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Motivated by the recent results for DIS off nuclei from the HERMES experiment we have performed a
systematic study of shadowing for transverse and longitudinal photons. We found that the coherence length
which controls the onset of nuclear shadowing at smgjlis much longer for longitudinal than transverse
photons, and is much shorter for shadowing of gluons. The light-cone Green function approach we apply
properly treats shadowing in the transition regigs)>0.01. It also incorporates the nonperturbative effects
and is legitimate at smafD?. We calculate nuclear shadowing and compare with data from the HERMES and
NMC experiments. Although we expect different nuclear shadowing for longitudinal and transverse photons,
numerically it cannot explain the strong effect observed by the HERMES Collaboration.

PACS numbd(s): 13.60—r, 12.40.Vv, 25.30.Mr

[. INTRODUCTION given Fock componeptf the coherence time substantially
exceeds the nuclear radius.
Recently the HERMES Collaboration released daidor Equally important for shadowing is the transverse separa-

shadowing in inclusive positron scattering off nuclei at me-tjgn of theaq. In order to be shadowed t@} fluctuation of
dium high energies an@?. The results expose few unusual the photon has to interact with a large cross section. As a
features. The cross sections on nuclear targets, nitrogen, apgsylt of color transparendy —9], small size dipoles interact
helium-3, at smalkg;~0.02 andQ*< 1 GeV* were found to  only weakly and are therefore less shadowed. The dominant
be substantially more shadowed than one could expect exontribution to shadowing comes from the large aligned jet
trapolating available data at high€? and energies. The configurationg 10,5] of the pair.
observed enhancement of shadowing w@fl is also un- The mean lifetime of ajq fluctuation in vacuum calcu-
usual. Interpreted in terms of different shadowing for ransy4teq in Sec. 11 A turns out to be zero for transverse photons.
verse and longitudinal photons it was concluded in REf.  Thjs strange result is a consequence of an incorrect defini-
thato is enhanced, while is suppressed on nitrogen by at tjgn.
least a factor of two compared to deuteron target. In Secs. IIB and Il C we propose a more sophisticated
These data drew attention to the fact that very few datareatment of the coherence length or the fluctuation lifetime
are available in this kinematical region. Moreover, no reli-relevant for shadowing. The mean coherence time foqthe
able theoretical calculations are done yet. The approachock state is evaluated using the perturbative and nonpertur-
based on the nonlinear evolution equatioi&3] needs bative wave functions. The salient observation is that the
knowledge of the nuclear parton distribution at a medium-coherence length is nearly three times longer for longitudinal
hard scale which is to be guessed, and is anyway outside thban for transverse photons. At the same time, both are sub-
kinematical range we are interested in. More promising is thetantially —different from the usual prescription
intuitive approach treating nuclear effects in the spirit of vec-=(2meBj)*1. The coherence length is found to vary
tor dominance modelVDM) [4] as shadowing for the total steeply withQ? at fixed Xgj and smallQ?.
cross section of hadronic fluctuations of the virtual photon The coherence time for|a_|qG> Fock component control-
(see, e.g., Refl5]). However, the perturbative QCD treat- |ing nuclear shadowing for gluons is calculated in Sec. Il D.
ment of the photon fluctuation can be applied only at highit turns out to be much shorter than ffgq) components,

Q?, while VDM is sensible only at smad*—0. therefore, the onset of gluon shadowing is expected at
Progress was made recenf§] on the extension of per- smallerxg; than for quarks.
turbative QCD methods to the region of sm@ff where the The transition region between no shadowinggt~0.1

quarks in photon fluctuations cannot be treated as free. Thgnd saturatedfor the |qq) component shadowing at very
nonperturbative interquark interaction was explicitly intro- small xg; is most difficult for theory. The impact parameter
duced and new light-congg wave functions were derived representation assigns definite cross sections to the fluctua-
which recover the well-known perturbative ones at laQife  tions, but no definite mass which one needs to calculate the
Nuclear shadowing is controlled by the interplay betweernphase shift. On the other hand, the eigenstates of the mass
two fundamental quantities. The lifetime of photon fluctua-matrix cannot be associated with any definite cross section.
tions, or coherence time is one. Namely, shadowing is posthis controversy was settled within the light-cone Green
sible only if the coherence time exceeds the mean interfunction approacf11-13. In Sec. lll we rely on this ap-
nucleon spacing in nuclei, and shadowing saturétesa  proach to calculate nuclear shadowing in the kinematical re-
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gion of the HERMES experiment. The nonperturbative light- - Qo -

cone wave functions and the realistic phenomenological \Ifag4 (rT,a)zﬁxoT'LxKo(erT). (5)
dipole cross section are important at |@¢. We are unable

to reproduce the data from the HERMES experiment, al-

though our parameter-free calculations are in good agreddere x and x are the spinors of the quark and antiquark,
ment with NMC data. We do not expect any dramatic en-respectively.Kq(er+) is the modified Bessel function. The
hancement of the longitudinal cross section compared to theperatorsO™" have the form

transverse one. At the same time, the calculated transverse

cross section for nitrogen is shadowed by about 20% only,

much less than the HERMES data need. OT=myo-e+i(1-2a) (o-n)(e-Vy)+(oXe)-Vr,
(6)
Il. THE MEAN COHERENCE LENGTH
A. The lifetime for a perturbative qq fluctuation in vacuum O'=2Qa(l—a)o-n, (7)
A photon of virtuality Q% and energyr can develop a
hadronic fluctuation for a lifetime where the two-dimensional operat¥ acts on the trans-
verse coordinaté;; n=p/p is a unit vector parallel to the
2v P max photon momentume is the polarization vector of the pho-
l.= = =P I7%, 1D ton.

