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s-wave halo effect and the Coulomb barrier top effect on the mirror state of a halo

Shigeyoshi Aoyama
Information Processing Center, Kitami Institute of Technology, Kitami 090, Japan

~Received 25 October 1999; published 14 August 2000!

The Thomas-Ehrman shift for11Be and 11N mirror nuclei, which was recently observed as a differential
energy shift betweens and other orbital states, is investigated in terms of complex expectation values. In
calculating the complex expectation values, we use a new method which was recently proposed within the
framework of the complex scaling method. The physical origin of the energy shift can be understood by
considering the effects of thes-wave halo and the Coulomb barrier top. These two effects are discussed as
another proof of a halo in addition to the observation of large matter radii in the drip-line nuclei.

PACS number~s!: 21.10.Dr, 21.10.Sf, 25.70.Ef, 27.20.1n
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I. INTRODUCTION

Recently, studies of neutron- and proton-drip-line nuc
have attracted much interest@1#. One of the most interesting
subjects for studies of these drip-line nuclei is to underst
differences between mirror states near to the drip-line.
example, a differential energy shift was recently observed
the mirror states of7

11N and 4
11Be nuclei~see Fig. 1! @2,3#;

the level spacings between the ground state and its exc
states in 11N becomes large in comparison with ones
11Be. The shifted ground state of11N is the mirror one of a
famous halo state in11Be, which is known to be ans-wave
halo of a valence neutron. The halo structure is interprete
being a large cloud of extremely weakly bound valence n
trons around a core nucleus. Understanding the halo struc
has been one of main subjects in the study of the drip-
nuclei.

Using several models, theoretical studies have been m
for 11N @4–7# to predict the ground-state energy. In the
studies, the parameters for the nuclear potential are de
mined by fitting the energy levels of11Be. The predicted
energy levels of11N are shown in Fig. 1. Due to the differen
assumptions concerning theR-matrix framework@5#, the cal-
culated energies are slightly different from each oth
though our approach is based on theS-matrix framework. As
shown in Fig. 1, all of the theoretical results show lar
differential energy shifts; thus the observed energy shif
theoretically reproduced. One of the mechanisms for
kind of the differential energy shift is known as the Thoma
Ehrman shift@8,9#. This shift has been systematically o
served as a threshold effect for this past half century@10#. It
is considered that the shift mainly arises from the differen
in the Coulomb energy for each single-particle orbit@11#.
However, the differential energy shift in the11Be-11N mirror
pair seems to be larger than the simple difference of
Coulomb energy. In the beginning of a study of drip-lin
nuclei, through systematic analyses of the Thomas-Ehrm
shift, Comayet al. pointed out a puzzle: the energy sh
shows an anomalous behavior beyond the proton-drip
@12#, where further mechanisms for the energy shift would
required. This puzzle has not yet been solved, and now
large shift is also confirmed for11N beyond the proton-drip-
line, which is mirror to a typical halo nucleus11Be on the
0556-2813/2000/62~3!/034305~7!/$15.00 62 0343
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neutron-drip-line. Therefore, it is meaningful to confirm th
real mechanisms of the differential energy shift in the dr
line nuclei.

In a previous paper@7#, to explain the Thomas-Ehrma
shift in 11Be and 11N mirror nuclei, we discussed two com
parable mechanisms that arise from the Coulomb interact
One is the large Coulomb energy reduction for a halo or
the other is the energy shift originating from the Coulom
barrier top energy. However, it was not easy to separate
two mechanisms clearly at that time, since we could o
calculate the complex energy-eigenvalue of the total Ham
tonian; the contribution for each term has not been discus
On the other hand, if it is a resonance state with a narr
decay width, we know that the complex matrix element
the complex expectation value can be calculated by us
several methods. However, in a practical calculation, it is
easy to obtain stable solutions for the resonance states
broad decay widths. For example, a difficulty in the conv
gent factor method is shown in Ref.@13#. Recently, Homma,
Myo, and Katōproposed a simple method to calculate t
complex matrix element or the complex expectation va
based on the framework of the complex scaling meth
~CSM! @13#. CSM has been proved to be a usef

