̂SL&5(
L8

DL8L
S

~2q̂!uẑSL8&

5(
L8

e2 i (f1p)L8dL8L
S

~p2u!uẑSL8&

5(
L8

e2 i (f1p)L8~2 !S1L8dL8,2L
S

~u!uẑSL8&

5~2 !S(
L8

DL8,2L
S

~fu0!uẑSL8&

5~2 !Suq̂S2L&. ~2.10!

Now the normalization of the states given in Eq.~2.8! can be
worked out as
p8a^q8;q̂8S8L8;t8uq;q̂SL;t&pa

5
1

2
@12hp8~2 !S81t8#@12hp~2 !S1t#

3d t8t p8^q8;q̂8S8L8uq;q̂SL&p

5@12hp~2 !S1t#d t8tdhp8hp
dS8S@d~q82q!dL8L

1hp~2 !Sd~q81q!dL8,2L#. ~2.11!

Using this result it can also be verified that the completen
relation of the states defined in Eq.~2.8! takes the form

(
SLpt

E d3quq;q̂SL;t&pa
1

4
pa^q;q̂SL;tu51. ~2.12!

Equipped with the above given basis states one can
mulate the Lippmann-Schwinger integral equation. We
fine as matrix elements

TL8L
pSt

~q8,q![pa^q8;q̂8SL8;tuTuq;q̂SL;t&pa, ~2.13!

VL8L
pSt

~q8,q![ pa^q8;q̂8SL8;tuVuq;q̂SL;t&pa. ~2.14!

Then using Eqs.~2.12!–~2.14! the operator equationT5V
1VG0T, which has a driving term the nucleon-nucleon~NN!
potentialV takes the form

TL8L
pSt

~q8,q!5VL8L
pSt

~q8,q!

1
1

4 (
L9

E d3q9 VL8L9
pSt

~q8,q9!G0~q9!

3TL9L
pSt

~q9,q!. ~2.15!

We now distinguish between the two cases for total s
S50 andS51. ForS50 Eq.~2.15! is one equation, similar
to the one discussed in Ref.@8# for the bosonic case. ForS
51 there are three coupled equations to eachL521,0,1.
We use the property thatV conserves spin and isospin, whic
is valid to a high degree of accuracy. The coupled sets
equations in Eq.~2.15! can be further reduced as shown b
low. Using Eq.~2.8! and the parity invariance ofV one ob-
tains
2-2
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VL8L
pSt

~q8,q!5
1

2
@12hp~2 !S1t#2

3^tup^q8;q̂8SL8uVuq;q̂SL&put&

5A2@12hp~2 !S1t#

3^tu^q̂8SL8u^q8uVuq&puq̂SL&ut&,

~2.16!

where

uq&p[
1

A2
~ uq&1hpu2q&). ~2.17!

This expression can be connected toV2L8L
pSt (q8,q) using

Eqs.~2.10! and ~2.17! with the result

V2L8L
pSt

~q8,q!5hp~2 !SVL8L
pSt

~2q8,q!. ~2.18!

A corresponding relation is also valid for the matrix eleme
TL8L

pSt (q8,q). Similarly one finds

VL8,2L
pSt

~q8,q!5hp~2 !SVL8L
pSt

~q8,2q!. ~2.19!

We can now simplify the set of coupled equations~2.15! for
S51 in the following way:

E d3q9 VL8,21
pSt

~q8,q9!G0~q9!T21,L
pSt ~q9,q!

5E d3q9 hp~2 !SVL8,1
pSt

~q8,2q9!

3G0~q9!hp~2 !ST1,L
pSt~2q9,q!

5E d3q9 VL8,1
pSt

~q8,2q9!G0~q9!T1,L
pSt~2q9,q!

5E d3q9 VL8,1
pSt

~q8,q9!G0~q9!T1,L
pSt~q9,q!. ~2.20!

This leads to

TL8L
pSt

~q8,q!5VL8L
pSt

~q8,q!

1
1

2E d3q9 VL81
pSt

~q8,q9!G0~q9!T1L
pSt~q9,q!

1
1

4E d3q9 VL80
pSt

~q8,q9!G0~q9!T0L
pSt~q9,q!.

~2.21!

We now have for the caseS51 two coupled equations
namely forL851,0 for eachL. Moreover due to Eq.~2.19!,
which is also valid for thet matrix T, it is sufficient to con-
sider L50 and 1. As an aside it should be mentioned t
because of the relationp(2)S1t521 the isospin quantum
numbert is fixed, oncep andS are chosen.
04400
t

t

Finally we need to calculate the physicalT-matrix ele-
ment expressed in terms of the states

un1n2m1m2q&a[
1

A2
~12P12!un1n2m1m2q&, ~2.22!

wheren1 ,n2 and m1 ,m2 are the magnetic isospin and sp
quantum numbers,q describes the relative momentum of th
two nucleons, andP12 is the permutation operator betwee
the particles 1 and 2. The physicalT-matrix element is then
given as

a^n1n2m18m28q8uTun1n2m1m2q&a

5^n1n2m18m28q8uT~12P12!un1n2m1m2q&. ~2.23!

The above equation now has to be expressed in term
TL8L

pSt (q8,q). In doing so we encounter the matrix elemen

^q̂8SL8um1m2&5(
S8

CS 1

2

1

2
S8;m1m2L0D ^q̂8SL8uẑS8L0&

5CS 1

2

1

2
S;m1m2L0DeiL0f8dL8L0

S
~2u8!

5CS 1

2

1

2
S;m1m2L0DeiL0f8dL0L8

S
~u8!.

~2.24!

After some straightforward algebra one finds

pa^q8;q̂8SL8;tun1n2m1m2q&a

5
1

A2
@12hp~2 !S1t#

1

A2
^tun1n2&

3p^q8;q̂8SL8u~12P12!um1m2q&

5
1

A2
CS 1

2

1

2
t;n1n2DCS 1

2

1

2
S;m1m2L0D

3eiL0f8dL0L8
S

~u8!@12hp~2 !S1t#

3@d~q82q!1hpd~q81q!#. ~2.25!