2 2 _
+M< Xgjm TR . . .
Q B The normalization integral in the denominator in the

where Bjorkenxg;=Q%2my», M is the effective mass of right-hand side of Eq(4) diverges at largeky for trans-
the fluctuation, factor P=(1+M?%Q? 1, and 17 versely polarized photons, therefore we arrive at the unex-
! T —
=1/myxg;. The usual approximation is to assume tMﬁ pected resul{P ) ;=0
~Q? sinceQ? is the only large dimensional scale available.
In this caseP=1/2. B. Coherence length in nuclear medium

The effzectivez mass of a noninteractimgand g is well This puzzling conclusion can be interpreted as a result
definedM <= (mg+k7)/a(1-a), wheremy andkr anda  gverwhelming the fluctuations of a transverse photon by

are the mass, transverse momentum, and fraction of the Ilgh’t]eaquq pairs with very largek;. Such heavy fluctuations
cone momentum of the photon carried by the quark. Theremdeed have a very short lifetime. However, they also have a
fore, P has a simple form vanishing transverse size~ 1/kt and interaction cross sec-
tion. Therefore, such fluctuations cannot be resolved by the
Q?a(l1—a) interaction and do not contribute to the DIS cross section. To

P(kr,a)= EIPTI (2)  get a sensible result one should properly define the averaging
T procedure. We are interested in the fluctuations which con-
where tribute to nuclear shadowing, i.e., which interact at least
twice. Correspondingly, the averaging procedure has to be
5 2, 2 redefined as
e=a(l-a)Q°+my. €©)]
To find the mean value of the fluctuation lifetime in vacuum (f(y*—qq)|P(kr,a)|f(y*—qq))
one should averag€) over ky and o weighted with the (P)shad™ — — ' (8)

* *
wave function squared of the fluctuation (f(r* —aa)lf(y* —aa)

where f(y* —qq) is the amplitude of diffractive dissocia-

7* r* i
(P :<\qu|P(kT’a)|\qu> 4) tion of the virtual photon on a nucleoyp* N—qq N.
vac ( 1*|q,1*> ' Thus, one should include in the weight the interaction

Cross section squaredg (rv,s), whererT is the transverse

The perturbative distribution function for thgy has the  separation and= 2va Q%+ m?. Then, the mean value
form [14-16, of factor P(a,ky) reads

! 2 2 Tl s 1k N = - - L - N
da | dor dro[W ~(r2,a)[* o (r2,8)P(ro—ry,a)W 5(ry,a) o q(re,s)
pTy= =2 9
e ' d2r | W 5 (F a)o(r,s) 2 ©
o ¢ qa (M@ Tqq(l
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with - . - Q%a(l—a) - -
P(fz—fl.a)ZTKo(8|rz—r1|)- (11

2
-~ - - T .. -
P(ro=ry,a)= J Wext{—l Kr+(r2=ry)JP(akr). As a simple estimate for the mean val{@ one can use
(10) th'e smallr; approximation for the dipole cross section
o a-q—q(rT,s)=C(s) r%. The factorC(s) does not enter the re-
Using expressiolt2) one obtains for a noninteractingy  sult since it cancels in Eq9). We obtain for transverse and
pair, longitudinal photons

fold a(l—a) a{[a2+(1—a)2] / €5+ Imi(1-a) al 68}

2 Q2
(PTy= . ; (12)
2 2 4 , 2.2, 6
Joda{[a +(1-a)?]/ € +§mq/6}
7szdoz(l a)®adl e
(Phy= : (13
f da(l—a)?a?l €8
|
respectively. rq, at smallr; the dipole cross section rises steeper with
We calculated the factofP™') as a function ofQ? at  energy than at large separations:
Xg;=0.01 which is close to the minimal value in the HER-
MES data. We used the effective quark mags=0.2 GeV ré(s) )
which corresponds to the confinement radius and allows us  “o(S) =0 (S)| 1 < 2, | (rew==0.44 fnt,
to reproduce data on nuclear shadowirdd]. Our results ch (15)

depicted in Fig. 1 by dotted lines are quite different from the
naive estimateP™=1/2. In addition,P" turns out to be \yhere
substantially longer thaR . This indicates that a longitudi-
nally polarized photon develops lighter fluctuations than a aP(s)=23. 6(s/sp)%% mb. (16)
transverse one. Indeed, the effective mislsss maximal for
asymmetric pairs, i.e., whe or 1— « are small. However, With this choice ofo{}(s) one automatically reproduces the
such fluctuations are suppressed in longitudinal photons biotal cross section for pion proton scattering, while the pa-
the wave function(7). rametrization from Ref[17] cannot be applied to hadronic
The dependence G(ﬂDT L) on xg; depicted in Fig. 2 for  cross sections. Thus, cross sectit) is better designed for
Q?=4 and 40 GeV is rather smooth Therefore, the cohertow and medium Iarg@2< 10-20 GeV, while at highQ?
ence length varies approxmately Iqsc 1/Xg; .- the parametrizatiopl7] works better.
The simple approxmatlorar— och is not realistic since Equation(9) can be represented in the form
nonperturbative effects affect the large-behavior. Moti-
vated by the phenomenon of confinement one should expect T NTE
that gluons cannot propagate far away and the cross section (P >_ﬁ' (17
should level off at large . We use the modificatiof6] of

the energy dependent phenomenological dipole cross sectigfhe angular integrations in Eql17) for the denominators

(rT s) suggested in Ref17], DL are trivial and for the numeratod™" one uses the
relation[18]
rz *
N L .
Uqa(rTaS):UO(S) l—ex[{ - rS(S))l’ (14 Ko(8|r1_|'2|):Ko(é‘r>)|o((‘3r<)‘*’2”12:1 e'm?

