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Nuclear shadowing and coherence length for longitudinal and transverse photons
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Motivated by the recent results for DIS off nuclei from the HERMES experiment we have performed a
systematic study of shadowing for transverse and longitudinal photons. We found that the coherence length
which controls the onset of nuclear shadowing at smallxB j is much longer for longitudinal than transverse
photons, and is much shorter for shadowing of gluons. The light-cone Green function approach we apply
properly treats shadowing in the transition regionxB j.0.01. It also incorporates the nonperturbative effects
and is legitimate at smallQ2. We calculate nuclear shadowing and compare with data from the HERMES and
NMC experiments. Although we expect different nuclear shadowing for longitudinal and transverse photons,
numerically it cannot explain the strong effect observed by the HERMES Collaboration.

PACS number~s!: 13.60.2r, 12.40.Vv, 25.30.Mr
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I. INTRODUCTION

Recently the HERMES Collaboration released data@1# for
shadowing in inclusive positron scattering off nuclei at m
dium high energies andQ2. The results expose few unusu
features. The cross sections on nuclear targets, nitrogen
helium-3, at smallxB j'0.02 andQ2,1 GeV2 were found to
be substantially more shadowed than one could expect
trapolating available data at higherQ2 and energies. The
observed enhancement of shadowing withQ2 is also un-
usual. Interpreted in terms of different shadowing for tra
verse and longitudinal photons it was concluded in Ref.@1#
thatsL is enhanced, whilesT is suppressed on nitrogen by
least a factor of two compared to deuteron target.

These data drew attention to the fact that very few d
are available in this kinematical region. Moreover, no re
able theoretical calculations are done yet. The appro
based on the nonlinear evolution equations@2,3# needs
knowledge of the nuclear parton distribution at a mediu
hard scale which is to be guessed, and is anyway outside
kinematical range we are interested in. More promising is
intuitive approach treating nuclear effects in the spirit of ve
tor dominance model~VDM ! @4# as shadowing for the tota
cross section of hadronic fluctuations of the virtual pho
~see, e.g., Ref.@5#!. However, the perturbative QCD trea
ment of the photon fluctuation can be applied only at h
Q2, while VDM is sensible only at smallQ2→0.

Progress was made recently@6# on the extension of per
turbative QCD methods to the region of smallQ2 where the
quarks in photon fluctuations cannot be treated as free.
nonperturbative interquark interaction was explicitly intr
duced and new light-coneq̄q wave functions were derived
which recover the well-known perturbative ones at largeQ2.

Nuclear shadowing is controlled by the interplay betwe
two fundamental quantities. The lifetime of photon fluctu
tions, or coherence time is one. Namely, shadowing is p
sible only if the coherence time exceeds the mean in
nucleon spacing in nuclei, and shadowing saturates~for a
0556-2813/2000/62~3!/035204~13!/$15.00 62 0352
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given Fock component! if the coherence time substantiall
exceeds the nuclear radius.

Equally important for shadowing is the transverse sepa

tion of theq̄q. In order to be shadowed theq̄q fluctuation of
the photon has to interact with a large cross section. A
result of color transparency@7–9#, small size dipoles interac
only weakly and are therefore less shadowed. The domin
contribution to shadowing comes from the large aligned
configurations@10,5# of the pair.

The mean lifetime of aq̄q fluctuation in vacuum calcu-
lated in Sec. II A turns out to be zero for transverse photo
This strange result is a consequence of an incorrect de
tion.

In Secs. II B and II C we propose a more sophistica
treatment of the coherence length or the fluctuation lifeti
relevant for shadowing. The mean coherence time for theq̄q
Fock state is evaluated using the perturbative and nonpe
bative wave functions. The salient observation is that
coherence length is nearly three times longer for longitudi
than for transverse photons. At the same time, both are
stantially different from the usual prescriptionl c
5(2mNxB j)

21. The coherence length is found to va
steeply withQ2 at fixedxB j and smallQ2.

The coherence time for auq̄qG& Fock component control-
ling nuclear shadowing for gluons is calculated in Sec. II
It turns out to be much shorter than foruq̄q& components,
therefore, the onset of gluon shadowing is expected
smallerxB j than for quarks.

The transition region between no shadowing atxB j;0.1
and saturated~for the uq̄q& component! shadowing at very
small xB j is most difficult for theory. The impact paramete
representation assigns definite cross sections to the fluc
tions, but no definite mass which one needs to calculate
phase shift. On the other hand, the eigenstates of the m
matrix cannot be associated with any definite cross sect
This controversy was settled within the light-cone Gre
function approach@11–13#. In Sec. III we rely on this ap-
proach to calculate nuclear shadowing in the kinematical
©2000 The American Physical Society04-1
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gion of the HERMES experiment. The nonperturbative lig
cone wave functions and the realistic phenomenolog
dipole cross section are important at lowQ2. We are unable
to reproduce the data from the HERMES experiment,
though our parameter-free calculations are in good ag
ment with NMC data. We do not expect any dramatic e
hancement of the longitudinal cross section compared to
transverse one. At the same time, the calculated transv
cross section for nitrogen is shadowed by about 20% o
much less than the HERMES data need.

II. THE MEAN COHERENCE LENGTH

A. The lifetime for a perturbative q̄q fluctuation in vacuum

A photon of virtuality Q2 and energyn can develop a
hadronic fluctuation for a lifetime

l c5
2 n

Q21M2
5

P

xB j mN
5P lc

max, ~1!

where BjorkenxB j5Q2/2mNn, M is the effective mass o
the fluctuation, factor P5(11M2/Q2)21, and l c

max

51/mNxB j . The usual approximation is to assume thatM2

'Q2 sinceQ2 is the only large dimensional scale availab
In this caseP51/2.

