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R ratios and moments of nuclear structure functions
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We study implications of a model which links nuclear and nucleon structure functions. For this model,
computed Callen-Gross functions”(x,Q?) = 2xF7(x,Q?)/F5(x,Q?) are for finite Q%> close to their
asymptotic value 1. Using those we computeR ratios forQ?=5 Ge\?. We review approximate methods for
the extraction oR from inclusive scattering and EMC data. We also calculate ratios of momeR{Sarid find
these to describe the data and in particular tiirdependence. The above observables, as well as inclusive
cross sections, are sensitive tests for the underlying relation between nucleonic and nuclear structure functions.
In view of the overall agreement, we speculate that the above relation effectively circumvents a QCD
calculation.

PACS numbd(s): 24.10—i, 13.60.Hb

In the following we discuss two topics related to nuclearx,Q? ranges and is not accurate, reflecting a similar uncer-
structure functiongSP, namely ratiosR* of cross sections tainty in F{j. Below we shall discuss computed results For
for longitudinal and transverse virtual photons, and ratios otnd standard approximations.
moments of SF. We start with the cross section per nucleon Equation(1) holds irrespective of the dynamics underly-
for inclusive scattering of high-energy electrons from nucleiing the description of the nuclei. With nucleons as dominant

degrees of freedom, it is appealing to relate SF of nuclei to

d20ea(E; 6,v)IA 2 _ xM? A ) those of nucleons, which are considered to be composite for
dQ dv = aom(E0) Q2 F2(x.Q% the highQ? involved. We shall use below a proposed rela-
tion [2]
+tarf( 6/2) F?(X,Qz)] . (1)

Ad X
X 1

Fo(x,Q%)= f Zz—ifPN(z,Q2>F<kN>( Q2>, 3

. : . . z
The inclusive and the Mott cross sectier), for point-
nucleons are measured as functions of beam ergrggat-
teAring aznglea, and energy losy. The above nuclear SF \hereF{" are properlyp,n-weighted SF's ofree nucleons
Fi(x,Q%) describe the scattering of unpolarized electrons=p Fh~FD/2—FP. Those contain information on the sub-
from randomly oriented targets. These depend on the squagrycture of the nucleon and we shall use data compiled for
of the four-momentun®“=qg“— »* and the Bjorken variable F\ [3], and parametrizations foFy [4]. Dynamics enter

X, czorrespondlng to the nucleon mass with range 0  ¢hrough the SF of a nucleus with point-partick, probed
=Q/2Mv=A. at hlghQ2
The interest inF} stems from the interplay between  The above SEPN depends o2 as is the rule for SF of
nucleonic and subnucleonic dynamics which one wishes t@ny systems of fully interacting particles. This is not the case
study. These are in principle obtained by the Rosenbluth exp the plane wave impulse approximatiéRWIA), where
traction for a single-photon exchange cross secti)  one neglects the residual interaction between the knocked-
which requires data for fixed andQ® at different scattering  out nucleon and the spectator nucléas for instance Refs.
angles. Since sif(6/2)=Q%[4E(E—Q?/2Mx)], varying  [6-g]).
the scattering angle amounts to varying the beam enérgy  Several heuristic nonperturbative arguments lead to Eq.
Instead of the SF in Eq(l), one extracts the above- (3). One is a cluster model for quarks in nuclei, with nucle-
mentioned raticR" [1] ons as clusterf2]. A second approach uses the light-cone
approach of Akhulinitcheet al. [6] with momentum frac-
1 1 (2a tions replaced by Bjorken variables for fini@? [2,9,10.
KAx,02) Trust in the approximate validity of E¢3) comes primarily
from a comparison of its consequences and data, in particular
2xFA(x.Q?) the quite _striking agreement between predicted in_clusive
_ 17 _ (2b) cross sectionf9,11,19 and datd13,14. The same provides
F5(x,Q?) estimates of the kinematic lim®?=(1— 1.5) Ge\* and for
x=0.15, below which pioni¢15] and antiscreening effects,
We shall namex”(x,Q?) the nuclear Callen-GroséCG)  neglected in Eq(3), grow in importance.
function. An additional restriction originates in the improper treat-
There exists a rather extensive body of data from wich ment of the c.m. motion of a nucleus in virtually all nuclear
has been extracted, but the information does not cover widmodels. Incurred errors affect ground-state wave functions

