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The nucleon-nucleoNN) t matrix is calculated directly as function of two vector momenta for different
realistic NN potentials. To facilitate this a formalism is developed for solving the two-nucleon Lippmann-
Schwinger equation in momentum space without employing a partial wave decomposition. The total spin is
treated in a helicity representation. Two different realibli¢interactions, one defined in momentum space and
one in coordinate space, are presented in a form suited for this formulation. The angular and momentum
dependence of the full amplitude is studied and displayed. A partial wave decomposition of the full amplitude
it carried out to compare the presented results with the well-known phase shifts provided by those interactions.

PACS numbds): 21.45+v, 13.75.Cs

I. INTRODUCTION formed between 100 and 200-MeV nucleon laboratory en-

ergy reach the very limits of present day computational re-

Experience in three- and four-nucleon calculatiphs3] ~ sources, since the number of angular momentum states
shows that the standard treatment based on a partial waldvolved increases dramatically. Regarding all the above

projected momentum space basis is quite successful but alSgnsiderations it is a challenge to incorporate spin into the

rather tedious, since each building block requires extendeEﬁreVIOUS calculation6—8] and perform few-nucleon calcu-

algebra. For example, the representation of the various pe _t!ons_wnhout angular momentum d_ecomp_05|t|or_1. As an
mutation operatorgi.e., the transformations among angular aside, in _the Monte Carlo calculations in configuration space
momenta belonging to different Jacobi momersavery in- [11] this is anyhow a standard procedure.

volved [4] and requires intricate numerical realizatidig. In the case O‘N.N scattering calculations W'thgm partial
On the other hand, we demonstrated in R6f.the relative wave decomposition have already been realized several

ease with which a three-boson bound state could be calcdiMmes[12,13. In those studies the spin states were treated in

lated in the Faddeev scheme avoiding an angular momentu eir individual m representations. A different approach is

decomposition altogether. Instead of solving a large set o ased on a helicity representatipid], where the helicity

coupled two dimensional integral equations in the standar&eu"ued to the total two-nu.cleon Spin was introduced. In the
partial wave framework, in a three dimensiof@D) formu- present work we follow this basic philosophy, however, we
! end up with somewhat different final equations to be solved.

lation only one single integral equation in three dimension¥/e apply our formulation to the realistitiN potentials
had to be solved. We had the same positive experience wi onn-B [15], as well as the Argonne AV1E16] potential

the scattering of three bosohg|, where the algebraic for- . ;
mulation and numerical implementation of the one Faddeev"—ind check the accuracy of our calculations by comparing to

equation was much simpler than the machinery of the apphase Srlﬁl ptgrame_l'gﬁrs Ot;ta'?eld from ;:orre?po'ndlrrg partt|al
proach based on partial wave decomposition. wave calculations. The potentials we chose for implementa-

The input to these three-body calculations without angula};'on are given in an _operator form, _and thus directly ?Pp"'
momentum decomposition is two-botiynatrices, which are cable to our formulation without partial wave decomposition.

off the energy shell. In addition to the off-shell energy theyOther moderrN forces, like Nijm | and II(Ref. [17]) or

depend on the magnitudes of the initial and final momentaCD'Bonn(Ref' [18]), are parametrized for each angular mo-

and the angle between the two momenta. In R&f. we mentumhsta_';ﬁ s?para;_telly and (tjhus are n?t as useful for an
showed that the two-bodiy matrices can be obtained very approach without partial wave decomposition.

easily by solving a two dimensional Lippmann-Schwinger This article is struct_ured in the flolllowing way: In. Sec. |l
(LS) equation instead of preparing and handling quite a fewVe present the formalism. The helicity representation of the

one dimensional LS equations for each angular momenturﬂmen.t""\IS and t.he final form of the Llppmann—Schvv_mger
quations are displayed in Sec. lll. The implementation of

state separately. The off-shell energies required in a three- q listitN f i f [ation is ai
body calculation lie between the total three-body energy an 0 mocerm reatisti orces Into our formuiation 1S given
In Sec. IV. The connection to the standard partial wave rep-

minus infinity. Interestingly we found in Ref8] that thet tation is ai i Sec. V. O leulati d it
matrix at large negative energies is nearly equal to the regfSeNtation Is given in Sec. V. Yur caicuiations and resuits

part of thet matrix at corresponding positive energy. This are presented in Sec. VI, and we conclude in Sec. VII.
insight, which was also pointed out in R¢@], explains di- |, 'ropMULATION FOR TWO NUCLEON SCATTERING
rectly that for b_ound state calculations a surprisingly large BASED ON HELICITIES

number of partial waves is necessary for convergence. In

addition, recent three-nucleo(8N) Faddeev calculations First, we introduce a helicity basis for the total s|3mof
[10] based on realistic nucleon-nucle@N) forces and per- two nucleons. For the axis being quantization axis, the total

0556-2813/2000/62)/04400219)/$15.00 62 044002-1 ©2000 The American Physical Society



I. FACHRUDDIN, Ch. ELSTER, AND W. GL@KLE

spin state has the well-known form

2= S ol s A)Al .1
|zs >_m1m2 5 5 SiMMaA |1Zomy | 1z5m, ).
(2.
Applying the rotation operator
R(g)=e Sz%e” 15", 2.2

whereS,, S, are components of the spin opera®r* 3 (o
+ 0,), leads to the general state

|aSA)=R(q)[zSA). (2.3
This is eigenstate to the helicity opera®rq:
S-q|qSA)=A|qSA). (2.4

This follows simply fromR(q)S-zZR™%(q)=S-q. Next we
define momentum-helicity states as

|9;aSA)=|a)|qsA), (2.5

whereq is the relative momentum of the two nucleons.
The parity operatoP acts as

P|g;qSA)=|—q;qSA) (2.6

on the momentum helicity eigenstates. Consequently parity

eigenstates are given as

1

|9;qSA) = ﬁ(H 7.P)|a;GSA), 2.7

wherern,==*1.
Combining Eq.(2.7) with two-body isospin stategm,),
we introduce antisymmetrized two-nucleon states as

. 1 1 .
Iq:qSA;t>”a=ﬁ(l—Plz)E(l+ 7.P)|0;qSA)|t)

1

_ __\S+t
\/5[1 7(—)>" 1]t (2.9

9;qSA) .

To arrive at Eq(2.8) we use well-known properties of two-

nucleon spin and isospin states.

In order to evaluate the normalization of the states in Eq.

(2.8) we need the relation betwe¢mSA ) and|—qSA). We

use the definition of Eq2.3) for | —qSA) and the Wigneb
function, namely

DY, (@) =(zSA'|R(Q)|zSA)=e""A"?d3, , (),
(2.9

to obtain
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|—aSA>=§ D}/ A(—@)|ZSA")
=2 e TMNGS, (m—0)|ZSA")
<
= e (@M ()STATGS | (6)|ZSA)
<

=(—)S2 DY, _,(¢60)[zSA")
A!