The effective mass of a noninteractingq and q̄ is well
definedM25(mq

21kT
2)/a(12a), wheremq and kT and a

are the mass, transverse momentum, and fraction of the l
cone momentum of the photon carried by the quark. The
fore, P has a simple form

P~kT ,a!5
Q2 a ~12a!

kT
21e2

, ~2!

where

e25a~12a!Q21mq
2 . ~3!

To find the mean value of the fluctuation lifetime in vacuu
one should average~2! over kT and a weighted with the
wave function squared of the fluctuation

^P&vac5
^C q̄q

g* uP~kT ,a!uC q̄q
g*

&

^C q̄q
g* uC q̄q

g*
&

. ~4!

The perturbative distribution function for theq̄q has the
form @14–16#,
03520
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C q̄q
T,L

~rWT ,a!5
Aaem

2 p
x̄ ÔT,L x K0~er T!. ~5!

Here x and x̄ are the spinors of the quark and antiqua
respectively.K0(er T) is the modified Bessel function. Th
operatorsÔT,L have the form

ÔT5mq sW •eW1 i ~122a! ~sW •nW ! ~eW•¹W T!1~sW 3eW !•¹W T ,

~6!

ÔL52 Q a~12a! sW •nW , ~7!

where the two-dimensional operator¹W T acts on the trans-
verse coordinaterWT ; nW 5pW /p is a unit vector parallel to the
photon momentum;eW is the polarization vector of the pho
ton.

The normalization integral in the denominator in th
right-hand side of Eq.~4! diverges at largekT for trans-
versely polarized photons, therefore we arrive at the un
pected result̂ PT&vac50.

B. Coherence length in nuclear medium

This puzzling conclusion can be interpreted as a re
overwhelming the fluctuations of a transverse photon
heavyq̄q pairs with very largekT . Such heavy fluctuations
indeed have a very short lifetime. However, they also hav
vanishing transverse sizer T;1/kT and interaction cross sec
tion. Therefore, such fluctuations cannot be resolved by
interaction and do not contribute to the DIS cross section.
get a sensible result one should properly define the avera
procedure. We are interested in the fluctuations which c
tribute to nuclear shadowing, i.e., which interact at le
twice. Correspondingly, the averaging procedure has to
redefined as

^P&shad5
^ f ~g* →q̄q!uP~kT ,a!u f ~g* →q̄q!&

^ f ~g* →q̄q!u f ~g* →q̄q!&
, ~8!

where f (g* →q̄q) is the amplitude of diffractive dissocia
tion of the virtual photon on a nucleong* N→q̄q N.

Thus, one should include in the weight the interacti
cross section squareds q̄q

2 (r T ,s), wherer T is the transverse
separation ands52mNn2Q21mN

2 . Then, the mean value
of factor P(a,kT) reads
^PT,L&5

E
0

1

daE d2r 1d2r 2@Cqq̄
T,L

~rW2 ,a!#* sqq̄
N

~r 2 ,s!P̃~rW22rW1 ,a!Cqq̄
T,L

~rW1 ,a!sqq̄
N

~r 1 ,s!

E
0

1

daE d2r uCqq̄
T,L

~rW ,a!sqq̄
N

~r ,s!u2

~9!
4-2
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with

P̃~rW22rW1 ,a!5E d2kT

~2p!2
exp@2 i kWT•~rW22rW1!#P~a,kT!.

~10!

Using expression~2! one obtains for a noninteractingqq̄
pair,
-
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03520
P̃~rW22rW1 ,a!5
Q2a~12a!

2p
K0~«urW22rW1u!. ~11!

As a simple estimate for the mean value~9! one can use
the small-r T approximation for the dipole cross sectio
s q̄q

N (r T ,s)5C(s) r T
2 . The factorC(s) does not enter the re

sult since it cancels in Eq.~9!. We obtain for transverse an
longitudinal photons
^PT&5
2 Q2

3

E
0

1

d a ~12a! a $@a21~12a!2# / e61 7
8mq

2~12a! a / e8%

E
0

1

d a $@a21~12a!2# / e4 1 2
3 mq

2/ e6%
; ~12!

^PL&5
7 Q2

8

E
0

1

d a ~12a!3 a3 / e8

E
0

1

d a ~12a!2 a2 / e6

, ~13!
ith

e
a-

c

d

respectively.
We calculated the factor̂PT,L& as a function ofQ2 at

xB j50.01 which is close to the minimal value in the HER
MES data. We used the effective quark massmq50.2 GeV
which corresponds to the confinement radius and allows
to reproduce data on nuclear shadowing@11#. Our results
depicted in Fig. 1 by dotted lines are quite different from t
naive estimatePT,L51/2. In addition,PL turns out to be
substantially longer thanPT. This indicates that a longitudi
nally polarized photon develops lighter fluctuations than
transverse one. Indeed, the effective massM is maximal for
asymmetric pairs, i.e., whena or 12a are small. However,
such fluctuations are suppressed in longitudinal photons
the wave function~7!.

The dependence of̂PT,L& on xB j depicted in Fig. 2 for
Q254 and 40 GeV is rather smooth. Therefore, the coh
ence length varies approximately asl c}1/xB j .

The simple approximations q̄q
N }r T

2 is not realistic since
nonperturbative effects affect the large-r T behavior. Moti-
vated by the phenomenon of confinement one should ex
that gluons cannot propagate far away and the cross se
should level off at larger T . We use the modification@6# of
the energy dependent phenomenological dipole cross se
s q̄q

N (r T ,s) suggested in Ref.@17#,

sqq̄
N

~r T ,s!5s0~s!F12expS 2
r T

2

r 0
2~s!

D G , ~14!

where r 0(s)50.88 (s/s0)20.14 fm, s051000 GeV2. This
cross section is proportional tor T

2 at small r T→0, but is
constant at larger T . The energy dependence correlates w
s

a

y

r-

ct
ion

ion

r T , at small r T the dipole cross section rises steeper w
energy than at large separations:

s0~s!5s tot
pp~s!S 11

3 r 0
2~s!

