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s-wave halo effect and the Coulomb barrier top effect on the mirror state of a halo
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The Thomas-Ehrman shift fot'Be and !N mirror nuclei, which was recently observed as a differential
energy shift betwees and other orbital states, is investigated in terms of complex expectation values. In
calculating the complex expectation values, we use a new method which was recently proposed within the
framework of the complex scaling method. The physical origin of the energy shift can be understood by
considering the effects of thewave halo and the Coulomb barrier top. These two effects are discussed as
another proof of a halo in addition to the observation of large matter radii in the drip-line nuclei.

PACS numbgs): 21.10.Dr, 21.10.Sf, 25.70.Ef, 27.2n

I. INTRODUCTION neutron-drip-line. Therefore, it is meaningful to confirm the

. - real mechanisms of the differential energy shift in the drip-
Recently, studies of neutron- and proton-drip-line nuclellme nuclei 9y P

havg attracted mych intergdgt]. Qng of the mqst interesting In a previous papef7], to explain the Thomas-Ehrman
sgbjects for studies of these drip-line nuclei is to ‘_‘”qerSta”‘%hift in 11Be and N mirror nuclei, we discussed two com-
differences between mirror states near to the drip-line. FOp4rapie mechanisms that arise from the Coulomb interaction.
example, a differential energy shift was recently observed irthne is the large Coulomb energy reduction for a halo orbit,
the mirror states of'N and 3'Be nuclei(see Fig. 1[2,3];  the other is the energy shift originating from the Coulomb
the level spacings between the ground state and its excitéshrrier top energy. However, it was not easy to separate the
states in'N becomes large in comparison with ones intwo mechanisms clearly at that time, since we could only
HBe. The shifted ground state &N is the mirror one of a calculate the complex energy-eigenvalue of the total Hamil-
famous halo state if'Be, which is known to be aswave  tonian; the contribution for each term has not been discussed.
halo of a valence neutron. The halo structure is interpreted &9n the other hand, if it is a resonance state with a narrow
being a large cloud of extremely weakly bound valence neudecay width, we know that the complex matrix element or
trons around a core nucleus. Understanding the halo structutB€ complex expectation value can be calculated by using
has been one of main subjects in the study of the drip_"neseveral methods. However, in a practical calculation, it is not
nuclei. easy to obtain stable solutions for the resonance states with

Using several models, theoretical studies have been mad0ad decay widths. For example, a difficulty in the conver-
for 1IN [4—7] to predict the ground-state energy. In thesedent factor mgthod is shown in R¢L.3]. Recently, Homma,
studies, the parameters for the nuclear potential are detefYo0, and Katoproposed a simple method to calculate the
mined by fitting the energy levels of'Be. The predicted complex matrix element or the complex expectation value
energy levels ofIN are shown in Fig. 1. Due to the different P2sed on the framework of the complex scaling method
assumptions concerning tRematrix framework(5], the cal- (CSM) [13]. CSM has been proved to be a useful
culated energies are slightly different from each other, 4 -
though our approach is based on Smatrix framework. As Ex Cal
shown in Fig. 1, all of the theoretical results show large p- '
differential energy shifts; thus the observed energy shift is 3, N ~
theoretically reproduced. One of the mechanisms for this
kind of the differential energy shift is known as the Thomas-
Ehrman shift[8,9]. This shift has been systematically ob-
served as a threshold effect for this past half cenfafy. It
is considered that the shift mainly arises from the difference
in the Coulomb energy for each single-particle oidit].
However, the differential energy shift in tHéBe-*'N mirror
pair seems to be larger than the simple difference of the
Coulomb energy. In the beginning of a study of drip-line 0t 122
nuclei, through systematic analyses of the Thomas-Ehrmar 12+
shift, Comayet al. pointed out a puzzle: the energy shift -
shows an anomalous behavior beyond the proton-drip line 4 L
[12], where further mechanisms for the energy shift would be
required. This puzzle has not yet been solved, and now the
large shift is also confirmed fol'N beyond the proton-drip- FIG. 1. Experimental energy levels fdtBe [10] and *'N [2],
line, which is mirror to a typical halo nucleusBe on the and calculated energy levels f3N [7,5,6].
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method to study resonant structures, especially for unstabkolutions—depend o#; this dependence is regularly propor-
nuclei[14,15. By applying this new methofdL3] to a simple  tional to exp(2i6) on the complex-energy plane.

