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Scatterings of complex nuclei in the Glauber model
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A calculation of the complete Glauber amplitude is formulated with the use of an effective nucleon-target
profile function. By relating the profile function to the elementary nucleon-nucleon profile function, a simple
formula is derived to calculate the optical phase for nucleus-nucleus scattering. The resultant phase makes it
possible to successfully reproduce much reaction cross section data at 800 MeV/nucleon. The effect of Cou-
lomb dissociation on the optical phase is discussed. Its importance is studied in cases of the bréaaip of
and °Li as well as the elastic scatterings of nuclei sucht%® and ®He by heavy targets.

PACS numbes): 24.10-i, 21.10.Gv, 21.30.Fe, 25.66t

[. INTRODUCTION this formalism the various effects such as the Fermi motion,
Pauli correlations[12], short-range dynamic correlations,
The size of a nucleus is one of the most fundamentaétc., would be automatically included to some extent in the
quantities to characterize nuclear properties. The nucledd T amplitude determined so as to fit experimental data. A
charge radius or distribution can reliably be extracted fronmsimilar approach was undertaken by other authors in a dif-
electron scattering, whereas the matter size or nucleon distrferent context. Al-Khaliliet al. [7] started from theNT S
bution is in general more difficult to obtain reliably. One of matrix in order to calculate the phase-shift function in the
the conventional methods to determine the matter size is thiew-body approach. Others usquh“He profile function
measurement of a reaction cross section at energies of, e.§13,14 to calculatep+*°C, p+0, “He+!°C, and “He
several hundreds MeV/nucleon because the reaction crossCa-isotope elastic differential cross sections.
section at such high energies primarily reflects the geometri- In this paper we apply our method extensively to a num-
cal size of the nucleufl]. Since the measurement of the ber of heavy-ion systems including halo nuclei. The reaction
interaction or reaction cross sections for unstable nuclei hasross sections and the elastic differential cross sections are
now become possible with the use of secondary radioactivealculated in different versions of approximations. We dis-
beams and demonstratg?l] the significant enhancement of cuss the contribution of the Coulomb dissociation to the re-
the cross sections for nuclei near the neutron drip line, th@ction cross section in order to study its importance in the
determination of the matter size has received revived intereseaction of the halo nuclei on a heavy tar§&f]. We show
together with the understanding of the reaction mechanisrsome examples of clean separation of the reaction cross sec-
of those unstable nuclei. tion into the nuclear and Coulomb parts. Since a quantitative
Many authors have attempted to relate the cross section afetermination of the Coulomb dissociation cross section is
high-energy scattering to the nuclear density. See, for eximpossible in the Glauber theory alone because of its viola-
ample, an excellent reviel8] for the case of proton scatter- tion of energy conservation, we have to be content with a
ing at 1 GeV. Because of its simplicity the optical limit ap- qualitative estimate of the Coulomb contribution. We also
proximation (OLA) of the Glauber theory4] has routinely apply thel'yt formalism to predict elastic differential cross
been used as a convenient tool for the extraction of the sizesections at intermediate energies. The purpose here is not
of unstable nuclei as in the case of stable nuclei. The opticadnly to study the effectiveness of the formulation but also to
phase in the OLA is given by a functional of the densities ofobtain a simple, useful recipe to include the effects of the
the projectile and the target. Several authors have showrGoulomb dissociation and the nuclear-Coulomb interference
however, that a treatment beyond the OLA is necessary for i the elastic scattering.
quantitative analysis of the reaction cross sectidis?] as In Sec. Il we briefly summarize the formulation which
well as the elastic-scattering cross sectif®®] for loosely  utilizes theI't for the NT scattering, and present results of
coupled nuclei such as halo nuclei because breakup effectalculation for the reaction cross sections of various nuclei
are not properly accounted for in the OLA. on the *2C target. The densities of the nuclei are generated
We have recently introduced a method to calculate thérom microscopic multicluster model calculatioh6—19.
complete Glauber amplitude.0] for a proton-nucleus scat- In Sec. lll we discuss how to construct tig; from the
tering, and subsequently attempted to extend it to a generalementary nucleon-nucleolN{N) profile function. Here we
nucleus-nucleus cadd1]. In the latter case we considered demonstrate that the reaction cross sections of various nuclei
nucleon-target N T) scattering as an elementary vehicle inincident on light targets such &Be, °C, and ?’Al are all
the Glauber theory by assuming the target as a scatterer amgll reproduced to satisfactory accuracy. An extension to
introduced a profile functiof’yt for the NT scattering. In  include the Coulomb dissociation is discussed in Sec. IV and
applied to ®He and °Li projectiles. The elastic differential
cross sections at intermediate energies are examined in Sec.
*Permanent address: Department of Physics, Cairo Universityy by including the breakup effect of the projectile. A sum-
Giza 12613, Egypt. mary is drawn in Sec. VI.
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Il. USE OF PHENOMENOLOGICAL NUCLEON-NUCLEUS involved. The OLA approximation makes it possible to cal-
PROFILE FUNCTION culate the optical phase through the densities of the projectile

The multiple scattering theory of Glauber is based on theand the target

eikonal approximation. In the Glauber model the scattering

nucleons are frozen in their instantaneous positions duringe'XOLA(b)ZeXP( — (ool 2, 2 Tan(&— 7Ij+b)|l/f000>]
the passage of the incident particle through the nucleus. The teP et

total eikonal phasg/(b) acquired by the particle when pass-

ing through the nucleus at a fixed impact paramétes =eXP[—f fdrdSPP(r)pT(S)FNN(g_ Uas b)]-
equal to the sum of the phases from the individual nucleons