8^r ch
2 &p

D , ^r ch
2 &p50.44 fm2,

~15!

where

s tot
pp~s!523.6~s/s0!0.08 mb. ~16!

With this choice ofs tot
pp(s) one automatically reproduces th

total cross section for pion proton scattering, while the p
rametrization from Ref.@17# cannot be applied to hadroni
cross sections. Thus, cross section~14! is better designed for
low and medium largeQ2,10–20 GeV2, while at highQ2

the parametrization@17# works better.
Equation~9! can be represented in the form

^PT,L&5
NT,L

DT,L
. ~17!

The angular integrations in Eq.~17! for the denominators
DT,L are trivial and for the numeratorsNT,L one uses the
relation @18#

K0~«urW12rW2u!5K0~«r .!I 0~«r ,!12 (
m51

`

eimf

3Km~«r .!I m~«r ,!, ~18!

where r .5max(r1,r2), r ,5min(r1,r2), cosf5rW1•rW2 /(r1r2),
and I m(z) are the modified Bessel functions of first kin
4-3
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~Bessel function of imaginary variable!. It is clear from this
relation that after angular integration only one term in t
sum gives a nonvanishing contribution. We finally obtain
transverse photons

FIG. 1. Q2 dependence of the factor^P&5 l c / l c
max defined in Eq.

~1! at xB j50.01 for q̄q fluctuations of transverse and longitudin

photons, and forq̄qG fluctuation, from the top to bottom, respe
tively. Dotted curves correspond to calculations with perturbat
wave functions and an approximate dipole cross section}r T

2 .
Dashed curves are the same, except the realistic parametriz
~14!. The solid curves show the most realistic case based on
nonperturbative wave function~25!. The coherence length for glu
ons calculated in Sec. II D is also shown.

FIG. 2. xB j dependence of the factor^PT,L& and^PG& defined in
Eq. ~1! corresponding to the coherence length for shadowing
transverse and longitudinal photons and gluon shadowing, res
tively. Solid and dashed curves correspond toQ254 and 40 GeV2.
03520
r

Np
T52 Q2E

0

1

da a ~12a!E
0

`

dr2 r 2E
0

r 2
dr1 r 1$mq

2 K0
2~«r 2!

3K0~«r 1! I 0~«r 1!1@a21~12a!2# «2 K1
2~«r 2!

3K1~«r 1! I 1~«r 1!% sqq̄
N

~s,r 1! sqq̄
N

~s,r 2!, ~19!

Dp
T5E

0

1

daE
0

`

dr r $mq
2 K0

2~«r !1@a21~12a!2#«2 K1
2~«r !%

3@sqq̄
N

~s,r !#2, ~20!

and for longitudinal photons

Np
L52 Q2E da a3 ~12a!3E

0

`

dr2r 2E
0

r 2
dr1r 1K0

2~«r 2!

3K0~«r 1!I 0~«r 1!sqq̄
N

~s,r 1!sqq̄
N

~s,r 2!, ~21!

Dp
L5E daE

0

`

drra2~12a!2K0
2~«r !sqq̄

N
~s,r !2. ~22!

The factor ^PT,L(x,Q2)& calculated in this way is de
picted by dashed lines in Fig. 1 as a function ofQ2 at xB j
50.01. It is not much different from the previous simplifie
estimate demonstrating low sensitivity to the form of t
dipole cross section.

It is instructive to compare our predictions with the VDM
which is usually supposed to dominate at smallQ2<mr

2 .
The corresponding coherence lengthl c

VDM is given by Eq.~1!
with M5mr . The ratio ofl c

T calculated with the nonpertur
bative wave function tol c

VDM as a function ofQ2 is shown by
solid curve in Fig. 3. It demonstrates an unexpectedly pre
cious violation of VDM at quite lowQ2. We also calculated
l c
T with the perturbative wave function, but with a massi

e

ion
he

f
c-

FIG. 3. Q2 dependence of ratio of̂l c
T& calculated with Eq.~9!

andmq5200 MeV to l c
VDM calculated with Eq.~1! andM5mr .
4-4
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quark. With mq5200 MeV it mimics the nonperturbativ
effects quite well, as one can see from Fig. 3.

C. Propagation of interacting q̄q

Although the quarks should be treated perturbatively
nearly massless, at the end pointsa or 12a→0 the mean
q̄q transverse separationr T;1/e becomes huge;1/mq .
This contradicts the concept of confinement and should
regularized either by explicit introduction of a nonperturb
tive interaction betweenq and q̄ @6#, or as is done below
introducing an effective quark mass.

Apparently, it is not legitimate to use the perturbativeq̄q
wave functions~5!,~6! at low Q2 where the nonperturbativ
interaction betweenq and q̄ becomes important. This inter
action squeezes theq̄q wave packet, i.e., increases the intri
sic transverse momentum and the effective mass of the
By contributing to the effective mass of theq̄q, the nonper-
turbative interaction breaks down the validity of the kin
matical expression forM or Eq. ~2!. Even at highQ2 at the
end pointsa or 12a→0 the meanq̄q transverse separatio
r T;1/e becomes huge;1/mq and nonperturbative correc
tions may be important. One can try to mimic these effe
by an effective quark mass, as is done above, but one n
knows how good this recipe is. To take the nonperturba
effects into account we use the light-cone Green funct
formalism suggested in@6# generalizing the perturbative de
scription @11# of nuclear shadowing in DIS.

Propagation of an interactingq̄q pair in vacuum with ini-
tial separationrW1 at the point with longitudinal coordinatez1

up to point z2 with final separationrW2 is described by a
Green functionGq̄q(rW2 ,z2 ;rW1 ,z1) which is a solution of a
two-dimensional Schro¨dinger equation

i
d

dz2
Gq̄q

vac
~z1 ,rW1 ;z2 ,rW2!