XKm(er=)In(ero), (18)
where rq(s)=0.88 (s/sg) %% fm, s,=1000 Ge\. This
cross section is proportional t¢ at smallrt—0, but is  where r-=max{y.r,), r-=min(ry,ry), CoOSG=ry-r/(ryr),
constant at large;. The energy dependence correlates withand | ,(z) are the modified Bessel functions of first kind

035204-3



KOPELIOVICH, RAUFEISEN, AND TARASOV

1.0

0.9

0.8

0.7

0.6

0.5

1A

0.4

0.3

FIG. 1. Q2 dependence of the factoP)=1./I"* defined in Eq.
(1) at xg;=0.01 forqq fluctuations of transverse and longitudinal
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FIG. 3. Q? dependence of ratio df!) calculated with Eq(9)
andm,=200 MeV tol /" calculated with Eq(1) andM=m, .

photons, and fogqG fluctuation, from the top to bottom, respec-

tively. Dotted curves correspond to calculations with perturbative NT=2 sz'lda' a(l—a)fxdr r frzdr r {m2 Kz(sr )
wave functions and an approximate dipole cross secmﬁ. P 0 0 2°2 0 1710 g roveh 2
Dashed curves are the same, except the realistic parametrization

(14). The solid curves show the most realistic case based on the
nonperturbative wave functio{25). The coherence length for glu-

ons calculated in Sec. Il D is also shown.

(Bessel function of imaginary variabldt is clear from this

X Ko(ery) lo(ery) +[a?+(1— a)?] e? K3(ery)

XKy(ery) li(erp)} op(s.ry) op(S.ra), (19

DT= fldafxdr r{mi K§(er) +[a?+(1-a)?]e?Ki(er)}
0 0

relation that after angular integration only one term in the P

sum gives a nonvanishing contribution. We finally obtain for

transverse photons
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FIG. 2. xg; dependence of the factoP ™) and(PC®) defined in

- <pl>

e

XBj

0.1

X[oyq(sn)12, (20)

and for longitudinal photons

o r
N;:ZQZJ da a3(1—a)3f0 drzrzfozdrlrlKg(srz)

><Ko(srl)lO(Srl)agla(s,rl)aza(s,rz), (21

D'F;=JdaJ:drraZ(lfa)ZKS(sr)a(’;‘q%s,r)z. (22

The factor(PTt(x,Q?)) calculated in this way is de-
picted by dashed lines in Fig. 1 as a function@# at Xgj
=0.01. It is not much different from the previous simplified
estimate demonstrating low sensitivity to the form of the
dipole cross section.

It is instructive to compare our predictions with the VDM
which is usually supposed to dominate at smaﬂsmi.
The corresponding coherence lengff" is given by Eq(1)
with M=m, . The ratio ofl{ calculated with the nonpertur-
bative wave function toy°™ as a function of? is shown by

Eq. (1) corresponding to the coherence length for shadowing ofSOlid curve in Fig. 3. It demODStrateSZan unexpectedly preco-
transverse and longitudinal photons and gluon shadowing, respe€ious violation of VDM at quite lowQ“. We also calculated

tively. Solid and dashed curves correspon®fo=4 and 40 Ge¥.

I with the perturbative wave function, but with a massive
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quark. With my=200 MeV it mimics the nonperturbative In the limit of vanishing interactioa(«)— 0 the wave func-

effects quite well, as one can see from Fig. 3. tions (25) recovers the perturbative onés.
Note that ink; representation the free Green function
C. Propagation of interacting qq G%q(zl,Fl;zz,Fz) integrated over longitudinal coordinate is

Although the quarks should be treated perturbatively as$imPply related to the coherence length, if one performs an
nearly massless, at the end pointoor 1—a—0 the mean analytic continuation to imaginary tine— —iz

qq transverse separation;~1/e becomes huge-1/mj.

This contradicts the concept of confinement and should be j"’d . Gg(z F1iZ.0))
regularized either by explicit introduction of a nonperturba- L2 T Tt
tive interaction betweei and g [6], or as is done below,
introducing an effective quark mass.

