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Critical line for H superfluidity in strange quark matter?
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Based upon the analogy to the electroweak phase diagram, | propose that in QCD there might be a critical
line for a superfluid transition, in the plane of chemical potential and temperature. The order parameter has the
quantum numbers of thid dibaryon, but the transition is driven by color superconductivity in strange quark
matter.

PACS numbefs): 21.65:+f, 12.38.Mh, 14.20.Pt

In QCD, there is a phase transition to a color superconfield [28], | suggest that for 2 1 flavors, there might be a
ducting phase at high quark density and low temperaturéine of second order phase transitions, in the plane of chemi-
[1-24]. At densities of interest for the collisions of heavy cal potential and temperature. The transition is induced by
ions or quark stars, “2 1" flavors of quarks—up, down, color superconductivity for 21 flavors, assuming color-
and strange—enter. flavor locking[4]. Even so, it is properly a superfluid transi-

The order of the phase transition to a color superconduction, where the order parameter is an operator for kthe
ing phase at zero temperature, as function of the quarRibaryon[5,6]. As in ordinary superfluidity, H superfluid-
chemical potential, was analyzed previou§]. The zero ity” lies in the universality class of a®(2) vector.
temperature transition is simple because the effective theory All of my arguments are qualitative and, on occasion,
is four dimensional over large distancs]. For a second speculative. However, the phase diagram for the effective
order transition, couplings can only flow into the origin, with three-dimensional theory is directly testable by lattice simu-
mean field behavior corrected by logarithms. Most impor-lations involving only scalars and gauge fields. The effective
tantly, quark loops screen gluons, so that gluons do not cortheory in three dimensions can be computed analytically us-
tribute over long distances. For+2l flavors, this analysis ing perturbation theory in QCD. While thegperturbative
predicts a first order transitidi]. coefficients are of course only valid at very high densities, by

The transition at nonzero temperature is much more comeomparing to the lattice results, one could at least estimate if
plicated. Over large distances, the effective theory is threghe critical line forH superfluidity might begin. If a critical
dimensional; a second order transition typically flows towardline does occur, it is manifestly of experimental interest, as is
a fixed point which lies in a regime of strong coupling. Also, a critical end point for the chiral phase transiti&9].
while static electric fields are screened by quark loops, static
magnetic fields are not. Thus the phase transition involves |. EEFECTIVE THEORIES
scalar fields coupled to gauge fields in three dimensions.

In this paper | consider the effective theories which are of In this section | first review the order parameters for color
relevance for the phase transition to color superconductivitguperconductivity with massless quafis6,7,10, and then
for 2+1 flavors of quarkg6]. This enables me to unify a use them to construct effective Lagrangians in a standard
large number of model dependent results in a simple mannefashion. | assume that if a condensate witbtal) spin zero
Because of an instanton induced tedn14], | find one sur- can form—as is true for two and three flavors—that it does,
prise. As suggested previoudl§,3,4,6,19,23 in a chirally ~ and dominates over condensates with higher spin.
symmetric, color superconducting phase, (@pproximatg
spontaneous violation of parity can be large. The pattern, A. General analysis

however, is unexpected:instantons are important, théap- | K v d . . ¢
proximate parity violation is greater for the up-strange and Massless quarks naturally decompose into eigenstates o

the down-strange superconducting condensates than it is fgf!rality. In a Fermi sea, particles have zero energy near the
the up-down condensate. Fermi surface, and dominate over ant|part|cl_es, which always
While the phase transitions of scalars coupled to gaug@ave nonzero energy. Thus it is natural to introduce projec-
fields in three dimensions is a complicated problem, becaus@"s for chirality and energy,
of the possibility of generating a cosmological baryon asym- 1 1 A
metry at the electroweak scale, much is known about such ’PR’LZE(li vs), Pizz(li Yoy-K), (1)
phase diagrams from numerical simulations on the lattice
[27,28. Using this information, | conjecture how the phase R o
diagrams for the effective three-dimensional theories fowherek is the momentum of the quark, aha=kk, k?=1.
color superconductivity might look. Following especially the There are then four types of quark fields, right and left
phase diagram for adjoint scalars coupled to d3dauge handed, and particle and antipatrticle.
Quarks transform under a local gauge group of SY(3)
color; the color indices of the fundamental representation are
*Electronic address: pisarski@bnl.gov denoted byi,j=1,2,3. ForN; flavors of massless quarks,
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with flavor indicesa,b=1 . ..N;, classically there is also a _ 8
global flavor symmetry of SW{;)rX SU(N;) X U(1) (Gi,a, 9.bg) = Y03 %a by (7)
X U(1). A right handed particle is given by
. this leaves SU(3) unbroken, and breaks the flavor
Giag=P" PrUia 2 SU(N{)RX SU(N{).— SU(N;). The color singlet chiral field

develops an expectation vallig) ~ 14, and the color adjoint
chiral field does not{)=0.
tumk. ) ) Using this inelegant notation, one can write down how the

There are two right handed superconducting condensatgg|ds transform under the non-Abelian symmetries. What is
with total spin zero: between two right handed particles, Ofsimpler and more useful is how they transform under the
two right handed antiparticles, Abelian flavor symmetries of A{1)x U(1). Suppressing the
color and flavor indices, the quark fields transform as

whereq; , is a quark field with color, flavora, and momen-

q)ii,j;aR,bR:(qii,aR)Tqu'i,bR, 3 | |
Or — g(0+0p) Or, qL— g(0=0a) a., @)
and similarly for the left handed condensatgfias momen-

tumK, q7 is the Dirac transpose of a quark with momentumS° the condensate fields transform as

—k, andC is the charge conjugation matrix. Gaps ftotal) O IND,y, O PN |
spin 1 are constructed similar[st0].
Superconductivity is due to pairing of particles near the A~ LN LI (9)

