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R ratios and moments of nuclear structure functions
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Department of Particle Physics, Weizmann Institute of Science, Rehovot 76110, Israel

~Received 12 April 1999; published 27 July 2000!

We study implications of a model which links nuclear and nucleon structure functions. For this model,
computed Callen-Gross functionskA(x,Q2)52xF1

A(x,Q2)/F2
A(x,Q2) are for finite Q2 close to their

asymptotic value 1. Using thosek, we computeR ratios forQ2*5 GeV2. We review approximate methods for
the extraction ofR from inclusive scattering and EMC data. We also calculate ratios of moments ofFk

A and find
these to describe the data and in particular theirQ2 dependence. The above observables, as well as inclusive
cross sections, are sensitive tests for the underlying relation between nucleonic and nuclear structure functions.
In view of the overall agreement, we speculate that the above relation effectively circumvents a QCD
calculation.

PACS number~s!: 24.10.2i, 13.60.Hb
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In the following we discuss two topics related to nucle
structure functions~SF!, namely ratiosRA of cross sections
for longitudinal and transverse virtual photons, and ratios
moments of SF. We start with the cross section per nucl
for inclusive scattering of high-energy electrons from nuc

d2seA~E;u,n!/A

dV dn
5

2

A
sM~E;u,n!FxM2

Q2
F2

A~x,Q2!

1tan2~u/2!F1
A~x,Q2!G . ~1!

The inclusive and the Mott cross sectionsM for point-
nucleons are measured as functions of beam energyE, scat-
tering angleu, and energy lossn. The above nuclear SF
Fk

A(x,Q2) describe the scattering of unpolarized electro
from randomly oriented targets. These depend on the sq
of the four-momentumQ25q22n2 and the Bjorken variable
x, corresponding to the nucleon massM with range 0
<Q2/2Mn<A.

The interest inFk
A stems from the interplay betwee

nucleonic and subnucleonic dynamics which one wishe
study. These are in principle obtained by the Rosenbluth
traction for a single-photon exchange cross section~1!,
which requires data for fixedx andQ2 at different scattering
anglesu. Since sin2(u/2)5Q2/@4E(E2Q2/2Mx)#, varying
the scattering angle amounts to varying the beam energE.
Instead of the SF in Eq.~1!, one extracts the above
mentioned ratioRA @1#

RA5d2sL /d2sT5S 11
4M2x2

Q2 D 1

kA~x,Q2!
21, ~2a!

kA~x,Q2!5
2xF1

A~x,Q2!

F2
A~x,Q2!

. ~2b!

We shall namekA(x,Q2) the nuclear Callen-Gross~CG!
function.

There exists a rather extensive body of data from whicR
has been extracted, but the information does not cover w
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x,Q2 ranges and is not accurate, reflecting a similar unc
tainty in Fk

A . Below we shall discuss computed results forR
and standard approximations.

Equation~1! holds irrespective of the dynamics underl
ing the description of the nuclei. With nucleons as domin
degrees of freedom, it is appealing to relate SF of nucle
those of nucleons, which are considered to be composite
the highQ2 involved. We shall use below a proposed re
tion @2#

Fk
A~x,Q2!5E

x

A dz

z22k
f PN~z,Q2!Fk

^N&S x

z
,Q2D , ~3!

whereFk
^N& are properlyp,n-weighted SF’s offree nucleons

Fk
p ,Fk

n'Fk
D/22Fk

p . Those contain information on the sub
structure of the nucleon and we shall use data compiled
F1

N @3#, and parametrizations forF2
N @4#. Dynamics enter

through the SF of a nucleus with point-particlesf PN, probed
at highQ2.

The above SFf PN depends onQ2 as is the rule for SF of
any systems of fully interacting particles. This is not the ca
in the plane wave impulse approximation~PWIA!, where
one neglects the residual interaction between the knock
out nucleon and the spectator nucleus~cf. for instance Refs.
@6–8#!.

Several heuristic nonperturbative arguments lead to
~3!. One is a cluster model for quarks in nuclei, with nuc
ons as clusters@2#. A second approach uses the light-co
approach of Akhulinitchevet al. @6# with momentum frac-
tions replaced by Bjorken variables for finiteQ2 @2,9,10#.
Trust in the approximate validity of Eq.~3! comes primarily
from a comparison of its consequences and data, in partic
the quite striking agreement between predicted inclus
cross sections@9,11,12# and data@13,14#. The same provides
estimates of the kinematic limitQ2*(121.5) GeV2 and for
x*0.15, below which pionic@15# and antiscreening effects
neglected in Eq.~3!, grow in importance.