5
e22D r 2

1a4~a! r 2
2

2 n a ~12a!
Gq̄q

vac
~z1 ,rW1 ;z2 ,rW2!. ~23!

The nonperturbative oscillator potential contains funct
a(a)5a01a1 a (12a) with parametersa0 anda1 fixed by
data@6#. Data on total photoabsorption cross section, diffr
tion and nuclear shadowing are well described with

a2~a!5v1.15~112 MeV!21~12v !1.15

3~165 MeV!2a~12a!, ~24!

wherev is any number satisfying 0,v,1.
The Green function allows us to calculate the nonper

bative wave function for aq̄q fluctuation

C q̄q
T,L

~rW,a!5
i ZqAaem

4p p a~12a!
E

2`

z2
dz1 ~ x̄ ÔT,Lx!

3Gq̄q
vac

~z1 ,rW1 ;z2 ,rW2!ur 150; rW25rW . ~25!
03520
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In the limit of vanishing interactiona(a)→0 the wave func-
tions ~25! recovers the perturbative ones~5!.

Note that in kT representation the free Green functio
Gq̄q

0 (z1 ,rW1 ;z2 ,rW2) integrated over longitudinal coordinate
simply related to the coherence length~1!, if one performs an
analytic continuation to imaginary timez→2 iz

E
z1

`

d z2 Gq̄q
0

~z1 ,rW1 ;z2 ,rW2!

5 E d2kT

~2 p!2
exp@2 i kWT•~rW22rW1!# l c~kT ,a!.

~26!

This is easily generalized to include the nonperturbative
teraction. Then, making use of this relation one can switch
Eq. ~9! to r T representation and express the mean cohere
length via the Green function. Then, we arrive at new e
pressions for the functionsNT,L andDT,L in Eq. ~17!,

NT,L5E
0

1

daE d2r 1 d2r 2 @C q̄q
T,L

~rW2 ,a!#* s q̄q
N

~r 2 ,s!

3S E
z1

`

dz2 Gqq̄
vac

~rW1 ,z1 ;rW2 ,z2! D
3 C q̄q

T,L
~rW1 ,a! s q̄q

N
~r 1 ,s!, ~27!

DT,L5E
0

1

daE d2r uCqq̄
T,L

~rW ,a!sqq̄
N

~r ,s!u2, ~28!

where the nonperturbativeq̄q wave functions are given by
Eq. ~25!.

For a harmonic oscillator potential the Green function
known analytically

Gqq̄
vac

~rW2 ,z1 ;rW1 ,z2!5
a2~a!

2p sinh~v Dz!
expF2

«2 Dz

2 n a~12a!G
3 expH 2

a2~a!

2
F ~r 1

21r 2
2!coth~v Dz!

2
2rW1•rW2

sinh~v Dz!
G J , ~29!

whereDz5z22z1 and

v5
a~a!2

n a~12a!
, ~30!

is the oscillator frequency.
The light-cone wave functions~25! modified by the inter-

action can now be calculated explicitly@6#
4-5
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@Cqq̄
T

~«,l,rW1!#* Cqq̄
T

~«,l,rW2!

5Zq
2 aem@mq

2 F0* ~«,l,rW1!F0~«,l,rW2!

1@122a~12a!# FW 1* ~«,l,rW1!•FW 1~«,l,rW2!#,

~31!

@Cqq̄
L

~«,l,rW1!#* Cqq̄
L

~«,l,rW2!

5Zq
2aem4Q2a2~12a!2F0* ~«,l,rW1!F0~«,l,rW2!,

~32!

where the parameter

l5
2a2~a!

«2
, ~33!

describes the strength of the interaction, and the functi
F0,1 read

F0* ~«,l,rW1!F0~«,l,rW2!

5
1

~4 p!2E0

`

du dt
l2

sinh~lt ! sinh~lu!

3expF2
l«2r 1

2

4
coth~lt !2t2

l«2r 2
2

4
coth~lu!2uG ,

~34!

FW 1* ~«,l,rW1!•FW 1~«,l,rW2!

5
1

~2 p!2

rW1•rW2

r 1
2r 2

2 E0

`

du dt

3expF2
l«2r 1

2

4
coth~lt !2t2

l«2r 2
2

4
coth~lu!2uG .

~35!

It is easy to verify that in the limit of vanishing interac
tion, l→0, the nonperturbative wave functions reduce to
perturbative ones. Compared to the expression forF1 in Ref.
@6#, we have integrated by parts over the parameteru or t,
respectively. This considerably simplifies the expression.

Now we have all ingredients which are necessary to c
culate Eq.~17!. Two from the eight remaining integration
over the angles, can be performed analytically. We obta

NT5mN xB jE
0

1

daE
0

`

dr1 r 1 dr2 r 2E
0

`

dDz @Cqq̄
T

~«,l,rW2!#*

3Cqq̄
T

~«,l,rW1!sqq̄
N

~r 2 ,s! sqq̄
N

~r 1 ,s!
a2~a!

sinh~v Dz!

3expF2
«2 Dz

2 n a~12a!G I1F a2~a!r 1r 2

sinh~v Dz!G

03520
s

e

l-

3expF2
a2~a!

2
~r 1

21r 2
2!coth~v Dz!G , ~36!

NL5mN xB jE
0

1

daE
0

`

dr1 r 1 dr2 r 2E
0

`

dDz @Cqq̄
L

~«,l,rW2!#*

3Cqq̄
L

~«,l,rW1!sqq̄
N

~r 2 ,s! sqq̄
N

~r 1 ,s!
a2~a!

sinh~v Dz!

3expF2
«2 Dz

2 n a~12a!G I0Fa2~a! r 1 r 2

sinh~v Dz!G
3expF2

a2~a!

