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Two-nucleon spectral function in infinite nuclear matter
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The two-nucleon spectral function in nuclear matter is studied using correlated basis function perturbation
theory, including central and tensor correlations produced by a realistic Hamiltonian. The factorization prop-
erty of the two-nucleon momentum distribution into the product of the two single nucleon distributions shows
up in an analogous property of the spectral function. The correlated model yields a two-hole contribution
quenched with respect to the Fermi gas model, while the peaks acquire a quasiparticle width that vanishes as
the two momenta approach the Fermi momentumkF . In addition, three-hole one-particle and more compli-
cated intermediate states give rise to a background, spread out in energy and absent in the uncorrelated models.
The possible connections with one- and two-nucleon emission processes are briefly discussed.

PACS number~s!: 21.65.1f, 21.30.Fe, 24.10.Cn, 21.60.2n
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I. INTRODUCTION

The two-nucleon spectral function, yielding the probab
ity to remove two nucleons with momentak1 and k2 from
nuclear matter leaving the residual system with excitat
energyE, is defined as~see, e.g., Ref.@1#!

P~k1 ,k2 ,E!5(
n

u^0̄uak1

† ak2

† un̄~A22!&u2

3d@E2En~A22!1E0~A!#, ~1!

whereu0̄& is theA-particle nuclear matter ground state wi
energyE0(A), un̄(A22)& denotes a (A22)-nucleon inter-
mediate state with energyEn(A22), and ak

† is the usual
creation operator.

The two-nucleon spectral function carries direct inform
tion on dynamical nucleon-nucleon~NN! correlations and the
short range structure of the nuclear medium. Therefore
considerable effort aimed at extracting experimental inf
mation onP(k1 ,k2 ,E) is currently being undertaken. In thi
context, a very important role is played by electron-nucle
scattering experiments~a number of theoretical and exper
mental topics in the field of electron-nucleus scattering
reviewed in Ref.@2#!.

Unambiguous evidence of strong correlation effects
been provided by single nucleon knock out (e,e8p) reac-
tions, showing that in a nucleus only about 70% of the nuc
ons are in states of low momentum and low removal ene
that can be described by a mean field theory. The remain
30% of the nucleons belong to strongly correlated pa
whose occurrence is mainly to be ascribed to the one-p
exchange tensor force and to the repulsive core of theNN
interaction.

The available (e,e8p) data at low missing momentum an
low missing energy clearly show the depletion of the oc
pation probabilities of single particle states predicted by
nuclear shell model~for a recent review see, e.g., Ref.@3#!,
thus providing a somewhat indirect measurement of corr
tion effects. Complementary information can be extrac
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from single nucleon knock out experiments specifically d
signed to investigate the kinematical region correspondin
both large missing momentum (.300 MeV/c) and large
missing energy~well above the two-nucleon emission thres
old!, where correlation effects are believed to be domina
Pioneering measurements of (e,e8p) in this region have
been carried out using3He @4# and 4He @5# targets. Data
from a more systematic study, covering a wide range
nuclear targets~from 12C to 197Au) and kinematical condi-
tions @6# will soon become available.

Over the past decade, the availability of a new genera
of high energy 100% duty-cycle electron beams has mad
possible to carry out double coincidence (e,e8NN) experi-
ments, in which two knocked out nucleons are detected
principle, these experiments, originally proposed in Ref.@7#
may allow for direct measurements ofcorrelation observ-
ables, such as the configuration and momentum space t
nucleon distributions or the two-nucleon spectral functio
However, as pointed out in Ref.@8#, extracting the relevan
dynamical information from the measured (e,e8NN) cross
section may turn out to be a challenging task, requiring b
a careful choice of the kinematical setup and a quantita
theoretical understanding of the final state interactions~FSI!
of the knocked out nucleons.