Apparently, it is not legitimate to use the perturbatgeg
wave functions(5),(6) at low Q? where the nonperturbative

interaction betweeiq anda becomes important. This inter-

action squeezes tigg) wave packet, i.e., increases the intrin- rpis is easily generalized to include the nonperturbative in-

sic transverse momentum and the effective mass of the paiferaction. Then, making use of this relation one can switch in

By contributing to the effective mass of tiug|, the nonper-  Eq. (9) to r representation and express the mean coherence

turbative interaction breaks down the validity of the kine-|ength via the Green function. Then, we arrive at new ex-

matical expression foM or Eq.(2). Even at highQ? at the pressions for the functiond™" andD ™" in Eq. (17),

end pointsa or 1— a— 0 the meamq transverse separation

rt~ 1/e becomes huge-1/m, and nonperturbative correc- 1 - \

tions may be important. One can try to mimic these effects NT'LII daf d?ry dzrz[q’g('] (r2,a)]* 0(r2,9)

by an effective quark mass, as is done above, but one never 0

knows how good this recipe is. To take the nonperturbative

effects into account we use the light-cone Green function X

formalism suggested if6] generalizing the perturbative de-

scription[11] of nuclear shadowing in DIS. % \PLL(F @) oN (r1,s) 27)
Propagation of an interactirgg pair in vacuum with ini- qq + 17/ gt 1

tial separatiorfl at the point with longitudinal coordinatg

up to pointz, with final separatiorfz is described by a DT,L:fldaf d2r |‘I'T*L(Fa)oN%r,s)|2, (28)

Green functionGgq(r,.2,:r1,2;) which is a solution of a 0 @A

two-dimensional Schiinger equation

z

d?kt . L
= f 2 ﬂ_)zexq_' Kr-(ro—ry)]le(kr,a).

(26)

f dz, Gva_C(Fl,Zliljzyzz)
2 ag

where the nonperturbativgq wave functions are given by

d - -
i Gaq (217122, 2) Eq. (25).
2 For a harmonic oscillator potential the Green function is
EZ—Ar2+ a*(a)r2 known analytically

2va(l-a) Gﬁc(21,F1;Zz,Fz)- (23

a’(a) e’ Az
2rsiniwaz) 0 2va(l-a)

. . . . . Gv@(F2a21;F1722):
The nonperturbative oscillator potential contains function 99

a(a)=ap+ta; @ (1— «) with parameters, anda; fixed by 5
d_ata[6]. Data on total phqtoabsorption cross sectign, diffrac- % exp{ _ @) (ri +r§)cotr( w A7)
tion and nuclear shadowing are well described with 2
a%(a)=v1¥112 MeV)2+(1—yp)-15 2ry-f,
a sinhlwAz) ||’ (29)
X (165 MeV)?a(1—a), (24)
wherev is any number satisfying<Qv<1. whereAz=z,-z, and
The Green function allows us to calculate the nonpertur-
bative wave function for @q fluctuation a(a)?
@= va(l-—a)’ (30
TL, > | ZgVaem (2 THT.L
Vi (f,a)=4—(1_)f dz (x O x)
mpatlza)) - is the oscillator frequency.
vac,_ - ._ = o The light-cone wave function@5) modified by the inter-
% Gyq (Zl’rl'ZZ'r2)|'1:°; Tp=r (25 4ction can now be calculated expliciflg]
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[Wo(e M)W (e, \T )
=Z% aen MEDF (e, M,F)Do(e,\,T)
+H[1-2a(1-a)] B} (e, \,r1)- Di(e,\ 1),
(31)
RZTCRMMI A FRERWEY
=ZiaenQa®(1— a)?®f (8,\,11)Po(e,\,F2),
(32

where the parameter

_ 2a%(a)

1
82

(33

PHYSICAL REVIEW G52 035204

(36)

2
xexr{ @ (za) (r?+r3)cothw Az)

1 0 ) N
NL=meB,f daf drlrldrzrzf dAZ[W (g, \,1p)]*
0 0 0 44

2
X\PL N - N N &
aq( & ,rl)oqqﬂzis)Uqa(rl’s)sinh(wAz)
g2 Az a%(a)ryr,
xexg — lo| &
2va(l-a)| 9 sinhwAz)

: (37

2
Xex;{ - #(r%r%)cotdw AZ)

LT_ ! - T.L 7y N 2
D da | drr|¥ (g,\,r)o, (r,s)]° (39
0 0 aq aq

describes the strength of the interaction, and the functionkor & dipole cross section that levels off similar to Bigl) at

®y 4 read

D (8,N,F)Do(&,\,15)

"4 W)zjo AU dtGERND sinhvw)

)\szr% )\szrg
Xexpg — 7 coth(\t) —t— 7 cothlAu)—u|,

(34
B (8,0,17)- Dy(2,\.12)
1yl (=
= o sz du dt
(2m)? rr5Jo
)\szri )\szrg
Xexpg — 7 coth(\t) —t— 7 coth Au)—uj.
(39

It is easy to verify that in the limit of vanishing interac-
tion, \—0, the nonperturbative wave functions reduce to th
perturbative ones. Compared to the expressiofpm Ref.

[6], we have integrated by parts over the paramater t,

respectively. This considerably simplifies the expression.
Now we have all ingredients which are necessary to cal

culate Eq.(17). Two from the eight remaining integrations,

over the angles, can be performed analytically. We obtain

1 o0 [ R
NT=my XBJ daf dryry dr2r2J dAZ[W (e \,1)]*
0 0 0 qq

2
X\I,T N - N N L&)
aql& ,rl)UqE(rZ'S)‘Tqa(rl’s)sinf’(wAZ)
g?Az a’(a)rqr,
X exp — lhl 5
2va(l-a)| | sinhwAZ)

large separations the integrations overandr, can also be
done analytically. However, we prefer to work with the more
general expressions that hold for arbitratg'}a(s,r), as long
as it depends only on the modulus f We perform the
remaining integrations numerically. The results for
125(x,Q?) are shown by solid curves in Figs. 1 and 2.