potential mode([16], we successfully explained two mecha-

nisms of the anomalous energy shift related toshave: (i) B. Complex expectation values

the sswave halo(Thomas-Ehrmaneffect and(ii) the Cou-

lomb barrier top effect. These two effects are discussed later We now descrlbe_the complex expectation vaIue; of op-
in detail. erators with the obtained complex scaled wave function. The

For an anomalous energy shift related to theave in complex expectation value has usually been calculated by

drip-line nuclei, several groups also recently started analyse&>'"9 several methods, such as the convergent factor method

For example, the effect of a change for the residual interac®’ the analytical continuation method. However, in practical

L ; . calculations, these methods have a numerical instability for
Ff%'lr::i:tvﬁevf gaclﬁ;)r:légsi: ?f;; igl?ésli%lésﬁgpﬁ{ugm e resonance states with broad decay widths. On the other h_and,
proton-rich side has been discusgé&@], which means that as shown in Ref[_13], we can easily and accurately obtain
the s:wave component in the cofep system becomes large complex expectation values that are the same as those for_the
compared to the mirror cotien one. In the present paper, we bound sAtates, because we only perform a simple integration
only discuss the-wave halo effect and the Coulomb barrier Of (®4/O4|® ). Here, the round brackets represent the so-
top effect with a simple coreN model. However, the calledc product[20]; ®4(k) andO, are a scaled wave func-
present two effects have a complementary large contributiotion and a scaled operator, respectively. This is mathemati-
to the energy shift. We thus expect that the present studgally connected to that of the convergent factor method by
gives a basis for the energy shift related to thevave, using the following relatior13,21]:

though it should be discussed with a more developed model

which includes all of the possible effects in the future. (®|6|®)= lim f drd* (—k*,n)Od(k r)efarZ
In this paper, we explain two mechanisniig:the swave w00 ’ ’
halo effect andii) the Coulomb barrier top effect. In order to
investigate such effects in mirror nucléi'Be and !N, we = (D404 D,). 3

calculate the complex expectation values by using a new

calculational method based on CSMB]. In Sec. I, we de- Since we do not have to use the limitation proceduse (
scribe the present method and model. In Sec. Ill, we explain~0) as the convergent factor method, we can easily obtain
the mechanisms of the differential energy shift. Results anthe complex expectation values by calculatirig,[O,|® ).
discussions are given in Sec. IV, and summaries and concliRelation(3) holds whené> 3 tar{ I'/(2E,) ], which means a

sions are given in Sec. V. ¢ independence ofd ,|O,|® ;), because of a constant value
(®|O|®) [13]. Numerically, thisé independence has been
Il. METHOD AND MODEL confirmed for some operatof43].

The complex expectation value of the Hamiltonian with
the complex eigenfunction of bound and resonance states

solve bound and resonance states by using CSM. In CSM,

we define the followingU(#) transformation of the spatial (D g|Hy| P ) =E(D D). (4)
coordinates and their conjugate momenta:

A. The complex scaling method

When the Hamiltonian is described a$=T+VN+VC,
Uo): r—rexpid), p—pexp—io). (1) whereT, VN andVC are the kinetic energy, the nuclear po-
tential and the Coulomb potential operators, respectively, the
Here, 6 is a scaling parameter of a real number. By using thissum of these complex expectation values is equal to the com-
transformation, we rewrite the Shfinger equationH®  plex energy eigenvalue
=E®, as
E=(Q| Ty )+ (P VylD o) +(PVGIDy).  (5)
H,®,=Ed,, 2
Here, @ ,|®,) is normalized to unity by using thie? prop-
whereH ,=U(#)HU 1(6) and® ,=U(6)D. erty of the complex scaled eigenfunction. In the above equa-
According to the ABC theoremil9], we can obtain the tion, the complex scaled eigenfunction and the complex
resonance energie€) and widths ') as complex energy Scaled operators havetadependence, respectively. We may
eigenvalues E,—iI'/2) of non-HermitianH, with a com-  naively expect that each part of the expectation value ftas a
plex scaled wave functio®,. Resonant eigenvalues are dependence. However, as mentioned above in reld8pn
complex numbers, and it should be independent of the scal® ,O,|®,) does not have ang dependence. Therefore, we
ing parametel {> 3 tar{'/(2E,)]}. It is also a very prom- can uniquely divide the complex expectation value of the
ising property of CSM thad () gives the same eigenvalues Hamiltonian into the kinetic energy and the potential energy
(negative-real for the bound states as those of the originalparts, which ared independent wherg> 3 tar{T'/(2E,)].
(nonscalegl Hamiltonian, independently of. All other ei-  The physical meaning of a resonant quantity, such as the
genvalues o ,—except for those of the bound and resonantcomplex probability, the complex matrix element and the
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complex expectation value are discussed by Berg2&hin The spin-orbit potential/'s in VN of a density-derivative
detail, where the real part is the mean value and the imagiype is given as
nary part is the ability to decay. We can then interpret the