2
~r 1

21r 2
2!coth~v Dz!G , ~37!

DL,T5E
0

1

daE
0

`

dr r uCqq̄
T,L

~«,l,rW ! sqq̄
N

~r ,s!u2. ~38!

For a dipole cross section that levels off similar to Eq.~14! at
large separations the integrations overr 1 and r 2 can also be
done analytically. However, we prefer to work with the mo
general expressions that hold for arbitrarysqq̄

N (s,r ), as long
as it depends only on the modulus ofr. We perform the
remaining integrations numerically. The results f
l c
T,L(x,Q2) are shown by solid curves in Figs. 1 and 2.

D. Coherence length for gluon shadowing

Shadowing in the nuclear gluon distributing function
smallxB j which looks similar to gluon fusionGG→G in the
infinite momentum frame of the nucleus, should be treated
the rest frame of the nucleus as shadowing for the F
components of the photon containing gluons. Indeed, the
shadowing term contains double scattering of the projec
gluon via exchange of twot-channel gluons, which is the
same Feynman graph as gluon fusion. In addition, both c
respond to the triple-Pomeron term in diffraction which co
trols shadowing.

The lowest gluonic Fock component is theuq̄qG&. The
coherence length relevant to shadowing depends accor
to Eq. ~1! on the effective mass of theuq̄qG& which should
be expected to be heavier than that for auq̄q&, and even more
for higher Fock components. Correspondingly, the cohere
length^ l c

G& should be shorter and a onset of gluon shadow
is expected to start at smallerxB j .

For this coherence length one can use the same Eq.~1!,
but with the effective mass

Mq̄qG
2

5
kT

2

aG~12aG!
1

Mq̄q
2

12aG
, ~39!

whereaG is the fraction of the photon momentum carried
the gluon, andMq̄q is the effective mass of theq̄q pair. This
formula is, however, valid only in the perturbative limit. It i
apparently affected by the nonperturbative interaction of g
ons which was found in Ref.@6# to be much stronger than
that for aq̄q. Since this interaction may substantially modi
4-6
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the effective massMq̄qG we switch to the formalism of
Green function described above, which recovers Eq.~39! in
the limit of high Q2.

We treat gluons as massless and transverse. For facP
defined in Eq.~1! one can write

^PG&5
NG

DG
, ~40!

where

NG5mN xB j E d2r 1G d2r 1qq̄ d2r 2G d2r 2qq̄ daq d ln~aG!

3C̃ q̄qG
†

~rW2G ,rW2qq̄ ,aq ,aG!

3S E
z1

`

dz2 Gq̄qG~rW2G ,rW2qq̄ ,z2 ;rW1G ,rW1qq̄ ,z1! D
3C̃ q̄qG~rW1G ,rW1qq̄ ,aq ,aG!, ~41!

DG5E d2r 1G d2r 1qq̄ d2r 2G d2r 2qq̄ daq d ln~aG!

3C̃ q̄qG
†

~rW2G ,rW2qq̄ ,aq ,aG!d (2)~rW2G2rW1G!

3d (2)~rW2qq̄2rW1qq̄! C̃ q̄qG~rW1G ,rW1qq̄ ,aq ,aG!.

~42!

Here we have introduced the Jacobi variablesrWqq̄5RW q̄2RW q

and rWG5RW G2(a q̄RW q̄1aqRW q)/(a q̄1aq). RW G,q,q̄ are the po-
sition vectors of the gluon, the quark, and the antiquark
the transverse plane andaG,q,q̄ are the longitudinal momen
tum fractions.

The Green function describing propagation of theq̄qG
system satisfies the time evolution equation@6#

F ]

]z2
2

Q2

2n
1

aq1a q̄

2naqa q̄

D'~r qq̄!1
D'~r 2G!

2naG~12aG!

2V~rW2G ,rW2qq̄ ,aq ,aG ,z2!G
3Gqq̄G~rW2G ,rW2qq̄ ,z2 ;rW1G ,rW1qq̄ ,z1!

5d~z22z1! d (2)~rW2G2rW1G! d (2)~rW2qq̄2rW1qq̄!.

~43!

In order to calculate the coherence length relevant
shadowing, we employ the amplitude for diffractive diss
ciation g* →q̄qG, which is the q̄qG wave function
weighted by the cross section@6#
03520
r

n

o
-

C̃ q̄qG~rWG ,rWqq̄ ,aq ,aG!

5C q̄q
T,L

~rWqq̄ ,aq!FCqGS aG

aq
,rWG1

a q̄

aq1a q̄

rW qq̄D
2C q̄GS aG

a q̄

,rWG2
aq

aq1a q̄

rW qq̄D G
3

9

8 Fsqq̄
N S s,rWG1

a q̄

aq1a q̄

rW qq̄D
1sqq̄

N S s,rWG2
aq

aq1a q̄

rW qq̄D 2sqq̄
N

~s,r qq̄!G .

~44!

As different from the case of theuq̄q& Fock state, where
perturbative QCD can be safely applied at highQ2, the non-
perturbative effects remain important for theuq̄ q G& compo-
nent even for highly virtual photons. HighQ2 squeezes the
q̄q pair down to a size;1/Q, however, the mean quark
gluon separation ataG!1 depends on the strength of gluo
interaction which is characterized in this limit by the para
eter b0'0.65 GeV @6#. For Q2@b0

2 the q̄q is small, r q̄q
2

!r G
2 , and one can treat theq̄qG system as a color octet

octet dipole, i.e.,

Gqq̄G~rW2G ,rW2qq̄ ,z2 ;rW1G ,rW1qq̄ ,z1!

⇒Gqq̄~rW2qq̄ ,z2 ;rW1qq̄ ,z1! GGG~rW2G ,z2 ;rW1G ,z1!.

~45!