FIG. 1. Experimental energy levels for11Be @10# and 11N @2#,
and calculated energy levels for11N @7,5,6#.
©2000 The American Physical Society05-1
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method to study resonant structures, especially for unst
nuclei@14,15#. By applying this new method@13# to a simple
potential model@16#, we successfully explained two mech
nisms of the anomalous energy shift related to thes wave:~i!
the s-wave halo~Thomas-Ehrman! effect and~ii ! the Cou-
lomb barrier top effect. These two effects are discussed l
in detail.

For an anomalous energy shift related to thes wave in
drip-line nuclei, several groups also recently started analy
For example, the effect of a change for the residual inter
tion in s-wave halo orbits has been discussed by Ogawaet al.
@17#. Further, a change in thes-d coupling amplitude in the
proton-rich side has been discussed@18#, which means that
the s-wave component in the core1p system becomes larg
compared to the mirror core1n one. In the present paper, w
only discuss thes-wave halo effect and the Coulomb barri
top effect with a simple core1N model. However, the
present two effects have a complementary large contribu
to the energy shift. We thus expect that the present st
gives a basis for the energy shift related to thes wave,
though it should be discussed with a more developed mo
which includes all of the possible effects in the future.

In this paper, we explain two mechanisms:~i! the s-wave
halo effect and~ii ! the Coulomb barrier top effect. In order t
investigate such effects in mirror nuclei,11Be and 11N, we
calculate the complex expectation values by using a n
calculational method based on CSM@13#. In Sec. II, we de-
scribe the present method and model. In Sec. III, we exp
the mechanisms of the differential energy shift. Results
discussions are given in Sec. IV, and summaries and con
sions are given in Sec. V.

II. METHOD AND MODEL

A. The complex scaling method

We describe a practical prescription concerning how
solve bound and resonance states by using CSM. In C
we define the followingU(u) transformation of the spatia
coordinates and their conjugate momenta:

U~u!: r→r exp~ iu!, p→p exp~2 iu!. ~1!

Here,u is a scaling parameter of a real number. By using t
transformation, we rewrite the Shro¨dinger equationHF
5EF, as

HuFu5EFu , ~2!

whereHu5U(u)HU21(u) andFu5U(u)F.
According to the ABC theorem@19#, we can obtain the

resonance energies (Er) and widths (G) as complex energy
eigenvalues (Er2 iG/2) of non-HermitianHu with a com-
plex scaled wave functionFu . Resonant eigenvalues a
complex numbers, and it should be independent of the s
ing parameteru $. 1

2 tan@G/(2Er)#%. It is also a very prom-
ising property of CSM thatH(u) gives the same eigenvalue
~negative-real! for the bound states as those of the origin
~nonscaled! Hamiltonian, independently ofu. All other ei-
genvalues ofHu—except for those of the bound and resona
03430
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solutions—depend onu; this dependence is regularly propo
tional to exp(22iu) on the complex-energy plane.

B. Complex expectation values

We now describe the complex expectation values of
erators with the obtained complex scaled wave function. T
complex expectation value has usually been calculated
using several methods, such as the convergent factor me
or the analytical continuation method. However, in practi
calculations, these methods have a numerical instability
resonance states with broad decay widths. On the other h
as shown in Ref.@13#, we can easily and accurately obta
complex expectation values that are the same as those fo
bound states, because we only perform a simple integra
of (FuuÔuuFu). Here, the round brackets represent the
calledc product@20#; Fu(k) andÔu are a scaled wave func
tion and a scaled operator, respectively. This is mathem
cally connected to that of the convergent factor method
using the following relation@13,21#:

^FuÔuF&[ lim
a→0

E drF* ~2k* ,r!ÔF~k,r!e2ar 2

5~FuuÔuuFu!. ~3!

