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Critical line for H superfluidity in strange quark matter?

Robert D. Pisarski*
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000

~Received 3 January 2000; published 8 August 2000!

Based upon the analogy to the electroweak phase diagram, I propose that in QCD there might be a critical
line for a superfluid transition, in the plane of chemical potential and temperature. The order parameter has the
quantum numbers of theH dibaryon, but the transition is driven by color superconductivity in strange quark
matter.

PACS number~s!: 21.65.1f, 12.38.Mh, 14.20.Pt
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In QCD, there is a phase transition to a color superc
ducting phase at high quark density and low tempera
@1–24#. At densities of interest for the collisions of heav
ions or quark stars, ‘‘211’’ flavors of quarks—up, down,
and strange—enter.

The order of the phase transition to a color supercond
ing phase at zero temperature, as function of the qu
chemical potential, was analyzed previously@6#. The zero
temperature transition is simple because the effective the
is four dimensional over large distances@25#. For a second
order transition, couplings can only flow into the origin, wi
mean field behavior corrected by logarithms. Most imp
tantly, quark loops screen gluons, so that gluons do not c
tribute over long distances. For 211 flavors, this analysis
predicts a first order transition@7#.

The transition at nonzero temperature is much more c
plicated. Over large distances, the effective theory is th
dimensional; a second order transition typically flows towa
a fixed point which lies in a regime of strong coupling. Als
while static electric fields are screened by quark loops, st
magnetic fields are not. Thus the phase transition invol
scalar fields coupled to gauge fields in three dimensions

In this paper I consider the effective theories which are
relevance for the phase transition to color superconducti
for 211 flavors of quarks@6#. This enables me to unify a
large number of model dependent results in a simple man
Because of an instanton induced term@4,14#, I find one sur-
prise. As suggested previously@1,3,4,6,19,23#, in a chirally
symmetric, color superconducting phase, an~approximate!
spontaneous violation of parity can be large. The patte
however, is unexpected:if instantons are important, then~ap-
proximate! parity violation is greater for the up-strange a
the down-strange superconducting condensates than it i
the up-down condensate.

While the phase transitions of scalars coupled to ga
fields in three dimensions is a complicated problem, beca
of the possibility of generating a cosmological baryon asy
metry at the electroweak scale, much is known about s
phase diagrams from numerical simulations on the lat
@27,28#. Using this information, I conjecture how the pha
diagrams for the effective three-dimensional theories
color superconductivity might look. Following especially th
phase diagram for adjoint scalars coupled to a SU~3! gauge
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field @28#, I suggest that for 211 flavors, there might be a
line of second order phase transitions, in the plane of che
cal potential and temperature. The transition is induced
color superconductivity for 211 flavors, assuming color
flavor locking@4#. Even so, it is properly a superfluid trans
tion, where the order parameter is an operator for theH
dibaryon@5,6#. As in ordinary superfluidity, ‘‘H superfluid-
ity’’ lies in the universality class of anO(2) vector.

All of my arguments are qualitative and, on occasio
speculative. However, the phase diagram for the effec
three-dimensional theory is directly testable by lattice sim
lations involving only scalars and gauge fields. The effect
theory in three dimensions can be computed analytically
ing perturbation theory in QCD. While these~perturbative!
coefficients are of course only valid at very high densities,
comparing to the lattice results, one could at least estima
the critical line forH superfluidity might begin. If a critical
line does occur, it is manifestly of experimental interest, a
a critical end point for the chiral phase transition@29#.

I. EFFECTIVE THEORIES

In this section I first review the order parameters for co
superconductivity with massless quarks@1,6,7,10#, and then
use them to construct effective Lagrangians in a stand
fashion. I assume that if a condensate with~total! spin zero
can form—as is true for two and three flavors—that it do
and dominates over condensates with higher spin.

A. General analysis

Massless quarks naturally decompose into eigenstate
chirality. In a Fermi sea, particles have zero energy near
Fermi surface, and dominate over antiparticles, which alw
have nonzero energy. Thus it is natural to introduce proj
tors for chirality and energy,

PR,L5
1

2
~16g5!, P 65

1

2
~16g0g• k̂!, ~1!

wherekW is the momentum of the quark, andkW5kk̂, k̂251.
There are then four types of quark fields, right and l
handed, and particle and antiparticle.

Quarks transform under a local gauge group of SU(3c
color; the color indices of the fundamental representation
denoted byi , j 51,2,3. ForNf flavors of massless quarks
©2000 The American Physical Society02-1
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ROBERT D. PISARSKI PHYSICAL REVIEW C62 035202
with flavor indicesa,b51 . . .Nf , classically there is also a
global flavor symmetry of SU(Nf)R3SU(Nf)L3UA(1)
3U(1). A right handed particle is given by

qi ,aR

1 5P 1 PR qi ,a , ~2!

whereqi ,a is a quark field with colori, flavora, and momen-
tum kW .

There are two right handed superconducting condens
with total spin zero: between two right handed particles,
two right handed antiparticles,

F i , j ;aR ,bR

6 5~qi ,aR

6 !TCqj ,bR

6 , ~3!

and similarly for the left handed condensates.q has momen-
tum kW , qT is the Dirac transpose of a quark with momentu
2kW , andC is the charge conjugation matrix. Gaps for~total!
spin 1 are constructed similarly@10#.

Superconductivity is due to pairing of particles near t
Fermi surface, so it is natural to expect that only the part
condensatesF1, matter, and that the antiparticle conde
satesF2 can be neglected. In an effective Lagrangian a
proach, this happens as follows. As is evident from Eq.~3!,
for every particle condensate there is a corresponding a
particle condensate. Thus in an effective Lagrangian the
fields mix,

g2 tr@~F2!†F11c.c.#1m2
2 tr~ uF2u2!. ~4!