4AM?x?
QZ

RA:dZO'L /dZO'T: 1+

K"(x,Q%)
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TABLE I. “Exact” R for low x and medium-highQ?, the highQ? limit, and data for binned Q?)
[18,22. R®*P contains statistical and systematic errors. The first rowfo0.1 are extrapolations, down from

x=0.1.
Q?(GeV?) 5 10 20 50
X R
R exact 0.284 0.226 0.221 0.218
0.08 R® 0.005 0.002 0.001 0.000
R®XP((Q2%)~7) 0.27+0.06+0.02
R exact 0.216 0.203 0.185 0.176
0.12 R(® 0.010 0.005 0.003 0.001
RE*P((Q?)~12) 0.12+-0.05+0.02
R exact 0.192 0.169 0.146 0.120
0.18 R® 0.023 0.011 0.005 0.002
RE*P((Q2))~23) 0.06+0.06+0.02
R exact 0.159 0.120 0.089 0.044
0.27 R(® 0.051 0.025 0.013 0.006
R®*P(({Q?)~30) 0.04+0.04+0.01
R exact 0.144 0.119 0.064 0.009
0.36 R® 0.091 0.025 0.013 0.006
R®*P((Q?)~50) —0.04+0.04+0.01
0.5 R exact 0.140 0.113 0.048 ~0
R® 0.178 0.089 0.044 0.018
0.7 R exact 0.223 0.170 0.120 ~0
R(® 0.348 0.170 0.085 0.035

and derived density matrices which enter a calculation of the Using Eq.(5), the nuclear CGelation (6) can be proven

abovefPN[11,17. Those decrease with increasigand we
therefore choosd=12.

We have demonstrated before that the calculéfétare
only weaklyA-dependenf11], as are the Weigh'[elé|<kN> . The

directly from Eq.(3) [17]. In contradistinction, the equality
of nuclear and nucleonic C@inctions(4) is compatible with
Eq. (3), but does not necessarily follow from it.

First we mention a remarkable observation for the com-

same holds therefore for nuclear S, even for large neu- Puted CG functions

tron exces®¥N/A [12]. Experimental evidence can be found

in Fig. 2a of Ref[11] and Table | in Ref[9].

At this point we mention that the proper expressighfor
F7 actually mixesF) andFY, and modifies the one fd¥5
[5,3]. Below we shall mention numerical consequences.

We return to Eq(3), which through Eq(2a) implies

kA%, Q%) ~ kN(x,Q%) ~ kP(x,Q?),
RA(x,Q%)~R(x,Q?), (4)

in agreement with datl,16]. Using first the CGelation for
nucleons

eNg= I2im «N(x,Q%)=1 (5)
Qf—x

one finds from Eqs(2b) and (4), its nuclear analog

ecg~ lim «kA(x,Q?), (6)
Q2~>oc

with an error, again estimated to & 6N/A). Gluonic cor-
rectionsO(In(Q?)), not given in Eqs(5) and (6), appear to
be small forx in the rangex=0.15 under discussion.

|k(x,Q%)—1|~(0.11-0.12),
(0.2-0.3=x=<(0.7-0.75; Q?=5Ge\’. (7)

In the indicatedx-interval and over a wid&?-range, CG
functions appear to be close to their asymptotic limit, the
nuclear CG relation. It is also intriguing that without any
apparent cause, a sign change occurs at a weakly
Q2-dependenk,~0.5—0.6. The above is in agreement with
data from high energy, v inclusive scatteringsee Fig. 18 in
[18]). The smallk— 1 shall be shown to entail disproportion-
ally large effects. For later use we remark on the estimated
accuracy of the computed CG functié®b), which appears
limited in various ranges.

(i) Disregarding other than valence quarks requires
smoothing ofF} for x<0.15-0.20, which entails the same
for Fﬁ. We thus prefer to use extrapolated values for nuclear
CG functions, belowk=<0.15.

(i) Equation(3) shows thaff "N draws on an ever smaller
support of dwindling intensity and accuracy, rendering
Fi(x,Q?) unreliable beyonk=1.3—1.5.