D. Coherence length for gluon shadowing

Shadowing in the nuclear gluon distributing function at
smallxg; which looks similar to gluon fusio®G— G in the
infinite momentum frame of the nucleus, should be treated in
the rest frame of the nucleus as shadowing for the Fock
components of the photon containing gluons. Indeed, the first
shadowing term contains double scattering of the projectile
gluon via exchange of twaé-channel gluons, which is the
same Feynman graph as gluon fusion. In addition, both cor-
respond to the triple-Pomeron term in diffraction which con-
trols shadowing.

The lowest gluonic Fock component is thgqG). The
coherence length relevant to shadowing depends according

to Eqg. (1) on the effective mass of tHeEqG) which should
be expected to be heavier than that fogq), and even more

Sor higher Fock components. Correspondingly, the coherence

length(I$) should be shorter and a onset of gluon shadowing
is expected to start at smalleg; .

_ For this coherence length one can use the samgg.
but with the effective mass

K2 2
2 _ aq
UG ag(l-ag) 1-ag’ (39

whereag is the fraction of the photon momentum carried by

the gluon, andM is the effective mass of thgq pair. This
formula is, however, valid only in the perturbative limit. It is
apparently affected by the nonperturbative interaction of glu-
ons which was found in Ref6] to be much stronger than
that for aqg. Since this interaction may substantially modify
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the effective masdMy,c we switch to the formalism of
Green function described above, which recovers (B6) in
the limit of high Q.

We treat gluons as massless and transverse. For fRctor
defined in Eq.(1) one can write

G

N
(PG>=Fa (40)

where

NG:mNXBj f d2r1G dzrlqadzrze dzrzqadaqdln(ae)
XL (F6.Taqq
qu(rZGerquaqaaG)

X

J dz, Goga(r26T 29,2231 16 5 199 21)
2

XV ga6(T16 M1gq: g @), (41)
DC= j d?r 16 d%r14qd%r 56 021 qgdag d In(ag)
~ > > - -
X ‘PEqG(rZG |r2qq 1O ya'G) 5(2)(r26_ rlG)
X 81 249~ T149) Yauo(T16 T 1qq ¥ @)
(42

Here we have introduced the Jacobi variabigs=R;— R,
andrg=Rg— (aqRy+ agRy)/ (ag+ ag). Reqq are the po-

sition vectors of the gluon, the quark, and the antiquark in

the transverse plane ang; , ; are the longitudinal momen-
tum fractions.

The Green function describing propagation of ti_{tan
system satisfies the time evolution equatiéh

A, (rag)
2vag(l—ag)

g Q? .
(922 21/

aq+ ag

Ai(rq;)Jr

2vaqaq
—V(rag.raqq.@q a6 ,22)

X Gyqa(r26 2991221716 M 19q:21)

=8(2,—21) 6P(Fp6—T10) 5(2)(F2q3_ quE)-
(43

In order to calculate the coherence length relevant to

PHYSICAL REVIEW C 62 035204

‘I’EqG(rG ,rqa,aq ,C!G)

Tl — ag - o I
_‘l’qq (rqq-aq) \Ifqe<a—,re+ —rqq)
q ayt o
q q
— | % - % -
_\Iqu(—,rG— N 7I’qq ]
g QqT Qg
9 ag
N g q = _
X<|o s rgt——r
8| aal ™’ — qq
aq+aq

Aq

- N
rqq>—oqa(s,rq;)l.

N -
+0'qa< S,I’G

As different from the case of thyq) Fock state, where
perturbative QCD can be safely applied a@(@ﬁ the non-

perturbative effects remain important for thgeqg G) compo-
nent even for highly virtual photons. Hig@? squeezes the

qq pair down to a size~1/Q, however, the mean quark-
gluon separation at;<<1 depends on the strength of gluon
interaction which is characterized in this limit by the param-
eter by=~0.65 GeV[6]. For Q?>b? the qq is small, r%q
<rZ, and one can treat theqG system as a color octet-
octet dipole, i.e.,

agq + ag
(44)

Gqqo(r26:7 299122171611 199+21)

=Gqq(r2q9,22:" 1q99,21) Geall26:22;r16,21)-
(45

Such a Green functio®G g satisfies the simple evolution
equation[6]

A (ryg) bor3e

g Q? .
2vag(l—ag) 2vag(l—ag)

9z, 2v

XGga(r26:22:r16,21)

= 8(2,—21) 8P(r 36— T 1) (46)

Correspondingly, the modifiedgG wave function sim-
plifies too,

\Ifgqe(re T qq»q ,aG)

>

= ‘I’%q(rqq,aq) anv) \PqG(FG) UgG(S,rG),

(47)

shadowing, we employ the amplitude for diffractive disso-

ciation y*—>aqG, which is the EqG wave function
weighted by the cross sectidf]

where the nonperturbative quark-gluon wave function has
the form[6]
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g . 04 T T v T v T TT vy r v o7 LML
Vyo(re)= lim Vye(ag,re) i
ag—0
2| Ag éFG b(z) 2 48
—"a N3z A2 8 ]

and the color-octet dipole cross section reads

9
08(S:T6)= 7 gq(STa). (49

With the approximations given above, the fact®®) in
Eqg. (1) for the gluon coherence length is calculated in the