real part of the complex energy expectation value as a mean vis= 2 i+ 1) 11+ 1) 3} 80
’ H —— + — + —_—)—_—
energy based on Berggren’s picture. > Vol Il 4)2710mb?
C. Core+N model 11/ [10r\? 44 [10r\?
) o . Xexp — —=— ——| [|1-—= —= |. (9
We describe the present car&l Hamiltonian. The details 9 11b 9 11b
are given in Refs[24,7]. The Hamiltonian of the present ) ) .
core+ N model is given as Here, the strength of the spin-orbit potentialV'{
=44.20 MeV fn?) is determined in*'Be [24]. The folding-
H=T+VN+VC+VP, (6)  type Coulomb potential is given as
where T, VN, and V© are the kinetic energy, the nuclear c .01
potential and the Coulomb potential operators, respectively, V= =6e Ferf(sr), (10

andVP is a so-called pseudopotential to project out the Pauli
forbidden states23]. As a coreN potential, we use a \heresis \1/b2
folding-type potential based on a nucleon-nucleon interac- |5 grder to remove the Pauli forbidden states for the va-

tion, as discussed in R4R4]. Here, we assume that the core |once nucleon. we apply the pseudopoterfea] as
wave function has the ground configuration of the Harmonic

oscillator shell model, as E*(0ps,)?(0pa)*, with a size VP =N[|051/5)(0s1/9 +|0p312)(O0p3s2l 1. (11)
parameter ob=1.63 fm, which is discussed in R¢R4].

In making the central potentia/*™ in VN, we use an Here,|0s,,) and|Ops,) are thes andp waves for the core
effective nucleon-nucleon interaction with a Gaussian formnucleus expressed by the harmonic-oscillator wave func-
as follows: tions, which couple with the valence nucleon’s spin 1/2. We
use a large value, such as=10* MeV, to push up the Pauli
o(r1) = S [W,t B,Pl—H,Pli— M PPy, forbidden state.

n

, ll. THE SWAVE HALO AND COULOMB BARRIER
Xexd —pn(ri—r)°], () TOP EFFECTS

whereP!l and Pl are the spin and isospin exchange opera- In this section, we discuss two effects: the swave halo
tors. In this calculation, we use the same parameters as thog&ect and(ii) the Coulomb barrier top effect in trep wave
of MHN [25], which can well reproduce the spin-doublet differential energy shift in mirror nuclei. Effedt) is a revi-
partner of the'®Li ground statg24]. Then, the central po- sion of the Thomas-Ehrman effect, and effd@) is a

tential V" is given as complementary effect which becomes important in a loosely
proton bound state measured from the Coulomb barrier top
10 812 or, especially, in a proton unbound state. Here, it should be
ven= (m mentioned that we use the meaning of the Thomas-Ehrman
3 " effect in a narrow definition. The explanation given in this
11£,/2 10r )2 section is based on a simple picture in order to show their
xXexpg — 9272410 1—15) Un essence. A practical discussion for mirror nucféBg-1N)
" is given in Sec. IV.
(i) The s-wave halo effectHere, we reinterpret the
X|(10W,+5B,—6H,—3M,) Thomas-Ehrman effect as aswave halo effect. The
Thomas-Ehrman shift has been observed as an differential
£ energy shift related to thewave between mirror stat¢8,9].