Such a Green functionGGG satisfies the simple evolution
equation@6#

F ]

]z2
2

Q2

2n
1

D'~r 2G!

2naG~12aG!
2

b0
4 r 2G

2

2naG~12aG!
G

3GGG~rW2G ,z2 ;rW1G ,z1!

5d~z22z1!d (2)~rW2G2rW1G!. ~46!

Correspondingly, the modifiedq̄qG wave function sim-
plifies too,

C̃ q̄qG~rWG ,rWqq̄ ,aq ,aG!

⇒2 C q̄q
L

~rWqq̄ ,aq! rWqq̄•¹W CqG~rWG! sGG
N ~s,r G!,

~47!

where the nonperturbative quark-gluon wave function h
the form @6#
4-7
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CqG~rWG!5 lim
aG→0

CqG~aG ,r G!

52
2i

p
Aas

3

eW•rWG

r G
2

expS 2
b0

2

2
r G

2 D , ~48!

and the color-octet dipole cross section reads

sGG
N ~s,r G!5

9

4
sqq̄

N
~s,r G!. ~49!

With the approximations given above, the factor^PG& in
Eq. ~1! for the gluon coherence length is calculated in t
Appendix and has the form

^PG&5
2

3 ln~aG
max/aG

min!
E

dmin

dmax dd

d H 5

8~11d!
1

7

8~113d!

2
d

d221
Fc~2!2cS 3

2
1

1

2d D G J , ~50!

where

c~x!5
d ln G~x!

dx
, d5

2 b0
2

Q2 aG

. ~51!

Both the numerator and denominator in Eq.~50! diverge
logarithmically foraG

min→0, as it is characteristic for radia
tion of vector bosons. To find an appropriate lower cuto
note that the mass of theqq̄G system is approximately give
by

Mqq̄G
2

'
2b0

2

aG
1Q2, ~52!

where we used Eq.~39! with ^kT
2&'b0

2 . We demand that
Mqq̄G

2
,0.2s which leads toaG

min52b0
2/(0.2s2Q2). Further-

more we work in the approximation ofaG!1 and we also
have to choose an upper cutoff. We use

2b0
2

0.2s2Q2
<aG<

2b0
2

Q2
, ~53!

which means that we take only masses 2Q2<Mqq̄G
2

<0.2s
into account. The two limits become equal atxB j'0.1.

Our results for^PG&5^ l c
G&/ l c

max are depicted in Fig. 1
With approximations made above we cannot cover the
Q2 region and perform calculations atQ2.1 GeV2. The
found coherence length is much shorter than bothl c

T and l c
L

for uq̄q& fluctuations. This conclusion corresponds to a d
layed onset of gluon shadowing shifted to smallerxB j pre-
dicted in Ref.@6#.
03520
,

w

-

III. SHADOWING FOR LONGITUDINAL
AND TRANSVERSE PHOTONS

A. sL ÕsT on a nucleon target

As soon as realistic wave functions forq̄q fluctuations
including the nonperturbative effects are available, as wel
the energy dependent phenomenological dipole cross sec
we are in position to calculate the longitudinal and transve
cross sections for a proton target covering also the regio
small Q2,

sT,L
g* p5E

0

1

daE d2r uCqq̄
T,L

~rW ,a!u2sqq̄
N

~r ,s!. ~54!

The results of calculations for the ratiosL /sT is shown in
Fig. 4 by solid curve as a function ofQ2 at xB j50.01 which
is about the lowest value ofxB j in the HERMES data. As one
could expect the ratio vanishes towardsQ250, however, it
is nearly constant down to very smallQ2'0.3 GeV2. To see
how well an effective quark mass can mimic the effect of t
nonperturbative interactions we have also performed ca
lations with the perturbative wave functions andmq5200
MeV and plotted the results by dashed curve in Fig. 4. Co
parison demonstrates a substantial difference at smallQ2.

B. Nuclear targets

Although the coherence length is an important charac
istic for shadowing, it is not sufficient to predict nucle
effects in the structure function. Shadowing for parton de
sities at smallxB j in the nuclear structure function which i
defined in the infinite momentum frame originates from t

FIG. 4. Ratio of longitudinal to transverse photoabsorption cr
sections as a function ofQ2 at xB j50.01. The solid curve is calcu
lated with Eq.~54! and the wave functions including the nonpertu
bative effects, while for the dashed curve the perturbative w
functions withmq5200 MeV are used. The NMC data points@19#
correspond toxB j50.008, 0.0125, 0.0175 from smaller to high
Q2.
4-8
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nonlinear effect of parton fusion in the evolution equati
@2,3#. Although the partonic treatment varies from one
another reference frame, all observables including shad
ing are Lorentz invariant. In the rest frame of the nucle
shadowing in the total virtual photoabsorption cross sec

s tot
g* A ~or the structure functionF2

A) can be decomposed ove
different Fock components of the photon

s tot
g* A5A s tot

g* N2Ds tot~ q̄q!2Ds tot~ q̄qG!

2Ds tot~ q̄q2G!2••• . ~55!

According to above calculations and Fig. 4 the cohere
length corresponding to gluon shadowing is rather sm
compared to the mean internucleon spacing in a nucleu
the kinematical region we are interested in. Therefore,
hold only the first two terms in the right-hand side of E
~55!, which can be represented for transverse and longit
nal photons as

~s tot
g* A!T,L5A ~s tot

g* N!T,L

2
1

2
ReE d2bE

0

1

daE
2`

`

dz1E
z1

`

dz2E d2r 1

3E d2r 2 @C q̄q
T,L

~«,l,r 2!#* rA~b,z2!sqq̄
N

~s,r 2!

3G~rW2 ,z2 u rW1 ,z1! rA~b,z1!