An additional restriction originates in the improper trea
ment of the c.m. motion of a nucleus in virtually all nucle
models. Incurred errors affect ground-state wave functi
©2000 The American Physical Society02-1
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TABLE I. ‘‘Exact’’ R for low x and medium-highQ2, the highQ2 limit, and data for binned̂ Q2&
@18,22#. Rexp contains statistical and systematic errors. The first row forx50.1 are extrapolations, down from
x*0.1.

Q2(GeV2) 5 10 20 50
x R

R‘ ‘ exact’ ’ 0.284 0.226 0.221 0.218
0.08 RL

(2) 0.005 0.002 0.001 0.000
Rexp(^Q2&'7) 0.2760.0660.02

R‘ ‘ exact’ ’ 0.216 0.203 0.185 0.176
0.12 RL

(2) 0.010 0.005 0.003 0.001
Rexp(^Q2&'12) 0.1260.0560.02

R‘ ‘ exact’ ’ 0.192 0.169 0.146 0.120
0.18 RL

(2) 0.023 0.011 0.005 0.002
Rexp(^Q2&)'23) 0.0660.0660.02

R‘ ‘ exact’ ’ 0.159 0.120 0.089 0.044
0.27 RL

(2) 0.051 0.025 0.013 0.006
Rexp(^Q2&'30) 0.0460.0460.01

R‘ ‘ exact’ ’ 0.144 0.119 0.064 0.009
0.36 RL

(2) 0.091 0.025 0.013 0.006
Rexp(^Q2&'50) 20.0460.0460.01

0.5 R‘ ‘ exact’ ’ 0.140 0.113 0.048 '0
RL

(2) 0.178 0.089 0.044 0.018
0.7 R‘ ‘ exact’ ’ 0.223 0.170 0.120 '0

RL
(2) 0.348 0.170 0.085 0.035
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and derived density matrices which enter a calculation of
abovef PN @11,12#. Those decrease with increasingA, and we
therefore chooseA>12.

We have demonstrated before that the calculatedf PN are
only weaklyA-dependent@11#, as are the weightedFk

^N& . The
same holds therefore for nuclear SFFk

A , even for large neu-
tron excessdN/A @12#. Experimental evidence can be foun
in Fig. 2a of Ref.@11# and Table I in Ref.@9#.

At this point we mention that the proper expression~3! for
F1

A actually mixesF1
N andF2

N , and modifies the one forF2
A

@5,3#. Below we shall mention numerical consequences.
We return to Eq.~3!, which through Eq.~2a! implies

kA~x,Q2!'k^N&~x,Q2!'kD~x,Q2!,

RA~x,Q2!'R~x,Q2!, ~4!

in agreement with data@1,16#. Using first the CGrelation for
nucleons

eCG
N 5 lim

Q2→`

kN~x,Q2!51 ~5!

one finds from Eqs.~2b! and ~4!, its nuclear analog

eCG
A ' lim

Q2→`

kA~x,Q2!, ~6!

with an error, again estimated to beO(dN/A). Gluonic cor-
rectionsO„ln(Q2)…, not given in Eqs.~5! and ~6!, appear to
be small forx in the rangex*0.15 under discussion.
03460
e Using Eq.~5!, the nuclear CGrelation ~6! can be proven
directly from Eq.~3! @17#. In contradistinction, the equality
of nuclear and nucleonic CGfunctions~4! is compatible with
Eq. ~3!, but does not necessarily follow from it.

First we mention a remarkable observation for the co
puted CG functions

uk~x,Q2!21u'~0.1120.12!,

~0.220.3!&x&~0.720.75!; Q2>5 GeV2. ~7!

In the indicatedx-interval and over a wideQ2-range, CG
functions appear to be close to their asymptotic limit, t
nuclear CG relation. It is also intriguing that without an
apparent cause, a sign change occurs at a we
Q2-dependentxs'0.5– 0.6. The above is in agreement wi
data from high energyn,n̄ inclusive scattering~see Fig. 18 in
@18#!. The smallk21 shall be shown to entail disproportion
ally large effects. For later use we remark on the estima
accuracy of the computed CG function~2b!, which appears
limited in various ranges.

~i! Disregarding other than valence quarks requi
smoothing ofFk

N for x&0.1520.20, which entails the sam
for Fk

A . We thus prefer to use extrapolated values for nucl
CG functions, belowx&0.15.