(additivity phasg the latter contributing as if they were free. (7
The nucleus-nucleus elastic-scattering ampliti@tauber

amplitudg is written as A further simplification of OLA is possible by assuming the

zero-range profile function. See, for examdl2Q] for the
iK _ _ application of this approximation.
F(q)= z—f dbe'aP(1—e'x(®), (1) Apparently no correlated motion of the projectile and tar-
77 get wave functions shows up in the OLA. The use of such
wave functions is certainly desirable. Some efforts were
made to study corrections to the OLUA&1]. They are based
%n including higher-order terms in the cumulant expansion
[4], which is extremely involved in general. We have re-
dor cently proposed an alternative method of calculating the op-
— =|F(g)|% 2) tical phase-shift function complete[y10] and applied it to
dQ the analysis op-+°He scattering by using various types of
%He wave functions. The calculation with a microscopic
+n+n wave function[16] has reproduced very well the
angular distribution measured at 717 MeV. Owing to the
UR:I db(1—|elx®)[2). 3) power of this parameter-free, complete calculation we were
led to the conclusion that the size Be is about 2.51 fm.
) ) ) . _ Though this method can straightforwardly be applied to cal-
The optical phase-shift functiog(b) which plays a basic  ¢jate the optical phase of E@) for a general case, it would
role in the Glauber theory is related to theN scattering  require enormous computer-time when one uses microscopic
operator by wave functions for both the projectile and the target. It is,
therefore, undoubtedly necessary to further develop an effec-
ix(b) — T tive method by which one can avoid heavy computational
© (1/1000|i1;[P j];[T (1=l tr00o). @ loads, while keeping high accuracy. This demand will be of
practical significance because the reaction at high energy pri-
Here o (6p) is the intrinsic wave function of the projectile marily probes the surface region of the nuclear wave func-
(targe}, which does not depend on the center-of-mass coorton.
dinate. The profile functiod” for the NN scattering is usu- To this end we have proposed [ii1] the possibility of
ally parametrized in the form using nucleon-targetNT) interaction as an elementary ve-
hicle in the Glauber theory. The optical phase-shift function
is then calculated through

where K is the momentum of the projectile arglis the
momentum transferred from the projectile to the target. Th
elastic differential cross section is given by

and the total reaction cross section is calculated by

C b l-ia b? .

n( )_WUNNeX ﬁ ) )
where« is the ratio of the real to the imaginary part of the
NN scattering amplitude in the forward directiany is the _
total NN cross section, ang@ is the slope parameter of the Wherel'y; may be parametrized as
NN elastic differential cross section. The argument’gfis K _

ive i ich i i l-ia b?
an effective impact parameter, which is perpendiculaKto T'yr(b)= 2 ka_ exd — _) ©)
between théth andjth nucleons: NT &L AmB, K 28]’

(ri—Rp)t— (rj— Rt +(Rp—Rp)*T=§&— n+b, (6) and the parameters,, By, and a, can be determined by
fitting the experimental elastic angular distribution as well as
wherer; andr; are the nucleon coordinates of the projectilethe total and reaction cross sections. The parameterg pf
and the target, an®, andR; are the corresponding center- used in this paper are listed in Table I. As showlid] this
of-mass coordinates, respectively. The inclusion of the Coueffective theory enables us to predict both elastic differential
lomb interaction will be considered in Secs. IV and V. cross sections and reaction cross sections to much better ac-
As seen in Eq(4), we must calculate the matrix element curacy than the OLA calculation. A complete calculation of
of a many-bodyS-matrix operator, which is obviously fairly the optical phase-shift function with thiSyt can be per-

e =(yo| [T [1-Tnr(&+D)]1wo), ®
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TABLE |. Parameters of protof?C profile functions used in TABLE Il. A comparison of theoretical reaction cross sections
the present calculations, see H§). The total and reaction cross for *2C target, in units of mb, with interaction cross sections mea-
sections,o and ok, calculated by the profile functions are also sured at 800 MeV/nucleon. The phase-shift functions are calculated

shown. by using Eqs(7) (xoa) and(10) (xoLa)- No Coulomb interaction
is included.r ,, is the matter root-mean-square radius calculated by
T, (MeV) o7 (mb) og (mb) o (fm?) B (fm?) @ the density used in the present work. The cross section in parenthe-
800 341 249 5289 1.9702—0.111 682 ses is taken at 730 MeV/nucleon.
—18.78 1.0735 0.0149455 Projectile ro (fm) or Expt.[2]
398 285 221 32303 2117  0.0867 (xow)  (xown)
—3.740 0.5204 0.4212 SHe 2.49 782 717 7226
Li 2.35 789 742 7366
340 283 213 32.0 2.0 0.1 Be 2.31 780 735 7389
-3.7 0.4 0.28 8He 2.44 848 791 81%6
8Li 2.37 824 780 7689
200 275 215 31.947 2.214 0.127 8 2.38 829 783 798 62
—-4.51 0.827 0.8852 OLj 2.32 841 801 7966
°Be 2.41 854 814 8069
°C 2.49 887 837 (83418)°
formed by the formalism presented [A0] with a slight 10Be 2.28 851 817 81813
modification as explained in the Appendix. 12c 2.33 896 869 8569
If we take the leading term of the cumulant expansion in 27 2.88 1265 1239
the right-hand side of Eq8), we get a simple expression to
calculate the optical phase-shift function °Referenced 25].
bReferencd 26].
eiXOLA(b):eXF<_J- der(r)FNT(§+b))r (10 p(r)==;Cjexd —(r/a;)?],

and then corrected in the region of langeshere the original

where we only need the density of the projectile andlte ensities have a Gaussian falloff. Since some of the nuclei
of Eq. (9). This expression looks very appealing because o re very weakly bound and expected to have a long tail, we

its simplicity. We used th@+*°C data at 800 MeV[22] 10 ;55,med that the asymptotic form of the density follows a
dgternjlne thgl“m parameters. A sample set of parametersynction @/r2+b/r3)exp(— 2«r) with k2=2uB/#2, where
given in[11] |s~l|sted in Table I. The reaction cross section w is the reduced mass aris the separation energy corre-
calculated withyo 4 Was compared ifil1] to that calculated  sponding to the lowest accessible threshold. Values arid

with y for the ®He+'°C case. The difference between themb were determined to match the original density smoothly at
is only 2.6%. To examine a wide applicability of the formula appropriately chosen large The matter root-mean-square
(10), we have analyzed the reaction cross sections of variousidius determined in this way may not be always the same as
nuclei incident on the"’C target. The densities of the nuclei original theoretical one. The densities We, *°C, and ?’Al