I assume thatF2 does not condense on its own, so that it h
a positive mass squaredm2

2 .0. For free fields,F1 andF2

do not mix, but they do at;g2, since interactions invariably
mix particles and antiparticles@24#. Hereg is the QCD cou-
pling constant, although perhaps theg2 is only ag, due to a
logarithmic enhancement from forward scattering@8–15,24#.
Whatever the value of the mixing term, though, excludi
isolated points in the phase diagram, there is no generic
son why it should vanish. With Eq.~4!, whenF1 condenses,
it becomes a term linear inF2, so it also condenses,^F2&
;g2^F1&. But the critical behavior, wherêF1&→0, is
dominated byF1 alone. Thus I consider only the partic
condensates and drop the ‘‘1 ’’ superscript,F5F1.

In addition to those for color superconductivity, I als
require the order parameters for chiral symmetry break
Chiral symmetry is broken by a condensate between an
tiquark and a quark. From group theory, the product o
color antitriplet and a triplet is a singlet plus an oct
3̄335118. There are then two chiral order parameters
color singlet

caL ,bR
5q̄i ,aL

qi ,bR
~5!

and a color adjoint field

c̃aL ,bR

C 5q̄i ,aL
t i j
Cqj ,bR

; ~6!

t i j
C is the generator for SU(3)c , with the adjoint indexC

51 . . . 8. In thevacuum,
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^q̄i ,aL
qj ,bR

&5c0

d i j

3
daLbR

; ~7!

this leaves SU(3)c unbroken, and breaks the flavo
SU(Nf)R3SU(Nf)L→SU(Nf). The color singlet chiral field
develops an expectation value^c&;c0, and the color adjoint
chiral field does not,̂ c̃&50.

Using this inelegant notation, one can write down how t
fields transform under the non-Abelian symmetries. Wha
simpler and more useful is how they transform under
Abelian flavor symmetries of UA(1)3U(1). Suppressing the
color and flavor indices, the quark fields transform as

qR → ei (u1uA) qR , qL → ei (u2uA) qL , ~8!

so the condensate fields transform as

FR→e2i (u1uA)FR , FL→e2i (u2uA)FL ,

c→e2iuA c, c̃→e2iuA c̃. ~9!

u generates rotations for the U(1) symmetry of quark nu
ber, which is an exact symmetry of the Lagrangian. In co
trast, uA generates a rotation for the UA(1) symmetry of
anomalous quark number; this is badly broken in t
vacuum, but at high density or temperature, is very near
good symmetry of the Lagrangian@31#. Note thatFR,L trans-
form nontrivially under both UA(1) and U(1),while c and
c̃ transform only under the anomalous UA(1).

Color superconductivity involves quarks pairing wi
quarks, so Fermi statistics implies a nontrivial relation. Fo
spin zero condensate,F must be symmetric in the simulta
neous exchange of color and flavor indices

FR,L
T 51FR,L . ~10!

~Condensates with spin one satisfy a more complicated r
tionship, but are essentially antisymmetric@10#.! There is no
such relationship for chiral symmetry breaking, which i
volves the condensation of quarks with antiquarks.

Group theory tells us that the product of two color triple
is an antitriplet plus a sextet,33353̄a16s ; the subscripts
denote antisymmetric and symmetric representations, res
tively. By Eq. ~10!, the color antitriplet piece ofF, which I
denotef, combines with an antisymmetric flavor represe
tation, while the color sextet partx combines with a sym-
metric flavor representation. Under singlet gluon exchan
the antitriplet channel is attractive, and the sextet repulsi

Defering the precise definitions off andx for now, the
lowest order effective Lagrangian, including gauge inter
tions, but neglecting terms which are nonlinear in the co
densate fields, is

L 05L c
01L c̃

0
1L f

0 1L x
01L c

m1Lg . ~11!

For massless quarks, the effective Lagrangian is compo
of four terms: for the color singlet chiral field

L c
05tr~ u]acu2!1mc

2 tr~c†c!, ~12!
2-2
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CRITICAL LINE FOR H SUPERFLUIDITY IN . . . PHYSICAL REVIEW C62 035202
the color adjoint chiral field

L c̃
0
5tr~ uDac̃u2!1mc̃

2 tr~ c̃†c̃ !, ~13!

the color antitriplet superconducting field

L f
0 5tr~ uDafu2!1mf

2 tr~f†f!, ~14!

and the color sextet superconducting field

L x
05tr~ uDaxu2!1mx

2 tr~x†x!; ~15!

Da is the covariant color derivative in the appropriate rep
sentation. For massive quarks, one also needs

L c
m51 tr~cM!. ~16!

The diagonal elements ofM are proportional to the curren
quark masses,MaLbR

;madaLbR
, with ma is the current

quark mass for flavora. From current algebra and lattic
simulations@30#, the quark masses for up, down, and stran
aremu;4, md;8, andms;100 MeV, respectively.

The Lagrangian for the color gauge fieldLg is the usual
action plus a term for hard dense loops@33#. I assume that
the Debye mass for hard dense loops is always nonzero

While these terms are all completely standard, given
multiplicity of fields, it helps to be explicit. I assume that th
adjoint chiral field and the color sextet field always repres
repulsive channels, with positive mass squared:

mc̃
2
.0, mx

2.0. ~17!

In contrast, one expects that at low densities and temp
ture, chiral symmetry is broken in the color singlet chann
mc

2,0; if all current quark masses vanish,M50, the pat-
tern is

^caL ,bR
&5c0daL ,bR

, ~18!

as is consistent with Eq.~7!. Chiral symmetry is restored a
high density or temperature,mc

2.0. Ignoring the coupling to
other fields,c still develops an expectation value from th
mass termM

^caL ,bR
&5c8madaL ,bR

. ~19!

For color superconductivity, I assume that the color an
triplet channel is favored at high density@8–12,14,15,24#,
with mf

2 ,0, and disfavored at low density, withmf
2 .0.

How the chiral transition and color superconductivity a
coupled is one of the principle questions to be addresse

B. Two flavors

I start with the case of two flavors. For flavor SU(2),
23251a13s . The color antitriplet superconducting field
then a flavor singlet@1#:

f i ,R5e i jkeaRbRF j ,k;aR ,bR
. ~20!
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For two flavors I ignore the adjoint chiral field and the col
sextet field for color superconductivity, since they alwa
vanish:^c̃&5^x&50 at all densities. Under the Abelian fla
vor symmetries,f i ,R transforms asFR , Eq. ~9!, etc.