— This energy shift has been explained as an effect mainly
9¢n/2+10 coming from the Coulomb energy difference for different
110(£,)2 T0r\2 particle orbits[11]. For weakly bounds states, it is known
+(6Wn+33n)—n( \ﬁ_> ., (8 thatthe averaged Coulomb enerdy#(,|V|¥)) is reduced
6(9¢,/2+10)? 11b compared to other orbital statgkl]. In the case of normal
bound systems, since the spatial extent of nucleons is not so
where &, is given as 2,b?. Further, we introduce @ pa- much different, we can expect almost the same averaged
rameter into the central potential in order to reproduce theCoulomb energy. It would also be confirmed by seeing the
experimental binding energy, where the midrange of thesymmetry of the isobaric analogue levels for normal nuclei.
nucleon-nucleon interaction is changed ast@uv,. The  On the other hand, for a weakly bound system, the problem
presents value is—0.0062 for thep wave[24] and is 0.1252 is why the remarkable averaged Coulomb energy difference
for the s wave[7]. arises. It would show a peculiarity for the wave function

—(6W,+3B,—4H,—2M,)
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(W) of a weakly bounds state when the Coulomb potential 3
(V) does not depend on the relative angular momenta. )
Recently, for weakly bound systems, a peculiarity for the

wave function of the weakly bound state is known. It is a
so-called halo structure, which is explained by introducing
spatially extended wave functions of the weakly binding va-
lence nucleons around a core nucleus. Here, we use the
meaning of the “halo” not only for the tail of the wave
function, but also for the spatially extended property of the
valence nucleons due to the weak binding. Especially for an
s-wave neutron of the coren system, it has been well in-
vestigated that the wave function is spatially extended than FIG. 2. Schematic figure of difference between stedp states
the other waves, even at the same binding energy. This i§ the coret-p system. The solid line is an estimated energy and the
because the-wave neutron does not have a centrifugal bar_dotted line is the Coulomb barrier top energy. The potentials for the
rier which makes the amplitude of the tail part small. sandp states are also shown.

We consider a mirror weakly bound system assuming thag it seems to give an explanation of the Thomas-Ehrman
the coret n and corer p wave functions are not very much effect[11]: if the binding of thes wave is weaker, the aver-
different. The wave function of low partial waves with weak aged Coulomb energy is smaller. We can then reinterpret the
binding is known to be spatially extended. Since the CouThomas-Ehrman effect as one of the halo effects. Once this
lomb interaction is dumped with an order of!, it is ex-  interpretation is shown to be valid, we have had “another
pected that the Coulomb energy is reduced for such spatiallgroof of the halo” for this past half century in addition to the
extended states. Especially for thstate, investigations have observation of the large matter radius in the drip-line nuclei
shown that the spatial extent is larger than others due to n@6]. Of course, the observed Thomas-Ehrman shift also in-
centrifugal potential. In other words, especially for tee cludes an effect from the symmetry breaking of the mirror
state, the spatially extended halo wave function can reducwave functions, if it is possible. We next discuss a remark-
the Coulomb energy. It is noted that the present mechanismble symmetry breaking originating from the Coulomb bar-
does not come from the difference between the torend  rier top.
coret+ p wave functions, but from the spatial extended prop- (i) The Coulomb barrier top effectVe discuss the Cou-
erty of the weakly bound state compared to others due to lomb barrier top effect. This effect becomes important in a
no centrifugal potential. proton loosely bound state measured from the Coulomb bar-

Further, we comment on the Thomas-Ehrman effect irrier top, or especially in a proton unbound state. In the en-
terms of a broad definition. As a higher order of the Thomasergy region just below the Coulomb barrier top of the core
Ehrman effect, we can consider an energy shift originating+ p system(proton loosely bound ongthe valence proton
from the difference between the mirror cerdl wave func-  can tunnel the barrier because of a tunneling effect. In the
tions. The origin of the change from the cera wave func-  energy region above {proton unbound onea valence pro-
tion to the core-p one mainly comes from the Coulomb ton easily passes through the outer region of the barrier. In
barrier, because the coren system does not have a potential the outer region of the barrier, the kinetic and potential en-
barrier. The core p wave function of thes state can be ergies are smaller than those in the inner region. Hence, an
regarded as different in three parts from the eoneone: (i) additional energy shift is expected due to energy reduction
inner, (ii) around andiii) outer region of the Coulomb bar- when the core p wave function is changed from the mirror
rier. If the proton binding is strong enough measured fromone. For other waves, since they are regarded as being bound
the barrier top, the corep wave function for thes state  states measured from their orbital barrier top due to an addi-
shrinks within the inner region of the potential barrier, andtional centrifugal potential, it is expected that the spatial ex-
the spatial extent becomes near to those of other orbitdknt between mirror wave functions is not so much different.
states. In other words, this shrunken wave function ofghe Off course, when the binding energy measured from the bar-
state recovers the mirror symmetry of the spectrum becausger top becomes small enough, the barrier top effect also
of a similar spatial extent compared to other orbital statesarises for other waves.