Since we do not have to use the limitation procedurea
→0) as the convergent factor method, we can easily ob
the complex expectation values by calculating (FuuÔuuFu).
Relation~3! holds whenu. 1

2 tan@G/(2Er)#, which means a
u independence of (FuuÔuuFu), because of a constant valu

^FuÔuF& @13#. Numerically, thisu independence has bee
confirmed for some operators@13#.

The complex expectation value of the Hamiltonian w
the complex eigenfunction of bound and resonance st
should be equal to the complex energy eigenvalue

~FuuHuuFu!5E~FuuFu!. ~4!

When the Hamiltonian is described asH5T1VN1VC,
whereT, VN andVC are the kinetic energy, the nuclear p
tential and the Coulomb potential operators, respectively,
sum of these complex expectation values is equal to the c
plex energy eigenvalue

E5~FuuTuuFu!1~FuuVu
NuFu!1~FuuVu

CuFu!. ~5!

Here, (FuuFu) is normalized to unity by using theL2 prop-
erty of the complex scaled eigenfunction. In the above eq
tion, the complex scaled eigenfunction and the comp
scaled operators have au dependence, respectively. We ma
naively expect that each part of the expectation value hasu
dependence. However, as mentioned above in relation~3!,
(FuuÔuuFu) does not have anyu dependence. Therefore, w
can uniquely divide the complex expectation value of t
Hamiltonian into the kinetic energy and the potential ene
parts, which areu independent whenu. 1

2 tan@G/(2Er)#.
The physical meaning of a resonant quantity, such as
complex probability, the complex matrix element and t
5-2
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s-WAVE HALO EFFECT AND THE COULOMB BARRIER . . . PHYSICAL REVIEW C 62 034305
complex expectation value are discussed by Berggren@22# in
detail, where the real part is the mean value and the im
nary part is the ability to decay. We can then interpret
real part of the complex energy expectation value as a m
energy based on Berggren’s picture.

C. Core¿N model

We describe the present core1N Hamiltonian. The details
are given in Refs.@24,7#. The Hamiltonian of the presen
core1N model is given as

H5T1VN1VC1VP, ~6!

where T, VN, and VC are the kinetic energy, the nuclea
potential and the Coulomb potential operators, respectiv
andVP is a so-called pseudopotential to project out the Pa
forbidden states@23#. As a core-N potential, we use a
folding-type potential based on a nucleon-nucleon inter
tion, as discussed in Ref.@24#. Here, we assume that the co
wave function has the ground configuration of the Harmo
oscillator shell model, as (0s)4(0p3/2)

2(0p3/2)
4, with a size

parameter ofb51.63 fm, which is discussed in Ref.@24#.
In making the central potentialVcnt in VN, we use an

effective nucleon-nucleon interaction with a Gaussian fo
as follows:

v~r i ,r j !5(
n

@Wn1BnPs
i j 2HnPt

i j 2MnPs
i j Pt

i j #vn

3exp@2rn~r i2r j !
2#, ~7!

wherePs
i j and Pt

i j are the spin and isospin exchange ope
tors. In this calculation, we use the same parameters as t
of MHN @25#, which can well reproduce the spin-doubl
partner of the10Li ground state@24#. Then, the central po
tential Vcnt is given as

Vcnt5(
n

S 10

9jn/2110D
3/2

3expF2
11jn/2

9jn/2110SA10

11

r

bD 2Gvn

3F ~10Wn15Bn26Hn23Mn!