We then insert the completeness relation, Eq.~2.12!, twice
into Eq. ~2.23!, and using Eq.~2.25! obtain after some alge
bra

a^n1n2m18m28q8uTun1n2m1m2q&a

5
1

4
e2 i (L08f82L0f)(

Spt
@12hp~2 !S1t#CS 1

2

1

2
t;n1n2D 2

3CS 1

2

1

2
S;m18m28L08DCS 1

2

1

2
S;m1m2L0D

3 (
L8L

d
L

08L8
S

~u8!dL0L
S ~u!TL8L

pSt
~q8,q!. ~2.26!
2-3
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For our calculation we chooseq̂5 ẑ and use dL0L
S (0)

5dL0L . Furthermore, as will be shown in Sec. III, the az

muthal dependence ofq8 andq can be factored out and on
finds

TL8L
pSt

~q8,q!5eiL(f82f)TL8L
pSt

~q8,q,u8!. ~2.27!

With this Eq.~2.26! can be written as~noteq85q)

a^n1n2m18m28qq̂8uTun1n2m1m2q&a

5
1

4
e2 i (L082L0)f8(

Spt
CS 1

2

1

2
t;n1n2D 2

3@12hp~2 !S1t#CS 1

2

1

2
S;m18m28L08D

3CS 1

2

1

2
S;m1m2L0D(

L8
d

L
08L8

S
~u8!TL8L0

pSt
~q,q,u8!.

~2.28!

III. GENERAL STRUCTURE OF THE POTENTIAL
OPERATOR AND FINAL FORM OF THE SCATTERING

EQUATION

As is well known, rotational-, parity-, and time revers
invariance restricts anyNN potentialV to be formed out of
six terms@20#, which are given by

W151,

W25~s11s2!•N̂,

W35s1•N̂ s2•N̂,

W45s1• P̂ s2• P̂,

W55s1•K̂ s2•K̂,

W65s1• P̂ s2•K̂1s1•K̂ s2• P̂, ~3.1!

where the unit vectorsN̂, P̂, and K̂ are defined in terms o
the relative momentaq andq8 as

N̂5
~q3q8!

uq3q8u
~3.2!

P̂5
~q81q!

uq81qu
~3.3!

K̂5
~q82q!

uq82qu
. ~3.4!

The most general potential is then given as linear comb
tion of those operators, namely
04400
a-

^q8uVuq&[V~q8,q!5(
i 51

6

v i~q8,q,g!Wi , ~3.5!

where v i(q8,q,g) are scalar functions depending on th
magnitudes of the vectorsq8, q, and the angle between th
two, g[q̂8•q̂. In Sec. IV we will provide specific realiza
tions of the potentialV(q8,q).

The evaluation of the matrix elements of Eq.~2.14! for
the set of operatorsWi is in principle possible. However, it is
simpler to define a different set of six independent operat
V i , which is more adapt to our choice of basis states.
introduce the following set of operators:

V151,

V25S2,

V35S•q̂8 S•q̂8,

V45S•q̂8 S•q̂,

V55~S•q̂8!2 ~S•q̂!2,

V65S•q̂ S•q̂. ~3.6!

The two sets of operators given in Eqs.~3.1! and~3.6! can be
easily related via

Wi5(
j

Ai j V j . ~3.7!

The transformation matrixAi j and its inverse are explicitly
given in Appendix A.

Using the operatorsV i , the spin-dependent part of th
matrix elements of Eq.~2.14! can then be reduced to th
evaluation of matrix elements of the type^q̂8SL8uV i uq̂SL&,
namely

^q̂8SL8uV1uq̂SL&5^q̂8SL8uq̂SL&,

^q̂8SL8uV2uq̂SL&5S~S11!^q̂8SL8uq̂SL&,

^q̂8SL8uV3uq̂SL&5L82^q̂8SL8uq̂SL&,

^q̂8SL8uV4uq̂SL&5L8L^q̂8SL8uq̂SL&,

^q̂8SL8uV5uq̂SL&5L82L2^q̂8SL8uq̂SL&,

^q̂8SL8uV6uq̂SL&5L2^q̂8SL8uq̂SL&. ~3.8!

Now we are left with determining the overlap of the state
2-4
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defined in Eq.~2.3!. Using Eq.~2.9! this gives

^q̂8SL8uq̂SL&5(
M

^q̂8SL8uẑSM&^ẑSMuq̂SL&

5(
M

DML8
S* ~f8u80!DML

S ~fu0!

5 (
M52S

S

eiM (f82f)dML8
S

~u8!dML
S ~u!. ~3.9!

A special case is the situation whereq points in thez direc-
tion, where one obtains the simple form

^q̂8SL8uẑSL&5eiL(f82f)dLL8
S

~u8!. ~3.10!

With these preliminaries the potential matrix element
Eq. ~2.14! can be written as

VL8L
pSt

~q8,q!5A2@12hp~2 !S1t#(
i j

Ai j ^q̂8SL8uV j uq̂SL&

3^tu^q8uv i uq&put&. ~3.11!
04400
f

The coefficientsAi j and the matrix elementŝq8uv i uq&p de-
pend on the angle betweenq andq8 and thus ong. Therefore
their azimuthal dependence is determined by cos(f82f).
Furthermore, the matrix elementsV j depend on the angle
f8 andf as shown in Eq.~3.9!. Thus we can schematicall
indicate the azimuthal dependence of the potential ma
elements as

VL8L
pSt

~q8,q![VL8L
pSt $eiM (f82f),cos~f82f!%. ~3.12!

For the special caseq̂5 ẑ this reduces to the simpler form

VL8L
pSt

~q8,q!5eiL(f82f)VL8L
pSt

~q8,q,u8!, ~3.13!

which is the driving term in the coupled set of Eqs.~2.21!.
We assume that this simple dependence onf8 and f

given in Eq.~3.13! carries over to the solution of the integr
equation and choose as ansatz

TL8L
pSt

~q8,q!5eiL(f82f)TL8L
pSt

~q8,q,u8! ~3.14!

Inserting this into Eq.~2.15! one obtains
TL8L
pSt

~q8,qẑ!5eiL(f82f)VL8L
pSt

~q8,q,u8!

1
1

4 (
L9

E d3q9 VL8L
pSt $eiM (f82f9),cos~f82f9!,q8,q9%G0~q9!eiL(f92f)TL9L

pSt
~q9,q,u9!

5eiL(f82f)VL8L
pSt

~q8,q,u8!1
1

4
eiL(f82f)(

L9
E

0

`

dq9 q92E
0

p

du9 sinu9E
0

2p

df9VL8L
pSt $eiM (f82f9),

3cos~f82f9!,q8,q9%G0~q9!eiL(f92f8)TL9L
pSt

~q9,q,u9!. ~3.15!

The integrand is periodical with respect tof9, with the period being 2p. Consequently one can setf850 for the f9
integration. This leads to

TL8L
pSt

~q8,qẑ!5eiL(f82f)FVL8L
pSt

~q8,q,u8!