Li, "Be, 8Li, ®B, °Li, and °C were generated froffil7],  were taken froni6]. Table Il lists the reaction cross sections
the density of®He from [18] and the density of:®Be was  of various projectiles incident od°C target at 800 MeV/
from [19]. These densities were all obtained by the stochastioucleon. To fix thd’yy parameters we averagegd andpn
variational calculation§23,24] based on a microscopic mul- data [27] for the sake of simplicity:ony=43.3 mb, B
ticluster model. See the references for detail. The accuracy 6£0.20 fn?, and = —0.1. These values are the same as
the variational calculations is generally high but differs fromused in[6]. The matter root-mean-square radii calculated
nucleus to nucleus depending on the complexity of the moderom the above densities are also listed in the table. The cross
and the consistency between the cluster model assumptiaections calculated with E¢10) are compared to those ob-
and the nucleon-nucleon potential used in the calculatiortained by usual OLA. As seen clearly, it is the simple for-
For example, the calculation féHe is probably not as com- mula of Eq.(10) that gives results closer to the measured
plete as those for other nuclei because it was performed byalues. There is a considerable interest in the siz€®f
neglecting the spin-orbit component of the effective nucleonbecause of its possible proton-halo structure. The density of
nucleon potential in a five-cluster system eftn+n+n 8B used in this calculation gives 2.38 f{2.56 fm originally

+n. One may use some other realistic densities, but in thgl7]) for the matter root-mean-square radius, which indicates
present study we use our own densities obtained by the mthat B is a nucleus of normal size, and the resultant cross
croscopic calculations because we want to test the extent ection of 783 mb is only slightly smaller than the measured
which the microscopic multicluster model produces reasonvalue[25] which shows no particular enhancement compared
able densities. The densities obtained theoretically were firgb those of the otheA=8 isobars. The deviation from the
fitted by a sum of Gaussians, experimental data is only within a few percent for all the
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cases, which demonstrates the utility 6§ as an elemen- point, we note that Eq@8) may be derived by using in Eq.

tary vehicle to analyze the high-energy nucleus-nucleus re) the following approximation: That is, the operation of
action. The Coulomb interaction has been neglected in fittindl; . (1 —T'yn(& — 7, + b)) on 6, is replaced by

the p+*°C elastic-scattering data. In the case of a more
heavy target, theNT elastic-scattering amplitude must be

calculated by including the Coulomb elastic-scattering am-
plitude as will be discussed in Sec. IV.

Jll [1-Twn(&— 7+ D)1 60)

We end this section by mentioning that the reaction cross B B
section can also be calculated in the multiple-scattering H|60><00|JI;IT[1 Tn(& = 7+ 0)][6o)
theory formulation. See, for examplg27,2§ for this sub-
ject. =[1-Tnr(&+Db)]1[60) (14
ll. RELATING T'yy TO T'yy AND ITS APPLICATION for any ith nucleon in the projectile. By repeating this re-

placement over all the projectile nucleons we arrive at Eq.
As shown in the previous section, oncg is determined  (8).

XTNn(E—nt+Db)

X

and substituting it into Eq(10), we obtain

XT\n(E— nt+Db)

to fit NT scattering data at a given energy, we can system- Since the role of the projectile and the target is inter-
atically calculate the reactions of various projectiles incidenthangeable in the calculation of the elastic-scattering ampli-
on that target at the same incident energy per nucleon. In thizide as well as the reaction cross section, it may be possible
way we can examine projectile wave functions. In such a&o symmetrize Eq(13) as follows:
case where no appropriate data are available, however, we
cannot determine thEyt and one may think that the method xefta(b) 1
would not work. To overcome this difficulty, it is useful to € = —€Xq — 5| drpp(jl—expg — | dspi(s)
relate thel '\ to the elementary functioh'y as described
below. In any case to establish the relationship betwiggn 1[ d
andT'yy is important because it gives a basis for the micro- exp — 7| dser(s)
scopic understanding of the nucleus-nucleus collision. This
important point was discussed [i8], where theNT scatter- _ _ -
ing formulated in the impulse approximation is compared to 1 exp{ f dr pe(NT (77— &+ b))H'
that of the Glauber model. (15)
Since thel 1 is such that its Fourier transform gives the
NT elastic-scattering amplitude, we may express it in termsryis argument will be justified in cases where both of the
of I'yn by nucleon-projectile and nucleon-target scatterings are well de-
scribed by the densities of the projectile and the target. In
Tyr(b)=1—(6| [T (1-Tyn(b—m))|6p). (11)  cases wher&yris unknown, Eq(13) or (15) is expected to
jeT be a substitute to calculate the optical phase-shift function.