2~6Wn13Bn24Hn22Mn!
5jn

9jn/2110

1~6Wn13Bn!
110~jn!2

6~9jn/2110!2 SA10

11

r

bD 2G , ~8!

wherejn is given as 2rnb2. Further, we introduce ad pa-
rameter into the central potential in order to reproduce
experimental binding energy, where the midrange of
nucleon-nucleon interaction is changed as (11d)v2. The
presentd value is20.0062 for thep wave@24# and is 0.1252
for the s wave @7#.
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The spin-orbit potentialVls in VN of a density-derivative
type is given as

Vls5
1

2
V0

lsF j ~ j 11!2 l ~ l 11!2
3

4G 80

27A10pb3

3expF2
11

9 SA10

11

r

bD 2GF12
44

9 SA10

11

r

bD 2G . ~9!

Here, the strength of the spin-orbit potential (Vls

544.20 MeV fm3) is determined in11Be @24#. The folding-
type Coulomb potential is given as

VC56e2
1

r
erf~sr!, ~10!

wheres is A10
9 1/b2.

In order to remove the Pauli forbidden states for the
lence nucleon, we apply the pseudopotential@23# as

VP5l@ u0s1/2&^0s1/2u1u0p3/2&^0p3/2u#. ~11!

Here, u0s1/2& and u0p3/2& are thes andp waves for the core
nucleus expressed by the harmonic-oscillator wave fu
tions, which couple with the valence nucleon’s spin 1/2. W
use a large value, such asl5104 MeV, to push up the Paul
forbidden state.

III. THE s-WAVE HALO AND COULOMB BARRIER
TOP EFFECTS

In this section, we discuss two effects:~i! thes-wave halo
effect and~ii ! the Coulomb barrier top effect in thes-p wave
differential energy shift in mirror nuclei. Effect~i! is a revi-
sion of the Thomas-Ehrman effect, and effect~ii ! is a
complementary effect which becomes important in a loos
proton bound state measured from the Coulomb barrier
or, especially, in a proton unbound state. Here, it should
mentioned that we use the meaning of the Thomas-Ehrm
effect in a narrow definition. The explanation given in th
section is based on a simple picture in order to show th
essence. A practical discussion for mirror nuclei (11Be-11N)
is given in Sec. IV.

~i! The s-wave halo effect. Here, we reinterpret the
Thomas-Ehrman effect as ans-wave halo effect. The
Thomas-Ehrman shift has been observed as an differe
energy shift related to thes wave between mirror states@8,9#.
This energy shift has been explained as an effect ma
coming from the Coulomb energy difference for differe
particle orbits@11#. For weakly bounds states, it is known
that the averaged Coulomb energy (^CsuVCuCs&) is reduced
compared to other orbital states@11#. In the case of norma
bound systems, since the spatial extent of nucleons is no
much different, we can expect almost the same avera
Coulomb energy. It would also be confirmed by seeing
symmetry of the isobaric analogue levels for normal nuc
On the other hand, for a weakly bound system, the prob
is why the remarkable averaged Coulomb energy differe
arises. It would show a peculiarity for the wave functio
5-3
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SHIGEYOSHI AOYAMA PHYSICAL REVIEW C 62 034305
(Cs) of a weakly bounds state when the Coulomb potenti
(VC) does not depend on the relative angular momenta.

Recently, for weakly bound systems, a peculiarity for t
wave function of the weakly bound state is known. It is
so-called halo structure, which is explained by introduc
spatially extended wave functions of the weakly binding v
lence nucleons around a core nucleus. Here, we use
meaning of the ‘‘halo’’ not only for the tail of the wave
function, but also for the spatially extended property of t
valence nucleons due to the weak binding. Especially for
s-wave neutron of the core1n system, it has been well in
vestigated that the wave function is spatially extended t
the other waves, even at the same binding energy. Th
because thes-wave neutron does not have a centrifugal b
rier which makes the amplitude of the tail part small.