=(—)%as—A). (2.10
Now the normalization of the states given in E2.8) can be
worked out as

7T'a<ql;a/SrA/;t/|q;asA;t>7Ta
1 U ’
=511~ 7. (—)% T [1= 7.(—)%]

X 8y »(0';0"S'A'[q;qSA)
=[1=7.(—)%"16016,_,, 05 8(q' —A) Sy 1p
+7.(—)%8(q" + ) Spr —al- (2.11

Using this result it can also be verified that the completeness
relation of the states defined in E@.8) takes the form

- 1 -
> J dqq;qSA; )™ "(q;qSA;t|=1. (2.12
Skt 4

Equipped with the above given basis states one can for-
mulate the Lippmann-Schwinger integral equation. We de-
fine as matrix elements

T (A, a)="%q’;q'SA";t| T|g;qSA;t) ™, (2.13
VoL@, @)= "(q’;q'SA 5t V|g;qSA; 1) ™. (2.14

Then using Eqgs(2.12—(2.14) the operator equatiofi =V
+VGyT, which has a driving term the nucleon-nuclgdtiN)
potentialV takes the form

wSt wSt

TA/A(q’=Q):VA/A(q,’Q)

1
+72 | " VTi(a,a)Go(q")
A"

XTTor(9",q). (2.15

We now distinguish between the two cases for total spin
S=0 andS=1. ForS=0 Eq.(2.15 is one equation, similar

to the one discussed in R¢B] for the bosonic case. F&

=1 there are three coupled equations to eAch—1,0,1.

We use the property th& conserves spin and isospin, which
is valid to a high degree of accuracy. The coupled sets of
equations in Eq(2.15 can be further reduced as shown be-
low. Using Eq.(2.8) and the parity invariance of one ob-
tains
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e q)——[l 7a(—)ST2
X (t]-(q";9"SA"|[V]; qSA ) 4|t)
=V2[1-7.(—)%"]
x(t[(a'SA"[(q'|V]a),lgsA)t),
(2.16
where

1
IQ>W=E(Iq>+ 7./ —Q)). (2.17)

This expression can be connected \Ié_fsAt,A(q’,q) using
Egs.(2.10 and(2.17) with the result

7TSt

—A’A(q q) 7]77( )S\/‘”,A( q q) (21&

A corresponding relation is also valid for the matrix element

T751(a',q). Similarly one finds

7TSt

Vi (@,a) = 7.(—)VIA(A, —a).

We can now simplify the set of coupled equatig@sl5) for
S=1 in the following way:

(2.19

St

f dq" Vi 1(a'.9")Go(q") T34 (9", 9)

= J d*q” n.(—)VTya,~q")
X Go(@") n4(—)STIR(—0",q)
f dq" Vi7i(a', —q")Go(q) TIR(— ")
fd3anZ,St

This leads to

(a',9")Go(a") TTR(a",q). (2.20

wSt St

Tia@,a)=Vvyi\(a',a)
1 3.1y 7St " m\ T 7St
+5 ] 479" Va(a.9M)Ge(@) TIx(a",a)

1
f d*q" V7a(a’,q")Go(q") Tox (a",0).

(2.21

We now have for the cas&=1 two coupled equations,

namely forA’ =1,0 for eachA. Moreover due to Eq.2.19),
which is also valid for the matrix T, it is sufficient to con-
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Finally we need to calculate the physicBimatrix ele-
ment expressed in terms of the states

1
|viv,mim,Q) = E(l_ P1o)|vivomimyq), (2.22

where vy, v, andm,,m, are the magnetic isospin and spin
quantum numbersy describes the relative momentum of the
two nucleons, andP,, is the permutation operator between
the particles 1 and 2. The physicBimatrix element is then
given as

alvivamimyq'|T|viv,mim,q),
=(vivomimyq’ | T(1—Pyy)|vivomimyq). (2.23

The above equation now has to be expressed in terms of

X?;(q ,0). In doing so we encounter the matrix element

- 11 - -
(q'SA'|mymy) =2 C(E ES’;m1m2A0)<q’SA’|zS’AO>
S/

11
—c( Smlmon) e'hod'dS (=0

:C(

After some straightforward algebra one finds

N| -

1 o
5>S; mlmzAO)e'W dioA,(a’).

(2.24)

™(q";q" SA;t| vy vomm,a),
1 S+t
\/—[1 7.(—) ]\/—<t|V1V2>

><w<Q’;51’SA'|(1—P12)|m1m2q>

1 Lot 1 1t ot 1 1S A
= \/E 2 2" Vivo 2 2 mimMyAq
xelho?dl (61— 7,(—)%H]

X[6(q"—q)+n,6(q"+q)]. (2.29

We then insert the completeness relation, Ejl12), twice
into Eq.(2.23), and using Eq(2.25 obtain after some alge-
bra

a{vivomimyq'|T|viv,mim,q),

T, 1 2
:Zefl(AoﬂS Ao¢)82t [1—7.( SH]C(Z 2t Vle)

11, o\ (11
XC EES;mlmon C EES;mlmzAO

siderA=0 and 1. As an aside it should be mentioned that

because of the relationr(—)S"'=—1 the isospin quantum
numbert is fixed, oncer and S are chosen.

X 2 dy,(0)dR (TN (A ). (2.26
ATA
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6

For our calculation we choosg=2z and used$ ,(0)
’ (@'IVly=V(a",a)= 2, vi(a",.a, )W, (35

=), - Furthermore, as will be shown in Sec. Ill, the azi- =
muthal dependence of andq can be factored out and one
finds where v,(q’,q,y) are scalar functions depending on the

ot NP — magnitudes of the vecto’, g, and the angle between the

™ ’ — Al - ™ ’ ’ ~ ~

Tya(@,g)=¢ Toa@a,6"). (220 wo, y=q’-q. In Sec. IV we will provide specific realiza-
tions of the potentiaV(q’,q).

With this Eq.(2.26 can be written agnoteq’=q) The evaluation of the matrix elements of Hg.14 for
L, the set of operatord/, is in principle possible. However, it is
a{vavamimyaq’ | T|vav,mimya), simpler to define a different set of six independent operators,
1 11 2 Q;, which is more adapt to our choice of basis states. We
:Ze—i(Aé—Ao)qs’E C(E Et:Vﬂ/z) introduce the following set of operators:
St
S+t 11 ot AT Ql:l’
X[1=7.(=)""]C| 5 5 SmmAg
QQZSZ,
11 .
xC EEs;mlmon)E di,A,(a’)TA,S;O(q,q,a’). o
vt Q,=50'S7,
(2.28
0,=54q' Sq,

Ill. GENERAL STRUCTURE OF THE POTENTIAL
OPERATOR AND FINAL FORM OF THE SCATTERING e A2 e a2
EQUATION Q5=(S9")* (S a)*,

As is well known, rotational-, parity-, and time reversal 0.=S3S 4 (3.6
invariance restricts anjN potential V to be formed out of 6 a4 ‘

six terms[20], which are given b
[20] g Y The two sets of operators given in E¢3.1) and(3.6) can be

W;=1, easily related via

Wo=(o1ta2)-N, Wi=§j: Aij Q. 3.7
W3=0'1'N (Tz'N,
The transformation matri®;; and its inverse are explicitly

W,=0,-P oy P given in Appendix A.