1
1

4 (
L9

E
0

`

dq9 q92E
0

p

du9 sinu9E
0

2p

df9VL8L
pSt $e2 iM f9,cosf9,q8,q9%G0~q9!eiLf9TL9L

pSt
~q9,q,u9!G

[eiL(f82f)TL8L
pSt

~q8,q,u8!, ~3.16!

verifying the correctness of the ansatz of Eq.~3.14!.
Inserting this result into Eq.~2.21! gives

TL8L
pSt

~q8,q,u8!5VL8L
pSt

~q8,q,u8!1
1

2E0

`

dq9 q92E
21

1

d~cosu9!vL81
pSt,L

~q8,q9,u8,u9!G0~q9!T1L
pSt~q9,q,u9!

1
1

4E0

`

dq9 q92E
21

1

d~cosu9!vL80
pSt,L

~q8,q9,u8,u9!G0~q9!T0L
pSt~q9,q,u9!, ~3.17!
2-5
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with

vL8L9
pSt,L

~q8,q9,u8,u9![E
0

2p

df9e2 iL(f82f9)VL8L9
pSt

~q8,q9!.

~3.18!

The driving term of Eq.~3.17! is a special case of Eq.~3.18!
for u950 andL95L @up to a factor (2p)21]. In summary,
for the caseS51 we end up with two coupled integral equ
tions in two variables for givenL values~only L51,0 are
necessary!. The azimuthal integration overf9 can be per-
formed independently, and does not enter the integral ker

The caseS50 is much simpler, one has only one integr
equation in two variables, similar in its structure to the tw
boson case discussed in Ref.@8#.

IV. REPRESENTATION OF NN POTENTIALS

In this section we want to demonstrate the relative e
with which modernNN potentials that are given in operato
form can be incorporated in a three dimensional formalis
Our choices of NN potentials are a Bonn one-boso
exchange~OBE! potential @19# in the parametrization o
ct

re

nt

of

-

04400
el.
l
-

e

.

Bonn-B ~Ref. @15#! and the Argonne coordinate space pote
tial AV18 ~Ref. @16#!.

The OBE potential consists of pseudoscalar-, scalar-,
vector meson exchanges, derived from the correspond
Feynman diagrams. A three dimensional reduction of
Bethe-Salpeter equation is as achieved via
Blankenbecler-Sugar reduction. Details can be found in R
@15,19#. The resulting potential operators are given as

Vs~q8,q!52
gs

2

~2p!3
Am

E8
Am

E
ū~q8!u~q!ū~2q8!

3u~2q!
Fs@~q82q!2#

~q82q!21ms
2

, ~4.1!

Vps~q8,q!5
gps

2

~2p!3
Am

E8
Am

E
ū~q8!g5u~q!ū~2q8!g5

3u~2q!
Fps@~q82q!2#

~q82q!21mps
2

, ~4.2!
Vv~q8,q!5
Fv@~q82q!2#

~q82q!21mv
2 Am

E8
Am

E

1

~2p!3 S gv
2ū~q8!gmu~q!ū~2q8!gmu~2q!1

f v
2

4m2
$4m2 ū~q8!gmu~q!ū~2q8!gm

3u~2q!22m ū~q8!gmu~q!ū~2q8!@~E82E!~gm
0 2gmg0!1~p21p28!m#u~2q!22m ū~q8!

3@~E82E!~g0m2gmg0!1~p11p18!m#u~q!ū~2q8!gmu~2q!1ū~q8!@~E82E!~g0m2gmg0!

1~p11p18!m#u~q!ū~2q8!@~E82E!~gm
0 2gmg0!1~p21p28!m#u~2q!%1

gv f v

2m
$4m ū~q8!gmu~q!ū~2q8!gm

3u~2q!2ū~q8!gmu~q!ū~2q8!@~E82E!~gm
0 2gmg0!1~p21p28!m#u~2q!2ū~q8!@~E82E!~g0m2gmg0!

1~p11p18!m#u~q!ū~2q8!gmu~2q!% D . ~4.3!
we

The
ffs,
en-
eno-
or,

cific
Herem stands for the nucleon mass. In the case of the ve
potential one has (p11p18)

m5(E1E8,q1q8) and (p2

1p28)
m5(E1E8,2q2q8). The coupling constantsgps,s,v

and f v , the cutoff functionsF and the meson masses a
given in Ref.@15#.

In order to bring this OBE potential in a form consiste
with our three-dimensional~3D! equations, the bilinear Dirac
forms have to be expressed in terms of the operatorsWi of
Eqs.~3.1!. The result in form of the Wolfenstein operators
Eq. ~3.5! is given in Appendix B.

Another often used modernNN potential is the Argonne
potential AV18~Ref. @16#!. It is originally presented in con
figuration space and has the general form

V~NN!5vEM~NN!1vp~NN!1vR~NN!. ~4.4!
orHerevEM(NN) represents an electromagnetic part, which
omit in this work. The one-pion-exchange~OPE! part
vp(NN) is charge dependent and has the standard form.
Yukawa and tensor functions contain exponential cuto
thus do not have an analytical Fourier transform to mom
tum space. The intermediate- and short-range phenom
logical partvR(NN) is expressed as a sum of central, tens
spin-orbit,L2, and quadratic spin-orbit pieces~abbreviated as
c,t,ls,l2,ls2, respectively! in different spin~S! and iso spin
~T! states:

vST
R ~NN!5vST

c ~r !11vST
t ~r !S121vST

ls ~r !L•S1vST
l2 ~r !L2

1vST
ls2~r !~L•S!2, ~4.5!

whereS12 denotes the standard tensor operator. The spe
2-6
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form of the radial functions as well as the potential para
eters are given in Ref.@16#. For applying this potential in ou
formulation, we need to perform the transition to moment
space. For the terms contributing tovR(NN) we obtain ex-
plicitly

vST
c ~q8,q!5

1

2p2E0

`

drr 2 j 0~rr ! vST
c ~r !, ~4.6!

vST
t ~q8,q!5

1

2p2 S 23s1•~q82q!s2•~q82q!

r2

1s1•s2D E
0

`

drr 2 j 2~rr !vST
t ~r !, ~4.7!

vST
ls ~q8,q!5

i

2p2
S•~q3q8!

1

rE0

`

dr r 3 j 1~rr !vST
ls ~r !,

~4.8!

vST
l2 ~q8,q!5

1

2p2
q•q8

2

rE0

`

dr r 3 j 1~rr !vST
l2 ~r !