We consider a mirror weakly bound system assuming
the core1n and core1p wave functions are not very muc
different. The wave function of low partial waves with wea
binding is known to be spatially extended. Since the C
lomb interaction is dumped with an order ofr 21, it is ex-
pected that the Coulomb energy is reduced for such spat
extended states. Especially for thes state, investigations hav
shown that the spatial extent is larger than others due to
centrifugal potential. In other words, especially for thes
state, the spatially extended halo wave function can red
the Coulomb energy. It is noted that the present mechan
does not come from the difference between the core1n and
core1p wave functions, but from the spatial extended pro
erty of the weakly bounds state compared to others due
no centrifugal potential.

Further, we comment on the Thomas-Ehrman effect
terms of a broad definition. As a higher order of the Thom
Ehrman effect, we can consider an energy shift originat
from the difference between the mirror core1N wave func-
tions. The origin of the change from the core1n wave func-
tion to the core1p one mainly comes from the Coulom
barrier, because the core1n system does not have a potent
barrier. The core1p wave function of thes state can be
regarded as different in three parts from the core1n one:~i!
inner, ~ii ! around and~iii ! outer region of the Coulomb bar
rier. If the proton binding is strong enough measured fr
the barrier top, the core1p wave function for thes state
shrinks within the inner region of the potential barrier, a
the spatial extent becomes near to those of other orb
states. In other words, this shrunken wave function of ths
state recovers the mirror symmetry of the spectrum beca
of a similar spatial extent compared to other orbital sta
On the other hand, if the valence proton is loose or not bi
ing, measured from the~i! barrier top, since it can pas
through the barrier,~ii ! the proton around the barrier, an
~iii ! that outer region cannot be neglected. In the next s
section, we discuss such a case.

When thes-wave valence proton is assumed to be m
spatially extended than others, the averaged Coulomb en
becomes small in comparison with others. We also show
the Coulomb energy calculated with the wave function of
halo s state is smaller than that of thep state discussed in
Sec. IV. The reduction of the Coulomb energy for the h
03430
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orbit seems to give an explanation of the Thomas-Ehrm
effect @11#: if the binding of thes wave is weaker, the aver
aged Coulomb energy is smaller. We can then reinterpret
Thomas-Ehrman effect as one of the halo effects. Once
interpretation is shown to be valid, we have had ‘‘anoth
proof of the halo’’ for this past half century in addition to th
observation of the large matter radius in the drip-line nuc
@26#. Of course, the observed Thomas-Ehrman shift also
cludes an effect from the symmetry breaking of the mir
wave functions, if it is possible. We next discuss a rema
able symmetry breaking originating from the Coulomb b
rier top.

~ii ! The Coulomb barrier top effect.We discuss the Cou
lomb barrier top effect. This effect becomes important in
proton loosely bound state measured from the Coulomb
rier top, or especially in a proton unbound state. In the
ergy region just below the Coulomb barrier top of the co
1p system~proton loosely bound one!, the valence proton
can tunnel the barrier because of a tunneling effect. In
energy region above it~proton unbound one!, a valence pro-
ton easily passes through the outer region of the barrier
the outer region of the barrier, the kinetic and potential e
ergies are smaller than those in the inner region. Hence
additional energy shift is expected due to energy reduc
when the core1p wave function is changed from the mirro
one. For other waves, since they are regarded as being b
states measured from their orbital barrier top due to an a
tional centrifugal potential, it is expected that the spatial e
tent between mirror wave functions is not so much differe
Off course, when the binding energy measured from the b
rier top becomes small enough, the barrier top effect a
arises for other waves.