’ Using the operator$);, the spin-dependent part of the
A A matrix elements of Eq(2.14 can then be reduced to the
W5:0'1'K0'2'K, ) . ~, , -

evaluation of matrix elements of the type’ SA’'|Q;|qSA ),
. . . A namely
W6:0'1'P0'2'K+0'1'K0'2'P, (31)
where the unit vector8l, P, andK are defined in terms of (a"SA"|Q24|qSA)=(a"SA"|gSA),
the relative momentg andq’ as A A A A
(0'SA"[©,]aSA)=S(S+1)(q'SA'|GSA),

~ xq’
N:(q q’) (32 ) ) ) )
laxq’| (Q'SA’'|Q3)qSA)=A"%q'SA'|GSA),
B (q’+q) N ’ ~ ’ .y 1 A
P=— 3.3 (a"SA'[Q4/qSA)=A"A(q"SA'[qSA),
la’+a
. (g —q) (9'SA'|Qs|qSA)=A"?A%(q'SA'|qSA),
R=— (3.9
la"—q

(9'SA'|Q6|qSA)=A%q'SA’|qSA). (3.9
The most general potential is then given as linear combina-
tion of those operators, namely Now we are left with determining the overlap of the states
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defined in Eq(2.3). Using Eq.(2.9) this gives The coefficientsA;; and the matrix elements’|vi|q) . de-

pend on the angle betwegrandq’ and thus ony. Therefore

(§'SA’|GSA)=>, (4'SA’|2SM)(2SM|GSA) their azimuthal dependence is determined by ¢6s(®).
M

Furthermore, the matrix element¥; depend on the angles
¢' and ¢ as shown in Eq(3.9). Thus we can schematically

_z DMA,(¢ 0'0)Dj (¢ 60) indicate the azimuthal dependence of the potential matrix
elements as
S
= 3 eM@OgS (0d5,(0). (3.9 VM@ =VIT M) cog ¢~ 4)). (312
M=-5s

. . L L . For the special casg=z this reduces to the simpler form
A special case is the situation whegepoints in thez direc- P * P

tion, where one obtains the simple form X/Si(q ) =eA ¢)stk(q 9.0, (313

yl 15 — alA(¢'—#)yS ’
(q'SA’|25A)=e dia(07). (310 which is the driving term in the coupled set of E¢8.21).

With these preliminaries the potential matrix element of W& assume that this simple dependencedsnand ¢
Eq. (2.14) can be written as given in Eq.(3.13 carries over to the solution of the integral
equation and choose as ansatz

7TSt S+t T i ™
VL@ a)=2[1- 7, (-) ]2 Ai(Q’SA’[Q;|gSA) TOW,q=er? =DTT3 (q',q,0')  (3.14
X(t{a' lvila) £It). (3.1)  Inserting this into Eq(2.15 one obtains

TONa',q2) =M = DVTo (g’ ,q,6")

1 T j r—g" ’ ” N " Al " — ™ ” /"
+72 | dq Ve cotd’ — ¢),0",q" Go(a)e M AT (a",0,0)
A”

277 H ! "
_eIA(qS ¢)V7T31t\(q q, 9 )+ elA(q& d;)% dq/l q//2 . G/ISIna/lfo d(ﬁ”VX,S}\{eIM(d) —¢ )'

xcos ¢’ —¢"),a",q"}Go(q") e ~#IT TN (0" q,0"). (3.19

The integrand is periodical with respect #', with the period being 2. Consequently one can sét' =0 for the ¢”
integration. This leads to

T8 (g ,q2) =1 9| VTS (q',q,0")

1 - ™ 27 o .
4= dqrr qHZ de’ sing” d¢/rvX,S/t\{e—|M¢ ,COS(b”,q' ,Q"}Go(Q")e'A¢ TX%R(C]" q, 0")
45 Jo 0 0
EeiA(d)’*aﬁ)T/’;’S}X(q ,0,60"), (3.16

verifying the correctness of the ansatz of E8.14).
Inserting this result into Eq2.21) gives

1 (= 1
TIA@,a,6)=VP\(a'q,61) + 5 f dq’ g% | d(cost")o 71" (@",",0",6")Go(a") TIX(",0,6)

1 (= 1
_I_Zfo dq//q//Z _ld(COSG”)vX,SSA(q’,q”,¢9’,6”) O(q//)-l-'n'St(q// q,@”), (317)
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with Bonn-B (Ref.[15]) and the Argonne coordinate space poten-
. tial AV18 (Ref.[16]).
TSUAL o g gy [ g e iA(S — WSt (s oy The OBE potential consists of pseudoscalar-, scalar-, and
v (@°.0%.07.67) Jo dg’e MUUCRLRE vector meson exchanges, derived from the corresponding

(3.18 Feynman diagrams. A three dimensional reduction of the
o ) ) Bethe-Salpeter equation is as achieved via the
The driving term of Eq(3.17) is a special case of EB.18  Bjankenbecler-Sugar reduction. Details can be found in Refs.

for ¢"=0 andA”=A [up to a factor (2r)71. In summary, [15 19. The resulting potential operators are given as
for the cases=1 we end up with two coupled integral equa-

tions in two variables for givem\ values(only A=1,0 are 92 m m
necessary The azimuthal integration ovep” can be per- Vi (q',q) = — — \/:\ﬁu(q’)u(q)U(—q’)
formed independently, and does not enter the integral kernel. (2m)® VE' VE
The cases=0 is much simpler, one has only one integral ) 5
equation in two variables, similar in its structure to the two- Xu(—q) Fd(a"—a)] 4.

boson case discussed in RES]. (q’—q)2+,u§’

IV. REPRESENTATION OF NN POTENTIALS

2
. . . VpS( ’ ): gps m\/E_U( /) 5U( )U(_ /) 5
In this section we want to demonstrate the relative ease g.9 2m® VE' VE q )y ulq aly
with which modernNN potentials that are given in operator

form can be incorporated in a three dimensional formalism. F.d(q —q)?]
Our choices of NN potentials are a Bonn one-boson- Xu(— )p,—zz, 4.2
exchange(OBE) potential [19] in the parametrization of (A" —a)"+ pps
ve(g’ q)=M By (gzﬁ(q’) “u(q)u(—q’) U(—q)+f—3{4mzﬁ(q’) “u(q)u(—q’)
@t Ve VE@a | T T 4m? 7 T

xu(—a)—2mu(q") y*u(qu(—a")[(E'—E)(g5—¥,7°) +(p2+py) Ju(—q)—2m u(q’)