Fermi surface, so it is natural to expect that only the particle

condensatesb *, matter, and that the antiparticle conden- g generates rotations for the U(1) symmetry of quark num-
satesd~ can be neglected. In an effective Lagrangian aper, which is an exact symmetry of the Lagrangian. In con-
proach, this happens as follows. As is evident from Bq, trast, 6, generates a rotation for the (1) symmetry of

for every particle condensate there is a corresponding antinomalous quark number: this is badly broken in the
particle condensate. Thus in an effective Lagrangian the twQacyum, but at high density or temperature, is very nearly a

fields mix, good symmetry of the Lagrangi@B1]. Note thatdy, trans-
_ _ form nontrivially under both (1) and U(1),while ¢ and
2 "o+ +c.c]+m? 2). ~
g ul(®7) 1@+ c.c]t m= tr(|b ) @ ¢ transform only under the anomalous Q).

| assume tha® ~ does not condense on its own, so thatithas C0lor superconductivity involves quarks pairing with
a positive mass squared? >0. For free fields®* andd ~ quarks, so Fermi statistics implies a nontrivial relation. For a

do not mix, but they do at-g?, since interactions invariably spin zero condensatd must be sym.me'tric in the simuita-
mix particles and antiparticl®4]. Hereg is the QCD cou- neous exchange of color and flavor indices

pling constant, although perhaps tiygis only ag, due to a
logarithmic enhancement from forward scatterig-15,24.

Whatever t'he \(alue of the m.ixing term, th‘?UQh’ eXCIu,ding(Condensates with spin one satisfy a more complicated rela-
isolated pomts in the _phase_dlagram, there |+s No generic régynship, but are essentially antisymmefdd].) There is no
son why it should vanish. With Ed4), whend ™ condenses, g, relationship for chiral symmetry breaking, which in-
it becomes a term linear i, so it also condenseé® ™) | gjyes the condensation of quarks with antiquarks.

2 oy ] .
gg §¢+>d EUt Ehelcrltlcﬁhbehlawor, ,yheréfﬁiioy IS I Group theory tells us that the product of two color triplets
ominated by® " alone. Thus | consider only the particle is an antitriplet plus a sexte8X3=3,+6; the subscripts

condensates and drop thet™ superscript,®=d*. . . ) .
denote antisymmetric and symmetric representations, respec-

In addition to those for color superconductivity, | also .. o ' .
require the order parameters for chiral symmetry breakingt'VEIy' By Eq. (10), the color antitriplet piece ob, which |

Chiral symmetry is broken by a condensate between an arg_enote¢, combines with an antisymmetric flavor represen-

tiquark and a quark. From group theory, the product of atatlon, while the color sextet pag combines with a sym-

color antitriplet and a triplet is a singlet plus an octet metric flavor representation. Under singlet gluon exchange,

= ) “"the antitriplet channel is attractive, and the sextet repulsive.
3X3=1+8. There are then two chiral order parameters: a Defering the precise definitions @ and y for now, the

q)-IR-’,L:_I—(DR,L- (10

color singlet lowest order effective Lagrangian, including gauge interac-
— tions, but neglecting terms which are nonlinear in the con-
Ya, be=ia, Yibg )  densate fields, is
ioint fi 0_p0, p0, 0, O
and a color adjoint field LO=L0+ £@+£¢+£X+/;f$+£g_ (11)
T,bgL,bR:a,aLtﬁqj,bR; (6) For massless quarks, the effective Lagrangian is composed
of four terms: for the color singlet chiral field
tﬁ is the generator for SU(3) with the adjoint indexC

=1...8. In thevacuum, Lo=tr(|a,91%) +mi (g y), (12
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the color adjoint chiral field For two flavors | ignore the adjoint chiral field and the color
~ o sextet field for color superconductivity, since they always
£%=U(|Da¢//|2)+m%,,tr( yp), (13)  vanish:()=(x)=0 at all densities. Under the Abelian fla-
vor symmetriesg; r transforms asbg, Eq. (9), etc.
the color antitriplet superconducting field Many interaction terms need to be added48; those
0 5 5 : which violate U (1) are especially interesting. Fo¢; fla-
L 4=tr(|D o)+ mitr(o'd), (14 vors of massless quarks, the zero modes of an instanton with
o topological charge generate an interaction betwe@n\;
and the color sextet superconducting field right-handed quarks an@N; left-handed antiquark§31].
From Eq. (9), the corresponding operators transform as
LY=1r(|D ox|?) +mi tr(x ) (19 exp(dQN;6,) under Uy(1) rotations. In vacuum instanton

. . T . effects are large, since they give the its mass; thus they
D, is t_he covariant golor derivative in the appropriate rePr€ must continue to be important in a hadronic phase, at small
sentation. For massive quarks, one also needs chemical potential. Conversely, semiclassical methods are
valid at large chemical potential, and it is certain then that
instantons are very dilute. At intermediate chemical poten-
tial, it is not clear how the density of instantons is correlated
with chiral symmetry breaking and color superconductivity. |
. discuss what might happen if the density of instantons is
q.uark mass for flavoa. From current algebra and lattice large in a chirally symmetric, color superconducting phase,
simulations30], the quark masses for up, down, and strangg,; this might not occur in QCD: the density of instantons
arem,~4, mg~8, andms~100 MeV, respectively. might drop precipitously when chiral symmetry is restored.

The Lagrangian for the color gauge fiedt} is the usual For two flavors, single instantons generate a determinantal
action plus a term for hard dense lod@38]. I assume that o for the chiral field§31]

the Debye mass for hard dense loops is always nonzero.