) . , The input data needed in the above equations are the densi-
Equation(8) or (10) together with Eq(11) gives us an alter- ieg andr,,,, which are exactly the same as in the usual
native to calculate the optical phase-shift function throughy| A |n what follows we compare the reaction cross sec-
INNR . . tions calculated with both formulas by using the same input

The use of the cumulant expansion leads to a very simplgaiq-

calc'ulation qf the opticgl phase-shift function. By approxi- 5 comparison with experiment is made in Table Il for

mating the right-hand side of E¢L1) as reaction cross sections of different projectiles incident on
different target nuclei. The densities of the targéBe, 1C,

FNT(b)wl_eXF{_I dspr(s)I'nn(b— 1,)) (12 and #Al (and also®Cu and 2°®Pb which we need latigr

were taken from Table 2 ¢6]. They were constructed from
the simplest harmonic-oscillator shell model in which the
oscillator parameter was set to reproduce the charge radius

_ corrected by the finite size of the proton. The reaction cross

e'Xe“(b)IeXF{ - f dr pp(r){ 1—exp< - f dsp+(s) sections are calculated by using three different optical phases
given by Egs.(13), (15), and (7) but by using the same
densities of both the projectile and the target and the same
] : (13 I'yn parameters. Clearly the deviation of the theoretical cross
section from experiment is by far small when using the ef-
This formula is very useful because it requires only the denfective I'yt compared to the one by the usual OLA. Though
sities of the projectile and the target. If the integrapef’yy ~ the deviation from the experiment depends on the quality of
is small enough compared to unity, then EfR) reduces to the density as well, it is worthwhile to note that a better
the usual OLA formula of Eq(7), otherwise the effect of prediction has been made globally with the usé'Qf. This
multiple scatterings of the projectile nucleon with the targetfinding is useful for extracting the nuclear size from reaction
nucleons is included to some extent. To understand thisross sections. It is agreeable that the difference in the cross
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TABLE Ill. A comparison of theoretical reaction cross sections,
in units of mb, with interaction cross sections measured at 800
MeV/nucleon. The optical phase-shift functions are calculated from
the common input for the densities ahgy in three different ap-
proximations: EQ(7) (xoca), EQ. (13) (Xer), and EQ.(15) (Xeits)-
No Coulomb interaction is included. The cross sections in paren- 2
theses are taken at 730 MeV/nucledns denotes the deviation,
given in %, from the experiment.

6He + 120

Im(x)

800 MeV/nucleon

Target Projectile or (Ao) Expt. [2]
(xoLa) (Xer) (Xefts)

°Be SHe 716(7) 660(2) 672(0) 672+7
i 737(7) 692(0.9 697(2)  686+4 )
'Be  728(7) 685(0.4 689(1) = 682+6 06 .7
®He  788(4) 738(3) 744(2)  757+4

8Li  773(6) 730(0.4 733(0.8  727+6 0 2 4 6 8 10

88 776(6) 732(0.5 735(0.5 731+15 b (fm)

OLi 792(7)  752(2)  752(2) 739%5 FIG. 1. A comparison of both real and imaginary parts of the

Be 805(7) 765(1)  765(1) 755+5 optical phases foPHe+ 2C scattering at 800 MeV/nucleon as a

°C 830(9) 784(3 788(4)  (759*=15)? function of the impact parametér the solid curve is from Eq8)

10e 8066) 769(2)  765(1) 755+7 () with the use of a microscopi€He wave function[16], the
dashed curve is from EqQ15) (x«), and the dotted curve from Eq.

zc ®He 782(8) 707(2)  732(1) 722+ 6 () (Xora)-

Li 789 (7) 734(0.3) 748(2) 736+ 6

"Be 780(6) 726(2) 739(0.1 7389

®He 848(4) 781(4  800(2) 817+6 +12C scattering 11]. Therefore, the solid curve is obtained

8Li 824 (1) 771(0.4 783(2) 768+9 without any approximations and may be considered the ref-

B 829(4) 772(3) 786(2) 798+ 6 erence phase. Since the breakup probability is given by 1

OLi 841(6) 791(0.6) 800(0.5  796*6 —exp(—2 Imy(b)) as a function ofb, we understand that

°Be 854(6) 804(0.3 813(0.9 806+9 the dashed curve calculated by EG5) gives the reaction

°C 887(6) 827(0.8) 843(1) (834+18)? cross section much closer to the reference one than that by
10Be 8515) 806(1) 811(0.3 813+13 the usual OLA.

120 896(5) 856(0) 856 (0) 856+ 9 We end this section by showiny+ *2C elastic differential
cross sections calculated by the theoretical profile function of
27p SHe  1165(10) 1049(1) 1096(3)  1063+8 Eqg. (12) and comparing them with experimeff2,29,3Q.

Li 1143 (7) 1072(0.1) 1094(2) 1071+7 This wiI_I be useful to indicate Fhe mediu.m effect or Pauli
Be 1132(8) 1061(1) 1082(3) 1050+17 corrglatlons[3,12] yvhlch may be important in the glementary
SHe  1233(3) 1137(5 1171(2) 1197+9 NT interaction. Figure 2 dlsplays th_e cross sections at th_ree
8 1185(3) 1116(3) 1135(1) 1147+14 d_|fferent energies. The solid curve is _the p_henomenologl_cal
8g 1193(8) 1119(1) 1141(3) 1106+32 fit by Eq. (9), wh_ose parameters are listed in Table I, while
oL 1204(6) 1140(0.4 1155(2) 11357 the dashed one is the OLA predlct|on of Efj2). Parameters
‘Be  1218(4) 1156(é) 1170003 1174+ 10 qf I'yn are taken fronf27]. It is seen t_hat the OLA calcula-
sc 1265(7) 1186(0.4 1212 (3;) (1181;29)6‘ tion produces a very reasonable fit to experimentTgt

10 =800 MeV[22]. Particularly, the fit is very satisfactory up
1;3‘3 121%5) 11560.3 1166(1) 1153-16 to about 15 degrees. This is probably the reason why the
C 1265 1217 1219

effective optical phaseg;; and s, l€ad to a good repro-
*Referencd 26, duction of the reaction cross sections at 800 MeV/nucleon.
The OLA is still fairly good aff ;=400 MeV. As the energy
decreases td@,=300-200 MeV, theoyy value reaches its
sections obtained with EqéL3) and(15) is found to be very ~Minimum and the nuclear transparency increases. We may
small. By comparing therg values for 12C target in Tables €Xpect a larger medium effect at this energy. In fact we see
Il and 111, we note that the symmetrized optical phase-shifti the figure that the OLA phaddq. (12)] does not repro-
function of Eq.(15) predicts almost the same values as thatduce the experimental dafa9,30 even at forward angles.
of Eq. (10). Figure 1 compares three differegtb) as de-
fined by Egs.(8), (15), and(7) for ®He+'°C scattering at
800 MeV/nucleon. The solid curve is calculated by E&).
with the use of a microscopiHe wave function16] and When it passes by a largetarget with high velocity, a
used to predict the elastic differential cross sectiorflde  projectile nucleus receives a rapidly changing electromag-