X[(E'—E)(g%— y*9°) + (p+pp“Tu(@)u(—q") y,u(—a) +u(q)[(E' —E)(g%— y*»°)

— I P —
+(p1+pDMu(@u(—q)[(E' —E)(9%— 7,9+ (P2t pp) Ju(—a)} + gz—m{4m ug)y*u(a)u(—q')y,
Xu(=q)—u(q") yu(q)u(—gq")[(E'—E)(Q%— v,¥°) +(p2+p3) Ju(—a) —u(q")[ (E'—E)(g°#— y*¥°)

+(pr+pDHu(@u(—a) y,u(—a)} . 4.3

Herem stands for the nucleon mass. In the case of the vectaderev 5M(NN) represents an electromagnetic part, which we
potential one has p;+p;)“=(E+E’',q+q') and (o, omit in this work. The one-pion-exchangéOPE part
+p5)“=(E+E’,—q—q’). The coupling constantg,ss., v™(NN) is charge dependent and has the standard form. The
and f,, the cutoff functionsF and the meson masses are Yukawa and tensor functions contain exponential cutoffs,
given in Ref.[15]. thus do not have an analytical Fourier transform to momen-
In order to bring this OBE potential in a form consistent tum space. The intermediate- and short-range phenomeno-
with our three-dimension#BD) equations, the bilinear Dirac logical partv*(NN) is expressed as a sum of central, tensor,
forms have to be expressed in terms of the operatgref  Spin-orbit,L%, and quadratic spin-orbit piecéabbreviated as
Eqgs.(3.1). The result in form of the Wolfenstein operators of C,t,1s,12]s2, respectivelyin different spin(S) and iso spin
Eq. (3.5 is given in Appendix B. (T) states:
Another often used moderiN potential is the Argonne R . . s 2 )
potential AV18(Ref.[16]). It is originally presented in con-  UsH{NN)=vg(r)1+vg(r)SiptvsHr)L - Stvgr)L

figuration space and has the general form
? P ? +oEH(L- 9?2, (4.5

VINN)=vEM(NN)+u™(NN)+oR(NN). (4.4  whereS;, denotes the standard tensor operator. The specific
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form of the radial functions as well as the potential param-+esented as function of the Wolfenstein operaMts The
eters are given in Ref16]. For applying this potential in our final expression are given in Appendix C.
formulation, we need to perform the transition to momentum

space. For the terms contributing 4§(NN) we obtain ex-
plicitly V. CONNECTION TO A PARTIAL WAVE
REPRESENTATION

1 0
vedq',q) = _2J drr2jo(pr) ve(r), (4.6) In order to compare with standard partial representations,
2m=Jo especiallyNN phase shifts, we need to make connection to
the standard partial wave representation. The partial wave
¢ 1 [—301-(q9'—0q)oz- (9" —0) projectedT-matrix element is defined as
vsH@',q)= o2 2

S, Tol(@=(a’s)imtm|TlqIS)imtm), (5.2
+oy- 0, fo drrejo(privg(r), (4.7

] 1 where the statelg)(1S)jmtm,) are given as
i % )
A= 558 (@xa | drPhnein,
48 |qus)imtmy=3 CSjum—pw|alum)|Sm-putm).
“

1 2 (5.2

vé(q’,a)= ﬁq-q’;fo drr3j,(pryvd(r)

1 1 We choose the standard normalization for those states,
- F[Q'Zqz(l— )15 namely
™ p

Xf:drr“jz(pr)v'szT(r), (4.9 (@'(1"s")j'm"t'm{[q(IS)jmtm)
_9%a-9)

!’

aq

5I’Iés’Séj’j5m’m5t’t5mt'ml- (53)

1s2/ 1 1 2 ’ ’ 1
vst(q ,Q)ZF(S q-9'=S-gS-q );

" 1 /1 The connection to the stathq:&SA) can be found using
xf drrj,(pr)vS2(r)— F(§(q><q’)2 Eqg. (2.9), and one finds
0 T

1 1
+501-(4X0q") 0- (9% Q") 7 |q;EqSA>:|2 [q(1S)jm) >, C(ISj;um— ) YF,(Q)
jm “

oc —i(m— ) bqS
xf dr r4j,(pr)o'S2(r), 4.10 xe A2 (6)- (5.4
0

wherep=|q’ —q|. The resulting operators can be easily rep-Consequently one obtains for tilematrix

Toona, @) =v2[1— 7,(—)%"1.4q";q'SA'[(t| T|t)|a)|aSA)

1 i ,
= 501=7,(2)% 1 X TR @I+ 70 ) I+ 7,(—) 1 CO'Sfip’ m—p')

1'1jm “

><Y|,#,(a')ei<m—ﬂ’>¢’d§;_ﬂ,,A,(0')% C(ISj;mm—p)Yi,(@e "M med3 (6). (5.5)

For q parallel to thez axis, i.e.,q=2z, one finds after some straightforward algebra the on-shell relation
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ﬂ'St

1"1j

X[14 7,(—)']

Here the relation

-, 20+1
Yirw (@)= \ Dl (¢ 6'0)

"+1 L o
(Dl (800

(5.7

was used together with an addition theorem Bofunctions.

Once the partial wave projectddmatrices are calculated,
we can use the the well-known connection to the partial

wave S matrices,

SS,JItZ 5|/|_7T|quIS,]|t, (58)

PHYSICAL REVIEW C 62 044002

Tion (99,6’ >=—[1 7)Y TN+ 7.(—)"]

1
ydh (67 —C(lSj 0A). (5.6)

a{vivamimyaq’|T|viv,mimya),

11 1 S ¢ 11 2
T2 Jar mimgs T\ 2 v

xXC

11 ) (11
EES,mlmon C §§S,m1m2A0

I +S+t]

X2 [1= (=)L~

il

X (81 —SH2I+1C(1S],0A,)

XC(I"Sj,Ao=Ag,AQ)Yirag-as(0' "),
(5.12

which are parametrized by the standard partial wave phasgne can choose’ =0 by puttingq’ into thex-z plane.

shifts.