(iii) The parametrizations foF}, FZD [3] hold for Q?
<20 Ge\?, causing uncertainties iRf, for larger Q.
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(iv) With SF forx= 1.2 falling orders of magnitudes from
the maximum values, one expects inaccuracigsyifand «
for growing x.

We mentioned above corrections to E8), consequences

of which we now assess. Using the expressions given in the

cited referenceqd5,3], one first notes that the resulting
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[GR(Q?) 1%+ 7[Gp(Q?)]?

FYNO(x,Q%) = Ty

o(x—1),
(119

1
FI(x,Q%) = S PMx,QA[GN(QY) 12,

changes vanish in the Bjorken limit, but have to be computed

for moderateQ?, relevant to the data.

One then infers from the above sources that the modifica- F;\(NE)(X,QZ)=XfPN(X,Q2)

tion in the integrand folF? is proportional to{(py/M)?),
which is negligibly small. Finally the correction t65 ap-
pears to amount to the insertion in the integrand in Bygof
a factor
C(p,2)=(1—p+pl2)?, ®)

with p=(1+Q?/(2Mz)?)~ 1. We considered)?=1,2 Ge\?
and the range 022x=<0.7 in Eq.(7) and found that the effect
on the CG functionk(x,Q?), Eq.(2b), is negligible for small
X, grows slowly withx and reaches 13% fot=0.7. In the
indicated range the effect is hardly dependent@h As
predicted, corrections decrease rapidly with increa§dg

We return to theR ratio (23 and shall now discuss three
approximationsR,, for R*~R, defined by a corresponding
choice for the CG functiork,,. For each of these one has
from Eq. (2a)

R(X,Q%) = Bn(X,Q*)Rn(x,Q?) + (By(x,Q%) —1). (9
Deviations of 8,(x,Q%) = k,(x,Q%)/k(x,Q?) from 1 mani-
festly determine the quality of the approximation.

(A) A high-Q? approximation, defined by, =1 (i.e.,
BL=«k"1), approximately valid for £x=<0.6:

R“ exact! (X!Qz) = BL(X!QZ) RL(XvQZ) + (BL(X!QZ) _(11)0

3
%RL(X,QZ)—F(ﬁL(X,QZ)—l), (10b)
2y,2
Rﬁ“(x,QZ):Mgzx +(BL(x,Q})~1), (100
4M?x?
R(x,Q?)= sz (100

Equation(109 is the same as Eq&a). The corresponding

[GR(Q?) 1%+ 7[GNM(Q?)]?
1+ 7 '

(11b

The corresponding CG function can be simplified by exploit-
ing the approximate scaling of the static electromagnetic

form factors in the NE part(11a, [ (up)?+(um)?]

=0.0874[19] [see remark at the end of the third paragraph

before Eq.(15)]
kne=2xFYNEFENE < (0.0874+ 9)/(1+ 7). (12)
Inserting Eq.(12) into Eq. (3) gives
R(x,Q%) = Bne(X,Q®)Rue(X, Q%) + (Bne(x,Q%) — 1),

(133

(1) 2, 0:31 (031 x*—1
RNE(X*Q )— ?‘F ?‘Fl 1T77 , (13b)
RE(x,Q)~ O('g—il , (139

with Q? expressed in Ge¥/ Equation(130 is the result of
Bostedet al.[19], while Eq.(13b) providesx-dependent cor-
rections.

(C) An empirical estimate for modera@?, which is as-
sumed to be independent wfand A [19-21]

Rc(X.Q2)~§; 0.2<5=<0.5. (14)

The estimate$10d and(130) for x~1, and Eq(14) predict
Roc1/Q?, but only (A) and (B) for x# 1 prescribe definite
dependence. Since by definitiGhdepends orx, it is likely
that extracted coefficients of Qf effectively hide actuak
dependence.