IV. EFFECTS OF COULOMB DISSOCIATION
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iK igb .
F(@)= 5| dbe >, (i +b)
i=1

1_<'r’fo|eXp[
Zp

“El Xc(&+D)

[ho)

- % f dbei@{1 — g'Zpxc(®) 4 giZpxc(b)(1 — gixi(b))y

10,
10°
" 398 MoV
10,
10, - N\~

do/dQ (mb/sr)

10 YN ' -
* = Fc(q)+|2£f db e abFiZpxc®) (1 — gixt(b)y (16)
2 1= m
100 " 200 MeV
10 where expl(ynt)=1—Tn7 is the nuclear phase-shift func-
107 - tion for NT scattering, which was discussed in the previous
10..,_- sections and the Coulomb phase is given Rky(b)

=27In(Kb) with the Sommerfeld parametey=Ze?/%v,
wherev is the velocity of the projectile--(q) is the Cou-
lomb elastic-scattering amplitude which produces the Ruth-
erford formula. Note that the target is considered as a

charged point-particle. The total optical phé{s,(ab) with the
effect of the Coulomb dissociation being included is defined

20
Oc.m. (deg)

FIG. 2. p+12C elastic differential cross sections at three differ-
ent energies. The solid curve is a phenomenological fit of(&yg.
while the dashed curve is the OLA prediction of Efj2). The data

are taken fronj22,29,30Q. by

~ AP
netic field created by the target nucleus and thus may beeiXt(b)=<1,//o|ex+E xnt(&+D)
excited by the field when the impact parameter is greater =1

than the nuclear interaction radius. In fact strong enhance-
ment of the interaction cross section as well as the two-
neutron removal cross section has been observed for nuclei
near the drip line, a typical example of which fSLi

+2%8pp reaction15]. The cross section forr2 removal of

i by 2%%pp is also extremely large compared with the case
observed for stable nuclgi31]. The enhancement of the
Coulomb dissociation cross section may be related to the
strength of electric multipole, particularly the electric dipole where
at low excitation energy of unstable nuclei. The aim of this
section is an attempt to estimate the contribution of the Cou- (

Zp

i izl {xc(&+b) _Xc(b)}} |1ho0)

=<'/’o|eXF{

Ap

IEl {XnT(E+D)+ Axc(&+D)}

| o),
(17

1
0

i e proton,
lomb dissociation to the reaction cross section in the Glauber Axc(é+b)=27In P
theory. Some works have been directed to this subject in the
Glauber mode[32,33 following the formalism of deuteron
b_rea_kup b_y heavy targets. We must_ admit, however, that this By writing exp(iA yo) =1—T'c with
aim is limited by the fact that the direct use of the Glauber
theory leads to an unphysical result at large impact parameter
because of the violation of energy conservation which is in-
herent in the Glauber theory. This remark applies at ldrge
where the Coulomb force becomes weak but still has the ) ) )
possibility of exciting a very weakly binding halo nucleus. Eq. (1_7) can be expressed in tgrms of #d profile function
What we can do is to estimate qualitatively the Coulombgiﬁs‘s"'\é)h(:'glig:_ables us to examine the effect of the Coulomb
dissociation cross section as a functiorbdfy assuming that :
there is a region ob where the adiabatic approach of the
Glauber theory is applicable. The violation of energy conser-
vation would be a serious problem in cases where most of
the electric dipole strength is concentrated in the high-energy
giant resonance region as in normal nuclei. with
Using the phase additivity concept, we can write the

b i e neutron.

(18

)

Ic(é+b)=1- (19

e
=]

ei}t(b):<¢0|i];[P [1-T(&+b)]| o) (20)

elastic-scattering amplitude, E@.), with the Coulomb inter-
action being included in the form

1-T(&§+b)=[1-I'nr(§+D)][1-€elc(§+D)].
(21)
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In the approximation of taking the leading term of the cumu-
lant expansion in E¢20) we can extend the formula of Eq.
(10) so as to include the Coulomb dissociation term:

e ~exdiyy(b)+iye(b) +iyne(b)], (22

where the nuclear, Coulomb, and nuclear-Coulomb interfer

ence phases are, respectively, defined by

i?’N(b):_J drPP(V)FNT(§+b):i;(OLA(b),
elb)=— [ drp©nrcerb,

i ync(b)= f dr pO (DT +DTe(£+D). (23

Herepp(r) is the nucleon density of the projectile as defined
before, whereap{S)(r) is the charge density of the projec-
tile. In this approximation the nuclear part of the total optical
phase is the same as given by Ef). The phaseyy may be
replaced byy of Eq. (8) or x.« of Eq. (13). )

By replacing|e'X®|2 in Eq. (3) with |eZPxcPeixi(®)]2

PHYSICAL REVIEW C 62 034608

8 6

He +~"°Pb

T 87 800 MeV/nucleon

=

°

& 47

= total

9 - = = = nuclear

r] - Coulomb
= 24 /X sesesreseens imerference

15
b (fm)

FIG. 3. Breakup probabilities, multiplied by the impact param-
eter b, for 8He+2%%h collision at 800 MeV/nucleon. The total
probability is decomposed into the nuclear, Coulomb, and nuclear-
Coulomb interference terms.

fairly accurately as shown in the previous section, this clean
separation makes it possible to extract the amount of the
Coulomb dissociation cross section by subtractity from

the measured reaction cross section. We note, however, that
the isolation of the nuclear part from the total reaction cross

=|e'x(®]2 we obtain the reaction cross section. With the usesection may become difficult when both of the projectile and

of the identity
1— |ei}t(b)|2:(1_ |e! ®)|2) 4| el nB)|2(1 — |l 7c()|2)