While these terms are all completely standard, given the £ ~— dety) (21)
multiplicity of fields, it helps to be explicit. | assume that the v ’
adjoint chiral field and the color sextet field always represent nich is quadratic in they's. The superscript is used to

repulsive channels, with positive mass squared: denote that the term is induced by instantons. The overall
minus sign in Eq(21) is importanf31]. At =0, the instan-
ton term not only acts to make thg meson, which has spin
arity J’=0", massive, but it also drives chiral symmetry
sreaking in the O channel.
Single instantons generate a similar term for #is [16],

LT=+ tr(yM). (16)

The diagonal elements 0$1 are proportional to the current
quark massesM, p ~Mad, b, With m, is the current

2 2
m~w>0, m:>0. (17)
In contrast, one expects that at low densities and temper
ture, chiral symmetry is broken in the color singlet channel,
m$<0; if all current quark masses vanisiv=0, the pat-
tem is Ly~— (Pl dirt BirbiL)- (22
(¥a o) = oda b (18 As for L), | write £, with an overall minus sign, so that it

acts to drive color superconductivify6].

In addition to the terms induced by single instantafd;
and £!,, there are also terms induced by instantons with
topological charge 2. Operators induced@y- 2 instantons

as is consistent with Eq7). Chiral symmetry is restored at
high density or temperaturmfb>0. Ignoring the coupling to
other fields,y still develops an expectation value from the

mass termM include (€})2, L},L},, and (€))% For two flavors these
— operators are a curiosity, but they arise naturally for three
<‘/’aL,bR>_ Y maﬁal_ bg - (19) f|2VOI‘S. y y y

For color superconductivity, | assume that the color anti'car?t/vr:i?eh ti?;sslt\lisrslfcvr\]/hr(ea;e t(clt)aiae]f(sj_e)mtl)a”g rj;’:i?q rei’a?;]e
triplet channel is favored at high densit§-12,14,15,24 P ysq 9

with m3<0, and disfavored at low density, witin;>0. term in £qs.(21) and(22), such as

How the chiral transition and color superconductivity are
coupled is one of the principle questions to be addressed.

[det(y)|?,  |ofL ¢irl® (23

There are also terms which coupteto ¢, such as
B. Two flavors

| start with the case of two flavors. For flavor &), (g ) (| prl®+ | b |?) (24
2X2=1,+ 3. The color antitriplet superconducting field is
then a flavor singlef1]: and
i r= fijkfaRqu)j,k;aR,bR- (20) de(y)* ¢f, ¢i p+c.C. (25)
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The effect of Eqs(25) and(24) is to couple the transition for valid in a chirally symmetric phase; with chiral symmetry
color superconductivity to that for chiral symmetry breaking.breaking, the constituent quark masses are larg813
Model dependent analyses indicate that chiral symmetryeV, and strange baryons are suppressed. In this region my
breaking and color superconductivity can coexist for someaveats about confinement apply.

range of densitie§16,17,19. However, all such models For three flavors, the color antitriplet superconducting
manifestly leave out confinement: while two quarks may likefield is a flavor antitriplet; for right handed particles, this is
to bind together in a color superconducting condensate, ik acbac

in a phase with chiral symmetry breaking—and so bia = € ERRRD oy . (27)
confinement—this could well be overwhelmed by the ten-

dency of three quarks to form a color singlet baryon; seel also introduce the color sextet, flavor sextet superconduct-
also, Ref.[26]. On this basis, | assume that the sign of theing field by symmetrizing with respect to the color and flavor
coupling constants in Eq$25) and (24) is positive, so that indices; for right handed particles,

chiral symmetry breaking suppresses color superconductiv-

ity. Xijiag b= L Pijiag b T (1= 1)1+ (@r—br)}.  (28)
When color superconductivity occurs, aﬂd¢ is impor-
tant, the preferred condensate is My notation is somewhat confusing: for either color or fla-
vor, the indices onp are antitriplet, while those ol are
(i rU)=EREdo iz,  Or=0; (26)  triplet.

There are several terms which are special to three flavors.

a global color rotation is done to align the condensate in th&0r three flavors | keep track of all fields, including those

color-3 direction. This breaks SU(3)SU(2)., and leaves wh|cr~1 are not favored to condense: the color adjoint chiral

flavor unbroken;¢, is real. There are two types of correla- field ¢ and the color sextet superconducting figldAs will

tions in these expectation values. First, the phaseg;gf  be seen, because of cubic operators they develop expectation

and ¢; | are equal,6g= 6, . Parity switches right and left values when color superconductivity occurs.

handed fields, so if both fields have the same phase, it im- | first consider operators induced by single instantons.

plies that the condensate has spin pafty=0". Secondly, The simplest is a determinant for the chiral fielﬁ§ in Eq.

with Eq. (26) the direction of the right and left handed con- (21). This is just like that for two flavors, except now it is

densates are the same in color sp&®&23|. cubic in the component field$aL,bR. Analogously, there is
What happens at high densities, when instantons are veiyso a determinantal operator for three color adjoint chiral

dilute? There is always some density of instantons about, angs|ds

they generate a term such ﬁ%, albeit with a small coeffi-

cient. In this limit, Uy(1) symmetry is effectively restored, EITp Ntr[de(l])]~dABCeaRbRCREaLbLCLTp/;RaLTpERbLTI,gRCL

and 0z and 6, are not correlated, except over very large (29)

scales. This is thé€approximatg¢ spontaneous breaking of

parity [1,3,4,6,19,28 Phrased in another way, themeson  [¢ABC js the symmetric structure constant for SU{8)and

is very light: its mass is determined by E@S5), m?  petween two color adjoint chiral fields and one color singlet

~mymg [6]. chiral field
What about the coupling between the directions¢gk
. ) . : | ~e o~
and ¢; | in color space? While the instanton term is no gww EaRbRCREaLbLCL¢aRaL¢gRbL¢§RCL_ (30)

longer important, there are many other terms in the effective
Lagrangian which couple the color direction of the two con- g, the ¢ fields, in obvious analogy there are two cubic

densates. One eanmpIe is H@3); in weak coupling, this  oherators which are invariant under the non-Abelian symme-
first appears at-g” [22,23, whereg is the QCD coupling tries, but transform under A01):
constant. Thus while the phase of the right and left handed

condensates are ng@strongly correlated at high density, Hr=de( ¢ ,), H_=del(q ,). (32)
they are correlated in color; for a dynamical explanation, see R L