~ii ! Equation~3! shows thatf PN draws on an ever smalle
support of dwindling intensity and accuracy, renderi
Fk

A(x,Q2) unreliable beyondx>1.321.5.
~iii ! The parametrizations forF2

p , F2
D @3# hold for Q2

<20 GeV2, causing uncertainties inFk
A for largerQ2.
2-2
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~iv! With SF forx>1.2 falling orders of magnitudes from
the maximum values, one expects inaccuracies ifFk

A andk
for growing x.

We mentioned above corrections to Eq.~3!, consequences
of which we now assess. Using the expressions given in
cited references@5,3#, one first notes that the resultin
changes vanish in the Bjorken limit, but have to be compu
for moderateQ2, relevant to the data.

One then infers from the above sources that the modifi
tion in the integrand forF1

A is proportional to^(px /M )2&,
which is negligibly small. Finally the correction toF2

A ap-
pears to amount to the insertion in the integrand in Eq.~3! of
a factor

C~r,z!5~12r1r/z!2, ~8!

with r5„11Q2/(2Mz)2
…

21. We consideredQ251,2 GeV2

and the range 0.2&x&0.7 in Eq.~7! and found that the effec
on the CG functionk(x,Q2), Eq.~2b!, is negligible for small
x, grows slowly withx and reaches 13% forx50.7. In the
indicated range the effect is hardly dependent onQ2. As
predicted, corrections decrease rapidly with increasingQ2.

We return to theR ratio ~2a! and shall now discuss thre
approximationsRn for RA'R, defined by a correspondin
choice for the CG functionkn . For each of these one ha
from Eq. ~2a!

R~x,Q2!5bn~x,Q2!Rn~x,Q2!1„bn~x,Q2!21…. ~9!

Deviations ofbn(x,Q2)5kn(x,Q2)/k(x,Q2) from 1 mani-
festly determine the quality of the approximation.

~A! A high-Q2 approximation, defined bykL51 ~i.e.,
bL5k21), approximately valid for 1&x&0.6:

R‘ ‘ exact’ ’ ~x,Q2!5bL~x,Q2!RL~x,Q2!1„bL~x,Q2!21…
~10a!

'RL~x,Q2!1„bL~x,Q2!21…, ~10b!

RL
(1)~x,Q2!5

4M2x2

Q2
1„bL~x,Q2!21…, ~10c!

RL
(2)~x,Q2!5

4M2x2

Q2
. ~10d!

Equation~10a! is the same as Eqs.~2a!. The correspondingR
is dubbed ‘‘exact,’’ because it results from computed valu
of Fk

A , Eq. ~3! @12#, which implies some model.R‘ ‘ exact’ ’

should be distinguished from intrinsic approximations forR.
~B! The NE approximation forx'1 rests on the decom

position ofFk
N in Eq. ~3! into p,n-weighted nucleon-elastic

~NE! and nucleon-inelastic~NI! parts. Retention of the NE
part generates through Eq.~3! corresponding NE parts in th
nuclearSF, thus withh5Q2/4M2 @see Eq.~6a! in Ref. @9# #

F1
N(NE)~x,Q2!5

x

2
@GM

N ~Q2!#2d~x21!,
03460
e
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F2
N(NE)~x,Q2!5

@GE
N~Q2!#21h@GM

N ~Q2!#2

11h
d~x21!,

~11a!

F1
A(NE)~x,Q2!5

1

2
f PN~x,Q2!@GM

N ~Q2!#2,

F2
A(NE)~x,Q2!5x fPN~x,Q2!

@GE
N~Q2!#21h@GM

N ~Q2!#2

11h
.

~11b!

The corresponding CG function can be simplified by explo
ing the approximate scaling of the static electromagne
form factors in the NE part~11a!, 1/@(mM

p )21(mM
n )2#

50.0874@19# @see remark at the end of the third paragra
before Eq.~15!#

kNE
A 52xF1

A(NE)/F2
A(NE)'~0.08741h!/~11h!. ~12!

Inserting Eq.~12! into Eq. ~3! gives

R~x,Q2!5bNE~x,Q2!RNE~x,Q2!1„bNE~x,Q2!21…,
~13a!

RNE
(1)~x,Q2!5

0.31

Q2
1S 0.31

Q2
11D S x221

11h D , ~13b!

RNE
(2)~x,Q2!'

0.31

Q2
, ~13c!

with Q2 expressed in GeV2. Equation~13c! is the result of
Bostedet al. @19#, while Eq.~13b! providesx-dependent cor-
rections.