2
1

2p2
@q82q2~12g2!#

1

r2

3E
0

`

dr r 4 j 2~rr !vST
l2 ~r !, ~4.9!

vST
ls2~q8,q!5

1

2p2
~S2q•q82S•qS•q8!

1

r

3E
0

`

dr r 3 j 1~rr !vST
ls2~r !2

1

2p2 S 1

2
~q3q8!2

1
1

2
s1•~q3q8!s2•~q3q8! D 1

r2

3E
0

`

dr r 4 j 2~rr !vST
ls2~r !, ~4.10!

wherer[uq82qu. The resulting operators can be easily re
04400
-

-

resented as function of the Wolfenstein operatorsWi . The
final expression are given in Appendix C.

V. CONNECTION TO A PARTIAL WAVE
REPRESENTATION

In order to compare with standard partial representatio
especiallyNN phase shifts, we need to make connection
the standard partial wave representation. The partial w
projectedT-matrix element is defined as

Tl 8 l
S jt

~q![^q~ l 8S! jmtmtuTuq~ lS! jmtmt&, ~5.1!

where the statesuq( lS) jmtmt& are given as

uq~ lS! jmtmt&5(
m

C~ lS j,mm2m!uqlm&uSm2m&utmt&.

~5.2!

We choose the standard normalization for those sta
namely

^q8~ l 8S8! j 8m8t8mt8uq~ lS! jmtmt&

5
d~q2q!

q8q
d l 8 ldS8Sd j 8 jdm8md t8tdm

t8mt
. ~5.3!

The connection to the statesuq;q̂SL& can be found using
Eq. ~2.9!, and one finds

uq;q̂SL&5(
l jm

uq~ lS! jm&(
m

C~ lS j;mm2m!Ylm* ~ q̂!

3e2 i (m2m)fdm2m,L
S ~u!. ~5.4!

Consequently one obtains for theT matrix
TL8L
pSt

~q8,q!5A2@12hp~2 !S1t#p^q8;q̂8SL8u^tuTut&uq&uq̂SL&

5
1

2
@12hp~2 !S1t# (

l 8 l jm

Tl 8 l
S jt

~q!@11hp~2 ! l 8#@11hp~2 ! l #(
m8

C~ l 8S j;m8,m2m8!

3Yl 8m8~ q̂8!ei (m2m8)f8dm2m8,L8
S

~u8!(
m

C~ lS j;m,m2m!Ylm* ~ q̂!e2 i (m2m)fdm2m,L
S ~u!. ~5.5!

For q parallel to thez axis, i.e.,q̂5 ẑ, one finds after some straightforward algebra the on-shell relation
2-7
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TL8L
pSt

~q,q,u8!5
1

2
@12hp~2 !S1t#(

l 8 l j

Tl 8 l
S jt

~q!@11hp~2 ! l 8#

3@11hp~2 ! l #A2l 811

4p
C~ l 8S j;0L8!dLL8

j
~u8!A2l 11

4p
C~ lS j;0L!. ~5.6!
,
tia

a

g

.

e
tial

n
lts
e

l

en
f
ies

r the
oth
pi-
nd
al

s
e

Here the relation

Yl 8m8~ q̂8!5A2l 811

4p
Dm8,0

l 8* ~f8u80!

5A2l 811

4p
~2 !m8D2m8,0

l 8 ~f8u80! ~5.7!

was used together with an addition theorem forD functions.
Once the partial wave projectedT matrices are calculated

we can use the the well-known connection to the par
waveS matrices,

Sl 8 l
S jt

5d l 8 l2p imqTl 8 l
S jt , ~5.8!

which are parametrized by the standard partial wave ph
shifts.

The inversion of Eq.~5.6! can be accomplished by usin
the orthogonality relation

E
0

2p

dfE
0

p

du sinuD
mm

j 1* ~fu0!Dmm
j 2 ~fu0!5

4p

2 j 111
d j 1 j 2

.

~5.9!

In addition we take into account Eq.~3.14! for the on-shellT
matrix and find after a few steps

Tl 8 l
S jt

~q!54p@12hp~2 !S1t#21@11hp~2 ! l 8#21

3@11hp~2 ! l #21
A2l 811A2l 11

2 j 11

3 (
L8L

C~ l 8S j;0L8!C~ lS j;0L!E
21

1

d~cosu8!dLL8
j

~u8!

3TL8L
pSt

~q,q,u8!. ~5.10!

Finally we connect the physicalT-matrix element to the
partial wave projectedS matrices. We insert Eq.~5.6! into
Eq. ~2.28!. In proceeding we use

DLL8
j* ~f8u80!5~2 !L2L8eiLf8d2L2L8

j
~u8! ~5.11!

and an addition theorem ofD functions together with Eq
~5.7!. Then we end up with the standard form
04400
l

se

a^n1n2m18m28qq̂8uTun1n2m1m2qW &a

5
1

2

1

A4p

1

p imq(St
CS 1

2

1

2
t,n1n2D 2

3CS 1

2

1

2
S,m18m28L08DCS 1

2

1

2
S,m1m2L0D

3(
j l 8 l

@12~2 ! l 1S1t#@12~2 ! l 81S1t#

3~d l l 82Sl 8 l
S jt

!A2l 11C~ lS j,0L0!

3C~ l 8S j,L02L08 ,L08!Yl 8,L02L
08
~u8,f8!.

~5.12!

One can choosef850 by puttingq8 into thex-z plane.
In order to unambiguously define the normalization w

also give the expression for the spin-averaged differen
cross section for nucleon speciesn1n2 as

ds

dV
5~2p!4S m

2 D 21

4

3 (
m18m28m1m2

ua^n1n2m18m28qq̂8uTun1n2m1m2q&au2.

~5.13!