We explain the above mechanism using a schem
model ~see Fig. 2!. Typical potentials (Z56) of s and p
waves are given in Fig. 2. For thep-wave potential, the cen
trifugal one is also included, though thes wave has only a
Coulomb barrier. The Coulomb energy is estimated
Ze2/r 5631.44/452.16 MeV in the case of a typical core
N distance ofr 54 fm. If the binding energy of the core
1n system for both thes andp states is assumed to be ne
the threshold energy (;0 MeV!, the energy of the mirror
core1p system can be estimated by using the Coulomb
ergy. The solid line around 2.1 MeV shows such an ener

FIG. 2. Schematic figure of difference between thes andp states
in the core1p system. The solid line is an estimated energy and
dotted line is the Coulomb barrier top energy. The potentials for
s andp states are also shown.
5-4
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FIG. 3. ~a! Estimated energies
and ~b! resonance energies~the
real parts of true energy eigenva
ues! for the s and p states of11N
with the 10C-p potentials.
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We can see that it is above the barrier top energy of ths
wave ~dashed line!, though the estimated energy is belo
that of thep wave due to the Coulomb potential plus th
centrifugal one. In this situation above the barrier top ene
region, thes-wave proton cannot be regarded as being a c
fined state within the inner region of the barrier. This
because the proton can easily pass through the barrier to
the outer region. Hence, it is considered that the core-p wave
function can become spatially more extended than the con
one. When the ratio of the proton in the outer region b
comes large, the total energy can reduce because the spa
extended wave function can have a small energy. Thi
because the kinetic energy and the Coulomb potential te
become small, though it is partly compensated by the att
tive nuclear potential reduction.

Since this explanation is based on a simple estimation
should be confirmed by solving the eigenvalue problem
the actual Hamiltonian. In the next section, we show th
~e.g., the kinetic energy reduction! in typical mirror pair nu-
clei, 11Be-11N. Concerning the experimental situation of th
pair, thes-wave resonance energy in11N is observed atEr
51.3 MeV @2#. It is very close to the Coulomb barrier to
energy (;1.3 MeV! for the 10C-p system, which is just the
situation of the Coulomb barrier top effect.

IV. RESULTS

First, we show thes-wave halo effect in thes-p wave
differential energy shift betweens and p states for mirror
nuclei 11Be and 11N. This effect shows a spatially extende
property of thes state compared to others. The energy sh
of this effect is estimated by assuming the same core1N
wave functions. By using the wave functionC(n) of 11Be,
which is obtained with the Hamiltonian given in Sec. II C
we calculate the Coulomb energy^C(n)uVCuC(n)&. Here,
we note that the wave function is the same as that in
previous calculations@24,7#. The value for thes state is 2.20
MeV, and that for thep state is 2.36 MeV. Thes-wave Cou-
lomb energy is smaller than thep-wave one, as expected
The Coulomb energy difference 2.3622.2050.16 MeV is a
reasonable value compared with the usual Thomas-Ehr
shift one. When the halo tail reduces in the10C1p system,
though we assume the same halo wave function in
present estimation, thes-wave energy shift would become
smaller value than 0.16 MeV, as mentioned in Sec. III. Ho
ever, the experimental energy shift~0.42 MeV! is much
larger.
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We next show that the above estimation of thes-wave
energy shift is not sufficient, and a further effect may ari
the Coulomb barrier top effect. When the mirror core1N
wave functions are not very different, the energy of11N
measured from the10C-p threshold is estimated by using th
energy of 11Be and the above Coulomb energy asE
5E(11Be)1^C(n)uVCuC(n)&. By using the calculated en
ergy of 11Be, the energy of11N is estimated to beE
5E(11Be)1^VC&520.5012.2051.70 MeV for thes state
andE520.1812.3652.18 MeV for thep state. In Fig. 3~a!,
we show these estimated energies~dotted lines! with 10C-p
potentials. As shown in Fig. 3~a!, the estimated energy leve
is above the Coulomb barrier top for thes state, while it is
below the barrier top for thep state. Then, for thes state, the
large deviation of the core-p wave function from the core-n
one is expected, because the valence proton cannot be
fined in the inner region of the barrier. In other words, t
actual energy eigenvalue may deviate from the estimated
ergy due to a change of the wave function.