Regardless of the difficulties involved in the interpretati
of the experimental data, reliable theoretical calculations
the two-nucleon emission cross section carried out within
plane wave impulse approximation~PWIA!, in which all the
nuclear structure information is contained in the two-nucle
spectral function, have to be regarded as a minimal star
point, which can provide guidance for the optimization
future experiments.

The basic assumptions underlying the PWIA scheme
that ~i! the exchanged virtual photon couples to either of
two outgoing nucleons and~ii ! FSI effects are negligible
The PWIA cross section of the process in which an elect
of initial energyEi is scattered into the solid angleVe with
energyEf5Ei2v, while two nucleons of kinetic energie
Tp and Tp8 are ejected into the solid anglesVp and Vp8 ,
respectively, takes the simple factorized form
©2000 The American Physical Society04-1
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d9s

dvdVedVpdTpdVp8dTp8

5p~Tp1m!p8~Tp81m!semFpp8~pm ,Em!, ~2!

wheresem describes the structure of the electromagnetic v
tex,m is the nucleon mass, andp andp8 denote the momenta
of the detected nucleons. The missing momentumpm and
missing energyEm are defined as

pm5q2p2p8, ~3!

q being the momentum transfer, and

Em5v2Tp2Tp82TR , ~4!

where TR is the kinetic energy of the recoiling
(A22)-particle system. The functionFpp8(pm ,Em) appear-
ing in Eq. ~2! can be written in terms of the two-nucleo
spectral functions P(p2q,p8,Em) and P(p,p82q,Em).
Note that in absence ofNN correlations the PWIA cross sec
tion given by Eq.~2! vanishes.

Pioneering studies of the two-nucleon emission cross
tions of the12C(e,e8pp) and 16O(e,e8pp) reactions are dis-
cussed in Refs.@9–11#, whereas aG-matrix perturbation
theory calculation of the16O two-proton spectral function is
described in Ref.@12#.

In this paper we discuss a calculation of the nuclear m
ter P(k1 ,k2 ,E) performed using correlated basis functio
~CBF! perturbation theory. Our theoretical approach,
which the effects of the nonperturbative components of
NN interaction are incorporated in the basis function usin
variational approach, has proved to be particularly suited
describe quantities which are strongly affected byNN corre-
lations, such as the single nucleon spectral functionP(k,E)
@13#, the nucleon momentum distributionn(k) @14#, and the
off-diagonal density matrixr(r1 ,r18) @15#.

Following Ref. @13#, we evaluate the dominant contribu
tions to P(k1 ,k2 ,E) at the zeroth order of CBF, as well a
the perturbative corrections that have been shown to be
evant in the calculation ofP(k,E).

CBF theory of infinite nuclear matter is built on the set
correlatedstates:

uN&5SF)
i , j

F~ i , j !G uN&FG , ~5!

obtained by applying a symmetrized product of two-bo
correlation operators,F( i , j ), to the Fermi gas statesuN&FG .
The structure ofF( i , j ) is similar to that of theNN interac-
tion:
03430
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F~ i , j !5(
n

f (n)~r i j !O
(n)~ i , j !. ~6!

The operatorsO(n)( i , j ) include four central component
@1,(si•sj ),(ti•tj ),(si•sj )(ti•tj )# for n51,4 and the isos-
calar and isovector tensor componentsSi j andSi j (ti•tj ) for
n55,6. Additional spin-orbit components are sometimes
troduced, but we will neglect them in this work. With tran
parent and widely employed notation, the components
also denoted asc (n51), s, t, st, t ~tensor!, andtt.

Realistic correlated basis states are expected to be clo
the eigenstates of the nuclear Hamiltonian. An efficie
recipe to choose the correlation functions consists in th
variational determination by minimizing the expectatio
value of the Hamiltonian in the correlated ground state:

E0
v5^0uHu0&. ~7!