In order to unambiguously define the normalization we

The inversion of Eq(5.6) can be accomplished by using also give the expression for the spin-averaged differential

the orthogonality relation

2m T % .
fo d¢f0 daslnGDlewaO)D'lfm(gbGO):

27,71 Oz
(5.9

In addition we take into account E.14) for the on-shelll
matrix and find after a few steps

Tl ) =4m{1— 7,(—)S" ] {1+ 9.(—)'' 17

V2l +121+1

O P TES:

xE C(1"Sj;:0A")C(IS]; OA)J d(cos6’)d . (6")

St

XT .7, (0,9,6"). (5.10

Finally we connect the physicdl-matrix element to the
partial wave projectecs matrices. We insert Eq5.6) into
Eqg. (2.28. In proceeding we use

DY\ (¢ 0'0)=(—)NAeh'd | (0') (5.1))

and an addition theorem d functions together with Eqg.
(5.7). Then we end up with the standard form

cross section for nucleon speciegv, as

do 5 m) 21
- @3] 7
2 P onnt "/T 2
X la{v1vomimyqq’ | T| vy v,mimyq) |
mym;myms

(5.13

VI. RESULTS AND DISCUSSION

In order to demonstrate the feasibility of our formulation
when applied td\N scattering, we present numerical results
for two NN potentials of quite different character, the
Bonn-B (Ref.[15]) and the AV18(Ref.[16]) potential mod-
els. For calculating theNN t matrix we solve the integral
equation, Eq(3.17). For S=0 this is a single, two dimen-
sional integral equation in two variables, for the parity even
and odd part, respectively. F@&=1 there are two sets of
coupled integral equations in two variables for the helicities
A=0,1. The¢" integration over the potential, E¢3.18),
can be carried out independently, and thus does not enter the
integral equation as separate variable. As it turns out, both
potentials only depend weakly on this angle, and one typi-
cally needs ten integration points in the case of Bonn-B and
16 in the case of AV18 to have sufficient accuracy. Typical
grids needed for th@” integration consist of 32—48 points
and for theq” integration of 48—72 points, depending on the
desired accuracy.
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TABLE I. Comparison of the nucleon-nucleon phase shifts cal- TABLE Il. Comparison of the nucleon-nucleon phase shifts cal-
culated from our three dimensional formulatigmelicitiy) with a culated from our three dimensional formulatighnelicity) with a
standard partial wave calculatigoarried out in momentum space standard partial wave calculatiqoarried out in coordinate space
for the Bonn-B potential at 100 and 300 MeV laboratory energy. [22]) for the AV18 potential at 100 and 300 MeV laboratory

energy.
E,ap=100 MeV E}.p=300 MeV
25t1 1, 3D helicity Partial wave 3D helicity Partial wave Ejap=100 MeV Ejap=300 MeV
25*1 1, 3D helicity Partial wave 3D helicity Partial wave

1s, 25.1928 25.1929 -8.1755 -8.1756

3p, 9.8046 9.8046  -11.4799  -11.4799 'Sy 25.99 25.94 -4.62 -4.60
p, -16.3131 -16.3126 -28.6946 -28.6922 *Po 8.69 8.69 -11.05 -11.06
3p, -13.4677 -13.4677 -26.3800 -26.3800 Py -14.19 -14.20 -26.18 -26.28
3s, 41.9858 41.9870 4.0667 4.0676 *Py -13.06 -13.07 -28.38 -28.49
D, -12.9847 -12.9846 -23.7182 -23.7181 ’s, 43.69 43.56 8.15 8.16
&1 -2.2360 -2.2357 -4.0268 -4.0265 °D; -12.08 -12.09 -24.80 -24.90
p, 3.3411 3.3411 7.4888 7.4888 €1 -2.49 -2.49 -4.38 -4.39
3D, 17.6710 17.6710 25.3616 25.3617 'D, 3.81 3.81 9.45 9.44
3p, 11.7356 11.7356 17.3981 17.3981 °D, 17.14 17.10 2511 25.02
°F, 0.7705 0.7705 0.5236 0.5238 °P, 11.02 11.00 16.96 16.91
&, 2.8402 2.8402 2.0166 2.0166 °F, 0.67 0.67 0.77 0.76
', -2.4397 -2.4397 -5.5865 -5.5865 €2 2.70 2.70 221 221
3F, -1.6484 -1.6484 -4.0097 -4.0097 'Fs -2.23 -2.23 -4.87 -4.88
D, 0.4203 0.4855 2.5719 2.5720 °F3 -1.35 -1.35 -2.51 -2.51
3G, -1.0105 -1.0105 -4.4051 -4.4051 °Ds 161 1.61 5.22 5.21
&3 -3.6604 -3.6604 -7.2233 -7.2233 °Gs -0.93 -0.93 -4.19 -4.20
G, 0.4092 0.4092 1.3556 1.3556 &3 -3.50 -3.50 -7.17 -7.16
3G, 2.2624 2.2624 7.3000 7.3000 'G, 0.40 0.40 142 1.42
°F, 0.4203 0.4203 2.4491 2.4491 ’G, 2.22 2.22 7.35 7.34
3, 0.1082 0.1082 0.5077 0.5077 °F4 0.45 0.45 2.75 2.74
€4 0.5575 0.5575 1.5509 1.5509 *H, 0.07 0.07 031 031

g4 0.51 0.51 154 1.54

The Cauchy singularity in Eq.3.17) is separated into a

\F;glrl]gp;ln\éilllzﬁitsaig ?Pedatée-(;uggtl(s)zbrt)gct:’tigﬂd It:ecgggcg;a:hewith Eqg. (5.8, with phase shifts calculated with standard
Bonn-B potential the integration interval for tlig integra- partial wave techniques. The resuilt for the Bonn-B phase

S ! . shifts is given in Table | for projectile energies 100 and 300
tion is covered by mapping the Gauss-Legendre points MeV. The agreement of both calculations is excellent. In
from the interval (0,1) via ' 9 '

Table Il the equivalent comparison is given between the
phase shifts calculated from the AV18 potential with our 3D
T formulation and a standard partial wave calculationthis

q:btar(Eu) (6.1 case in coordinate spac&he agreement is also very good,
however, not as perfect as in the Bonn-B case. The reason
for this slight discrepancy is presumably twofold. First,
we carry out a numerical Fourier-Bessel transformation
of the different potential functions of AV18. The solution

to the interval (0x). Typical values ofb are 1000 Me\&.
For the AV18 potential this type of integration map is less
useful due to the difficulty in handling the numerical Fourier ok ) _ X
transform for very large values af”, and the integration of the t-matrix _mtegral _equatlon requwles an evalua.uon
interval is cut off at 150 fm?, which is according to our ©Of the potential function on a grid of the size
experience sufficient. The Fourier-Bessel transform of théeXNg»XNgrXNg XN . For computational economy we
AV18 potential functions are carried out using Filon's calculate the potential functions on a fine grid for|q”
quadrature formulf21], which proves to be more accurate in —d| and obtain the points actually needed in the calculation
handling the strong oscillatory behavior of the integrands irvia interpolation. This procedure naturally leads to larger nu-
Egs. (4.6)—(4.10 for large values of the integration param- merical errors compared to a direct evaluation of algebraic
eterr, compared to, e.g., Simpson’s rule. expressions as is the case for Bonn-B. The differences can be