On the other hand, if the valence proton is loose or not bind- We explain the above mechanism using a schematic
ing, measured from théi) barrier top, since it can pass model (see Fig. 2 Typical potentials Z=6) of s and p
through the barrier(ii) the proton around the barrier, and waves are given in Fig. 2. For thiewave potential, the cen-
(iii) that outer region cannot be neglected. In the next subtrifugal one is also included, though tisewave has only a
section, we discuss such a case. Coulomb barrier. The Coulomb energy is estimated as

When thes-wave valence proton is assumed to be moreZe?/r =6x 1.44/4=2.16 MeV in the case of a typical core-
spatially extended than others, the averaged Coulomb enerdy distance ofr=4 fm. If the binding energy of the core
becomes small in comparison with others. We also show that n system for both the andp states is assumed to be near
the Coulomb energy calculated with the wave function of thethe threshold energy~0 MeV), the energy of the mirror
halo s state is smaller than that of thestate discussed in coret+ p system can be estimated by using the Coulomb en-
Sec. IV. The reduction of the Coulomb energy for the haloergy. The solid line around 2.1 MeV shows such an energy.

core+p energy

1 [Coulomb energy

. .
ToreTn energy
2 3

Energy (MeV)

U
~

-3
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We can see that it is above the barrier top energy ofsthe  We next show that the above estimation of thwave
wave (dashed ling though the estimated energy is below energy shift is not sufficient, and a further effect may arise:
that of thep wave due to the Coulomb potential plus the the Coulomb barrier top effect. When the mirror cend
centrifugal one. In this situation above the barrier top energyvave functions are not very different, the energy 9N
region, thes-wave proton cannot be regarded as being a conmeasured from thé°C-p threshold is estimated by using the
fined state within the inner region of the barrier. This iSenergy of 'Be and the above Coulomb energy &s
because the proton can easily pass through the barrier top T._OE(llBe)+<\I,(n)|VC|\P(n)>. By using the calculated en-
the outer region. Hence, it is considered that the qoveave ergy of 'Be, the energy of!N is estimated to beE
function can become spatially more extended than the gore-_ E(*1Be)+(VC)= —0.50+ 2.20=1.70 MeV for thes state

one. When the ratio of the proton in the outer region be-,yg= —0.18+2.36=2.18 MeV for thep state. In Fig. &)
comes large, the total energy can reduce because the spatiall, show these estimated energidstted lines with 1oc_p'
extended wave function can have a small energy. This i%,tentials. As shown in Fig.(8), the estimated energy level
because the kinetic energy and the Coulomb potential terms apove the Coulomb barrier top for tiestate, while it is
become small, though it is partly compensated by the attragse|o\y the barrier top for thp state. Then, for the state, the