Appendix and has the form §
00" : ' :
. fsmaxd(s 5 7 0 ! . 2 >
P S (@ Jn 5 | 8(145) ' 8(1+30) Q/GeV
FIG. 4. Ratio of longitudinal to transverse photoabsorption cross
3 1 sections as a function @? at xg;=0.01. The solid curve is calcu-

B 52—1 w2)—y 2 + 25 ! (50 lated with Eq.(54) and the wave functions including the nonpertur-
bative effects, while for the dashed curve the perturbative wave
functions withm,=200 MeV are used. The NMC data poithtsd]

where correspond takg;=0.008, 0.0125, 0.0175 from smaller to higher
Q%
dIinT(x) 2b3
X=—gx " =% (51) IIl. SHADOWING FOR LONGITUDINAL
Q% ag AND TRANSVERSE PHOTONS

Both the numerator and denominator in E§0) diverge A. o, /o on a nucleon target

min

logarithmically forag"'—0, as it is characteristic for radia- As soon as realistic wave functions fgq fluctuations
tion of vector bosons. To find an appropriate lower cutoff,including the nonperturbative effects are available, as well as

note that the mass of thggG system is approximately given the energy dependent phenomenological dipole cross section,

by we are in position to calculate the longitudinal and transverse
cross sections for a proton target covering also the region of
2
e 2_b(2)+Q2 . small Q<,
a6 g :

yo_ [ 20 (b r 125N

ol P=| da| dr|¥ = (r a)|°c Ar,S). (54
L, aq - aq

where we used Eq39) with (k3)~b3. We demand that

MEEG<O-25 which leads taxg"=2b§/(0.25—Q?). Further- The results of calculations for the ratiq /o is shown in
more we work in the approximation afg<1 and we also Fig. 4 by solid curve as a function Gj? atxgj=0.01 which
have to choose an upper cutoff. We use is about the lowest value of; in the HERMES data. As one
could expect the ratio vanishes towai@é=0, however, it
2p2 op2 is nearly constant down to very stF~9.3 Ge\t. To see
B o< _07 (53) how well an effective quark mass can mimic the effect of the
0.25—Q? Q? nonperturbative interactions we have also performed calcu-

lations with the perturbative wave functions ang,=200

which means that we take only masse@ngs*G$0.25 Mey and plotted the results by da}sheq curve in Fig. 4. Com-
into account. The two limits become equabx;~0.1. parison demonstrates a substantial difference at spfall

Our results for(P®)=(I$)/I7® are depicted in Fig. 1.
With approximations made above we cannot cover the low B. Nuclear targets
Q? region and perform calculations &°>1 Ge\’. The Although the coherence length is an important character-
found coherence length is much shorter than Bdtand|s jstic for shadowing, it is not sufficient to predict nuclear
for |qq) fluctuations. This conclusion corresponds to a de-effects in the structure function. Shadowing for parton den-
layed onset of gluon shadowing shifted to smakgy pre-  sities at smalkg; in the nuclear structure function which is
dicted in Ref[6]. defined in the infinite momentum frame originates from the
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nonlinear effect of parton fusion in the evolution equation AT TL

[2,3]. Although the partonic treatment varies from one to (0o ), ===2 f daf d?r| Wy, (en)]?
another reference frame, all observables including shadow-

ing are Lorentz invariant. In the rest frame of the nucleus oN%r)
shadowing in the total virtual photoabsorption cross section X f d’b| 1—exp — %T(b) ,

crtV(;A (or the structure functiof5) can be decomposed over
different Fock components of the photon

(58)

* * — — where
O't%tA:A‘TtyotN_AO'tot(QQ)_A(Ttot(qu)

—Ao(qA2G) — - - - . (59 T(b)= f _w dzpa(b,z) (59

According to above calculations and Fig. 4 the coherence
length corresponding to gluon shadowing is rather smalis the thickness function of the nucleus. Equatis# has an
compared to the mean internucleon spacing in a nucleus iﬂ)’flP“CIt analytical solution only if the dipole cross section
the kinematical region we are interested in. Therefore, werq—q(r)=C r? and the nuclear density is constgmi(b,z)
hold only the first two terms in the right-hand side of Eq. =p,. Such an approximation has a reasonable accuracy, es-
(55), which can be represented for transverse and longitudipecially for heavy nuclei. Nevertheless, it can be even more

nal photons as precise if one makes use of the fact that the asymptotic ex-
) ) pression(598) is easily calculated with exa¢tealistio dipole
(orMHTE=A (o, cross section and nuclear density. We need to use the solu-
1 . tion of Eq. (57) only in the transition region from no-
= 2 ” * 2 shadowing to a fully developed shadowing given by Eq.
e J d’b fod“f _mdzljzleZJ dry (58). First of all, we fixed factoiC in the simplified dipole

cross section demanding to have the same asymptotic shad-
2 TL * N owing Eq.(58) as with the realistic one given by E¢l4).
de r2[Waq (8:M12)]7 palb.Z2) ol sir2) This was done with the realistic Woods-Saxon form for
- - nuclear density20] and separately for transverse and longi-
XG(r2,25|r1,21) pa(0,21) tudinal photons and for each value @f Then we switched
N TL to a constant nuclear densipy, demanding it to lead to the
X "qa“’rl)‘l’aq (2,M.10), (56) same asymptotic shadowing in E&8) as with the realistic