VI. RESULTS AND DISCUSSION

In order to demonstrate the feasibility of our formulatio
when applied toNN scattering, we present numerical resu
for two NN potentials of quite different character, th
Bonn-B ~Ref. @15#! and the AV18~Ref. @16#! potential mod-
els. For calculating theNN t matrix we solve the integra
equation, Eq.~3.17!. For S50 this is a single, two dimen-
sional integral equation in two variables, for the parity ev
and odd part, respectively. ForS51 there are two sets o
coupled integral equations in two variables for the helicit
L50,1. Thef9 integration over the potential, Eq.~3.18!,
can be carried out independently, and thus does not ente
integral equation as separate variable. As it turns out, b
potentials only depend weakly on this angle, and one ty
cally needs ten integration points in the case of Bonn-B a
16 in the case of AV18 to have sufficient accuracy. Typic
grids needed for theu9 integration consist of 32–48 point
and for theq9 integration of 48–72 points, depending on th
desired accuracy.
2-8
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The Cauchy singularity in Eq.~3.17! is separated into a
principal value part and ad-function part, and the principa
value singularity is treated by subtraction. In case of
Bonn-B potential the integration interval for theq9 integra-
tion is covered by mapping the Gauss-Legendre pointu
from the interval (0,1) via

q5b tanS p

2
uD ~6.1!

to the interval (0,̀ ). Typical values ofb are 1000 MeV/c.
For the AV18 potential this type of integration map is le
useful due to the difficulty in handling the numerical Four
transform for very large values ofq9, and the integration
interval is cut off at 150 fm21, which is according to our
experience sufficient. The Fourier-Bessel transform of
AV18 potential functions are carried out using Filon
quadrature formula@21#, which proves to be more accurate
handling the strong oscillatory behavior of the integrands
Eqs. ~4.6!–~4.10! for large values of the integration param
eter r, compared to, e.g., Simpson’s rule.

A stringent test for our numerics is a comparison of t
NN phase shifts, which we obtain from Eq.~5.10! together

TABLE I. Comparison of the nucleon-nucleon phase shifts c
culated from our three dimensional formulation~helicitiy! with a
standard partial wave calculation~carried out in momentum space!
for the Bonn-B potential at 100 and 300 MeV laboratory energ

Elab5100 MeV Elab5300 MeV
2S11 LJ 3D helicity Partial wave 3D helicity Partial wave

1S0 25.1928 25.1929 -8.1755 -8.1756
3P0 9.8046 9.8046 -11.4799 -11.4799
1P1 -16.3131 -16.3126 -28.6946 -28.6922
3P1 -13.4677 -13.4677 -26.3800 -26.3800
3S1 41.9858 41.9870 4.0667 4.0676
3D1 -12.9847 -12.9846 -23.7182 -23.7181

«1 -2.2360 -2.2357 -4.0268 -4.0265
1D2 3.3411 3.3411 7.4888 7.4888
3D2 17.6710 17.6710 25.3616 25.3617
3P2 11.7356 11.7356 17.3981 17.3981
3F2 0.7705 0.7705 0.5236 0.5238

«2 2.8402 2.8402 2.0166 2.0166
1F3 -2.4397 -2.4397 -5.5865 -5.5865
3F3 -1.6484 -1.6484 -4.0097 -4.0097
3D3 0.4203 0.4855 2.5719 2.5720
3G3 -1.0105 -1.0105 -4.4051 -4.4051

«3 -3.6604 -3.6604 -7.2233 -7.2233
1G4 0.4092 0.4092 1.3556 1.3556
3G4 2.2624 2.2624 7.3000 7.3000
3F4 0.4203 0.4203 2.4491 2.4491
3H4 0.1082 0.1082 0.5077 0.5077

«4 0.5575 0.5575 1.5509 1.5509
04400
e

e

n

with Eq. ~5.8!, with phase shifts calculated with standa
partial wave techniques. The result for the Bonn-B pha
shifts is given in Table I for projectile energies 100 and 3
MeV. The agreement of both calculations is excellent.
Table II the equivalent comparison is given between
phase shifts calculated from the AV18 potential with our 3
formulation and a standard partial wave calculation~in this
case in coordinate space!. The agreement is also very goo
however, not as perfect as in the Bonn-B case. The rea
for this slight discrepancy is presumably twofold. Firs
we carry out a numerical Fourier-Bessel transformat
of the different potential functions of AV18. The solutio
of the t-matrix integral equation requires an evaluati
of the potential function on a grid of the siz
nf93nu93nq93nq83nu8 . For computational economy w
calculate the potential functions on a fine grid forr5uq9
2qu and obtain the points actually needed in the calculat
via interpolation. This procedure naturally leads to larger n
merical errors compared to a direct evaluation of algebr
expressions as is the case for Bonn-B. The differences ca
clearly seen when comparing Tables I and II. In both case
comparable grid for thet matrices is used.

- TABLE II. Comparison of the nucleon-nucleon phase shifts c
culated from our three dimensional formulation~helicity! with a
standard partial wave calculation~carried out in coordinate spac
@22#! for the AV18 potential at 100 and 300 MeV laborato
energy.

Elab5100 MeV Elab5300 MeV
2S11 LJ 3D helicity Partial wave 3D helicity Partial wave

1S0 25.99 25.94 -4.62 -4.60
3P0 8.69 8.69 -11.05 -11.06
1P1 -14.19 -14.20 -26.18 -26.28
3P1 -13.06 -13.07 -28.38 -28.49
3S1 43.69 43.56 8.15 8.16
3D1 -12.08 -12.09 -24.80 -24.90

«1 -2.49 -2.49 -4.38 -4.39
1D2 3.81 3.81 9.45 9.44
3D2 17.14 17.10 25.11 25.02
3P2 11.02 11.00 16.96 16.91
3F2 0.67 0.67 0.77 0.76

«2 2.70 2.70 2.21 2.21
1F3 -2.23 -2.23 -4.87 -4.88
3F3 -1.35 -1.35 -2.51 -2.51
3D3 1.61 1.61 5.22 5.21
3G3 -0.93 -0.93 -4.19 -4.20

«3 -3.50 -3.50 -7.17 -7.16
1G4 0.40 0.40 1.42 1.42
3G4 2.22 2.22 7.35 7.34
3F4 0.45 0.45 2.75 2.74
3H4 0.07 0.07 0.31 0.31

«4 0.51 0.51 1.54 1.54
2-9
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FIG. 1. The half-shellt matrix TL8L
pSt (q,q0 ,u)

for q05375 MeV/c, corresponding toElab5300
MeV, calculated from the Bonn-B potential. Th
left side displays the real and imaginary parts
T00

101(q,q0 ,u) as function ofq andx5cosu. The
right side showsT00

2100(q,q0 ,u). The units of
T00

p0t(q,q0 ,u) are 1027 MeV22.
de
ite

the

a-
Next we want to display the angular and momentum
pendence of the half-shellt matricesTL8L

pSt (q,q0 ,u) as gen-
erated from Eq.~3.17!. For the caseS50 this is done in Fig.
1 for the Bonn-B potential for the parity-even~left side! and
for the parity-odd case~right side!. The parity-event matrix
exhibits a similar behavior to the symmetrizedt matrix of the
two-boson case studied in Ref.@6#. It shows strong forward
04400
-and backward peaks around the on-shell momentumq0.
Once far away fromq0 the momentum dependence is qu
moderate. The parity-oddt matrix also displays the the
strong peaks around the on-shell momentum, however,
forward and backward peaks have opposite signs.