In Fig. 3~b!, we show the actual energy eigenvalues~dot-
ted lines! solved with an accurate boundary condition in t
asymptotic region. The real part of the obtained energy
genvalue~resonance energyEr51.29 MeV! for thes state is
very close to the Coulomb barrier top energy different fro
the estimated energy (E51.70 MeV! in Fig. 3~a!. Since we
assume in the estimation that the11Be wave function is the
same as the11N one, thiss-wave energy deviation from the
estimation is considered to come from the difference
tween the core-n and core-p wave functions. On the othe
hand, the resonance energy (Er52.12 MeV! of thep state is
almost the same as the estimated energy (E52.18 MeV! in
Fig. 3~a!. It is easily understood that the estimated energy
the p state is below the barrier top, which means that
main part of the core-p wave function is not different from
the core-n one, though there is a slight deviation comin
from the penetration of the tail part and confinement due
the barrier.

The remaining problem is to investigate the origin of t
additional energy shift as seen from the resonance energ
thes state in Fig. 3~b!. In order to study them, we calculate
complex expectation values of the kinetic and the poten
energy operators for thes and p states in11Be and 11N, as
shown in Table I. The Coulomb energy in parentheses
11Be is the estimated value given in the above discuss
As shown in Table I, for11N, the real part of the calculate
complex expectation values for the kinetic energy opera
and the nuclear potential operator are greatly reduced c
5-5
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pared to11Be. For example, the kinetic energy of11Be for
the s state is ^T&511.2 MeV, and that of11N is Rê T&
54.4 MeV, where Re means the real part. This shows
large kinetic energy reduction asd^T&511.224.456.8
MeV. Since the spatially extended wave function reduces
kinetic energy, we can understand that the11N wave function
of the s state is spatially extended. Furthermore, it is a
worth seeing the case of thep state, where the energy redu
tion also arises from11Be to 11N, even though it is not so
much larger than thes state. Since thep state in 11N is
weakly bound from the~Coulomb1centrifugal! barrier top,
the resonant property near the barrier top is also importa

In Table II, we show the energy differences between ths
andp states by using the values given in Table I. The ene
difference,DEs-p , is calculated by using the real part of th
complex energy as Re^Ep&2Rê Es&. The kinetic and the
nuclear potential energy differenceD(^T&1^VN&)s-p , and
the Coulomb energy differenceD(^VC&)s-p , are also calcu-
lated in a similar way. The total energy shift isdE50.834
20.32050.514 MeV. Since the Coulomb energy differen
in 11N is 0.526 MeV, as shown in Table II, it is very close
the total energy shiftdE50.514 MeV. On the other hand
the sum of the kinetic energy difference and the nuclear
tential differences in11Be and 11N are almost the same
0.308 MeV for 11Be and 0.320 MeV for11N, which seems to
cancel each other as 0.30820.320;0 MeV. Hence, for the
mirror pair 11Be and 11N, even though both reductions be

TABLE I. Calculated complex expectation values for each o
erator with complex energy eigenvalues for thes and p states in
11Be and 11N. Third line is energy eigenvalue, the fourth is th
complex expectation value of the kinetic energy, the fifth is tha
the nuclear potential and the sixth is that of the Coulomb poten
The last line is that of the Hamiltonian and it is the same value
the energy eigenvalue, as expected. The Coulomb ones for11Be are
estimated values for11N by using the11Be wave function.

11Be ~MeV! 11N ~MeV!

s state p state s state p state

E 20.503 20.183 1.292 i0.70 2.122 i0.47
^T& 11.221 8.008 4.392 i8.57 6.802 i3.93
^VN& 211.724 28.191 25.021 i8.95 27.131 i4.12
^VC& ~2.20! ~2.36! 1.932 i1.07 2.462 i0.66
^H& 20.503 20.183 1.292 i0.70 2.122 i0.47

TABLE II. Energy differences between thes and p states in
11Be and 11N. These values are obtained by using the real par
the complex expectation values given in Table I. Here, the dif
ence is described as,DOs-p5 Rê Op&2 Rê Os&. For example, the
energy difference for 11N is calculated asDEs-p5 Rê Ep&
2 Rê Es&52.1221.2950.83 MeV.