~C! An empirical estimate for moderateQ2, which is as-
sumed to be independent ofx andA @19–21#

RC~x,Q2!'
d

Q2
; 0.2&d&0.5. ~14!

The estimates~10d! and~13c! for x'1, and Eq.~14! predict
R}1/Q2, but only ~A! and ~B! for xÞ1 prescribe definitex
dependence. Since by definitionR depends onx, it is likely
that extracted coefficients of 1/Q2 effectively hide actualx
dependence.

Were it not for the listed inaccuracies in computed C
functions, the latter would through Eq.~2a! or Eq. ~10a!
provide a standard for all approximateR ratios. We now
discuss those and start with the largeQ2 approximation. In
view of the observation~7!, the CG functionk'1 holds also
for moderateQ2 and over a relatively widex-range. For
medium x2/Q2, which does not require largeQ2, R'R(2)

may suffice. However, in the deep-inelastic region for sm
enoughx2/Q2, even for a few % deviation ofbL from 1, the
second part in Eq.~10c! exceedsRL

(2) , and Eq.~10c! should
therefore be used there.

In Table I we present results for relatively lowx, 0.12
&x&0.7 and forQ2>5 GeV2. The first row givesR‘ ‘ exact’ ’ ,
Eq. ~10a!, computed from Eq.~3!, except the entry forx
2-3
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50.12 which, as explained above, has been extrapol
down from slightly larger x. The second row is the
asymptotic limit RL

(2) , Eq. ~10d!. We do not displayRL
(1) ,

since it virtually coincides withR‘ ‘ exact’ ’ . One notices that
for higher x, the asymptotic limit is either close to, or ex
ceeds the exact answer. This reflects onk, Eq. ~2b! to be
close to, or exceeding 1, in turn entailing a negative corr
tion to RL

(2) . This agrees with the observation~7!. The last

column contains a few scatteredn,n̄ data for the indicatedx
and binned̂ Q&2 @18,22#. Given the substantial statistical an
systematic errors and the imprecisely given spreading du
binning, the agreement is reasonable.

Next we discuss the NE approximation, the validity
which depends foremost on the weight ofFk

N(NE)(x,Q2) in
Fk

A . When using Eq.~3!, that weight is determined byf PN,
for which there is only theoretical information. Comput
tions show that only forQ2&2 GeV2, Fk

A(NE)(x,Q2) domi-
nates forx&(1.121.2). For growingQ2 NI parts compete
for ever growingx and ultimately overtake@12#.

Disregarding NI contributions toRNE for xÞ1, correc-
tions in the immediate neighborhood of the QEP can be
timated by choosingbNE close to 1. One thus find
R(1.05,5)/RNE(1,5)51.86 which ratio rapidly increase
with bNE . One also checks from Eq.~13b! that for 1
&Q2(GeV2)&5, RNE(x&0.9,Q2) reaches unphysical nega
tive values. Only the disregarded NI part can restoreR to
positive values. For 1.5*Q2(GeV2)*5 and for instance
x51.1 on the elastic side of the QEP,
*RNE(1.1,Q2)/RNE(1,Q2)*1.5, which ratio again grows
with x: NI terms may or may not off-set that growth. Table
compares the NE approximationsRNE

(1) ,RNE
(2) with RC : the

agreement is tolerable. Aware of the warnings after Eq.~7!,
we nevertheless compute and enter some ‘‘exact’’ valu
which appear to exceed the NE values by far. CG functi
k(1,Q2) which fit RNE would have to be 25–30 % large
than the computed ones, which we estimate to be outside
limits of our accuracy. In particular the negativ
RNE(0.9,Q2) makes one believe that the NE estimates m
not be precise@23,24#.

Equation~13c! has been applied to extractR andF2
A from

inclusive scattering data for medium-Q2 data for x'1
@21,25#. Data by Bostedet al. for 0.75&x&1.15 are quite

TABLE II. R ratios~13b! and~13c! for x'1, mediumQ2, and
the x-independentRc , Eq. ~14!. For x50.9,1.0; Q255 and
10 GeV2 we also enteredR‘ ‘ exact’ ’ (x,Q2). See text for discussion.

x R Q2(GeV2): 2 5 10

0.9 RNE
(1) ,0 ,0 ,0

RNE
(2) 0.155 0.062 0.032

R‘ ‘ exact’ ’ 0.292 0.308
1.0 RNE

(1) 0.155 0.062 0.032
RNE

(2) 0.155 0.062 0.032
R‘ ‘ exact’ ’ 0.329 0.404

1.05 RNE
(1) 0.231 0.117 0.059

RNE
(2) 0.155 0.062 0.031

x RC(@0.4<d<0.6#) 0.2–0.3 0.08–0.12 0.04–0.06
03460
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erratic, butR(^x&,Q2), averaged overx, shows a trend in
agreement with Eq.~13c!.