+|ein(b)+iyc(b)|2(1_|ei7NC(b)|2), (24)

in o i, 02
the reaction cross section can be decomposed into thred c(&T b)_ﬁT(g' b)_F{g —2(&b)%+

parts:
or=oW+ o)+ oM (25

where, for example, the Coulomb terairﬁec) is given by

O'(RC):f db|ein(b)|2(1_|ei7C(b)|2)_ (26)

This decomposition may not be unique, but seems to be

physically reasonabl€32,33. Since the effective range of
I'yt is limited by the nuclear interaction, boty and yyc
vanish atb larger than the nuclear interaction radius. The
nuclear termoy") has a contribution from relatively smail
where the nuclear interaction plays a vital role, while the
Coulomb term is mainly contributed from largewhere the

nuclear interaction becomes negligible. Taking an example

of ®He+2%Pb we display in Fig. 3 the integrand.e.,
breakup probability contributing to the three components of
o, ¢, and o' as a function ofb. As expected, the

target nuclei are heavy. Another interesting point in the fig-
ure is the behavior of the Coulomb integrand at lalpgdo
understand this behavior, we note that at labge

29 .
G (&7

+.o (27
whereb is a unit vector defined by/b. Thus for a spheri-
cally symmetric charge densityyc(b) is approximated in

the order of 1% by

7 7
ivc(b)ﬂ—pj drpf (N &+ g (7= 1+2i7)

x [ drpfPne
8wy’ (= 8mn?
=~ 352 fodrr“p&?)(rw Tt (771
+2in)f drrép)(r). (28)
0

nuclear breakup is confined in the region of the nuclear inThe probability of the Coulomb dissociation, (1
teraction radius, while the Coulomb dissociation begins to—|€'7¢(?|?), is then proportional to b?, so that the inte-
rise at such an impact parameter that is equal to the sum @rand foroly) has the dependence oblas confirmed from
the projectile and target radii. In addition, the interferencethe figure, leading to a logarithmic divergencecrff). As
term is very small everywhere. This means that the totamentioned above, this unphysical result is due to the neglect
reaction cross section is, by the decompositi@d), well  of the energy conservation in the Glauber theory. In reality
separated into two terms, the nuclear cross section and thhe probability of the Coulomb dissociation will decrease

Coulomb cross section. In cases where we can predlét  exponentially at largé.
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1000

E TABLE IV. A decomposition of reaction cross sections at 800
MeV/nucleon into the nuclearN), Coulomb C), and nuclear-
8 Coulomb interferenceNC) terms. The cross section is given in
] units of mb. Values o) depend orb,,,, Which is set to 85 fm
_ 100 for ®He and 20 fm for°Li, respectively. The cross sections in
E 3 parentheses are obtained by redudipg, to 43 fm.
9,': :
© Expt.
10 3 Projectile Targetol) oN®  o{O) oR [2,15]
] ®He 2 707 009 43 714710 722+6
] 27pl 1049 0.05 1914) 10691063 1063+8
1 T T T T T ] 8Cu 1676 —0.3 8762 17621737 1747+72
10 15 20 25 30 35 a0 20%pp 3095 —4 602406) 36933497 3472+251
B () %L % 791 001 4 795 7966
FIG. 4. Coulomb dissociation cross sections %fe and °Li 2l 1140 0.09 17 1158 11367
incident on various targets at 800 MeV/nucleon. The solid curve is 8Cu 1783 -0.4 70 1852 179655
for ®He and the dashed one is f6ti. The value ofby, is the 208ppy 3228 —5 379 3603 3397193

upper limit in the integral of Eq(26).

To get a qualitative estimate of the Coulomb dissociationnucleon. In Table IV the measured reaction cross sections
cross section, we have to set an upper limit of the impack15] are compared to the theoretical cross sections calculated
parameterb,.,. To this end we compare the time scale by assumingb,=(%v/2B) as a qualitative guideB is
required for the internal excitation of the projectile and the4.063 MeV for °Li case, so thab,,,, becomes about a quar-
time scale of the collision. The former is given byB with ter of that for®He case. We see that the increase-gf for
the separation enerd¥, while the latter ib/v during which  heavier targets is a little slower than tﬁé dependence. The
the electric field in the perpendicular direction to the incidenttotal reaction cross section fof°®b target seems to be
velocity becomes largg34]. The latter time scale must be slightly overestimated in both cases 8fle and °Li. This
smaller than the former in order for the adiabaticity of themay suggest that the adiabatic approach based on the
Glauber theory to be satisfied. Thus we may require the conglauber theory is applicable up to subf.y that is smaller
dition than (:v/2B), and beyond thab,,., a perturbative approach

fulfilling the energy conservation must be employed.

Brmax= g (29) V. ELASTIC DIFFERENTIAL CROSS SECTIONS

. e ) . .. Elastic and inelastic scatterings at intermediate energies
This condition is also obtained by requiring that the mini-ae heen analyzed for various systems in the OLA calcula-
mum momentum transfeiq,, needed for the Coulomb dis- jon  See, for exampld37]. Main interest in these studies

sociation must satisfjqmin>B/v [35,32, because, fromthe 55 1o incorporate the deviation from the straight-line trajec-
uncertainty principle of the angular momentumand the oy of the projectile, which becomes important in the case of

angle d, we havel 6=(7Kb)(a/K)=#2bg=%, that iShmin  relatively low-energy scatterings by large-targets. A
=fi/byae>Blv. As is clear from the above discussion, the gimple prescription of including the deviation from the

condition (29) does not introduce any charge dependence 0Rraight-line trajectory is to use the distance of the closest
bmax, Which may be thought strange. You may think, in- approactb’

stead, thab,,, can be obtained by requiring that the energy

transferred to the projectile by the electric field must be Zp7 Zp7 R
larger tharB. If the energy transfer is estimated by taking the b'=—— (T +b (30
difference of the energy given to the projectile as a whole

and the energy given to the freely moving prot¢84], you in Rutherford orbit in place of the asymptotic impact param-
may get the conditioh,,,< (2ZpNp/Ap) (°/MB) 7 [36],  eterb [37]. Our main interest here lies in evaluating the merit
whereM is the nucleon mass. This expression, however, canof using thel'yt formalism and learning the effect of the

not be accepted in the present case: For example, in the caggulomb dissociation in the elastic scattering. The effect of
of °He+*Pb collision at 800 MeV/nucleon B  the Coulomb dissociation is of course different from that of
=0.975 MeV), we would hav,,,<8 fm, which means the bending of the Rutherford orbit. To the best of our
thatbp,. would be even smaller than the sum of the radii ofknowledge, no calculation of elastic scatterings with the in-