11Be ~MeV! 11N ~MeV!

DEs-p 0.320 0.834
D(^T&1^VN&)s-p 0.320 0.308
D(^VC&)s-p ~0.155! 0.526
03430
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tween thes andp wave of the kinetic and the nuclear pote
tial energies are large, they cancel each other. However,
Coulomb energy reduction between the wave functions
the mirror nuclei remain. Our calculated energy~0.53 MeV!
is three-times larger than an estimated energy~0.16 MeV! of
assuming the same wave functions between the mirror
clei. This large Coulomb energy reduction in addition to t
energy reduction for each operator can be understood
considering the spatially extended core-p wave function.

Finally, as a comment, we discussed the extreme cas
the loosely bound states for thes andd waves in the previous
paper @16#. In such a case, we show that the real part
^T&1^VN& for the s state in the core1p system is very dif-
ferent from that of the core1n system, while it is not so
different for thed state. In the present11Be-11N case, such a
large difference does not occur, because the present bin
energy of thes state~0.5 MeV! is less than that in the pre
vious calculation ~0.1 MeV!, and the p-wave barrier is
smaller than thed-wave one.

V. SUMMARIES AND CONCLUSIONS

In summary, we investigated thes-wave halo effect and
the Coulomb barrier top effect for thes-p wave differential
energy shift~Thomas-Ehrman shift! in 11Be-11N. In this pa-
per, we calculated the complex energy expectation val
using the new method of CSM, which was proposed
Homma, Myo, and Katō@13#.

For the 10C1p system, by assuming a spatially extend
wave function of the halo which is the same as that of11Be,
we can understand that thes-wave halo reduces the Coulom
energy in the core1p system. However, such a Coulom
energy shift~0.16 MeV! is rather smaller than the exper
mentals wave energy shift~0.42 MeV! in 11N. If there is
such a large Coulomb energy shift of the experimental o
the wave function of thes-wave would be spatially more
extended. On the other hand, the experimental and calcul
resonance energy are very close to the Coulomb barrier
energy. Around the barrier top energy region, the vale
proton easily passes through the barrier to the outer reg
Then, another effect of the spatially extended valence pro
in the resonance state arises.

In order to see the spatially extended property, we con
ered the energy reductions for each operators by using
solution of the eigenvalue problem. The result shows a la
energy reduction~e.g., kinetic energy reduction!. Since the
kinetic energy and the nuclear potential energy reducti
are of the same order, they cancel each other, but the C
lomb energy reduction remains. In other words, the repuls
kinetic energy and the Coulomb energy reduce, though
compensated by the attractive nuclear potential energy
duction. The remaining energy reduction which is not ca
celed is the origin of the energy shift. This remaining ener
reduction~0.51 MeV! explains the experimental energy sh
~0.42 MeV!. Here, we note that the calculated results sho
be slightly larger than the experimental one, because the
perimental 1/21 state is expected to have ad-wave minor
component, which would confine the valence proton due
the d-wave barrier.
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Although the present effects were investigated within
simple core-N model, it would also be important for studie
of more complicated systems. For example, we can sug
that a study of the anomalous energy shift in isobaric a
logue states, such as11Li ( 9Li1n1n)-11Be* (9Li1p1n),
is an interesting problem. The energy shifts related to ths
wave in unstable nuclei are considered to be related to
halo structure, as discussed in the present paper. Therefo
is expected to give insight to the halo structure from anot
on
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.
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.
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point of view. In the future, we will systematically invest
gate the energy shift in unstable nuclei.
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~1997!; T. Myo and K. Katō, ibid. 98, 1275~1998!.
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Katō, and K. Ikeda, Phys. Rev. C55, 2379~1997!.
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