tive _nuclea_r potential Fedu.c“on- . ... large deviation of the cor@-wave function from the corer
Since this explanation is based on a simple estimation, ifqe 5 expected, because the valence proton cannot be con-
should be conflrmec_i by solving the elge_nvalue problem forfined in the inner region of the barrier. In other words, the
the actual Hamiltonian. In the next section, we show themy ) energy eigenvalue may deviate from the estimated en-
(e.g.,lIhe i(lmetlc energy reductipim typ|cal mirror pair nu- ergy due to a change of the wave function.
cle_|, Be-""N. Concerning the experlme_ntal situation of this ") Fig. 3(b), we show the actual energy eigenvalest-
pair, thes-wave resonance energy fiN is observed 8E;  ted lines solved with an accurate boundary condition in the
=13 MeV[2]. It is very CI?Ose to the Coulomb barrier top 45y mptotic region. The real part of the obtained energy ei-
energy -1.3 MeV) for the “°C-p system, which is just the  eonyalugresonance enerds, = 1.29 MeV) for the s state is
situation of the Coulomb barrier top effect. very close to the Coulomb barrier top energy different from
the estimated energye(=1.70 MeV) in Fig. 3@). Since we
assume in the estimation that th&Be wave function is the
same as thé!N one, thisswave energy deviation from the
First, we show thesswave halo effect in thes-p wave  estimation is considered to come from the difference be-
differential energy shift betwees and p states for mirror tween the corez and corep wave functions. On the other
nuclei 1'Be and!!N. This effect shows a spatially extended hand, the resonance enerdy, &£2.12 Me\) of thep state is
property of thes state compared to others. The energy shiftalmost the same as the estimated enefgy:2.18 Me\) in
of this effect is estimated by assuming the same €®e Fig. 3@). Itis easily understood that the estimated energy for
wave functions. By using the wave functign(n) of 1'Be, the p state is below the barrier top, which means that the
which is obtained with the Hamiltonian given in Sec. 1l C, main part of the corgs wave function is not different from
we calculate the Coulomb enerdy (n)|V¢|W(n)). Here, the coren one, though there is a slight deviation coming
we note that the wave function is the same as that in thérom the penetration of the tail part and confinement due to
previous calculationg24,7]. The value for thes state is 2.20 the barrier.
MeV, and that for the state is 2.36 MeV. The-wave Cou- The remaining problem is to investigate the origin of the
lomb energy is smaller than thewave one, as expected. additional energy shift as seen from the resonance energy of
The Coulomb energy difference 2.32.20=0.16 MeV is a  thesstate in Fig. 8). In order to study them, we calculated
reasonable value compared with the usual Thomas-Ehrmaomplex expectation values of the kinetic and the potential
shift one. When the halo tail reduces in tfC+ p system, energy operators for theandp states in''Be and *'N, as
though we assume the same halo wave function in thehown in Table I. The Coulomb energy in parentheses for
present estimation, thewave energy shift would become a !'Be is the estimated value given in the above discussion.
smaller value than 0.16 MeV, as mentioned in Sec. lll. How-As shown in Table I, for''N, the real part of the calculated
ever, the experimental energy shif®.42 Me\) is much  complex expectation values for the kinetic energy operator
larger. and the nuclear potential operator are greatly reduced com-

IV. RESULTS
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TABLE I. Calculated complex expectation values for each op-tween thes andp wave of the kinetic and the nuclear poten-
erator with complex energy eigenvalues for thend p states in  tial energies are large, they cancel each other. However, the
'Be and "'N. Third line is energy eigenvalue, the fourth is the Coulomb energy reduction between the wave functions of
complex expectation value of the kinetic energy, the fifth is that ofthe mirror nuclei remain. Our calculated enef@y53 Me\)
the nuclear potential and the sixth is that of the Coulomb potentialis three-times larger than an estimated endfgy6 MeV) of
The last Iine_is that of the Hamiltonian and it is the same value Ofassuming the same wave functions between the mirror nu-
the energy e'gen"a'ule’ as eXPeCted'nThe Coulomb oné$Berare  ¢joj This large Coulomb energy reduction in addition to the
estimated values fol'N by using the"'Be wave function. energy reduction for each operator can be understood by
considering the spatially extended cqrewave function.

11, 11,
Be (MeV) N (MeV) Finally, as a comment, we discussed the extreme case of
sstate  p state S state p state the loosely bound states for te@andd waves in the previous
E —~0503 -0.183 1.29-i0.70 2.12-i0.47 paper[16]. In such a case, we show that the real part of
(T) 11.221 8.008 4.39i8.57 6.80-i3.93 (T)Y+(VN) for the s state in the core p system is very dif-
(VN ~11.724 —-8.191 —502+i8.95 —7.13+i4.12 ferent from that of the coren system, while it is not so
(Vo) 220 (2.3 193-i107  246.i066  different for thed state. In the preseritBe-'N case, such a
(H) ~0503 -0.183 1.29-i0.70 212-10.47 large difference does not occur, because the present binding

energy of thes state(0.5 MeV) is less than that in the pre-
vious calculation(0.1 MeV), and the p-wave barrier is
smaller than thal-wave one.