®He and2%%Pb. clusion of the Coulomb dissociation has been performed yet
Figure 4 displays the Coulomb dissociation cross sectiofin the framework of the Glauber theory.
a&c) as a function ob,,, for the reactions ofHe and°Li We apply the method of calculation of the optical phase to

projectiles incident on different target nuclei at 800 MeV/ predict elastic differential cross sections between nuclei
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4 12
10° - He+ C 1
2 —
—_ 10 T,=1.37 GeV
= 1
o 10 01
2 E
E 10’4 &
G -1 ©
o 10 0.01
=} 2
° 10 -
-3 _
o T\ 0.001
4
10 -
T T T T
5 10 15 20 Oc.m. (deg)
Oc.m. (deg)

FIG. 6. Elastic differential cross sections in Rutherford ratio for
FIG. 5. Elastic differential cross sections féide+1°C scatter-  *2C+12C scattering at 200 MeV/nucleon. The optical phases are
ing at T,=1.37 GeV. The opticaINphases are calculated in threecaiculated in three ways: the solid curve from Et) (oLa), the
ways: the solid curve from Eq8) (x) with the use of the (§)* dashed curve from E@13) (), and the dotted curve from E(y)
harmonic-oscillator shell-model wave function, the dashed curve yq, 5). The data are taken frof39].
from Eq.(13) (xeff), and the dotted curve from E7) (xoLa)- The
data are taken fror38].
ergy. The angular distributions calculated with three differ-
ent optical phases are displayed in Fig. 6 and compared with

through the scattering amplitude, E4.6). The Rutherford the experiinental dat89]. The solid curve is obtained with
amplitudeF¢ is included in what follows. The total optical the use ofyo 4 of Eq. (10). It gives quite reasonable cross
phasex,(b) defined by Eqs(20) is approximately calculated Sections(better than other calculatio87,40), and follows

by Egs.(22) and (23), but the nuclear paryy, may be re- nicely the data at small angles up to the second peak where
placed by other approximations. both of the far-side and near-side amplituié$] contribute

The first example, shown in Fig. 5, file+ 12C scattering to producing the oscillatory behavip89]. At larger angles
at the intermediate energy af,=1.37 GeV[38]. A theo- where the far-side amplitude dominates the solid curve gives
retical description of this scgttering was studied [B1], the distribution which is out of phase from the experiment.

where terms up to the fourth order in the cumulant expansior] "€ @ngular distributions calculated by and xoLa are
were included. They reproduced the experiment rather wef@/SC Shown in the figure. The result wish is better than
though the slope paramet@rof I'y is unusually small con- the one withyoa - FIQi]U(rb?Z compares the re,acn(mbsorp-
sidering from the systematics 27]. They found that the tion) probability, 1—[e'*®¥[%, as a function ob’. Compared
amplitudeF ¢ plays a significant role even in this light sys-
tem. Since nop+'C elastic scattering data af,

=343 MeV are available, th&'y parameters were deter-
mined by extrapolating the experimental data measured ag
398 MeV|[29], as discussed ifl1]. The resultant parameters
of 'yt are listed in Table |I. The Coulomb dissociation has

been neglected. The nuclear optical phgseéefined by Eq.

1.0

12 12
C+ C
0.8 -

200 MeV/nucleon

0.6 —

Reaction Probabili

(8) has been calculated by using thesf® harmonic- 0.4 -
oscillator shell-model wave functidi1]. Despite this unsat-
isfactory determination of 'yt the calculated cross section 0.2

denoted by solid curve is in fair agreement with experiment,

even better than the phenomenological fit [@4]. The .

dashed and dotted curves are obtained by replacing th T T T T T 1
4

nuclear optical phasg by x.r of Eq. (13) and by xo s Of

Eq. (7), respectively. The quality of fit to experiment by b (m)
these phases is related to that of the Undeﬂ]nglz_C elas- FIG. 7. Reaction probability for thé’C+*%C collision at 200
tic scattering at the same energy by the Olske Fig. 2 MeV/nucleon as a function of the distance of the closest approach

The next example is“C+*°C scattering at 200 MeV/ b’. The optical phases are calculated in three ways: the solid curve
nucleon, where the totaNN cross sectionoyy becomes  from Eq.(10) (xoLa), the dashed curve from E€L3) (x.r), and
about 30 mb, close to its minimum. This small cross sectionhe dotted curve from Eq(7) (xoLa). The black circle is the
leads to the increase of the nuclear transparency at this epptical-model predictio39].
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optical phase that reproduces the 2°%Pb scattering at this
energy before we attempt to understand the reason for this
discrepancy.