Many interaction terms need to be added toL 0; those
which violate UA(1) are especially interesting. ForNf fla-
vors of massless quarks, the zero modes of an instanton
topological chargeQ generate an interaction betweenQNf
right-handed quarks andQNf left-handed antiquarks@31#.
From Eq. ~9!, the corresponding operators transform
exp(2iQNfuA) under UA(1) rotations. In vacuum instanto
effects are large, since they give theh8 its mass; thus they
must continue to be important in a hadronic phase, at sm
chemical potential. Conversely, semiclassical methods
valid at large chemical potential, and it is certain then th
instantons are very dilute. At intermediate chemical pot
tial, it is not clear how the density of instantons is correlat
with chiral symmetry breaking and color superconductivity
discuss what might happen if the density of instantons
large in a chirally symmetric, color superconducting pha
but this might not occur in QCD: the density of instanto
might drop precipitously when chiral symmetry is restore

For two flavors, single instantons generate a determina
term for the chiral fields@31#,

L c
I ;2 det~c!, ~21!

which is quadratic in thec ’s. The superscriptI is used to
denote that the term is induced by instantons. The ove
minus sign in Eq.~21! is important@31#. At u50, the instan-
ton term not only acts to make theh meson, which has spin
parity JP502, massive, but it also drives chiral symmet
breaking in the 01 channel.

Single instantons generate a similar term for thef ’s @16#,

L f
I ;2 ~f i ,L* f i ,R1f i ,R* f i ,L!. ~22!

As for L c
I , I write L f

I with an overall minus sign, so that i
acts to drive color superconductivity@16#.

In addition to the terms induced by single instantonsL c
I

and L f
I , there are also terms induced by instantons w

topological charge 2. Operators induced byQ52 instantons
include (L c

I )2, L c
I L f

I , and (L f
I )2. For two flavors these

operators are a curiosity, but they arise naturally for th
flavors.

At high densities, where UA(1) is essentially restored, on
can write terms which respect axial UA(1) by squaring each
term in Eqs.~21! and ~22!, such as

udet~c!u2, uf i ,L* f i ,Ru2. ~23!

There are also terms which couplef to c, such as

tr~c†c!~ ufRu21ufLu2! ~24!

and

det~c!* f i ,L* f i ,R1c.c. ~25!
2-3
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ROBERT D. PISARSKI PHYSICAL REVIEW C62 035202
The effect of Eqs.~25! and~24! is to couple the transition fo
color superconductivity to that for chiral symmetry breakin
Model dependent analyses indicate that chiral symm
breaking and color superconductivity can coexist for so
range of densities@16,17,19#. However, all such models
manifestly leave out confinement: while two quarks may l
to bind together in a color superconducting condens
in a phase with chiral symmetry breaking—and
confinement—this could well be overwhelmed by the te
dency of three quarks to form a color singlet baryon; s
also, Ref.@26#. On this basis, I assume that the sign of t
coupling constants in Eqs.~25! and ~24! is positive, so that
chiral symmetry breaking suppresses color supercondu
ity.

When color superconductivity occurs, andL f
I is impor-

tant, the preferred condensate is

^f i ,(R,L)&5eiuR,Lf0 d i3 , uR5uL ; ~26!

a global color rotation is done to align the condensate in
color-3 direction. This breaks SU(3)c→SU(2)c , and leaves
flavor unbroken;f0 is real. There are two types of correla
tions in these expectation values. First, the phases off i ,R
and f i ,L are equal,uR5uL . Parity switches right and lef
handed fields, so if both fields have the same phase, it
plies that the condensate has spin parityJP501. Secondly,
with Eq. ~26! the direction of the right and left handed co
densates are the same in color space@22,23#.

What happens at high densities, when instantons are
dilute? There is always some density of instantons about,
they generate a term such asL f

I , albeit with a small coeffi-
cient. In this limit, UA(1) symmetry is effectively restored
and uR and uL are not correlated, except over very lar
scales. This is the~approximate! spontaneous breaking o
parity @1,3,4,6,19,23#. Phrased in another way, theh meson
is very light: its mass is determined by Eq.~25!, mh

2

;mumd @6#.
What about the coupling between the directions off i ,R

and f i ,L in color space? While the instanton term is
longer important, there are many other terms in the effec
Lagrangian which couple the color direction of the two co
densates. One example is Eq.~23!; in weak coupling, this
first appears at;g4 @22,23#, whereg is the QCD coupling
constant. Thus while the phase of the right and left han
condensates are not~strongly! correlated at high density
they are correlated in color; for a dynamical explanation,
Ref. @23#.

C. Three flavors

This completes my discussion for two flavors. In QC
the case of interest for dense quark matter is really tha
three flavors. A chemical potential does not matter until i
greater than the mass of a particle, so there is no Fermi
until the quark chemical potentialm is greater than one third
of the nucleon massm.313 MeV ~because of binding in
nuclear matter, it is actually a little less!. As m is always at
least three times the strange quark mass, any complete a
sis must include three flavors. Of course this counting is o
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valid in a chirally symmetric phase; with chiral symmet
breaking, the constituent quark masses are large,;313
MeV, and strange baryons are suppressed. In this region
caveats about confinement apply.

For three flavors, the color antitriplet superconducti
field is a flavor antitriplet; for right handed particles, this

f i ,aR
5e i jkeaRbRcRF j ,k;bR ,cR

. ~27!

I also introduce the color sextet, flavor sextet supercond
ing field by symmetrizing with respect to the color and flav
indices; for right handed particles,

x i , j ;aR ,bR
5$@F i , j ;aR ,bR

1~ i↔ j !#1~aR↔bR!%. ~28!

My notation is somewhat confusing: for either color or fl
vor, the indices onf are antitriplet, while those onx are
triplet.

There are several terms which are special to three flav
For three flavors I keep track of all fields, including tho
which are not favored to condense: the color adjoint ch
field c̃ and the color sextet superconducting fieldx. As will
be seen, because of cubic operators they develop expect
values when color superconductivity occurs.