3sqq̄
N

~s,r 1!C q̄q
T,L~«,l,r 1!, ~56!

whererA(b,z) is the nuclear density dependent on impa
parameterb and longitudinal coordinatez. The nonperturba-
tive wave functions for theq̄q component of the photon ar
defined in Eqs. ~31!,~32!. The Green function
G(rW2 ,z2 u rW1 ,z1) describes propagation of a nonperturb
tively interactingq̄q pair in an absorptive medium. It fulfills
the evolution equation

F i
]

]z2
1

D'~r 2!2«2

2na~12a!
1

i

2
rA~b,z2! sqq̄

N
~s,r 2!

2
a4~a!r 2

2

2na~12a!
GG~rW2 ,z2 u rW1 ,z1!

5 id~z22z1!d (2)~rW22rW1!, ~57!

where a(a) and l were introduced in Eqs.~24! and ~33!,
respectively. The third term in the left-hand side of Eq.~57!

describes absorption of theq̄q pair in the medium of density
rA(b,z) with cross sections q̄q

N (s,r ). At small xB j when the
coherence length substantially exceeds,l c

T,L@(z22z1) ~the
nuclear radius! the solution of Eq.~57! very much simplifies,
G(rW2 ,z2 u rW1 ,z1)}d (2)(rW22rW1), i.e., Lorentz time dilation
‘‘freezes’’ variation of transverseq̄q separation.

Correspondingly, the total cross section gets a sim
form @7,16#
03520
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~s tot
g* A!n→`

T,L 52 E daE d2r uC q̄q
T,L

~«r !u2

3E d2bF12expS 2
sqq̄

N
~r !

2
T~b!D G ,

~58!

where

T~b!5E
2`

`

dzrA~b,z! ~59!

is the thickness function of the nucleus. Equation~57! has an
explicit analytical solution only if the dipole cross sectio
s q̄q

N (r )5C r2 and the nuclear density is constantrA(b,z)
5r0. Such an approximation has a reasonable accuracy
pecially for heavy nuclei. Nevertheless, it can be even m
precise if one makes use of the fact that the asymptotic
pression~58! is easily calculated with exact~realistic! dipole
cross section and nuclear density. We need to use the s
tion of Eq. ~57! only in the transition region from no
shadowing to a fully developed shadowing given by E
~58!. First of all, we fixed factorC in the simplified dipole
cross section demanding to have the same asymptotic s
owing Eq. ~58! as with the realistic one given by Eq.~14!.
This was done with the realistic Woods-Saxon form f
nuclear density@20# and separately for transverse and lon
tudinal photons and for each value ofa. Then we switched
to a constant nuclear densityr0, demanding it to lead to the
same asymptotic shadowing in Eq.~58! as with the realistic
one. We have checked that the found value ofr0 is practi-
cally independent of the value of the cross section in
interval 1–50 mb.

First of all we have checked our formalism compari
with the NMC results for shadowing in the nuclear structu
function. Figure 5 demonstrates the data@21# for tin to car-
bon ratio of proton structure functions depicted by fu
circles. As was pointed out above gluon shadowing is ne
gibly small atxB j.0.01 which covers the whole range on th
NMC experiment. We performed calculations with para
eterv50.5 in Eq.~24!, but we have checked that the resu
are independent ofv. Although the calculations are param
eter free, agreement is pretty good.

Eventually, we are able to provide predictions for the
nematical range of HERMES. The ratio of the virtual phot
absorption cross sections for nitrogen to hydrogen atxB j
50.01 versusQ2 is plotted in Fig. 6. The solid and dashe
curves correspond to the nonperturbative and perturba
wave functions, respectively. A salient feature of these p
dictions is shadowing vanishing towardsQ250. This obser-
vation does not contradict the well known fact of shadowi
for real photo absorption, but is a rather simple conseque
of kinematics. The colliding energys5Q2 xB j vanishes
along withQ2 at fixedxB j . This example shows thatxB j is a
poor variable at smallQ2 and should be replaced bys. This
kinematical effect may be partially responsible for the u
usual enhancement of nuclear shadowing with risingQ2 de-
tected in the HERMES experiment@1#. Our calculated nitro-
4-9
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gen to proton ratio of the cross sections reaches its minim
at Q2;0.2 GeV2 and then smoothly rises withQ2.

The most striking feature of the HERMES data for sha
owing is a dramatically risingR5sL /sT ratio on nitrogen
compared to proton target atQ2,1 GeV2 @1#. Our predic-
tions for RN /Rp are plotted in Fig. 7 versusQ2 at xB j
50.01 where the experimental ratioRN /Rp'5. Apparently,
we do not expect any remarkable effect. Moreover, this ra
does not change much from proton to nitrogen in spite of
much longer coherence length for longitudinal photons p
dicted above. However, this effect leading to a stronger sh
owing for sL is compensated by the fact that longitudin

FIG. 5. Q2 andxB j dependence of structure function ratio for t
to carbon. Full circles show the NMC data@21#. The crosses show
the results of our calculations for the same kinematics.

FIG. 6. The shadowing ratio for nitrogen over proton at lowQ2

and xB j50.01. Shadowing disappears asQ2→0, because of the
vanishing coherence length.
03520
m
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photons develop fluctuations of a smaller size compared
that in transverse photons, i.e., they are less shadowed.
that nuclear effects forR were estimated previously in Re
@22# where many of the important ingredients of present
proach were missed.

IV. SUMMARY

Based on the light-cone Green function approach we p
vide predictions for nuclear shadowing in the most diffic
for calculation region of medium-smallxB j.0.01. Since the
nonperturbative effects are included we also predict shad
ing down to smallQ2,1 GeV2 which is the kinematical
region where the HERMES experiment discovered unus
shadowing effects.

We found that the coherence length which controls sh
owing is nearly three times longer for longitudinal than f
transverse photons, and it is very much different from w
is suggested by the widely accepted approximation. Us
the Green-function light-cone approach including the no
perturbative effects we calculated nuclear shadowing for l
gitudinal and transverse photons. Although the predic
nuclear shadowing exposes interesting effects in the reg
of small Q2, we are unable to explain the dramatic pheno
ena detected in the HERMES experiment.