Were it not for the listed inaccuracies in computed CG

functions, the latter would through E@2a or Eq. (103
provide a standard for all approximak ratios. We now

is dubbed “exact,” because it results from computed valuegjiscuss those and start with the lar@é approximation. In

of F¢, Eq. (3) [12], which implies some modeR" &
should be distinguished from intrinsic approximations Ror
(B) The NE approximation fok~1 rests on the decom-
position ofF{z‘ in Eqg. (3) into p,n-weighted nucleon-elastic
(NE) and nucleon-inelasti¢NI) parts. Retention of the NE
part generates through E@) corresponding NE parts in the
nuclear SF, thus withyp= Q?%/4M? [see Eq(6a) in Ref.[9]]

FIM9(x,Q%) = ;[GH(QZ)]Z‘S(X_”'

view of the observatioli7), the CG functionk=~1 holds also
for moderateQ? and over a relatively widec-range. For
medium x?/Q?, which does not require large?, R~R?)

may suffice. However, in the deep-inelastic region for small

enoughx®/Q?, even for a few % deviation g8, from 1, the
second part in Eq100 exceedsR(Lz), and Eq.(109 should
therefore be used there.

In Table | we present results for relatively lowy 0.12
=x=0.7 and forQ?=5 Ge\2. The first row giveR" &Xact’
Eqg. (103, computed from Eq(3), except the entry fox
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TABLE Il. R ratios(13b) and(13¢ for x~1, mediumQ?, and L1F T T LS
the x-independentR;, Eq. (14). For x=0.9,1.0; Q>=5 and C ]
10 Ge\? we also entered®” ®*2°! (x,Q?). See text for discussion. Lol h

‘o | } ]

X R Q(GeV?): 2 5 10 o k ]
09 H .

0.9 R} <0 <0 <0 F { 1
R 0.155 0.062 0.032 o8 3

R exact 0.292 0.308 - — -+ 1]

1.0 R 0.155 0.062 0.032 i 1
R 0.155 0.062 0.032 Hor B

R exact 0.329 0.404 SV 3 ]

(1) <o L # J

1.05 RNE 0.231 0.117 0.059 s 09 { ]
R 0.155 0.062 0.031 I H { 1

X R([0.4<6<0.6])) 0.2-0.3  0.08-0.12 0.04-0.06 os [ } ]
L | | ] [l 111 \l | | | ] 1 11 I_

=0.12 which, as explained above, has been extrapolated L1E ! { 3
down from slightly largerx. The second row is the . } ]
asymptotic limitR{*), Eq. (10d. We do not displayR{"), e 3
since it virtually coincides wittR"®X2°"". One notices that 309 o gl E
for higherx, the asymptotic limit is either close to, or ex- X 't { .
ceeds the exact answer. This reflects ©qnEq. (2b) to be 0s b E
close to, or exceeding 1, in turn entailing a negative correc- F ]
tion to R(Lz). This agrees with the observatidr). The last 0.7 1' L] ]

. — - 5 10 50 100

column contains a few scatteredlv data for the indicatea QXGeV?)

and binned Q)2 [18,22. Given the substantial statistical and

systematic errors and the imprecisely given spreading due to FIG. 1. Second, third, and fourth moment$ém,Q?). Data are

binning, the agreement is reasonable. taken from Ref[28]. The drawn lines are numerical results from
Next we discuss the NE approximation, the validity of either Eq.(150 or from Eq.(160), using Eq.(15b).

which depends foremost on the weight 6} " (x,Q?) in

Fi . When using Eq(3), that weight is determined b§/N,  erratic, butR((x),Q?), averaged ovek, shows a trend in

for which there is only theoretical information. Computa- agreement with Eq(130).

tions show that only foQ?<2 Ge\?, Ff("B(x,Q?) domi- In addition there are data for about the sa@ferange, but
nates forx=(1.1-1.2). For growingQ? NI parts compete more restrictedk [25], which are in agreement with either
for ever growingx and ultimately overtakgl2]. Eq. (130 or Eq. (14). There clearly are substantial correc-