In addition there are data for about the sameQ2 range, but
more restrictedx @25#, which are in agreement with eithe
Eq. ~13c! or Eq. ~14!. There clearly are substantial corre
tions just off the QEP. In particular for the data of Bost
et al., the above warns that the use of simplex-independent
R ratios may lead to extractedF2

A , which have inaccuracies
exceeding those estimated.

We now address a second topic regarding the momen
various SF

M k
A~m;Q2!5E

0

A

dxxmFk
A~x,Q2!, ~15a!

M k
N~m;Q2!5E

0

1

dxxmFk
N~x,Q2!, ~15b!

mA~m;Q2!5E
0

A

dxxmf PN~x,Q2!. ~15c!

MomentsM k
N are related to higher twist corrections of SF

nucleons@26#, and the same holds for their nuclear count
parts, had those been calculated in QCD. Our interes
those moments is the sensitivity of SF for largex and con-
sequently the trust in the calculatedFk

A for that range. One
readily derives from Eq.~11! @27#

FIG. 1. Second, third, and fourth momentsm(m,Q2). Data are
taken from Ref.@28#. The drawn lines are numerical results fro
either Eq.~15c! or from Eq.~16c!, using Eq.~15b!.
2-4
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Fk
A~0,Q2!5mA~221k;Q2!Fk

N~0,Q2!, ~16a!

M k
A~m,Q2!5mA~m211k;Q2!M k

N~m;Q2!, ~16b!

mA~m11;Q2!5
M 1

A~m11;Q2!

M 1
N~m11;Q2!

5
M 2

A~m;Q2!

M 2
N~m;Q2!

,

~16c!

and in particular

mA~0,Q2!5E
0

A

dx fPN~x,Q2!5E
0

A

dx fas~x!51, ~17!

which expresses unitarity. All other relations~16! for finite
Q2 rest on the representation~3! and embody effects of the
binding medium on moments ofFk

N throughm(n,Q2). For
instance, the deviation ofmA(2,Q2) from 1 measures the
difference of the momentum fraction of a quark in a nucle
and in the nucleon at givenQ2.

We have computed the lowest moments and ratiosm from
computedFk

A , f PN and parametrizedFk
N . With expected in-

accuracies inFk
A for x*1.5 one ought not to trust calculate

higher moments. Yet we found consistent values for the
ferent ratios in Eq.~16c! for Q<20 GeV2, and the moments
of f PN. Those for Fe are entered in Fig. 1 and agree reas
ably well with the available data. We note in particular t
rendition of the observedQ2-dependence and the predicte
slow vanishing forQ2→`, as opposed to a results by C
thranet al. @28#. The authors used a generalized convolut
t-

n

03460
s

f-

n-

n

like Eq. ~3!, with a Q2-independent PWIA forf PN, leading
to the same form(m). Q2 dependences, estimated for of
shell nucleons, produce far too small moment ratios with
wrong Q2 behavior.

The above is reminiscent of previously considered,
not identical moments. We recall discrepancies between
and computed results for relatively low-q, longitudinal re-
sponsesSL, and the integral of the latter, the Coulomb su
rule @29,30#. All have occasionally been ascribed to the i
fluence of the binding medium on the size of a nucleon, i
on the second moment of thestatic charge density. Apart
from possible conventional accounts of those differen
@31#, one notes that Eq.~3! does not relate to static momen
of charge distributions, but to dynamical SF.

The above and Refs.@9–12# conclude a program to deter
mine observables which depend on nuclear SF, in turn c
puted from the basic relation~2a! between SF for composite
nuclei, free nucleons, and of a nucleus composed of p
nucleons. The various observables occasionally extend
wide ranges, and test to various measures thex,Q2 depen-
dence ofFk

A . It is gratifying to note frequently good agree
ment of data and predictions based on Eq.~3!, which of
course does not prove the underlying conjecture, but insp
trust in its approximate correctness.

The above clearly requires an explanation, because re
have been obtained, circumventing QCD. It seems an att
tive suggestion that in the testedx,Q2 region, the relation~3!
is the result of an effective theory, as has been argued o
nally @2# and somehow mimicking notions of QCD.
the
ub-

n
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