For the caseS51 there are two coupled integral equ
tions as shown in Eq.~3.17!. Due to the symmetries of the
f-

s
e
s

FIG. 2. The real part of the parity-even hal
shell t matrix TL8L

110 (q,q0 ,u) for q05375 MeV/c.
The helicitiesL8,L50,1 are kept as subscript
of T. All t matrices are calculated using th
Bonn-B potential and are given in unit
1027 MeV22.
2-10
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FIG. 3. Same as Fig. 2, but for the imagina
part of TL8L

110 (q,q0 ,u).
-
ll
-
r

nt
0
la

V
st to
g.,

ce

and
potential, Eq.~2.19!, it is sufficient to consider only the he
licity combinationsL8,L50,1. The corresponding half-she
t matrices,TL8L

p1t (q,q0 ,u) obtained from the Bonn-B poten
tial are displayed in Figs. 2–5. The real and imaginary pa
show a rich structure as function of angle and for mome
smaller than 1000 MeV/c. For momenta larger than 100
MeV/c all amplitudes show no or only a very weak angu
04400
ts
a

r

dependence. We would like to point out that at 300 Me
projectile energy partial waves have to be summed at lea
J56 to obtain a converged result for calculating, e.
observables.

A further question of interest is how strong the differen
is between the half-shellt-matrix amplitudes derived from
the two potentials presented here. In Fig. 6 the real
-

-

FIG. 4. The real part of the half-shell parity
odd half-shell t matrix TL8L

2111(q,q0 ,u) for q0

5375 MeV/c calculated from the Bonn-B poten
tial. The description is the same as in Fig. 2.
2-11
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FIG. 5. Same as Fig. 4, but for the imagina
part of TL8L

2111(q,q0 ,u).
ar
s
r

an

e

ite
en-
r-
er

er
imaginary parts ofTL8L
pSt (q,q0 ,u) for S50 calculated with

AV18 are shown. Of course along the lineq5q0 the corre-
sponding amplitudes derived from the two potentials
identical. However, if one compares the detailed structure
especially the parity odd amplitudes, one sees that at la
momentaq the Bonn-B amplitude shows more structure th
the one derived from AV18. For the caseS51 we only want
to show a selection oft-matrix amplitudes calculated from
AV18. In general one can say that some amplitudes are v
04400
e
of
ge

ry

similar to the ones derived from Bonn-B, others are qu
different. The choices displayed in Fig. 7 are being repres
tative. The upper twot matrices show a considerable diffe
ence to the corresponding ones of Bonn-B, while the low
ones are relatively similar.

Next we turn to the on-the-energy-shellt-matrix
amplitudes as given in Eq.~2.28! in terms of theTL8L

pSt

quantities. Here it is interesting to consid
ua^n1n2m18m28q0q̂uTun1n2m1m2q0&au2[u^m18m28uTum1m2&u2,
d

FIG. 6. The half-shellt matrix TL8L
p0t (q,q0 ,u)

for q05375 MeV/c calculated from the AV18
potential. The left side displays the real an
imaginary parts ofT00

101(q,q0 ,u) as function ofq
and x5cosu. The right side shows
T00

2100(q,q0 ,u). The units ofT00
p0t(q8,q0 ,u) are

1027 MeV22.
2-12
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FIG. 7. Selected half-shell t matrices
TL8L

p1t (q,q0 ,u) for q05375 MeV/c calculated
from the AV18 potential. The helicitiesL8,L
50,1 are kept as subscripts ofT, which is given
in units of 1027 MeV22.
ty
e
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ie
e
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wherem56 1
2 . If one takes rotational symmetry and pari

invariance into account, one ends up with six independ
amplitudes,

^11uTu11&5^22uTu22&,

^11uTu22&5^22uTu11&,

^12uTu11&5^21uTu11&52^12uTu22&

52^21uTu22&,

^11uTu12&5^11uTu21&52^22uTu12&

52^22uTu21&,

^12uTu12&5^21uTu21&,

^21uTu12&5^12uTu21&. ~6.2!

The six amplitudes given above are displayed in Figs. 8–
for Bonn-B as function of energy and c.m. scattering an
cosu. Though both potentials are only meant to be appl
below the pion production threshold, we show the on-sh
amplitudes up to 1 GeV. Since we do not work with part
waves, a calculation at higher energies takes the same e
as one at very low energies. The sum over all indicesmi of
the on-shell amplitudes shown gives the spin averaged
ferential cross section as indicated in Eq.~5.13!. We would
like to remark that these on-shell amplitudes can also
obtained from the partial wave projectedS-matrix elements
as indicated in Eq.~5.12!. We used this relation for numeri
cal tests of our formulation.
04400
nt

0
e
d
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l
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if-

e

VII. SUMMARY

Two nucleon scattering at intermediate energies of a
hundred MeV requires quite a few angular momentum sta
in order to achieve convergence of, e.g., scattering obs

FIG. 8. The absolute value squared of the physical on-sheT
matrix elementsu^m18m28uTum1m2&u2 in units 10214 MeV24. The
values ofm56

1
2 are abbreviated as6.
2-13
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ables. This is even more true for the scattering of three
more nucleons upon each other. An alternative approac
the conventional one, which is based on angular momen
decomposition, is to work directly with momentum vecto
specifically with the magnitudes of the momenta and
angles between them. We formulated and numerically ill
trated this alternative approach for the case ofNN scattering
using two realistic interaction models. The momentum v
tors enter directly into the scattering equation, and the t
spin of the two nucleons is treated in a helicity representa
with respect to the relative momenta of the two nucleo
Using rotational and parity invariance one finds in the trip
caseS51 a set of two coupled Lippmann-Schwinger equ
tions for each parity and each initial helicity state. Becau
of symmetry properties only two of the originally three in
tial helicity states need to be considered. In the singlet c
S50 there is only one single Lippmann-Schwinger equat
for each parity. The Lippmann-Schwinger equations~un-
coupled and coupled! are two dimensional integral equation
in two variables for the half-shellt matrix and three variable
for the fully off-shell t matrix, namely two magnitudes o
momenta and one angle. Though we start with a three dim
sional integration, one angle can be integrated out indep
dently, so that we are left with a two dimensional integ
equation.