0.1

VI. SUMMARY

12C + 208Pb

o/ ORuth

The idea of utilizing the nucleon-targelN{) interaction
as an elementary vehicle in the Glauber theldry] has ex-
tensively been applied to calculate the nucleus-nucleus opti-
cal phase-shift function. With the use of phenomenologically
determinedN T profile functions, the total reaction cross sec-
tion has better been reproduced than by the conventional
optical limit approximation. A further simpler expression for
the optical phase has been derived by relating\fieprofile
Oc.m. (deg) function to the nucleon-nucleon data. The resultant optical
phase for the nucleus-nucleus scattering is given by a func-
FIG. 8. Elastic differential cross sections in the Rutherford I’atiOtionaj of the nuclear densities as well as the e|ementary
for 2C+2%pDb scattering at 200 MeV/nucleon. The dotted curve:cleon-nucleon input. This simplicity has made it possible
only the nuclear term calculated by E43) (xer) is included, the {5 analyze many existing data and led to the conclusion that
solid curve: both nuclear and Coulomb terms are included. The datf’nis effective formula reproduces the reaction cross section at
are taken fronf39). 800 MeV/nucleon to much better accuracy than the conven-
tional theory.
to the reaction probability calculated from the optical poten- The effect of the Coulomb dissociation on the optical
tial [39] which is determined by fitting the elastic angular phase has been discussed. It has been shown for light pro-
distribution, our theoretical curves suggest too strong an aljectiles such a8He and®Li that the breakup probability can

sorption: The curve calculated WiﬁbLA is, however, fairly be very well separated into the nuclear and Coulomb parts:

close to the optical-model prediction. Corresponding to the' N€ nuclear-Coulomb interference term is found to be very

three different reaction probabilities, tHéC+ %C reaction S.Tff"‘” Iat the energy of 800 MeV/nucleon. Because of the
cross sections at 200 MeV/nucleon are calculated to be, red-I lculty inherentin the G_Iaubg t_heory a def|n|t_|ve gle'germl-
) - hation of the Coulomb dissociation cross section is impos-
spectively, 817 fora), 994 (xer), and 1002 mb Xoia),  sible. The qualitative estimate of the cross section made for
which are compared to the measured value of-868 mb  (ifferent targets, however, is found to lead to reasonable cor-
[42] or the value of 806:30 mb predicted by the optical respondence with experiment.
potential[39]. We see that the optical phagg, gives such The elastic differential cross sections at intermediate en-
a reaction cross section, which is consistent with experimengrgies have been calculated for some systems. The Coulomb
nevertheless it leads to some discrepancy in the elastic angdissociation and nuclear-Coulomb interference terms are in-
lar distribution at large angles. This may indicate that wecluded in the Glauber amplitude together with the bending of
must take into account the coupling to excited state$’6f  the Rutherford orbit. Both of the real and imaginary parts of
explicitly or some unknown medium effects. the optical phase contribute to the cross section, so that we
Figure 8 displays*’C+2%pPb scattering at 200 MeV/ have more opportunities to learn the suitability of Thg; in
nucleon. The Coulomb repulsion becomes as large as abotite analysis of the elastic differential cross section than that
70 MeV at the internuclear distance of 10 fm. In the range ofof the reaction cross section. Though the Glauber model pre-
measured angles the near-side contribution is domifg8jt  diction seems to be reasonable, we feel that more careful
because the net effect of the nuclear and Coulomb potentiaudy is needed on the relationship between the elementary
is largely repulsive. Since there are no datapph?®®Pb at  NT scattering amplitudes in free space and in nuclear me-
Tp,=200 MeV, the nuclear optical phase has been calculatedium before we attempt a better microscopic understanding
throughy.; of Eq. (13). As far as we know, this is a micro- of the reaction dynamics. For this purpose it would be im-
scopic calculation for?C+2%8Pb scattering for the first time portant to perform systematic analyses of both nucleon-
in which thel"y, data and the densities of the projectile andnucleus and nucleus-nucleus scatterings by the same target at
target are employed. We have successively included the eflifferent energies.
fects of the Coulomb dissociation and the nuclear-Coulomb
!nterference terms. The cross sections calculated by includ- ACKNOWLEDGMENTS
ing these effects are apparently smaller than the measured
values. The bending of the Rutherford orbit plays a minor This work was in part supported by a Grant-in-Aid for
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APPENDIX bination of several terms as in E@), a slight modification
is necessary to define the parameters of the correlated Gauss-
The optical phase-shift function defined by E8). can be ian. According to[10] we can express the phase-shift func-
calculated by following the correlated Gaussian approachion in terms of the matrix element of the correlated Gauss-
presented if10]. Since thel'y is given in terms of a com- iang:

=1+ (-1)" > 2 2 7 € (ol g(ub; B,r) | o), (A1)
n=1 (i1, -y in) ki=1 n
where Ap is the number of nucleons of the projectile nucleus, aprg stands forakm(l—iakm)/4wﬂkm. The sum over
(iq,15, ..., indicates a numbar of different nucleons in the projectile which come into the interaction with the target. For

example, in the case aof=2 the sum (y,i,) extends over (1)2(1,3),...,(1Ap),(2,3),...,(2Ap), ..., (Ap_1,Ap). The
terms withn>1 represent multiple scatterings of the projectile nucleons with the target. The fugasatefined by

Ap

g(ub;B,ri)zexp( E Bijri-r] +E u;b-r; ) (A2)

where anAp X Ap symmetric matrixB and anAp-dimensional real vectan are given as follows:

1 1 1
Bij:2 )\|5”_A_p()\l+)\1)+A_%A y 2 )\_APA (A3)
with
n 1 Ap n 1

Ni= —3&i, A=2, \= —. A4
J mzzl 2By 'm 121 ! mE:1 2By (Ad)

A method of calculation of the matrix element @fs given in[10]. The elastic-scattering amplitude fNIfT scattering is also
expressed in terms of the matrix elementgads follows:

At 1
Q=-iKX (-1 S Ezkl (—A>e‘“‘“<¢|g( qur)|¢0>, (AS)

(GRIPTRRR in) kp=1 kn=
whereC is anApX Ap matrix given by
1
Ciszij_ﬁuiuj' (A6)

The evaluation of the matrix elements@fn Egs.(Al) and(A5) will be aided if a normalized center-of-mass function of the
projectile is introduced because then the calculation can be performed in the single-particle coortitjates
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