A stringent test for our numerics is a comparison of theclearly seen when comparing Tables | and Il. In both cases a
NN phase shifts, which we obtain from E(.10 together comparable grid for thé matrices is used.
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FIG. 1. The half-shelt matrix T7;(d,do., 6)
for go=375 MeVkL, corresponding tdt,,,=300
MeV, calculated from the Bonn-B potential. The
left side displays the real and imaginary parts of
T53%q,d0,6) as function ofq andx=cosé. The
right side showsTy°Yq,qo,6). The units of
To9(0,q0,6) are 107 MeV ™2,
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Next we want to display the angular and momentum deand backward peaks around the on-shell momentgn
pendence of the haIf—sheﬂImatricesTX?R(q,qo,0) as gen- Once far away frongy the momentum dependence is quite
erated from Eq(3.17). For the cas&=0 this is done in Fig. moderate. The parity-odd matrix also displays the the
1 for the Bonn-B potential for the parity-evéleft side and  strong peaks around the on-shell momentum, however, the
for the parity-odd caséight side. The parity-evert matrix ~ forward and backward peaks have opposite signs.
exhibits a similar behavior to the symmetrizemhatrix of the For the caseS=1 there are two coupled integral equa-
two-boson case studied in R¢6]. It shows strong forward tions as shown in Eq.3.17). Due to the symmetries of the

FIG. 2. The real part of the parity-even half-
shellt matrix Til,OA(q,qo,a) for go=375 MeV/c.
The helicitiesA’,A=0,1 are kept as subscripts
of T. All t matrices are calculated using the
Bonn-B potential and are given in units

1077 MeV~2.
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FIG. 3. Same as Fig. 2, but for the imaginary
part ofT,l\l,(j\(q.qo,e).

potential, Eq.(2.19), it is sufficient to consider only the he- dependence. We would like to point out that at 300 MeV
licity combinationsA’,A=0,1. The corresponding half-shell projectile energy partial waves have to be summed at least to
tmatrices,TX}tA(q,qo,e) obtained from the Bonn-B poten- J=6 to obtain a converged result for calculating, e.g.,
tial are displayed in Figs. 2-5. The real and imaginary part®©bservables.

show a rich structure as function of angle and for momenta A further question of interest is how strong the difference
smaller than 1000 Me¥/ For momenta larger than 1000 is between the half-shettmatrix amplitudes derived from
MeV/c all amplitudes show no or only a very weak angularthe two potentials presented here. In Fig. 6 the real and

FIG. 4. The real part of the half-shell parity-
odd half-shellt matrix Tg,lAll(q,qo,e) for qo
=375 MeVCk calculated from the Bonn-B poten-
tial. The description is the same as in Fig. 2.
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FIG. 5. Same as Fig. 4, but for the imaginary
part ofTX,lil(q,qo,G).
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imaginary parts Oﬂ'X?}\(Q-QO,@) for S=0 calculated with ~ similar to the ones derived from Bonn-B, others are quite
AV18 are shown. Of course along the lige= g the corre- dlfferent. The choices dlspl_ayed in Fig. 7 are being represen-
sponding amplitudes derived from the two potentials ardative. The upper twa matrices show a con5|der§ble differ-
identical. However, if one compares the detailed structures dfNC€ 0 the corresponding ones of Bonn-B, while the lower
especially the parity odd amplitudes, one sees that at larg@1€S are relatively similar. ,
momentag the Bonn-B amplitude shows more structure than N€Xt we tumn to the on-the-energy-sheﬂmaggf

the one derived from AV18. For the caSe-1 we only want ~amplitudes as given in Eq2.28 in terms of theT 7,
to show a selection of-matrix amplitudes calculated from duantities. Here it is interesting to consider

AV18. In general one can say that some amplitudes are very( v, v,m;madoq| T|v1v2MiMy0o)a >=|(m;mj| T|m;m,)|?,

cos 0

ol
3

4

FIG. 6. The half-shelt matrix T}"} (9,00, 6)
for qp=375 MeVk calculated from the AV18
potential. The left side displays the real and
imaginary parts offg9%(q,qo,6) as function ofg
and x=cosfd. The right side shows
T0s°%q,90,6). The units of T52'(q’,q0,6) are

107 MeV ™2
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FIG. 7. Selected half-shellt matrices
T7(9,90.6) for go=375 MeVk calculated
from the AV18 potential. The helicities\’, A
=0,1 are kept as subscripts ©f which is given

10°
oy Mevg in units of 107 MeV~2.

3
=

S

oSS

i

=

wherem= + 3. If one takes rotational symmetry and parity VIl. SUMMARY
invariance into account, one ends up with six independent

, Two nucleon scattering at intermediate energies of a few
amplitudes,

hundred MeV requires quite a few angular momentum states

in order to achieve convergence of, e.g., scattering observ-
(++ [T+ +)=(==T]= =),

(CH T = =) =(— —[T]++),

(=Tl ) =( =+ [T 4= = =T =)
=—(=+[T--),

(Tl =) = [T 4= —(= = T] )
=—(==ITI-+)

(H= T+ =)=(= +[T|-+),
(= +[TI+=)=(+ =TI +). 6.2

The six amplitudes given above are displayed in Figs. 8—10
for Bonn-B as function of energy and c.m. scattering angle
cosfh. Though both potentials are only meant to be applied
below the pion production threshold, we show the on-shell
amplitudes up to 1 GeV. Since we do not work with partial
waves, a calculation at higher energies takes the same effort
as one at very low energies. The sum over all indice®f

the on-shell amplitudes shown gives the spin averaged dif-
ferential cross section as indicated in £§.13. We would