We suppose that our results provide a reliable base
for nuclear effects in this region. The dramatic effects
vealed by the HERMES experiment probably cannot be
plained without involving a new nonstandard dynamics~e.g.,
see Ref.@23#!.
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APPENDIX: CALCULATION OF THE COHERENCE
LENGTH FOR THE q̄qG STATE

The calculations are somewhat more cumbersome for
gluon coherence length. We consider the caseQ2@b0

2. With
the approximations~45!–~47! we obtain for the denominato
of Eq. ~40!

DG5E d2r Gd2r qq̄E
0

1

daqE
aG

min

aG
maxdaG

aG
uCL~r qq̄aqq̄!u2

3@sqq̄
N

~s,r G!#2@rWqq̄•¹W CqG~r G!#2. ~A1!

This integral diverges logarithmically foraG
min→0. To find

an appropriate lower cutoff, note that the mass of theqq̄G
system is approximately given by

Mqq̄G
2

'
2b0

2

aG
1Q2. ~A2!

We demand that Mqq̄G
2

,0.2s which leads to aG
min

52b0
2/(0.2s2Q2). Furthermore we work in the approxima

tion of aG!1 and we also have to choose an upper cut
We use

2b0
2

0.2s2Q2
<aG<

2b0
2

Q2
. ~A3!

The two limits become equal atxB j'0.1. In our further cal-
culation ofDG we do the replacementr qq̄i r qq̄j→r qq̄

2 d i j and
perform the derivative. This yields

DG5S 2

p
Aas

3 D 2 6aem

~2p!2
4Q2pE d2r Gdrqq̄r qq̄

3

3E
0

1

daqE
aG

min

aG
maxdaG

aG
K0

2~«r qq̄!aq
2~12aq!2

3@sqq̄
N

~s,r G!#2e2b0
2r G

2 S 2

r G
4

1
2b0

2

r G
2

1b0
4D . ~A4!

For the integration overr qq̄ we use the integral represent
tion
03520
or
S
-
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c
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f.

K0~x!5
1

2E0

`dt

t
expS 2t2

x2

4t D ~A5!

of the modified Bessel function and obtain

E
0

`

drqq̄r qq̄
3

K0
2~«r qq̄!5

2

3«4
. ~A6!

Thus we have for the denominator

DG5
32aemas

3p2Q2
ln

aG
max

aG
minE0

`

drGr G@sqq̄
N

~s,r G!#2

3e2b0
2r G

2 S 2

r G
4

1
2b0

2

r G
2

1b0
4D . ~A7!

Now we restrict ourselves to the dipole cross section of
form

sqq̄
N

~s,r G!5C~s!r G
2 ~A8!

and perform the last integration with the result

DG5
32aemasC

2~s!

p2Q2b0
2

ln
aG

max

aG
min

. ~A9!

Note that the factorC(s) will drop out, when one takes the
ratio ^PG&5NG/DG.

Next we calculate the numerator

NG5mNxB jS 2

p
Aas

3 D 2 6aem

~2p!2
4Q2E d2r 1Gd2r 2Gd2r qq̄

3E
0

1

daqE
aG

min

aG
maxdaG

aG
aq

2~12aq!2

3K0
2~«r qq̄!sqq̄

N
~s,r 1G!sqq̄

N
~s,r 2G!

3F rWqq̄•¹W r 1G

eW•rW1G

r 1G
2

e2b0
2r 1G

2 /2G
3F rWqq̄•¹W r 2G

eW•rW2G

r 2G
2

e2b0
2r 2G

2 /2G
3E

0

`

dDzGGG~rW2G ,rW1G ,Dz!, ~A10!

where

GGG~rW2G ,rW1G ,Dz!

5
b0

2eQ2Dz/2n

2p sinh~vDz!
expH 2

b0
2

2
F ~r 1G

2 1r 2G
2 !cth~vDz!

2
2rW1G•rW2G

sinh~vDz!
G J ~A11!
4-11
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is the solution of Eq.~46! with v5b0
2/(naG).

Again we can do the replacementr qq̄i r qq̄j→r qq̄
2 d i j , per-

form the derivatives, sum over gluon polarizations, and
Eq. ~A6! to obtain
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2 G
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2 !12grW1G•rW2G#, ~A12!

where

b5
b0

2

2
@11coth~vDz!#, ~A13!

g5
b0

2

2 sinh~vDz!
. ~A14!

With a cross section such assqq̄
N (s,r )5C(s)r 2 the integra-

tions overr G are easily performed with the result

NG5mNxB j

8aemasC
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2 D J ~A15!
t.

v.

,

ion
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e

5
8aemasC

2~s!

3p2Q2b0
2 E

0

1

dyE
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dmaxdd

d2
$4y1/d22~12y2!

3 ln~12y2!15y1/d~12y2!112y1/d12%. ~A16!

In the last step we have introduced the new variabley
5e2vDz and d52b0

2/(Q2aG). According to Eq.~A3! the
limits for d are

1<d<0.2
s

Q2
21. ~A17!

For the integral containing the logarithm it is convenient
do one more substitutionx5y2. Then one finds

E
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1
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5
1

2
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h→0

]

]hE0

1

dxx1/2d23/2~12x!11h ~A18!

5
2d2

d221
FcS 3

2
1

1

2d D2c~2!G .
~A19!

Now only one integration is left inNG

NG5
64aemasC

2~s!

3p2Q2b0
2 E
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d H 5

8~11d!
1

7

8~113d!

2
d

d221
Fc~2!2cS 3

2
1

1

2d D G J ~A20!

and we end up with the result~50! for the factor ^PG&
5NG/DG at Q2@b0
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