Ref. [23]. For later reference, | introduce

C. Three flavors 1
. . . H.=5(HrEHL). (32
This completes my discussion for two flavors. In QCD, 2

the case of interest for dense quark matter is really that of .

three flavors. A chemical potential does not matter until it isH= has spin-parity”=07, soH , has the quantum numbers
greater than the mass of a particle, so there is no Fermi se# the H dibaryon[32]. However, unlike detf) and detg)),
until the quark chemical potentia is greater than one third Hg and H, cannot appear in an effective Lagrangian, be-
of the nucleon masg>313 MeV (because of binding in cause they transform not only under the anomalowé1(),
nuclear matter, it is actually a little lessAs w is always at  but also under thégood U(1) symmetry for quark number
least three times the strange quark mass, any complete ana[j]. Using only the¢ fields, one can construct terms which
sis must include three flavors. Of course this counting is onhare invariant under all symmetries except(ll):
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Ly~Hf Hg+HEH, . (33)  sity in the chiral limitAM=0. The color adjoint chiral field
also develops an expectation value, as is seen in a three
This is similar to/:'¢ for two flavors, but given the transfor- flavor instanton moddl19].

mation properties ofp under U(1), Eq. (9), £}, is not Since the expectation value ¢fis always nonzero, there
induced by single instantons, but by instantons with topois no gauge invariant order parameter which distinguishes a
logical charge 2. phase with chiral symmetry breaking from one with color

An operator induced by a single instanton is given bysuperconductivity, and at least formally, there is a continuity
combining two ¢'s and one color singlet chiral fields  petween strange hadronic matter and strange quark matter

[4.14) [5]. One might wonder if detf), Eq. (29), provides such an

[,I(M/N _(¢i*’aL¢i]bR,/,aL by HCC). (34) orc_ier parameter, but even thoug@:O in the phase with_
chiral symmetry breaking, assuming the quark expectation

| assume the sign is negative, as it is for two flavors. Singlevalue of Eq.(7), <det(7//))~ 11189&0.

instantons also induce a similar term between e and Even so, | argue that in QCD, phases with chiral symme-
one color adjoint chiral fie@ try breaking and color superconductivity appear to be rather
different. In a hadronic phase, the relationship between chiral
ﬁ'(ﬁ;,y bl a 1 b1 bels, bt CC (35)  symmetry breaking and confinement helps us to understand
the central mystery of nuclear physics: why the nuclear bind-
| do not know the sign of Eq(35), but it is unimportant. ing energy,~16 MeV, is so small relative tany other scale

As for two flavors, when chiral symmetry is broken in the in QCD [34]. The scale of hadronic superfluidity is smaller
color singlet channel, Eq18), £}, helps to generate color still, <3 MeV [35]. If, as originally believed 1], the gaps
superconductivity. | assume that quartic terms in the potenfor color superconductivity are alsel MeV, then continu-
tial, such as ity between hadronic and quark matter is automatic. From

recent work with effective models, however, it appears that
tr(y ) tr( phprt bl o), (36)  the color superconducting gaps are natural on a QCD scale,
. . o ~100 MeV[2,4,5,16—19 and so huge relative to the had-
where triprdr) = ¢ a P oy €1C., are sufficiently large and (opjc gaps. If true, 1 assume that this disparity in scales, by
of positive sign, so that phases with chiral symmetry breakalmost two orders of magnitude, is due to confinement.
ing and color superconductivity do not overlap. Thus | distinguish between a phase driven by chiral sym-

This terminology is imprecise. Consider what happensmetry breaking, wheren2¢<0 and m§,>0, from a phase

when chiral symmetry is restoresh; >0, so the expectation driven by color superconductivity, witt3>0 andm?<0.

value of¢ is naively that of Eq(19). The preferred conden- a¢ high density, the instanton ternﬁ'w a”dﬁiﬂ, are very

sate is color-flavor lockef4]: . ~ -
] small, so the expectation values #fand ¢ are negligible.

(diag, )= ?RLp, Siag OrR=00; (37) At intermediate densities, the instanton teﬁbw has sev-

: ’ eral interesting effects. Remember that ¢héeld is antitrip-
global color and flavor rotations are done to make the conlet in the flavor indices. Thus the strange componé is
densates diagonal. This pattern breaks SW®QU(3), an up-down condensate, while the up and down components
X SU(3)eX Ua(1)X U(1)— SU(3). Because Ofﬁlw’ the i1 and ¢z, are condensates of donn-§trange and up-
right and left handed condensates have the same phase, $62n9€, respectively. Since>m,,my, L, is greatest for
the condensate ha€=0". the up-down condensate — my¢;‘3¢; 3 and smallest for the

| remark that although the physics is very different, for- down-strange and up-strange condensates m, ¢ 1¢; 1
mally the pattern of symmetry breaking for color-flavor lock- and ~ — md¢>i*’2¢i,2. This is reasonable: because of the dif-
ing in Eq.(37) is identical to that for chiral symmetry break- ference in the quark masses, it is easiest for color supercon-
ing in (18) [20]. As for chiral symmetry breaking, E¢B7)is  ductivity to occur between up and down quarks, and hardest
not the only possible way in which color superconductivity for it to form between up or down and strange quarks. With
could occur; for example, one might havédai,aR) the overall minus sign, this is exactly whﬁfw does.