pared tol'Be. For example, the kinetic energy &tBe for
the s state is(T)=11.2 MeV, and that of'!N is RgT)
=4.4 MeV, where Re means the real part. This shows the V. SUMMARIES AND CONCLUSIONS
large kinetic energy reduction as(T)=11.2-4.4=6.8
MeV. Since the spatially extended wave function reduces the o coulomb barrier top effect for thep wave differential
kinetic energy, we can understand that i wave function energy shifThomas-Ehrman shifin !Be-N. In this pa-
of the s state is spatially extended. Furthermore, it is alsoper we calculated the complex energy expectation values
worth seeing the case of tigestate, where the energy reduc- usiﬁg the new method of CSM, which was proposed by

tion also arises from"Be to !N, even though it is not so Homma, Myo, and Katg13] '

much larger than the state. Since the state in *'N is For the 1%/C,+p system bly assuming a spatially extended

weakly bound from théCoulombr centrifuga) barrier top, wave function of the halo which is the same as that'@e,

the resonant property near the barrier top is also important.
In Table II F\)Nepsho)(/v the energy differe?wes betwegnsthe we can understand that teavave halo reduces the Coulomb

andp states by using the values given in Table I. The energf . . .
difference,AEs_,, is calculated by using the real part of the energy shift(0.16 Me\) is rather smaller than the experi-

complex energy as RE,)—Re(E.). The kinetic and the mentals wave energy shif(0.42 Me\) in 1N, If there is
nuclear potential energy diﬁerenczle((T>+(VN))S_p, and such a large C(_)ulomb energy shift of the exper_|mental one,
the Coulomb energy differena&((VC»S_p, are also calcu- the wave function of theswave would be spatially more
lated in a similar way. The total energy shift & = 0.834 extended. On the other hand, the experimental and calculated
—0.320=0.514 MeV. Since the Coulomb energy difference resonance energy are very close to the Cqulomb barrier top
in 1IN is 0.526 MeV, as shown in Table II, it is very close to energy. Around the barrier top energy region, the valence

the total energy shifsE=0.514 MeV. On the other hand proton easily passes through the barrier to the outer region.

the sum of the Kinetic energy difference and the nuclear po_]'hen, another effect of the spatially extended valence proton

tential differences in!Be and !N are almost the same, " € resonance state arises. :
0.308 MeV for Be and 0.320 MeV fotIN, which seems to In order to see the spatially extended property, we consid-

cancel each other as 0.368.320-0 MeV. Hence, for the ered the energy reductions for each operators by using the

. 11 11 . solution of the eigenvalue problem. The result shows a large
mirror pair “"Be and N, even though both reductions be- energy reductior(e.g., kinetic energy reductionSince the

_ _ kinetic energy and the nuclear potential energy reductions
|, TABLE Il Energy differences between tfeandp states in  are of the same order, they cancel each other, but the Cou-
Be and “N. These values are obtained by using the real part ofjomb energy reduction remains. In other words, the repulsive
the cqmplex (_expectation values given in Table I. Here, the differjnetic energy and the Coulomb energy reduce, though it is
ence is described 380¢p= Re(Op) — RE(O;). For example, the o mnensated by the attractive nuclear potential energy re-
energy difference for °N is calculated asAEs,=Re(Ep)  gyction. The remaining energy reduction which is not can-
— Re[E;)=2.12-1.29-0.83 MeV. celed is the origin of the energy shift. This remaining energy

reduction(0.51 MeV) explains the experimental energy shift

In summary, we investigated tteewave halo effect and

11 11
Be (MeV) N (MeV) (0.42 MeV). Here, we note that the calculated results should
AEq, 0.320 0.834 be slightly larger than the experimental one, because the ex-
AT (VMY ep 0.320 0.308 perimental 1/ state is expected to havedawave minor
AUV)sp (0.155 0.526 component, which would confine the valence proton due to

the d-wave barrier.
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Although the present effects were investigated within apoint of view. In the future, we will systematically investi-
simple coreN model, it would also be important for studies gate the energy shift in unstable nuclei.
of more complicated systems. For example, we can suggest
that a study of the anomalous energy shift in isobaric ana-
logue states, such asLi (°Li+n+n)-1Be* (°Li+p+n), -
is an interesting problem. The energy shifts related tosthe  The author would like to thank Professor K. Kaamd
wave in unstable nuclei are considered to be related to thBrofessor K. Ikeda for various discussions and encourage-
halo structure, as discussed in the present paper. Thereforepitents, and Professor |. Tanihata, Professor H. Nakada, Dr.
is expected to give insight to the halo structure from anotheH. Masui, and Dr. N. Itagaki for helpful discussions.
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