A formulation without angular momentum decompositi
is best suited for interaction models which are given in
operator form. In this work we considered the Bonn-B a
the AV18 potentials. The helicity representation of the p
tentials is given in the six linear operatorsV i of Eq. ~3.6!,
depending on spin and momenta, which are most suited
our formulation. For completeness we also give the pot

FIG. 9. Same as Fig. 8, but for differentm combinations.
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tials represented via Wolfenstein operators. We demonst
the feasibility and accuracy of our three dimensional form
lation by projecting the on-shellt-matrix elements on angula
momentum states and compare the resulting phase s
with those obtained from standard partial wave projec
Lippmann-Schwinger equations. The agreement is very g
and demonstrates the numerical reliability and accuracy
our method.

The complete set of half-shellt-matrix amplitudes at 300
MeV laboratory energy is displayed for the Bonn-B potent
to give an impression of their rich structure in momentu
and angle variables. Nevertheless, the resulting angular
pendence is smoother than the individual contributions
sulting from the higher angular momentum states.

In some representative examples it is shown that th
half-shell amplitudes can differ significantly depending
the potential employed. Of course, the observable quanti
the on-shell amplitudes, are equal since they describe
sameNN data base. We display the magnitudes of the phy
cal t-matrix elements derived from the Bonn-B model as
function of scattering angle and energy. Though theNN po-
tential is tuned only up to about 350 MeV our results a
shown up to 1 GeV to demonstrate the ease by which a
high energies can be handled in our approach without pa
waves.

We would like to emphasize that the scheme develo
here is algebraically very simple to handle provided pot
tials are given in an operator form. This is, e.g., the case
all interactions developed within a field theoretic fram
work. In addition, the solution of two dimensional integr
equations does not pose any difficulty for modern comput

FIG. 10. Same as Fig. 8, but for differentm combinations.
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This work is intended to serve as starting point towa
treating three-nucleon scattering without partial waves.
Refs. @6,7# three-nucleon bound and scattering states h
already been treated without partial waves, however, neg
ing spin degrees of freedom. In the present work we show
the two-nucleon level that the inclusion of spin degrees
freedom is quite readily possible. Future work needs to co
bine the experience with theNN system gained here with th
three-body calculations without partial waves of Refs.@6,7#.
This will be an important step forward since present 3N scat-
tering codes based on partial wave methods reach the lim
today’s supercomputers already at intermediate energies
04400
s
n
e

ct-
at
f
-

of
e-

low the pion threshold. Future applications at higher energ
require new techniques.
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APPENDIX A: THE TRANSFORMATION MATRIX A

In this appendix we explicitly give the transformation from the Wolfenstein operators given in Eqs.~3.1! to the operators
V i of Eqs.~3.6!, i.e., the matrixAi j indicated in Eq.~3.7!. The matrix is explicitly given as

A51
1 0 0 0 0 0

0
ia

g

22i

ga

2i

a

2i

ga

22i

ga

21 1 0
2g

a2

22

a2
0

21
2q8qa2

gc

2q8~q8g1q!

gc

2q8q

c

22q8q

gc

2q~qg1q8!

gc

21
q8qa2

gb

2q8~q8g2q!

gb

22q8q

b

2q8q

gb

2q~qg2q8!

gb

22~q822q2!

e
0

4q82

e
0 0

24q2

e

2 . ~A1!

The matrix elementsAi j are scalar functions. We calculate

detA5
2 i29

gA12g2 S qq8

uq81quuq82qu
D 3

, ~A2!

and find the inverse matrixAi j
21 to be

A215

¨

1 0 0 0 0 0

3

2
0

1

2

e2

8a2q82q2

e2

8a2q82q2

2~q822q2!e

8a2q82q2

1

2
0 0

c

8q82

b

8q82

e

8q82

g

2

2 ia

4
0

c

8q8q

2b

8q8q
0

11g2

4

2 iag

4

2a2

4

f c

16

f b

16

ge

16

1

2
0 0

c

8q2

b

8q2

2e

8q2

©
. ~A3!
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For both matrices we introduced the abbreviations

a5A12g2, b5q821q222q8qg, c5q821q212q8qg,

e5A~q821q2!224q82q2g2, f 5
1

q82
1

1

q2
, g5

1

q82
2

1

q2
.

APPENDIX B: THE OBE POTENTIAL AS FUNCTION OF WOLFENSTEIN OPERATORS

In terms of the Wolfenstein operatorsWi of Eq. ~3.1!, the Bonn-B potential takes the following form:

Vps~q8,q!5
gps

2

~2p!34m2
Am

E8
Am

E

Fps
2 @~q82q!2#

~q82q!21mps
2

Ôps

W8W
, ~B1!

Vs~q8,q!5
gs

2

~2p!34m2
Am

E8
Am

E

Fs
2@~q82q!2#

~q82q!21ms
2

Ôs

W8W
, ~B2!

Vv~q8,q!5
1

~2p!34m2
Am

E8
Am

E

Fv
2@~q82q!2#

~q82q!21mv
2

~gv
2Ôvv12gv f vÔvt1 f v

2Ôtt!

W8W
, ~B3!

wherem denotes the nucleon mass andW5Am21q2. The operatorsÔps,s,v are given as

Ôps52
1

4
@~W82W!2~q821q212q8qg!W41~W81W!2~q821q222q8qg!W5#2~W822W2!A~q821q2!224q82q2g2W6,

~B4!

Ôs52~W8W2q8qg!2W12 i ~W8W2q8qg!q8qA12g2W21q82q2~12g2!W3 ~B5!

Ôvv5~W82W21q82q2g214W8Wq8qg1W82q21W2q82!W12 i ~3W8W1q8qg!q8qA12g2W2

2@12g21~W82q21W2q8222W8Wq8qg!#W31F ~W821W222W8W!

2
~q821q222q8qg!

q82q2~12g2!
~W82q21W2q8222W8Wq8qg!G1

4
~q821q212q8qg!W41F ~W821W212W8W!

2
~q821q212q8qg!

q82q2~12g2!
~W82q21W2q8222W8Wq8qg!G1

4
~q821q222q8qg!W52F ~W822W2!

2
~q822q2!

q82q2~12g2!
~W82q21W2q8222W8Wq8qg!G1

4
A~q821q2!224q82q2g2W6, ~B6!
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Ôvt5F ~2m2E82E!

m
W82W21

~W81W!

m
q82q2g212q8qW8Wg

~2m2E81E!

2m
W82q21

~2m1E82E!