= $08i 30, a,, [6]. It is easy to argue that this is disfavored ~ As for L', with two flavors, for three flavor€ |, corre-

[4,6]: such a condensate leaves at least two different color@tes the overall phases of the right and left handed conden-
and flavors ungapped, while with color-flavor locking, all sates. Because pf the difference in the quark masses, though,
colors and flavors of quarks are gapped. it is most effective for the up-down condensate, and least

Because of the instanton terms, however, when color g ffective for the up-strange and down-strange condensates,

i [ I : by a factor ofmg/my 4~20. This implies that in a phase
~ hich . S u,d e )
perconductivity occurst andﬁw become terms whic driven by color superconductivityif instantons are impor-

arelinear in ¢ and, respectively. Consequently, expecta- tant, then thefapproximatg spontaneous violation of parity
tion values forys and ¢ are automatically generated when  is smallestfor the up-down condensate, agteatestfor the
condenses. For the color singlet chiral field, this means thaip-strange and down-strange condensates. If instantons are
the expectation value af never vanishes, even at high den- not important, then all three condensates exhibit the same
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(approximate parity violation, and thezn’ is the lightest H_ field is similar toH, , except that both components ob-
pseudo-Goldstone bos$a1,22. tain a mass from instantons, fromh in Eq. (33).

It is not clear how to observe th@pproximate sponta- SinceH , only cares about théspontaneoysbreaking of
neous violation of parity in the up-strange and down-strangehe U(1) for quark number, it imot affected by nonzero,
condensates. As an effect from a Fermi sea, this appearfondegenerate quark masses. All that matters is that all three
most directly in baryons; the pattern above suggests effectsolors and flavors of quarks become color superconducting.
are large forA baryons, and negligible for any baryons Alternately, one may consider separate fields for the three
which have two quarks of the same flavor. Any effect iscondensates, and construct the operator analogots, tp
obscured by the fact that even in vacuum, the decays of theee Ref[21] of Ref.[6].

A are not parity conserving, for reasons which are not well |t is possible to construct gauge invariant, superfluid order
understood. parameters for two flavors by using both the part'tﬁ[ée and

What about effects in a phase withpproximate UA(1) antiparticle¢; s condensates
symmetry? The color directions of the right and left handed

fields _are_correl_ated through terms of quartic order in the 6"k¢i+,|_¢j+,re¢k_,L- (42)
potential, including
. . Similar toH, and H_, this is invariant under all but the
(¢i,aR ¢i,bL)(¢j,bL ¢j,aR)’ (38  Abelian flavor symmetries. However, there is no reason to
believe that this quantity is ever nonzero, since all three
which is analogous to the quartic coupling for two flavors infields most likely lie in the same direction in color space.
Eq. (23). Mass dependence for thg's enter through terms  ThusH superfluidity is uniquely a consequence of color su-
such as Eq(36) and perconductivity through color-flavor locking for421 fla-

. , vors.
| &7 a, i beta, bl (39

. . . Il. PHASE DIAGRAMS
These terms are analogous to those using nonlinear effective

Lagrangiang21,27. In this section | begin by proposing phase diagrams for
For three flavors, condensation of the color antitriplet suthe effective three-dimensional theories which describe the
perconducting field also drives that of the color sextet phase transition to color superconductivity at nonzero tem-
superconducting fielgy. Consider the operatof$,20] perature. At a temperaturg a three dimensional effective
theory is valid over distances 1/T; for the phase transition
£¢X~H’ngi,aRgbj’bin,j;aR,bRJr c.C. (400 to color superconductivity, three dimensional effective
theory should be valid when the gaf(T)<T. | then con-
and jecture how this might relate to the phase diagram in the
plane of chemical potential and temperature.
Ly~ HY i an®i beXijiag bt C-C- (41) | assume that the density of instantons is always large, so
that the right and left handed condensates are equal. The
more general case, allowing for different right and left
handed condensates, is discussed later. The moral of the pre-
ceding section is that for three flavors, because of cubic

terms involving twog's and the other fields—eithef, 7, or
x—expectation values of these other fields are generated by
(40) and (41) explain why for three flavors the preferred color superconductivity. Even so, assuming that these other

condensate always contains sofsmal) piece in the repul- f1€lds all have pozsitive mass squared, then as dghéeld
sive, color sextet Channéﬂ 14,15,18, 1}9 becomes criticalmy— 0, all of the other fields remain non-

high densny This is in contrast to the instanton inducedcolor antltrlplet superconducting field.
operatorsﬁm, wa’ and/: 5 which are small at high For two flavors, | denote the condensate field @s
density. There is no anomaly in perturbation theory, so in= i r=¢i . ; the effective Lagrangian is
weak coupling one finds that because/nf, , x condenses, .
but noty or ¥ [14,15. Lomtr(G2 V41D D12+ m2l B2 (3122 (43

| conclude this section by discussing the fields related to 2=5 MG ID,dl dSIEM2D% @9
H superfluidity,H ;, andH _ [5,6]. Each is a complex valued _ _ _
scalar field with two real degrees of freedom. In a colorG,, is the field strength for the gauge fieMl,, andD,,
superconducting phase, one modetbf is the Goldstone =&ﬂ+|gAM_ is the covariant derivative for an antitriplet
boson for the spontaneous breaking of the U(1) symmetry ofolor field ¢; . | distinguish the condensate fielt] from ¢,
quark number, and so is massless. The othermode is in the previous section, due to an overall rescaling explained
massive except near a second order transition whidre) below, Eq.(47). The effective Lagrangian in E43) is valid
—0, at which point both modes form@(2) multiplet. The near the transition temperature, and so is meant to be used in

Both operators are invariant under the U(l) of quark num-
ber; Ly, is invariant under W(1), while ﬁ y 1S induced by
instantons with topological charge 2. Whencondenses ac-
cording to Eq«(37), Ly, and/:'d,x become terménearin y,
and generate an expectation value forThe terms in Egs.
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three dimensions. | assume that all coupling constants are
just the temperatur€ times those in four dimensions, which 82
is approximately true.