I first consider operators induced by single instanto
The simplest is a determinant for the chiral fieldsL c

I in Eq.
~21!. This is just like that for two flavors, except now it i
cubic in the component fieldscaL ,bR

. Analogously, there is
also a determinantal operator for three color adjoint ch
fields

L c̃
I
;tr@det~ c̃ !#;dABCeaRbRcReaLbLcLc̃aRaL

A c̃bRbL

B c̃cRcL

C

~29!

@dABC is the symmetric structure constant for SU(3)c], and
between two color adjoint chiral fields and one color sing
chiral field

L cc̃
I

;eaRbRcReaLbLcLcaRaL
c̃bRbL

C c̃cRcL

C . ~30!

For thef fields, in obvious analogy there are two cub
operators which are invariant under the non-Abelian symm
tries, but transform under UA(1):

HR5det~f i ,aR
!, HL5det~f i ,aL

!. ~31!

For later reference, I introduce

H65
1

2
~HR6HL!. ~32!

H6 has spin-parityJP506, soH1 has the quantum number
of theH dibaryon@32#. However, unlike det(c) and det(c̃),
HR and HL cannot appear in an effective Lagrangian, b
cause they transform not only under the anomalous UA(1),
but also under the~good! U(1) symmetry for quark numbe
@5#. Using only thef fields, one can construct terms whic
are invariant under all symmetries except UA(1):
2-4
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CRITICAL LINE FOR H SUPERFLUIDITY IN . . . PHYSICAL REVIEW C62 035202
L H
I ;HL* HR1HR* HL . ~33!

This is similar toL f
I for two flavors, but given the transfor

mation properties off under UA(1), Eq. ~9!, L H
I is not

induced by single instantons, but by instantons with to
logical charge 2.

An operator induced by a single instanton is given
combining two f ’s and one color singlet chiral fieldc
@4,14#:

L fc
I ;2~f i ,aL

* f i ,bR
caL ,bR

1c.c.!. ~34!

I assume the sign is negative, as it is for two flavors. Sin
instantons also induce a similar term between twof ’s and
one color adjoint chiral fieldc̃

L fc̃
I

;f i ,aL
* t i , j

C f j ,bR
c̃aL ,bR

C 1c.c. ~35!

I do not know the sign of Eq.~35!, but it is unimportant.
As for two flavors, when chiral symmetry is broken in th

color singlet channel, Eq.~18!, L fc
I helps to generate colo

superconductivity. I assume that quartic terms in the pot
tial, such as

tr~c†c! tr~fR
†fR1fL

†fL!, ~36!

where tr(fR
†fR)5f i ,aR

* f i ,aR
, etc., are sufficiently large an

of positive sign, so that phases with chiral symmetry bre
ing and color superconductivity do not overlap.

This terminology is imprecise. Consider what happe
when chiral symmetry is restored,mc

2.0, so the expectation
value ofc is naively that of Eq.~19!. The preferred conden
sate is color-flavor locked@4#:

^f i ,aR,L
&5eiuR,Lf0 d i ,aR,L

, uR5uL ; ~37!

global color and flavor rotations are done to make the c
densates diagonal. This pattern breaks SU(3)c3SU(3)L
3SU(3)R3UA(1)3U(1)→SU(3). Because ofL fc

I , the
right and left handed condensates have the same phas
the condensate hasJP501.

I remark that although the physics is very different, fo
mally the pattern of symmetry breaking for color-flavor loc
ing in Eq.~37! is identical to that for chiral symmetry break
ing in ~18! @20#. As for chiral symmetry breaking, Eq.~37! is
not the only possible way in which color superconductiv
could occur; for example, one might havêf i ,aR

&
5f0d i ,3d i ,aR

@6#. It is easy to argue that this is disfavore
@4,6#: such a condensate leaves at least two different co
and flavors ungapped, while with color-flavor locking, a
colors and flavors of quarks are gapped.

Because of the instanton terms, however, when color
perconductivity occurs,L fc

I andL fc̃
I become terms which

are linear in c and c̃, respectively. Consequently, expect
tion values forc andc̃ are automatically generated whenf
condenses. For the color singlet chiral field, this means
the expectation value ofc never vanishes, even at high de
03520
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sity in the chiral limitM50. The color adjoint chiral field
also develops an expectation value, as is seen in a t
flavor instanton model@19#.

Since the expectation value ofc is always nonzero, there
is no gauge invariant order parameter which distinguishe
phase with chiral symmetry breaking from one with col
superconductivity, and at least formally, there is a continu
between strange hadronic matter and strange quark m

@5#. One might wonder if det(c̃), Eq. ~29!, provides such an

order parameter, but even though^c̃&50 in the phase with
chiral symmetry breaking, assuming the quark expecta

value of Eq.~7!, ^det(c̃)&;c0
3Þ0.

Even so, I argue that in QCD, phases with chiral symm
try breaking and color superconductivity appear to be rat
different. In a hadronic phase, the relationship between ch
symmetry breaking and confinement helps us to unders
the central mystery of nuclear physics: why the nuclear bi
ing energy,;16 MeV, is so small relative toanyother scale
in QCD @34#. The scale of hadronic superfluidity is small
still, <3 MeV @35#. If, as originally believed@1#, the gaps
for color superconductivity are also;1 MeV, then continu-
ity between hadronic and quark matter is automatic. Fr
recent work with effective models, however, it appears t
the color superconducting gaps are natural on a QCD sc
;100 MeV @2,4,5,16–19#, and so huge relative to the had
ronic gaps. If true, I assume that this disparity in scales,
almost two orders of magnitude, is due to confinement.