h b 2) is th | density d dent . tone. We have checked that the found valuepgfis practi-
where p,(b,2) is € nuciear density dependent on impac cally independent of the value of the cross section in the
parameteb and longitudinal coordinate The nonperturba- interval 1-50 mb

tive wave functions for thejq component of the photon are  Fijrst of all we have checked our formalism comparing
defined in Egs. (31),(32. The Green function \yjth the NMC results for shadowing in the nuclear structure
G(r,,z,|ry,21) describes propagation of a nonperturba-function. Figure 5 demonstrates the df24] for tin to car-
tively interactingqq pair in an absorptive medium. It fulfills bon ratio of proton structure functions depicted by full
the evolution equation circles. As was pointed out above gluon shadowing is negli-
gibly small atxg;>0.01 which covers the whole range on the
g A (rp)—e? i N NMC experiment. We performed calculations with param-
92, Zva(i—a) 5Pa(b.25) 7 (S.12) eterv=0.5 in Eq.(24), but we have checked that the results
are independent af. Although the calculations are param-

a“(a)rg . . eter free, agreement is pretty good.
- m G(rz,23]r1,21) Eventually, we are able to provide predictions for the ki-
nematical range of HERMES. The ratio of the virtual photo-
=i8(z,—7;) 5(2)(F2_(1), (57) absorption cross sections for nitrogen to hydrogerxgt

=0.01 versusQ? is plotted in Fig. 6. The solid and dashed
wherea(a) and \ were introduced in Eqs24) and (33), curves correspond to the nonperturbative and perturbative
respectively. The third term in the left-hand side of B&j7)  wave functions, respectively. A salient feature of these pre-

describes absorption of tigg pair in the medium of density dictions is shadowing vgnisrr:ing tﬁvi\iang:fO. Thfis rcl)bser-.
pa(b,2) with cross sectionrgq(s,r). At small xg; when the vation does not contradict the well known fact of shadowing

: for real photo absorption, but is a rather simple consequence
coherence length substantially exceekis':>(22—zl) (the P P P q

. X s of kinematics. The colliding energg=Q?xg; vanishes
nuclear radiusthe solution of Eq(57) very much simplifies, along withQ? at fixedxg; . This example ShOWBS] that, is a

G(r2.2,|11,20) % 8D(r,—17), i.e., Lorentz time dilation poor variable at smalD? and should be replaced Isy This

“freezes” variation of transversgq separation. kinematical effect may be partially responsible for the un-
Correspondingly, the total cross section gets a simpleisual enhancement of nuclear shadowing with ris@fgde-
form [7,16] tected in the HERMES experimefit]. Our calculated nitro-
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1 10 100 1 10 100 1 10 100 1.2 .
12} x5=00125 | xp=00175 |  xp=0.025 § 12
L1 E 111
3
09 E /If[‘p‘}—/ 4 — 1 0o
08 | ! jo08
o
12 F xp=0.035 xp;=0.045 xg=0.055 {12 =
Ve Z
1 E 311 "
5)\0! - oy 4
A1 F& L N __IEJIEI_ 1
09 | : [ 1 00
08 f . J08
L2 xp=0.07 xg;=0.09 1 10 100
L1 E
1y | 08 .
09 F "o 1 2
08 F 1 l 1 1 1 1 QZ/GCVZ

1 10 100 1 10 100
Q% / GeV? FIG. 7. Ratio of longitudinal to transverse fractions of the cross

sectionR=o /o1 on nitrogen to proton targets. The solid and
FIG. 5. Q2 andxg; dependence of structure function ratio for tin dashed curves correspond to the photon wave function with and
to carbon. Full circles show the NMC ddt21]. The crosses show without nonperturbative effects.
the results of our calculations for the same kinematics.
photons develop fluctuations of a smaller size compared to
gen to proton ratio of the cross sections reaches its minimurthat in transverse photons, i.e., they are less shadowed. Note
at Q?>~0.2 GeV and then smoothly rises witQ?. that nuclear effects foR were estimated previously in Ref.
The most striking feature of the HERMES data for shad{22] where many of the important ingredients of present ap-
owing is a dramatically risindR= o /o1 ratio on nitrogen proach were missed.
compared to proton target °<1 Ge\? [1]. Our predic-
tions for Ry/R, are plotted in Fig. 7 versu®? at Xgj IV. SUMMARY
=0.01 where the experimental ratiy /R,~5. Apparently, , )
we do not expect any remarkable effect. Moreover, this ratio  Based on the light-cone Green function approach we pro-
does not change much from proton to nitrogen in spite of theide predlc_tlons fqr nuclear §hadowmg in the most difficult
much longer coherence length for longitudinal photons prefor calculation region of medium-smalg;=>0.01. Since the
dicted above. However, this effect leading to a stronger shadlonperturbative effects are included we also predict shadow-

. 2 . . . .
owing for o is compensated by the fact that longitudinal N9 down to smallQ®<1 GeV which is the kinematical
region where the HERMES experiment discovered unusual

1.0 : shadowing effects.