The phase transition occurs Héﬂo; in this case it is

natural to introduce the ratio of thg coupling constank to
that for the gauge field A
N
A= - (44)
g
This ratio has a more physical interpretation. At zero tem- FIG. 1. Phase diagram for ong field coupled to a SU(3)
perature, if m2<0. the expectation value OE is g _ gauge field. In Figs. 1 and 2, theaxis is\, from 0 to, and the
2— D , 70 X axis is ~mj .
(—mg/N\)~< In the broken phase, the Higgs mass is the mass
for the ¢ field ~m, while the gluon has a mass,~ gd,.

Thus \ is proportional tg the Higgs mass divided by the however, is why in the type-ll regime does the first order

luon m red~mz/m> . o .
gluon mass, squa ed .H/ A fransition at smalk turn into a smooth crossover at1?
Contrast this to the situation at zero temperature, where L .
One possibility is simply that the expansion breaks

the theory is four dimensional. At zero temperature, insteac(ij 0] 1N thel 4 dhat th
of m(zﬁ varying with temperature, one only finds a transition if own at largee~1. Neveriheless, assumenat thee expan-

one variesmfﬁ by hand. A phase transition is expected toSionis reliable in its prediction of a fluctuation induced tran-

> . sition when the theory only involves scalar fields. Numerous
occur asmj;— 0. Instead, because of the Coleman-Weinber xamples are known in condensed matter phyEi€s; for
phenomenon, one finds that tiieenormalized correlation P P

length never divergei86—3§. This can be understood from careful analyses in models where the strength of the first

o , — order transition can be controlled, see Héf3].
the renormalization group. Fa@y=0, the 8 function for A

) . . - Instead, | suggest that theexpansion fails uniquely for
has an infrared stable fixed point at the origin. Whih0,  heories of scalars coupled to gauge fields. Since the theory

however\ cannot flow into the origin; instead, it flows from s three dimensional, when the vacuum expecation value of
positive to negative values, which then generates a first ordehe scalar field vanishes, one inevitably enters a strongly
transition. Naively, one expects thatis a free parameter, coupled phase of the theory. In this phase, the proper way to
but because of dimensional transmutation, this is an illusionthink of the spectrum is in terms of gauge invariant excita-
By letting the coupling constants flow, one can always gaions, such as glueballs and mesons formed from scalars
from a regime with large\ to one with small\. Physically,  [44]. A fluctuation induced first order transition occurs when
the square of the ratio of the masses for the Higgs boson tthe quartic couplings for the scalar run from positive to nega-
the gluon fields is not a free parameter, but is fixedy. tive values. For this to happen, however, the couplings must
Return now to a theory at nonzero temperature, where thffow. Perhaps the crossover regime is simply a manifestation
effective theory is three dimensional. Th&nis a free pa- of confinement in three dimensions: Whmiﬂo, scalars
rameter: different values of correspond to different theo- become strongly bound into relatively heavy mesons. If the
ries at zero temperature. We can then consider the phas@alars are heavy, the scalar self couplings never run by
diagram as a function of [39—44 For small\, fluctuations much, even amiﬁo That is, confinement in three dimen-
in the gauge field dominate, and a one loop analysis reliablgjons “eats” the running of the coupling constants. While
indicates a first order phase transition. This is the “type-I" only a qualitative explanation, it is reasonable that crossover
regime of ordinary superconductivity. As increases, one pegins when th¢zero temperatupemasses of the Higgs and
moves into the “type-ll" regime, where fluctuations in the gauge fields are approximate'y equa'_ HO\(\lhree_
scalar field become important. An expansion fromédi-  dimensional confinement can stop the running (@ffective
mensions to three dimensions predicts that for laxg¢hat  coupling constants is analogous to how, in four dimensions,
the transition is driven first order by fluctuations in the scalarthe strong coupling constant might freeze at low momenta
fields. Consequently, the simplest hypothesis is an unbrokeﬂne]_
line of first order transitions for alk. The complete phase diagram can then be sketched. Con-
This is not what lattice simulations finiR7]. There is  sider the limit of large\; this may not make sense in the
indeed a first order transition for smal| but as\ increases, continuum(because of triviality boundsbut is perfectly rea-
the strength of the first order transition decreases, until isonable on the lattice. For infinite, the gauge fields de-
ends at a critical point, at.. The critical point occurs when couple, and there is only a scalar field; the universality class
the masses of the gauge and scalar fields are approximatqly that of an U(3) vector, which is the same as @(6)
equal. Forn>A\., there is no first order transition, only a vector. Thus there is a second order phase transition when
smooth crossover between the two phases. A =c. At large but finite value of\, however, confinement
The existence of a critical end point is certainly possible presumably eats the running of the scalar coupling constants,
Since ¢ is in the fundamental representation of the gaugeso the theory exhibits crossover fag<A <. This phase
group, there is no gauge invariant order parameter whicldiagram, from Ref[38], is illustrated again in Fig. 1: there

distinguishes between the two phadd$]. The question,
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:" By c
; A,
; X
A, B ..o s
- A3
G
FIG. 2. Phase diagram fcaﬂa coupled to a SU(3) gauge field. Iimi't:IG. 4. Cartoon of the QCD phase diagram in the large gap
are critical points a#A,, whereA=\., and atB,, where\
=o. critical end pointsA; andB; there must be #ine of second
Consider now the model for three flavors, where the anorder phase transitions, at which tHe, field becomes criti-
titriplet condensate field ig; ,: cal. This is in the universality class of @(2) vector in
three dimensions.
1 — —— This critical line is analogous to that found by Kajantie
- 2 t 2 i
Ly=51r(Gy,) +1r(D,¢'D ) +mitr(¢' b) et al. in their study of an adjoint scalar field coupled to a
L o SU(3) gauge field28]. (For the model of Ref.28], there is
N [tr(p ) P+ N, tr(pT )2 (45  only one quartic scalar coupling, and so the pdgtlies at