Disregarding NI contributions t&Ryg for x#1, correc- tions just off the QEP. In particular for the data of Bosted
tions in the immediate neighborhood of the QEP can be eset al, the above warns that the use of simglendependent
timated by choosingBye close to 1. One thus finds Rratios may lead to extractdﬁ?, which have inaccuracies,
R(1.05,5)RNE(1,5)=1.86 which ratio rapidly increases exceeding those estimated.
with Byg. One also checks from Eql13b) that for 1 We now address a second topic regarding the moments of
=Q?(GeV?) =5, Rye(x=0.9Q?) reaches unphysical nega- various SF
tive values. Only the disregarded NI part can restar&o
positive values. For 15Q?%(GeV?)=5 and for instance
x=1.1 on the elastic side of the QEP, 2
=Rye(1.1Q%)/Rye(1,Q%)=1.5, which ratio again grows
with x: NI terms may or may not off-set that growth. Table Il 1
compares the NE approximatiom{2,R(% with Rc: the ME(m;Qz)ZJ dxX"FR(x,Q?), (15b
agreement is tolerable. Aware of the warnings after [#). 0
we nevertheless compute and enter some “exact” values, A
which appear to_exceed the NE values by far. CG functions MA(m;Qz)zJ' dxx™FPN(x,Q2). (150
«(1,Q%) which fit Ryg would have to be 25-30% larger 0
than the computed ones, which we estimate to be outside the
limits of our accuracy. In particular the negative Moments/\/lE are related to higher twist corrections of SF of
Rye(0.9Q%) makes one believe that the NE estimates maynucleons26], and the same holds for their nuclear counter-
not be precis¢23,24]. parts, had those been calculated in QCD. Our interest in

Equation(13¢) has been applied to extraEtandF’é\ from  those moments is the sensitivity of SF for langand con-
inclusive scattering data for mediu@? data for x~1  sequently the trust in the calculatéq for that range. One
[21,25. Data by Bosteckt al. for 0.75sx=<1.15 are quite readily derives from Eq(11) [27]

Mp(m; Q%)= f Adxme{j(x,Qz), (159
0
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FA0,Q2) = u™(—2+k;Q2)FN(0,Q?), (169 like Eq. (3), with a Q*-independent PWIA forf *", leading
to the same foru(m). Q? dependences, estimated for off-
ME(M,Q%) =u A(m-1+k;Q) M (m;Q?, (16h  shell nucleons, produce far too small moment ratios with the
wrong Q? behavior.
ME(M+1;Q%)  M5H(m;Q?) The above is reminiscent of previously considered, but
N PNV PN not identical moments. We recall discrepancies between data
Mi(m+1.Q%  Mz(m;Q%) (160 and computed results for relatively logy-longitudinal re-
G sponsesS,, and the integral of the latter, the Coulomb sum
and in particular rule [29,30. All have occasionally been ascribed to the in-
A N fluence of the binding medium on the size of a nucleon, i.e.,
A 2 _ PN 2\ _ as; o\ _ on the second moment of thetatic charge density. Apart
w(0Q7 J; dxx.Q%) jo dxP0=1, (17 from possible conventional accounts of those differences
[31], one notes that Eq3) does not relate to static moments
which expresses unitarity. All other relatio(®6) for finite  f charge distributions, but to dynamical SF.
Q? rest on the representati@B) and embody effects of the The above and Ref§9—17] conclude a program to deter-
binding medium on moments &, throughx(n,Q%). For  mine observables which depend on nuclear SF, in turn com-
instance, the deviation of”(2,Q%) from 1 measures the puted from the basic relatiof2a between SF for composite
difference of the momentum fraction of a quark in a nucleushuclei, free nucleons, and of a nucleus composed of point
and in the nucleon at give@®. nucleons. The various observables occasionally extend over
We have computed the lowest moments and ratiéeom  wide ranges, and test to various measuresxti@ depen-
computedry ,fPN and parametrizey . With expected in-  dence ofFf. It is gratifying to note frequently good agree-
accuracies irfF, for x=1.5 one ought not to trust calculated ment of data and predictions based on E8), which of
higher moments. Yet we found consistent values for the difcourse does not prove the underlying conjecture, but inspires
ferent ratios in Eq(160 for Q=20 Ge\?, and the moments trust in its approximate correctness.
of fPN. Those for Fe are entered in Fig. 1 and agree reason- The above clearly requires an explanation, because results
ably well with the available data. We note in particular thehave been obtained, circumventing QCD. It seems an attrac-
rendition of the observe®?-dependence and the predicted tive suggestion that in the testzgdQ? region, the relatiori3)
slow vanishing forQ?—, as opposed to a results by Co- is the result of an effective theory, as has been argued origi-
thranet al.[28]. The authors used a generalized convolutionnally [2] and somehow mimicking notions of QCD.
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