Thus I distinguish between a phase driven by chiral sy
metry breaking, wheremc

2,0 and mf
2 .0, from a phase

driven by color superconductivity, withmc
2.0 andmf

2 ,0.
At high density, the instanton termsL fc

I andL fc̃
I are very

small, so the expectation values ofc and c̃ are negligible.
At intermediate densities, the instanton termL fc

I has sev-
eral interesting effects. Remember that thef field is antitrip-
let in the flavor indices. Thus the strange component,f i ,3 is
an up-down condensate, while the up and down compon
f i ,1 and f i ,2 , are condensates of down-strange and
strange, respectively. Sincems@mu ,md , L fc

I is greatest for
the up-down condensate;2msf i ,3* f i ,3 and smallest for the
down-strange and up-strange condensates;2muf i ,1* f i ,1

and ;2mdf i ,2* f i ,2 . This is reasonable: because of the d
ference in the quark masses, it is easiest for color super
ductivity to occur between up and down quarks, and hard
for it to form between up or down and strange quarks. W
the overall minus sign, this is exactly whatL fc

I does.
As for L f

I with two flavors, for three flavorsL fc
I corre-

lates the overall phases of the right and left handed cond
sates. Because of the difference in the quark masses, tho
it is most effective for the up-down condensate, and le
effective for the up-strange and down-strange condensa
by a factor ofms /mu,d;20. This implies that in a phas
driven by color superconductivity,if instantons are impor-
tant, then the~approximate! spontaneous violation of parity
is smallestfor the up-down condensate, andgreatestfor the
up-strange and down-strange condensates. If instantons
not important, then all three condensates exhibit the sa
2-5
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ROBERT D. PISARSKI PHYSICAL REVIEW C62 035202
~approximate! parity violation, and theh8 is the lightest
pseudo-Goldstone boson@21,22#.

It is not clear how to observe the~approximate! sponta-
neous violation of parity in the up-strange and down-stra
condensates. As an effect from a Fermi sea, this app
most directly in baryons; the pattern above suggests eff
are large forL baryons, and negligible for any baryon
which have two quarks of the same flavor. Any effect
obscured by the fact that even in vacuum, the decays of
L are not parity conserving, for reasons which are not w
understood.

What about effects in a phase with~approximate! UA(1)
symmetry? The color directions of the right and left hand
fields are correlated through terms of quartic order in
potential, including

~f i ,aR
* f i ,bL

!~f j ,bL
* f j ,aR

!, ~38!

which is analogous to the quartic coupling for two flavors
Eq. ~23!. Mass dependence for thef ’s enter through terms
such as Eq.~36! and

uf i ,aL
* f i ,bR

caL ,bR
u2. ~39!

These terms are analogous to those using nonlinear effe
Lagrangians@21,22#.

For three flavors, condensation of the color antitriplet
perconducting fieldf also drives that of the color sexte
superconducting fieldx. Consider the operators@6,20#

Lfx;HR* f i ,aR
f j ,bR

x i , j ;aR ,bR
1c.c. ~40!

and

L fx
I ;HL* f i ,aR

f j ,bR
x i , j ;aR ,bR

1c.c. ~41!

Both operators are invariant under the U(1) of quark nu
ber;Lfx is invariant under UA(1), while L fx

I is induced by
instantons with topological charge 2. Whenf condenses ac
cording to Eq.~37!, Lfx andL fx

I become termslinear in x,
and generate an expectation value forx. The terms in Eqs.
~40! and ~41! explain why for three flavors the preferre
condensate always contains some~small! piece in the repul-
sive, color sextet channel@4,14,15,18,19#.

SinceLfx is invariant under UA(1), it is present even a
high density. This is in contrast to the instanton induc
operatorsL fx

I , L fc
I , and L fc̃

I , which are small at high
density. There is no anomaly in perturbation theory, so
weak coupling one finds that because ofLfx , x condenses,
but notc or c̃ @14,15#.

I conclude this section by discussing the fields related
H superfluidity,H1 andH2 @5,6#. Each is a complex valued
scalar field with two real degrees of freedom. In a co
superconducting phase, one mode ofH1 is the Goldstone
boson for the spontaneous breaking of the U(1) symmetr
quark number, and so is massless. The otherH1 mode is
massive except near a second order transition where^H1&
→0, at which point both modes form aO(2) multiplet. The
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H2 field is similar toH1 , except that both components ob
tain a mass from instantons, fromL H

I in Eq. ~33!.
SinceH1 only cares about the~spontaneous! breaking of

the U(1) for quark number, it isnot affected by nonzero,
nondegenerate quark masses. All that matters is that all t
colors and flavors of quarks become color superconduct
Alternately, one may consider separate fields for the th
condensates, and construct the operator analogous toH1 ;
see Ref.@21# of Ref. @6#.

It is possible to construct gauge invariant, superfluid or
parameters for two flavors by using both the particlef i ,R

1 and
antiparticlef i ,R

2 condensates

e i jkf i ,L
1 f j ,R

1 fk,L
2 . ~42!

Similar to H1 and H2 , this is invariant under all but the
Abelian flavor symmetries. However, there is no reason
believe that this quantity is ever nonzero, since all th
fields most likely lie in the same direction in color spac
ThusH superfluidity is uniquely a consequence of color s
perconductivity through color-flavor locking for 211 fla-
vors.

II. PHASE DIAGRAMS

In this section I begin by proposing phase diagrams
the effective three-dimensional theories which describe
phase transition to color superconductivity at nonzero te
perature. At a temperatureT, a three dimensional effective
theory is valid over distances@1/T; for the phase transition
to color superconductivity, three dimensional effecti
theory should be valid when the gapf(T)!T. I then con-
jecture how this might relate to the phase diagram in
plane of chemical potential and temperature.

I assume that the density of instantons is always large
that the right and left handed condensates are equal.
more general case, allowing for different right and le
handed condensates, is discussed later. The moral of the
ceding section is that for three flavors, because of cu
terms involving twof ’s and the other fields—eitherc, c̃, or
x—expectation values of these other fields are generate
color superconductivity. Even so, assuming that these o
fields all have positive mass squared, then as thef field
becomes critical,mf

2 →0, all of the other fields remain non
critical. Thus we can safely neglect all fields except for t
color antitriplet superconducting field.

For two flavors, I denote the condensate field asf̄ i

[f̄ i ,R5f̄ i ,L ; the effective Lagrangian is

L25
1

2
tr~Gmn

2 !1uDmf̄u21mf
2 uf̄u21l̄~ uf̄u2!2; ~43!