like to remark that these on-shell amplitudes can also be

obtained from the partial wave project&matrix elements FIG. 8. The absolute value squared of the physical on-shell
as indicated in Eq(5.12. We used this relation for numeri- matrix elements(m;m,|T|m;m,)|? in units 10 * MeV~*. The
cal tests of our formulation. values ofm=+ 1 are abbreviated as.
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FIG. 9. Same as Fig. 8, but for differemt combinations.
FIG. 10. Same as Fig. 8, but for differemtcombinations.
ables. This is even more true for the scattering of three or
more nucleons upon each other. An alternative approach tals represented via Wolfenstein operators. We demonstrate
the conventional one, which is based on angular momenturthe feasibility and accuracy of our three dimensional formu-
decomposition, is to work directly with momentum vectors, lation by projecting the on-shetimatrix elements on angular
specifically with the magnitudes of the momenta and themomentum states and compare the resulting phase shifts
angles between them. We formulated and numerically illuswith those obtained from standard partial wave projected
trated this alternative approach for the casé&bfscattering  Lippmann-Schwinger equations. The agreement is very good
using two realistic interaction models. The momentum vecand demonstrates the numerical reliability and accuracy of
tors enter directly into the scattering equation, and the totabur method.
spin of the two nucleons is treated in a helicity representation The complete set of half-shalimatrix amplitudes at 300
with respect to the relative momenta of the two nucleonsMeV laboratory energy is displayed for the Bonn-B potential
Using rotational and parity invariance one finds in the tripletto give an impression of their rich structure in momentum
caseS=1 a set of two coupled Lippmann-Schwinger equa-and angle variables. Nevertheless, the resulting angular de-
tions for each parity and each initial helicity state. Becausgpendence is smoother than the individual contributions re-
of symmetry properties only two of the originally three ini- sulting from the higher angular momentum states.
tial helicity states need to be considered. In the singlet case In some representative examples it is shown that those
S=0 there is only one single Lippmann-Schwinger equatiorhalf-shell amplitudes can differ significantly depending on
for each parity. The Lippmann-Schwinger equatido®-  the potential employed. Of course, the observable quantities,
coupled and coupledare two dimensional integral equations the on-shell amplitudes, are equal since they describe the
in two variables for the half-sheflmatrix and three variables sameNN data base. We display the magnitudes of the physi-
for the fully off-shell t matrix, namely two magnitudes of cal t-matrix elements derived from the Bonn-B model as a
momenta and one angle. Though we start with a three dimerfunction of scattering angle and energy. Though ¢ po-
sional integration, one angle can be integrated out indepenential is tuned only up to about 350 MeV our results are
dently, so that we are left with a two dimensional integralshown up to 1 GeV to demonstrate the ease by which also
equation. high energies can be handled in our approach without partial
A formulation without angular momentum decomposition waves.

is best suited for interaction models which are given in an We would like to emphasize that the scheme developed
operator form. In this work we considered the Bonn-B andhere is algebraically very simple to handle provided poten-
the AV18 potentials. The helicity representation of the po-tials are given in an operator form. This is, e.g., the case for
tentials is given in the six linear operatafy of Eq. (3.6),  all interactions developed within a field theoretic frame
depending on spin and momenta, which are most suited fowvork. In addition, the solution of two dimensional integral
our formulation. For completeness we also give the potenequations does not pose any difficulty for modern computers.

044002-14



NUCLEON-NUCLEON SCATTERING IN A THRE . .. PHYSICAL REVIEW C 62 044002

This work is intended to serve as starting point towarddow the pion threshold. Future applications at higher energies
treating three-nucleon scattering without partial waves. Irrequire new techniques.
Refs.[6,7] three-nucleon bound and scattering states have
already been treated without partial waves, however, neglect- ACKNOWLEDGMENTS

ing spin degrees of freedom. In the present work we show at Tpis work was performed in part under the auspices of the
the two-nucleon level that the inclusion of spin degrees opeytsche Akademische Austauschdienst under Contract No.
freedom is quite readily possible. Future work needs to coma/96/32258, the U.S. Department of Energy under Contract
bine the experience with tHeN system gained here with the No. DE-FG02-93ER40756 with Ohio University, the NATO
three-body calculations without partial waves of R€67].  Collaborative Research Grant 960892, and the National Sci-
This will be an important step forward since preseNtsgat-  ence Foundation under Grant No. INT-9726624. We thank
tering codes based on partial wave methods reach the limit ahe Computer Center of the RWTH Aachen for the use of
today’s supercomputers already at intermediate energies b#eir facilities under Grant No. P039.

APPENDIX A: THE TRANSFORMATION MATRIX A

In this appendix we explicitly give the transformation from the Wolfenstein operators given i Efjsto the operators
Q; of Egs.(3.6), i.e., the matrixA;; indicated in Eq.(3.7). The matrix is explicitly given as

1 0 0 0 0 0
0 ia —2i 2i 2i —2i
7 ya a % va
2 -2
-1 1 0 v 2 0
a’ a2
A -1 —9'92° 29'(Q'y+a) 29’9 —29'q 2q(qy+q’) |- (A1)
ye vC c yC yc
1 g'ga® 29'(q’y—a) —29'd  2d'q  2q(ay—q’)
7b 7b b 'yb ’yb
_2 12__ N2 ’2 B 2
e e e

The matrix elementgy; are scalar functions. We calculate

_i29 ’ 3
detA= 2( o ) , (A2)
yWi-y"\la"+dl[a"—q
and find the inverse matriil&i]1 to be
1 0 0 0 0 0
3 0 1 e? e? —(9'?—g?e
2 2 8a2q12q2 8a2q!2q2 8a2q72q2
1 c b e
- 0 0 =
2 8q/2 8q/2 8q/2
A"t= ¥ —ia 0 c -b 0 : (A3)
2 4 89'q 89'q
1+9?> —iay -—a? fc fb ge
4 4 4 16 16 16
1 b —e
- 0 0 = _ -
2 8q2 8q2 8q2
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For both matrices we introduced the abbreviations

=V1-%2, b=0q'2+q*-2q'qy, c=q'?+q¢’+2q'qy,

1 1 1 1
e= a2+ )2-4q'%q%y%, f=—+—, g=———.
a2 q a2 q

APPENDIX B: THE OBE POTENTIAL AS FUNCTION OF WOLFENSTEIN OPERATORS

In terms of the Wolfenstein operatovg; of Eq. (3.1, the Bonn-B potential takes the following form:

, gps \/7 Fps[(q - 2] Ops
V = B1
ps(d",Q) = (2m) %t E(q QP WW (B1)
mFi(a' -a? O
! — 2
V«(a',a) (2m )34m \f\fE(q CrrmE WW (B2)
F2L(a"~ )] (950,,+29,f,0,+f0y)
V(a0 = —— \f\/ﬁ ; v (83)
(27)%4m? q’'—q) +m W'wW

wherem denotes the nucleon mass ant= Vm?+qg?. The operator!‘:)psysyv are given as

L1
Ops= = ZLW =W)%(q'?+0%+20" qy)Wat (W' +W)*(q'?+ 6~ 20" qy)Ws] — (W2 = W) (q'*+0%)* - 40" *a”y* W,