We found that the coherence length which controls shad-
owing is nearly three times longer for longitudinal than for
transverse photons, and it is very much different from what
is suggested by the widely accepted approximation. Using
the Green-function light-cone approach including the non-
perturbative effects we calculated nuclear shadowing for lon-
gitudinal and transverse photons. Although the predicted
nuclear shadowing exposes interesting effects in the region
of small Q?, we are unable to explain the dramatic phenom-
ena detected in the HERMES experiment.

We suppose that our results provide a reliable base line
for nuclear effects in this region. The dramatic effects re-
vealed by the HERMES experiment probably cannot be ex-
plained without involving a new nonstandard dynamies.,
see Ref[23)).

P/

07 L— e
0 1 2
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37°Q ag
APPENDIX: CALCULATION OF THE COHERENCE )
LENGTH FOR THE qqG STATE % o-bar2 34+2—2°+b3). (A7)
The calculations are somewhat more cumbersome for the 'c Te

gluon coherence length. We consider the cade- bg. With
the approximation$45)—(47) we obtain for the denominator
of Eq. (40)

Now we restrict ourselves to the dipole cross section of the
form

og'a(s,rG)=C(s)ré (A8)

DC= fdzr d?r fda f"‘e —C gyt (Fqq@qq)|?
e ad o ag 97 and perform the last integration with the result

X7 — @ 2
X[O'qa(s,re)] [rqq-VquG(rG)] . (Al) DG:32aemasC2(S) Olgax (Ag)
202 min
This integral diverges logarithmically fax?"—0. To find Q7bg G
an apprpprrate Io_vver CUtoﬁ note that the mass of 4 Note that the factoC(s) will drop out, when one takes the
system is approximately given by ratio (P®)=N&/D®
op2 Next we calculate the numerator
ME ~"2+Q2 A2
G ag Q (A2) . 2 26aem
N :mNXBj ; (2 )24Q fd I‘lGd I’ZGd I‘qq
We demand that M —<0.25 which leads to ad" T
=2b2/(0.25—Q?). Furthermore we work in the approxima- d 5
tion of ag<1 and we also have to choose an upper cutoff. aq (1 aq)
We use
N
XK%(SrqE)U' _(S,rle)ﬂ' _(S,rze)
2bj 2bj (a3)
sags—. . N e r
0.5 Q2 Q? X[ Fag: Viyg—g e o0i0/2 l
TS

The two limits become equal ak;~0.1. In our further cal-

culation of D€ we do the replacememt,gr qu—>r -0 and | F=v €2 e borse/2
perform the derivative. This yields a9 TTee 2
2 [as\*6a xfwdAG Fae o T16,A
CT iy i em 102 2 3_ ZGgo(r26:r16.42), (A10)
D —(W 3) (277)24Q wfd errqarqq 0

where

f daqf mm—K (8T qq) @2(1— ag)?

GGG(FZG ,Fle AZ)

2 2,0%Az/2v 2
N 2 b2 2 2b0 4 boe bO
X[o Hs,rg)]e el —+—+by|. (Ad) . NE— — 2l (r2 2
L7gq( )] (ré 2 0 2msin(whz) P~ 2 (g ¥ rae)cth(wA?)
For the integration over,, we use the integral representa- _ 2r16°TaG (A11)
tion sinh(wAz)
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is the solution of Eq(46) with w=bj/(vag). _ Bagn C(s) axg
em™s y¥o-2(1
Again we can do the replacemenfgr qq— ;40 » Per- 372Q707 J’ me 52 (1-y9)
form the derivatives, sum over gluon polarlzatlons and use
Eq. (A6) to obtain X In(1—y?)+5yY9(1—y?)+12y1o*2}, (A16)

In the last step we have introduced the new varialyles
NG=mNXBJWJ d?r6d%r ,cdAzZ =e~“*% and 6=2b3/(Q%ag). According to Eq.(A3) the
Q limits for § are

dag b(Z)eQZAZIZV
QG o=
jg'“ ag Uqa(s rlG)an(s rZG)smr(wAz) s
1< 5s0.2§—1. (A17)
4(rlG'rZG)2 b4(|'16'|'26) sz(rlG r6)?
X 4 .4 0o 2 .2 2 4 . . . o .
lel2c Nelac Mclae For the integral containing the logarithm it is convenient to
5 5 do one more substitution=y2. Then one finds
sz_&_&_ 1
refse ric ric ricfse 1
., . f dyy"?"2(1-y?)In(1-y?)
xXexd —B(rig+rag) +2yric racl, (A12) 0
1 J
where =—lim— dxx Y26=3121 —x)1t 7 (A18)
b3 7
B= ?[1+cotr‘(wAz)], (A13)
262 3 1
b = Mz 26) ‘”(2)}
y= (A14)
2 sinfwAz) (A19)

With a cross section such ar%'a(s,r)=C(s)r2 the integra-

) . ] Now only one integration is left itN®
tions overr ¢ are easily performed with the result

NI BaemarsC? (S)f f rodag e ~QPAzizy \ o B4entts C¥(s) (smds| 5 LT
1 3m2Q2p2 mn g sinhwAz) 372Q%b2 Jomn & | 8(1+5)  8(1+30)
10 N 12
- 2 A20
[1+cothwAz) ]2 sinfP(wAz)[1+cthwAz)]? T | YA w(z 25 (A20)
—8sinf(wAz)In HL““’AZ))J (A15) and we end up with the resul60) for the factor (P®)
2 =N®/DC at Q2>b2.
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