Gmn is the field strength for the gauge fieldAm , and Dm
5]m1 igAm is the covariant derivative for an antitriple
color field f̄ i . I distinguish the condensate fieldf̄ i from f i
in the previous section, due to an overall rescaling explai
below, Eq.~47!. The effective Lagrangian in Eq.~43! is valid
near the transition temperature, and so is meant to be use
2-6
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CRITICAL LINE FOR H SUPERFLUIDITY IN . . . PHYSICAL REVIEW C62 035202
three dimensions. I assume that all coupling constants
just the temperatureT times those in four dimensions, whic
is approximately true.

The phase transition occurs asmf
2 →0; in this case it is

natural to introduce the ratio of thef̄ coupling constantl̄ to
that for the gauge fieldg

l5
l̄

g2
. ~44!

This ratio has a more physical interpretation. At zero te
perature, if mf

2 ,0, the expectation value off̄ is f̄0;

(2mf
2 /l̄)1/2. In the broken phase, the Higgs mass is the m

for the f̄ field ;mf while the gluon has a massmA;gf̄0.
Thus l is proportional to the Higgs mass divided by th
gluon mass, squaredl;mH

2 /mA
2 .

Contrast this to the situation at zero temperature, wh
the theory is four dimensional. At zero temperature, inst
of mf

2 varying with temperature, one only finds a transition
one variesmf

2 by hand. A phase transition is expected
occur asmf

2 →0. Instead, because of the Coleman-Weinb
phenomenon, one finds that the~renormalized! correlation
length never diverges@36–38#. This can be understood from
the renormalization group. Forg50, the b function for l̄
has an infrared stable fixed point at the origin. WhengÞ0,
however,l̄ cannot flow into the origin; instead, it flows from
positive to negative values, which then generates a first o
transition. Naively, one expects thatl is a free parameter
but because of dimensional transmutation, this is an illus
By letting the coupling constants flow, one can always
from a regime with largel to one with smalll. Physically,
the square of the ratio of the masses for the Higgs boso
the gluon fields is not a free parameter, but is fixed,;g2.

Return now to a theory at nonzero temperature, where
effective theory is three dimensional. Thenl is a free pa-
rameter: different values ofl correspond to different theo
ries at zero temperature. We can then consider the p
diagram as a function ofl @39–44#. For smalll, fluctuations
in the gauge field dominate, and a one loop analysis relia
indicates a first order phase transition. This is the ‘‘type-
regime of ordinary superconductivity. Asl increases, one
moves into the ‘‘type-II’’ regime, where fluctuations in th
scalar field become important. An expansion from 42e di-
mensions to three dimensions predicts that for largel, that
the transition is driven first order by fluctuations in the sca
fields. Consequently, the simplest hypothesis is an unbro
line of first order transitions for alll.

This is not what lattice simulations find@27#. There is
indeed a first order transition for smalll, but asl increases,
the strength of the first order transition decreases, unt
ends at a critical point, atlc . The critical point occurs when
the masses of the gauge and scalar fields are approxim
equal. Forl.lc , there is no first order transition, only
smooth crossover between the two phases.

The existence of a critical end point is certainly possib
Since f̄ is in the fundamental representation of the gau
group, there is no gauge invariant order parameter wh
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distinguishes between the two phases@45#. The question,
however, is why in the type-II regime does the first ord
transition at smalle turn into a smooth crossover ate51?

One possibility is simply that thee expansion breaks
down at largee;1. Nevertheless, Iassumethat thee expan-
sion is reliable in its prediction of a fluctuation induced tra
sition when the theory only involves scalar fields. Numero
examples are known in condensed matter physics@40#; for
careful analyses in models where the strength of the
order transition can be controlled, see Ref.@43#.

Instead, I suggest that thee expansion fails uniquely for
theories of scalars coupled to gauge fields. Since the the
is three dimensional, when the vacuum expecation value
the scalar field vanishes, one inevitably enters a stron
coupled phase of the theory. In this phase, the proper wa
think of the spectrum is in terms of gauge invariant exci
tions, such as glueballs and mesons formed from sca
@44#. A fluctuation induced first order transition occurs wh
the quartic couplings for the scalar run from positive to ne
tive values. For this to happen, however, the couplings m
flow. Perhaps the crossover regime is simply a manifesta
of confinement in three dimensions: whenmf

2 →0, scalars
become strongly bound into relatively heavy mesons. If
scalars are heavy, the scalar self couplings never run
much, even asmf

2 →0. That is, confinement in three dimen
sions ‘‘eats’’ the running of the coupling constants. Wh
only a qualitative explanation, it is reasonable that crosso
begins when the~zero temperature! masses of the Higgs an
gauge fields are approximately equal. How~three-
dimensional! confinement can stop the running of~effective!
coupling constants is analogous to how, in four dimensio
the strong coupling constant might freeze at low mome
@46#.

The complete phase diagram can then be sketched. C
sider the limit of largel; this may not make sense in th
continuum~because of triviality bounds!, but is perfectly rea-
sonable on the lattice. For infinitel, the gauge fields de
couple, and there is only a scalar field; the universality cl
is that of an U(3) vector, which is the same as anO(6)
vector. Thus there is a second order phase transition w
l5`. At large but finite value ofl, however, confinemen
presumably eats the running of the scalar coupling consta
so the theory exhibits crossover forlc,l,`. This phase
diagram, from Ref.@38#, is illustrated again in Fig. 1: there

FIG. 1. Phase diagram for onef̄ i field coupled to a SU(3)
gauge field. In Figs. 1 and 2, they axis isl, from 0 to`, and the
x axis is;mf

2 .
2-7
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ROBERT D. PISARSKI PHYSICAL REVIEW C62 035202
are critical points atA2, wherel5lc , and atB2, wherel
5`.

Consider now the model for three flavors, where the
titriplet condensate field isf̄ i ,a :

L35
1

2
tr~Gmn

2 !1tr~Dmf̄†Dmf̄!1mf
2 tr~f̄†f̄ !