2m
W2q82GW1

2 i F ~W81W!

m
q8qg12W8WGq8qA12g2W22H ~W81W!

m
~12g2!1F ~2m2E81E!

2m
W82q21

~2m1E82E!

2m
W2q82

22W8Wq8qgG J W31H ~2m2E81E!

2m
W821

~2m1E82E!

2m
W222W8W2F ~2m2E81E!

2m

W82

q82
1

~2m1E82E!

2m

W2

q2

22W8W
g

q8q
G3

~q821q222q8qg!

~12g2!
J 1

4
~q821q212q8qg! W41H ~2m2E81E!

2m
W821

~2m1E82E!

2m
W212W8W

2F ~2m2E81E!

2m

W82

q82
1

~2m1E82E!

2m

W2

q2
22W8W

g

q8q
G ~q821q212q8qg!

~12g2!
J 1

4
~q821q222q8qg! W5

2H ~2m2E81E!

2m
W822

~2m1E82E!

2m
W2F ~2m2E81E!

2m

W82

q82
1

~2m1E82E!

2m

W2

q2

22W8W
g

q8q
G ~q822q2!

~12g2!
J 1

4
A~q821q2!224q82q2g2W6 ~B7!

Ôtt5H @5m224m~E81E!13E8E1q8qg#W82W1@5m214m~E81E!13E8E1q8qg#q82q2g21~2m224E8E2E822E2

22q8qg!W8Wq8qg1
~2m2E81E!2

2
q2W821

~2m1E82E!2

2
q82W2J 1

2m2
W12 i $~3m22E8E2E822E2

2q8qg!W8W1@5m214m~E81E!13E8E1q8qg#q8qg%
q8q

2m2
A12g2 W22$@10m218m~E81E!16E8E12q8qg#

3~12g2!1†~2m2E81E!2W82q21~2m1E82E!2W2q8222@4m22~E82E!2#W8Wq8qg‡%
W3

4m2

1H ~2m2E81E!2W821~2m1E82E!2W222@4m22~E82E!2#W8W2F ~2m2E81E!2
W82

q82
1~2m1E82E!2

W2

q2

22@4m22~E82E!2#W8W
g

q8q
G ~q821q222q8qg!

~12g2!
J ~q821q212q8qg!

16m2
W41H ~2m2E81E!2W82

1~2m1E82E!2W212@4m22~E82E!2#W8W2F ~2m2E81E!2
W82

q82
1~2m1E82E!2

W2

q2

22@4m22~E82E!2#W8W
g

q8q
G ~q821q212q8qg!

1

~12g2!
J ~q821q222q8qg!

16m2
W52H ~2m2E81E!2W82

2~2m1E82E!2W22F ~2m2E81E!2
W82

q82
1~2m1E82E!2

W2

q2
22@4m22~E82E!2#W8W

g

q8q
G

3
~q822q2!

~12g2!
J A~q821q2!224q82q2g2

16m2
W6. ~B8!

For the actual calculations the above given terms are reexpressed in terms of the operatorsV i via V i5( jAi j
21Wj and inserted

into the LS equation~3.17!. These reformulations are straightforward, and can, e.g., be carried out via symbolic manip
packages.
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APPENDIX C: THE ARGONNE AV18 POTENTIAL AS FUNCTION OF WOLFENSTEIN OPERATORS

In terms of the Wolfenstein operatorsWi of Eq. ~3.1!, the AV18 potential takes the following form:

vST
c ~q8,q!5W1

1

2p2 E
0

`

drr 2 j 0~rr !vST
c ~r !, ~C1!

vST
t ~q8,q!5FW32

1

4

~q82q!2~q81q!2

q82q2~g221!
W42

1

4

~q8418q82q2g2210q82q214q2!

q82q2~g221!
W5

1
1

4

A~q821q2!224q82q2g2~q822q2!

q82q2~g221!
W6G 1

2p2

1

r2 E
0

`

drr 2 j 2~rr !vST
t ~r !, ~C2!

vST
ls ~q8,q!5

i

2
q8qA12g2W2

1

2p2

1

r E
0

`

drr 3 j 1~rr !vST
ls ~r !, ~C3!

vST
l2 ~q8,q!5q8qgW1

1

2p2

2

r E
0

`

drr 3 j 1~rr !vST
l2 ~r !2@q82q2~12g2!#W1

1

2p2

1

r2 E
0

`

drr 4 j 2~rr !vST
l2 ~r !, ~C4!

vST
ls2~q8,q!5Fq8qgW12

i

4
q8qA12g2W21

1

2
q8qgW32

1

8

~q81q!2~q82gq!~q8g2q!

q8q~g221!
W4

2
1

8

~q82q!2~q81qg!~q1q8g!

q8q~g221!
W51

1

8

g~q822q2!A~q821q2!224q82q2g2

q8q~g221!
W6G

3
1

2p2

1

r E
0

`

drr 3 j 1~rr !vST
ls2~r !1

1

2
q82q2~g221!~W11W3!

1

2p2

1

r2 E
0

`

drr 4 j 2~rr !vST
ls2~r !. ~C5!

In our actual calculation the potential enters described by the set of operatorsV i of Eq. ~3.6!. In order to display the relative
simple form the potential takes in these operators, we also want to explicitly show them:

vST
c ~q8,q!5V1

1

2p2 E
0

`

drr 2 j 0~rr !vST
c ~r !, ~C6!

vST
t ~q8,q!5F6q8qV412q82~V223V3!12q2(V223V6)2q8qgV223q8q

1

g

3(V222V322V612V5…G 1

2p2

1

r2 E
0

`

drr 2 j 2~rr !vST
t ~r !, ~C7!

vST
ls ~q8,q!52

1

2
q8qF2V42gV21

1

g
~V222V322V612V5!G 1

2p2

1

r E
0

`

drr 3 j 1~rr !vST
ls ~r !, ~C8!

vST
l2 ~q8,q!5q8qgV1

1

2p2

2

r E
0

`

drr 3 j 1~rr !vST
l2 ~r !2V1@q82q2~12g2!#

1

2p2

1

r2 E
0

`

drr 4 j 2~rr !vST
l2 ~r !, ~C9!

vST
ls2~q8,q!5

1

2
q8qS gV21

1

g
~V212V522V322V6! D 1

2p2

1

r E
0

`

drr 3 j 1~rr !vST
ls2~r !

2
1

2
q82q2@~12g2!V212gV422V5#

1

2p2

1

r2 E
0

`

drr 4 j 2~rr !vST
ls2~r !. ~C10!
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