(B4)
Os= —(W'W—=q'qy)?W;—i(WW—-q'qy)q'qv1— y*W,+q'2q%(1- Y ) W3 (B5)
6: 12\\ 2 12422 ’ ’ 12~2 212 —i(3W’ ’ r\/ﬁ
o= (W WoHq" g%y +4W'WQ' qy+ W' g+ Wq' )W, —i(SW'W+q'qy)q'qyl—y"W;
—[1— 92+ (W' 2q?+W2q' 2= 2W' W qy) Wa+| (W'2+W?—2W'W)
/2+ 2_2 ! 1
. (q _ qz(l qztjy) (W/2q2+W2q/2_2W/Wq/qy) Z(q/2+q2+2q/q,y)w4+ (W/2+W2+2W/W)
a(1-vy
(a’?+9*+29'qy) , NI
. (WP W 2= 2W WA gy) | 70"+ 07— 20" gy) Wae— | (W' 2= W)
q(1-v9)
(a"*-9?) 1242 2012 N ! 1 —r— 7222
T gLy W Wt 2w W ) 7V(a"+ 0% =409y W, (B6)
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- 2m—-E'—-E W' +W 2m—E'+E 2m+E’'—E
Ovt:[( )W/2w2+( )q/2q272+2q’qw,w'y( )W/2q2+( )W

212
m m 2m 2m 9" |\Wa

JwW+w) , , . (W' +W) ,. |[@m-E'+E) . (2m+E'-E) . .
—|[Tq qy+2W W}q qvl—y’W,— (A=) | o Wt ———— W
(2m—E'+E) . (2m+E'—E) (2m—E’+E) W'? (2m+E'—E) W?
—2W'Wq'qy| Wat+{ ——— W2 — W 2WW— [ ———— —  ——
2m 2m 2m qr2 2m q2
'24+9%-2q’ 1 2m—-E’'+E 2m+E'—E
—o2ww—r ><(q q°-29'97) —(9'2+09%+2q9'qy) W4+ QWQ%—;W%ZW’W
q'q (1= 4 2m 2m
2m—E'+E) W2 (2m+E’'—E) W? '24+9%+2q’ 1
- ¥—+¥——2W’Wl (a7 ra297qy) —(q'?+0g°~29'qy) Ws
2m q'2 2m 9 q'q (1-%) 4
(2m—E'+E) . (2m+E'-E) (2m—E’'+E) W'? (2m+E’'—E) W?
- W'2— W— — —
2m 2m 2m q,2 2m q2
12__ ~2 1
—oww 29T 2)]—J<q'2+q2>2—4q'2q272w6 ®7)
q'ql (1—»% |4

()tt=([5m2—4m(E’ +E)+3E'E+q'qy]W *W+[5m*+4m(E’ +E)+3E’'E+q'qy]q’?q*y*+(2m*—4E'E—-E'*~ E?

2m—E’+E)2 2m+E’'—E)2 1
—2q’qv)W’Wq’qy+%q2W’2+ %q’zw2 le—i{(sz—E’E—E’z—Ez
m

—q'Qy)W’W+[5m2+4m(E’+E)+3E’E+q’qy]q’qy}%\/l— y* W,—{[10m*+8m(E’+E)+6E'E+2q'qy]
m

w.
X(1—y?)+[(2m—E'+E)?W'2g?+ (2m+E’ —E)?W?q'2—2[4m?— (E' — E)Z]W'Wq'qy]}4—32
m

12 2

+{(2m—E'+E)’W'?+(2m+E’ — E)*W?— 2[4m*— (E' —~E)*]W'W—| (2m—E'+E)*— +(2m+E'-E)*—
q’ q

i
q'q

—2[4m?>—(E' —E)’]W'W

/2+ 2_2 ! /2+ 2+2 !

(Q""+a°—29'qy) [ (a'"+a°+29'qy) Wt | (2m—E' + E)2W'2
(1-9%) 16m?

12 WZ

+(2m+E’'—E)?W?+2[4m?— (E' —E)?’]W'W—| (2m—E' + E)z—,2+(2m+ E'— E)2—2
q q

(a'2+09°~29'qy)
(1-9°) 16m?

(a'?+q*+2d'qy)

—2[4m?— (E' ~ E)2 W' W—— WS—[(Zm—E’JrE)ZW’Z
a'q
12 2

W
—(2m+E'—E)*W?—| (2m—E'+E)?—— +(2m+E' —E)*— —2[4m’— (E’ —E)Z]w'wl
q’ q a'dq

12__ ~2 /2+ 22_4/222
L q)]«q FB) GRS 8

(1-9%) 16m?
For the actual calculations the above given terms are reexpressed in terms of the ofErei@Q; = = ;A lWJ- and inserted

into the LS equatiori3.17). These reformulations are straightforward, and can, e.g., be carried out via symbolic manipulation
packages.
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APPENDIX C: THE ARGONNE AV18 POTENTIAL AS FUNCTION OF WOLFENSTEIN OPERATORS

In terms of the Wolfenstein operatov¥; of Eq. (3.1), the AV18 potential takes the following form:
ver(d', )= W1 f drr?jo(prvg(r), (C1)

2 + 1 /4+8 1222 /22+42
1(d'—a)(d q)W__(q q 10q a7\

vsda,a)=| W
° A grq(yp-y 4 q'%q’(y*~1) °
1\(q'*+9%)*—49'°q"y*(q'*— )
*t27 42021 2772 - f drr?j(prjvsyr), (C2
vda’,q)= Zq qyl- 7W f drrj1(privedr), (C3
1 2 1242 2 L1 (g 12
VB =AW - | drenein-Ta Ay |“artigonon,  ca
1(a"+9*9' —ya)(q' y— Q)
VST’ )= quwl——q V1= YWyt 2q "gYWs— g pPTEREY W,
_l@-fatan@tay 1 7@ -g)Va gD 49ty
8 a'd(¥*-1) 8 a'd(»*—1) °

1 1 o 1 1 o
= f A3 1(pr)0'2() + 2 7202y~ 1) (Wt W) = f drri,(envi2(r).  (CH)
w2 p Jo 2 22 p2 0

In our actual calculation the potential enters described by the set of opefhtorfsEg. (3.6). In order to display the relative
simple form the potential takes in these operators, we also want to explicitly show them:

1 (=
V@ = 0 [ arrigpnug o), co
27° Jo

1
v‘ST(q',q)=[6q’qﬂ4+2q’2(02—393)+2q2(ﬂz—396)—q’qyﬂz—3q’q;

11 (=
><(92_293._29~6+295)}_2—2 j drr?j,(prvs(r), (C7
27 pc Jo
UISST(Q',Q)___Q Q[294 yQr+ — (92 2Q03— 296_"295)}__ f drrj,(pr)v! Sr(r), (Cy
Ve =0/ ave s [ arenen - e g m—— |Cartisonon, o

1s2/ 7 _E ’ Q Eﬂ 0.—20.—-20 i% ” 3; I1s2
vst(d aQ)—zqq Yo+ 7( 2+ 2Q05—203—20) 2m2 b Od”Jl(P")U 7(r)

1 202 2 L1 (= Is2
—5d'"q [(1_7)92+2794_295]ﬁp7 odrr J2(pr)vst(r). (C10
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