1l̄1@ tr~f̄†f̄ !#21l̄2 tr~f̄†f̄ !2. ~45!

There are now two quartic coupling constantsl̄1 and l̄2, so
there are twol parameters similar to that of Eq.~44!; for
simplicity I speak only of one, assuming thatl̄2Þ0, so that
there is not an accidentalO(18) symmetry. Atl5`, gauge
fields can be neglected, andf̄ i ,a is a SU(3)3SU(3)
3U(1) vector field. In 42e dimensions, this has a fluctua
tion induced first order transition@47#. Assuming this persists
to three dimensions, there is a first order transition atl5`;
even with confinement atl,`, the first order transition con
tinues for some finite range of largel. Assuming a crossove
regime for intermediatel, the phase diagram, illustrated
Fig. 2, has a critical end point for smalll, at a pointA3, and
for largel, at a pointB3. Both critical end points are in the
Ising universality class in three dimensions, as are pointsA2 ,
B, A3, andB3 in Figs. 3 and 4.

BetweenA3 andB3, there is a gauge invariant order p
rameter,H1 , which distinguishes between the two phas
The expectation value ofH1 either goes to zero continu
ously or discontinuously. If the latter, there is a first ord
transition, and no crossover regime. Assuming there i
crossover regime for the non-Abelian fields, between

FIG. 3. Cartoon of the QCD phase diagram in the small g
limit. In Figs. 3 and 4, they axis is temperature, and thex axis
quark chemical potential.

FIG. 2. Phase diagram forf̄ i ,a coupled to a SU(3) gauge field.
03520
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e

critical end pointsA3 andB3 there must be aline of second
order phase transitions, at which theH1 field becomes criti-
cal. This is in the universality class of anO(2) vector in
three dimensions.

This critical line is analogous to that found by Kajant
et al. in their study of an adjoint scalar field coupled to
SU(3) gauge field@28#. ~For the model of Ref.@28#, there is
only one quartic scalar coupling, and so the pointB3 lies at
l5`.! In the present case, one might wonder why the cr
cal fluctuations for theH1 are not eaten by confinement. Th
same comment applies to the adjoint model of Ref.@28#, and
is easy to dismiss. For color superconductivity, the fluct
tions in H1 are associated entirely with fluctuations in th
U(1) symmetry of quark number. The non-Abelian SU(3c
gluons cannot eat the running of the coupling constant
the U(1) of quark number because they cannot ‘‘taste’’
the H1 field is neutral under any SU(3)c transformation.
Thus near the critical line forH superfluidity, the only criti-
cal modes are those forH1 .

These effective theories can be directly related to co
superconductivity, although there is one surprise. As
known in ordinary superconductivity@1#, the condensate
field does not have canonical normalization; the effect
Lagrangian forf is

L5
m2

f0
2

uDmfu22m2ufu21
m2

f0
2 ~ ufu2!21•••. ~46!

The terms in Eq.~43! are only correct up to coefficients o
order one, and I am sloppy about which quartic terms en
because all I really care about is how the scales in
problem—the chemical potentialm and the value of the con
densate at zero temperaturef0—enter. What is interesting is
that because particles have an energy;f0 near the Fermi
surface, the kinetic and quartic terms in the potential ha
factors of m2/f0

2. This can be understood as follows. Th
mass term;ufu2 is not singular, with an overall mass d
mension set by the chemical potentialm. Expanding the two
point function off in momentum, the natural scale for th
momenta to vary is overf0; thus the kinetic term is
m2u]mfu/f0

2. The gauge invariant generalization
m2uDmfu/f0

2, which includes a quartic interaction betwee

p

FIG. 4. Cartoon of the QCD phase diagram in the large g
limit.
2-8
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CRITICAL LINE FOR H SUPERFLUIDITY IN . . . PHYSICAL REVIEW C62 035202
two f ’s and twoAm’s ;m2/f0
2. Thus it is not surprising tha

the quartic interaction between fourf ’s also has an overal
factor ;m2/f0

2.
To relate this to the effective Lagrangians in Eqs.~43! and

~45!, it is necessary to rescale the fields and coupling c
stants, so that

f;
f0

m
f̄, l ;S f0

gm D 2

. ~47!

It is also clear from the form of the potential that terms
higher order, such as a six point term (m/f0)4(ufu2)3

→(f0 /m)2(uf̄u2)3, are just as important as the quartic ter
Indeed, all of the effective terms in the previous sect
should be multiplied by corresponding powers ofm/f0.
None of the results change qualitatively, since they wer
consequence of symmetry, and not of the assumption of
iting oneself to operators with the smallest mass dimens

These powers ofm/f0 imply that, as in ordinary super
conductivity, generally a Landau-Ginzburg approach is a
rible approximation. The one exception is near a point
phase transition, wherêf&→0. In this case, fluctuations ar
controlled by the term with the largest mass dimension; i
cubic and quartic terms.

Using the conjectured results for the phase diagram of
effective theories in three dimensions, we can then draw
toons for the possible phase diagrams of color supercon
tivity in the m-T plane. At largem, whereby asymptotic free
dom g(m) is small, the gap is exponentially small in 1/g
@6,8–15,23,24#:

f05512p4S 2

g2Nf
D 5/2

expS 2
3p2

A2g
D mb08 ; ~48!

b08 is a pure number, determined in Ref.@11#. Notice that the
gap decreases as the number of~massless! flavors Nf in-
creases. In mean field theory, the transition temperature
in the theory of Bardeen, Cooper, and Schrieffer,Tc
;0.567f0, and is of second order@10#. Thus at a large bu
fixed value ofm, as the temperature increases, there i
transition at which superconductivity for three flavors evap
rates, and then a higher temperature at which that for
flavors evaporates. When fluctuations are included, b
transitions turn first order. Since the condensate is small,
effective coupling l;(f0 /gm)2 is very small, and the
theory is in a regime of extreme type I, with a tiny latent he
;l.