o . N=».) In the present case, one might wonder why the criti-
There are now two quartic coupling constantsand\,, so  cal fluctuations for thél . are not eaten by confinement. The
there are twon parameters similar to that of E¢44); for ~ same comment applies to the adjoint model of R28], and
simplicity | speak only of one, assuming theg+0, so that IS easy to dismiss. For color superconductivity, the fluctua-
there is not an accident@(18) symmetry. At\=c, gauge tions inH. are associated entirely with quctuat_ions in the
fields can be neglected, ana’a is a SU(3)XSU(3) U(1) symmetry of quark nu_mber. The non-Abehan SU(3)
X U(1) vector field. In 4- e dimensions, this has a fluctua- gluons cannot eat the running of the coupling co“nstan,t, for
tion induced first order transitigd7]. Assuming this persists the U(l)_ of quark humber because they cannot tagte It
to three dimensions, there is a first order transitiol ate; the H. field is ngutra! under any SU.(é)tfa”SfOfma“‘?r.‘-
even with confinement at<, the first order transition con- Thus near the critical line foH superfluidity, the only criti-

tinues for some finite range of large Assuming a crossover cal modes are t_hose f‘“.* : .
regime for intermediatd., the phase diagram, illustrated in These effe_ct_lve theories can be _d|rectly relate_d to coI(_)r
Fig. 2, has a critical end point for small at a pointAs, and superco.nductn./lty, although therg is one surprise. As is
for large\, at a pointB;. Both critical end points are in the ;(iglc:ngog]s %rgt'nﬁgesggﬁgﬁ’;‘;uﬁtc')\;'r:]yaﬁ]i’zatgoen_C?r?ge;f?:éﬁve
Ising universality class in three dimensions, as are pdiats L 2N ford i '
B, A3, andBs, in Figs. 3 and 4. agrangian for is

BetweenA; and B, there is a gauge invariant order pa-
rameter,H , , which distinguishes between the two phases. 2 2
The expectation value dfl . either goes to zero continu- £=M—|D ¢|2—M2|¢|2+M—(|¢|2)2+ e (46)
ously or discontinuously. If the latter, there is a first order 2n z
transition, and no crossover regime. Assuming there is a
crossover regime for the non-Abelian fields, between the
The terms in Eq(43) are only correct up to coefficients of
order one, and | am sloppy about which quartic terms enter,
because all | really care about is how the scales in the
problem—the chemical potential and the value of the con-

E densate at zero temperatupg—enter. What is interesting is
at because particles have an en near the Fermi
A, that b particles h ergyp, the F
X surface, the kinetic and quartic terms in the potential have
e factors of/ﬁ/d)g. This can be understood as follows. The
A3 mass term~|¢|? is not singular, with an overall mass di-

C >fB mension set by the chemical potential Expanding the two
point function of ¢ in momentum, the natural scale for the

FIG. 3. Cartoon of the QCD phase diagram in the small gapmé)menta 2t° vary is Overho; thU_S the kinetiC_ term iS_
limit. In Figs. 3 and 4, they axis is temperature, and theaxis ~ &°|d,#|/¢5. The gauge invariant generalization is
quark chemical potential. ,LL2|DM¢>|/¢§, which includes a quartic interaction between
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two ¢’s and twoA ,’s ~ u?l $3. Thus it is not surprising that  superconductivity matches onto the chiral phase transition. |
the quartic interaction between fogrs also has an overall henceforthassumethat the type-l regime ends before the
factor ~ u?/ ¢3. chiral phase transition. In this case, there are critical end
To relate this to the effective Lagrangians in E@8) and  points for color superconductivity, at poings, and Ag, re-
(45), it is necessary to rescale the fields and coupling conspectively, in Figs. 3 and 4; they correspond precisely to the

stants, so that same points in Figs. 1 and 2.
Now consider the opposite limit, working up for small
bo— b0\ 2 chemical potentiak. | assume that at zero temperature there
b~ 7925, ~ (@) (47) s a first order chiral transition, at a poi6tin Figs. 3 and 4.

As the temperature increases, the chiral transition occurs at

It is also clear from the form of the potential that terms of Smalleru, so the chiral transition bends back, extending to a
higher order, such as a six point termu/io)*(|#|2)3 point E, which is a critical end point for the chiral phase

— . . . transition[29].
— (ol w)2(|#|?)3, are just as important as the quartic term. iy »
IncggeodIu)all(|c()z:c| t)he efféctive temqs in the pre\ﬂous section How do.the phas_,g transitions for color superconductivity
should'be multiplied by corresponding powers af ¢ and the chiral transition match onto each other? Based upon
0.

None of the results change qualitatively, since they were he discussion in the previous section, | assume that at zero

consequence of symmetry, and not of the assumption of imemperature the chiral transition coincides with that for color
iting oneself to operators with the smallest mass dimensionS.UpercondUCt'V'ty' There are thef? two cases: i th? gap for
. . . color superconductivity at the poir@ is small, relative to
Thes_e powers Oft/ o imply that_, as in ordinary super mZ/w. Increasin at T=0, one first enters a phase in
conductivity, generally a Landau-Ginzburg approach is a ter- s/ K- gu ’ P
hich only up and down quarks superconduid], and then

rible approximation. The one exception is near a point ofV

mbo;