I note that the coefficient of the kinetic termuDmfu2 in
Eq. ~46! has been computed in weak coupling perturbat
theory in QCD@24#. What is remaining is to determine th
coefficients of the terms which are quadratic and quartic
f. Technically, this is easiest to do directly at the critic
temperature. While of course such calculations are only v
at large chemical potential, by comparing to lattice resu
they will give one an idea if it is reasonable that the theo
goes from the type-I into the type-II regime.

As m decreases,l increases, so one moves up the pha
diagrams of Figs. 1 and 2. The crucial question is how co
03520
-

f

.
n

a
-

n.

r-
f

.,

e
r-
c-

as

a
-
o
th
e

t

n

n
l
id
,

y

e
r

superconductivity matches onto the chiral phase transitio
henceforthassumethat the type-I regime ends before th
chiral phase transition. In this case, there are critical e
points for color superconductivity, at pointsA2 and A3, re-
spectively, in Figs. 3 and 4; they correspond precisely to
same points in Figs. 1 and 2.

Now consider the opposite limit, working up for sma
chemical potentialm. I assume that at zero temperature the
is a first order chiral transition, at a pointC in Figs. 3 and 4.
As the temperature increases, the chiral transition occur
smallerm, so the chiral transition bends back, extending t
point E, which is a critical end point for the chiral phas
transition@29#.

How do the phase transitions for color superconductiv
and the chiral transition match onto each other? Based u
the discussion in the previous section, I assume that at
temperature the chiral transition coincides with that for co
superconductivity. There are then two cases: if the gap
color superconductivity at the pointC is small, relative to
ms

2/m. Increasingm at T50, one first enters a phase i
which only up and down quarks superconduct@18#, and then
a phase in which all three flavors superconduct. This is ill
trated in Fig. 3. Following@6#, at zero temperature the tran
sition from two flavor to three flavor superconductivity is
first order.

~A crucial assumption in Ref.@6# is that hard dense loop
give the gluons a ‘‘mass,’’ so they decouple from the pha
transition. One might question if this remains true in stro
coupling; even with the hard dense loop mass, perhaps
four dimensional gluons eat the running of the coupling co
stants for the condensate field? With some effort, this can
analyzed on the lattice: it would be necessary to add dum
fields to generate hard dense loops for the gluons, and
couple the gluons to a condensate field.!

Alternately, the gap at the pointC could be large, relative
to ms

2/m. In this limit, one goes directly from a phase wit
~large! chiral symmetry breaking, to one with three flav
color superconductivity, Fig. 4. As discussed in the previo
section, there need not be a true phase transition at the p
C @5#; I assume there is, based on the disparity in scales
superfluidity between hadronic and quark matter.

The crucial assumption in Figs. 3 and 4 is that the co
superconductor does not remain in the type-I regime,
enters the type-II, or crossover, regime. Thus the line for t
flavor superconductivity terminates in a critical endpoint,A2,
with no true phase transition form ’s less than some value
For three flavor superconductivity, if one enters the cro
over regime there must be a critical line forH superfluidity.
Even if one enters the type-II regime, one may not reach
second critical endpoint,B3 of Fig. 2. In Figs. 3 and 4 I
assume not. In Fig. 3, the pointB represents where the criti
cal theory goes from being four-dimensional to a thre
dimensional theory in the crossover regime. In Fig. 4, sinc
critical line probably does not attach directly to the line
first order chiral transitions, the pointB represents the end o
a first order line induced by the chiral transition.

There is a caveat to the phase diagrams of Figs. 3 an
Even in a confined phase, as long as strange quarks pop
a Fermi sea,L baryons may well be superfluid, so that
2-9
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T50, ^H1&;^LL&Þ0. The phase transition for suc
‘‘hadronic’’ H superfluidity is probably of second order fo
all m andT. As discussed in Sec. II, though, hadronic sup
fluid gaps appear to be much smaller than color superc
ducting gaps. Since critical temperatures are proportiona
the gap, in them-T plane the lines for hadronicH superflu-
idity lie very close to the zero temperature axis. Similar
even between the two first order transitions atT50 in Fig. 3,
^H1&Þ0. This is a phase in which only up and down, b
not strange, quarks, superconduct. In this region, I also
sume that̂ H1& is small, on the order of that in the hadron
phase.

I stress that I assume that the theory goes from the ty
to the type-II regime asm decreases. It is conceivable th
the color superconducting transitions remain in the typ
regime for allm. In this instance, the pointA2 would reach
all the way to the chiral line, andA3 andB would coincide,
with no critical line forH superfluidity. Alternately, it is also
possible that at smallm the theory goes so deep into th
type-II regime that the pointB in Figs. 3 and 4 coincides
with the critical end pointB3 in Fig. 2.

In the above, I have assumed that because the effec
instantons are large, that left and right handed condens
are correlated. Of course in the full theory they oscilla
independently, coupled through mass and anomaly terms
fective theories which include independent left and rig
handed fields are constructed following the analysis of Se
There is no signficant modification for two flavors, but the
is for three. For three massless flavors, with no anomaly
d,

.
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Fig. 2 there must be an unbroken line of first order tran
tions. This is because chiral symmetry is also broken
color-flavor locking, so we can treatf i ,al

* f i ,ar
as a gauge

invariant order parameter for chiral symmetry breaking.
standard renormalization group analysis then predicts
the transition is of first order@47,48#.

My arguments are admittedly speculative, and meant o
to suggest what the QCD phase diagram might look li
While at present the lattice cannot tell us about QCD w
mÞ0, it can study the effective theories of relevance to co
superconductivity. Moreover, by using perturbation theory
QCD, one can work down from largem to match onto the
lattice results. How far this can be pushed at smallm is open
to question, but is testable. The most interesting questio
where the critical endpointA3 is, since that tells us if and
when the critical line forH superfluidity begins.
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czek, Phys. Lett. B450, 325~1999!; K. Langfeld and M. Rho,
hep-ph/9811227; D. K. Hong, M. Rho, and I. Zahe
hep-ph/9906551.

@3# N. Evans, S. D. H. Hsu, and M. Schwetz, Nucl. Phys.B551,
275 ~1999!; Phys. Lett. B449, 281 ~1999!.

@4# M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.B537,
443 ~1999!.
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