phase transition, whexgs)—0. In this case, fluctuations are a phas_e in_which all thr_ee flavors superconduct. This is illus-
controlled by the term with the largest mass dimension; i.e.Fr_ated in Fig. 3. Followind6], at zero temperature f(h_e tran-
cubic and quartic terms. smon from two flavor to three flavor superconductivity is of
Using the conjectured results for the phase diagram of thgrSt order.. S .
effective theories in three dimensions, we can then draw car-. (A crucial assuertlon |n Ref6] is that hard dense loops
toons for the possible phase diagrams of color supercondu Ve 'ghe gluons a mass,” so they _decoupl_e from the phase
tivity in the x2-T plane. At largeu, whereby asymptotic free- ran3|_t|or.1. One m_|ght question if this remains true in strong
dom g(u) is small, the gap is exponentially small ingl/ couplmg, even with the hard dense_loop mass, perhaps the
[6,8-15,23,21 four dimensional gluons eat the running of the coupI]ng con-
stants for the condensate field? With some effort, this can be
5/2 2 analyzed on the lattice: it would be necessary to add dummy
2 37 .
¢0:5127T4( 2_) exp( >0 (48) fields to generate hard dense loops for the gluons, and then
0°N;¢ V29 couple the gluons to a condensate field.
Alternately, the gap at the poi could be large, relative
by is a pure number, determined in REE1]. Notice that the  to m2/.. In this limit, one goes directly from a phase with
gap decreases as the number(ofasslessflavors Ny in-  (large) chiral symmetry breaking, to one with three flavor
creases. In mean field theory, the transition temperature is aslor superconductivity, Fig. 4. As discussed in the previous
in the theory of Bardeen, Cooper, and Schrieffd,  section, there need not be a true phase transition at the point
~0.567p,, and is of second ord¢d0]. Thus at a large but C [5]; | assume there is, based on the disparity in scales for
fixed value of u, as the temperature increases, there is auperfluidity between hadronic and quark matter.
transition at which superconductivity for three flavors evapo- The crucial assumption in Figs. 3 and 4 is that the color
rates, and then a higher temperature at which that for twsuperconductor does not remain in the type-l regime, but
flavors evaporates. When fluctuations are included, botlenters the type-II, or crossover, regime. Thus the line for two
transitions turn first order. Since the condensate is small, thibavor superconductivity terminates in a critical endpofy,
effective coupling\~(¢o/gu)? is very small, and the with no true phase transition fqi's less than some value.
theory is in a regime of extreme type I, with a tiny latent heatFor three flavor superconductivity, if one enters the cross-
~NA\. over regime there must be a critical line fidrsuperfluidity.
| note that the coefficient of the kinetic terhﬁuqﬂz in Even if one enters the type-Il regime, one may not reach the
Eq. (46) has been computed in weak coupling perturbatiorsecond critical endpoint3; of Fig. 2. In Figs. 3 and 4 |
theory in QCD[24]. What is remaining is to determine the assume not. In Fig. 3, the poiBtrepresents where the criti-
coefficients of the terms which are quadratic and quartic ircal theory goes from being four-dimensional to a three-
¢. Technically, this is easiest to do directly at the critical dimensional theory in the crossover regime. In Fig. 4, since a
temperature. While of course such calculations are only valiaritical line probably does not attach directly to the line of
at large chemical potential, by comparing to lattice resultsfirst order chiral transitions, the poiBtrepresents the end of
they will give one an idea if it is reasonable that the theorya first order line induced by the chiral transition.
goes from the type-I into the type-Il regime. There is a caveat to the phase diagrams of Figs. 3 and 4.
As u decreases) increases, so one moves up the phaseéEven in a confined phase, as long as strange quarks populate
diagrams of Figs. 1 and 2. The crucial question is how colola Fermi seaA baryons may well be superfluid, so that at

035202-9



ROBERT D. PISARSKI PHYSICAL REVIEW G52 035202

T=0, (H;)~(AA)#0. The phase transition for such Fig. 2 there must be an unbroken line of first order transi-
“hadronic” H superfluidity is probably of second order for tions. This is because chiral symmetry is also broken by
all x andT. As discussed in Sec. I, though, hadronic super-color-flavor locking, so we can trea;ti*valdnvar as a gauge

fluid gaps appear to be much smaller than color superconpyariant order parameter for chiral symmetry breaking. A
ducting gaps. Since critical temperatures are proportional tQiandard renormalization group analysis then predicts that
the gap, in theu-T plane the lines for hadronid superflu-  the transition is of first ordei47,49.
idity lie very close to the zero temperature axis. Similarly, My arguments are admittedly speculative, and meant only
even between the two first order transitiong at0 in Fig. 3, g suggest what the QCD phase diagram might look like.
(H.)#0. This is a phase in which only up and down, but\yhjle at present the lattice cannot tell us about QCD with
not strange, quarks, superconduct. In this region, | also as; #0, it can study the effective theories of relevance to color
sume thatH. ) is small, on the order of that in the hadronic syperconductivity. Moreover, by using perturbation theory in
phase. QCD, one can work down from large to match onto the

| stress that | assume that the theory goes from the typeihttice results. How far this can be pushed at smpai open
to the type-Il regime ag. decreases. It is conceivable that 15 question, but is testable. The most interesting question is
the color superconducting transitions remain in the type-lynhere the critical endpoind; is, since that tells us if and

regime for all .. In this instance, the poimk, would reach  \yhen the critical line foH superfluidity begins.
all the way to the chiral line, and; and B would coincide,

with no critical line forH superfluidity. Alternately, it is also
possible that at small the theory goes so deep into the
type-ll regime that the poinB in Figs. 3 and 4 coincides I thank P. Arnold, K. Enqvist, M. Laine, L. Yaffe, and
with the critical end poinB; in Fig. 2. especially G. Moore for discussions on the electroweak
In the above, | have assumed that because the effects phase diagram; D. Son, for comments on how particle and
instantons are large, that left and right handed condensatestiparticle condensates mix; T. Schafer, for noting how the
are correlated. Of course in the full theory they oscillatephase diagram changes in the chiral limit for three massless
independently, coupled through mass and anomaly terms. Eftavors; D. Rischke, for numerous discussions, especially for
fective theories which include independent left and rightpointing out the importance of the color adjoint chiral field,
handed fields are constructed following the analysis of Sec. land the effects of instantons with topological cha€ye 1;
There is no signficant modification for two flavors, but therelastly, G. G. De Roux Taylor, for the figures. This work was
is for three. For three massless flavors, with no anomaly, isupported in part by DOE Grant No. DE-AC02-98CH10886.
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