The scalar~or Jastrow! componentf (n51)(r ) heals to unity
for r→`, whereasf (nÞ1)(r )→0. The tensor component
have the longest range, since they are related to the one-
exchange potential, andF†( i , j )Hi j F( i , j ) (Hi j is the Hamil-
tonian associated with a two-nucleon pair! is awell-behaved
operator healing toHi j at large interparticle distances, lik
the G matrix. The results presented in this work have be
obtained using the Urbanav14 potential supplemented by th
TNI three-nucleon interaction@16#.

At the zeroth ~or variational! order of CBF,
Pvar(k1 ,k2 ,E) is obtained using the correlated states~5! in
Eq. ~1!. The variational estimate is then corrected by inse
ing perturbative corrections in the correlated basis. This p
cedure has been already adopted for many nuclear m
properties and has been particularly successful in descri
inclusive electromagnetic responses at both intermediate
high momentum transfers~see, e.g., Ref.@2#!.

In Sec. II we will discuss the relationships between t
two-nucleon spectral function, the two-nucleon moment
distribution, and the two-body density matrix
r(r1 ,r2 ;r18 ,r28). Section III will present theory and result
for the variational two-nucleon spectral function, as well
the main CBF perturbative corrections, evaluated with re
istic interactions. Finally, Sec. IV is devoted to conclusio
and perspectives.

II. SPECTRAL FUNCTIONS, MOMENTUM
DISTRIBUTIONS, AND DENSITY MATRICES

The nuclear matter two-body density matr
r(r1 ,r2 ;r18 ,r28) is defined as
r~r1 ,r2 ;r18 ,r28!5A~A21!
E d3r 3, . . . ,d3r AC0

†~r1 ,r2 , . . . ,rA!C0~r18 ,r28 , . . . ,rA!

E d3r 1, . . . ,d3r AuC0~r1 ,r2 , . . . ,rA!u2
, ~8!
4-2
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C0(r1 ,r2 , . . . ,rA) being the ground state wave functio
For r15r18 and r25r28 , the density matrix reduces to th
two-nucleon density distributionr(r1 ,r2), yelding the joint
probability of finding two nucleons at positionsr1 andr2 in
the nuclear matter ground state.

The two-nucleon momentum distribution, i.e., the pro
ability that two nucleons carry momentak1 andk2, is related
to the two-nucleon spectral functionP(k1 ,k2 ,E), defined in
Eq. ~1!, through

n~k1 ,k2!5E dEP~k1 ,k2 ,E!5^0̄uak1

† ak2

† ak2
ak1

u0̄&. ~9!

From Eqs.~8! and ~9! it follows that n(k1 ,k2) can be
written in terms of the density matrix@17# according to

n~k1 ,k2!5
1

n2

1

V2E d3r 1d3r 2d3r 18d
3r 28e

ik1•r118eik2•r228

3r~r1 ,r2 ;r18 ,r28!, ~10!

wheren denotes the degeneracy of the system~in symmetric
nuclear mattern54), V is the normalization volume,r118
5r12r18, andr2285r22r28 .

It is well known @18# that in a Fermi liquidwith no long
range orderthe two-nucleon momentum distribution facto
izes according to

n~k1 ,k2!5n~k1!n~k2!1OS 1

AD , ~11!

where n(k) is the single nucleon momentum distributio
defined as

n~k!5^0̄uak
†aku0̄&. ~12!

Note that the factorization property of Eq.~11! manifests
itself even in absence of dynamical correlations. For
ample, the spin-isospin averaged two nucleon momen
distribution of a system ofA noninteracting nucleons uni
formly distributed in a box of volumeV is given by

nFG~k1 ,k2!5nFG~k1!nFG~k2!F12
1

n

~2p!3

V
d (3)~k12k2!G ,

~13!

where

nFG~k!5Q~kF2uku! ~14!

and the Fermi momentumkF is related to the densityr
5A/V throughkF5(6p2r/n)1/3. The above equation show
that factorization also accounts for trivial correlations due
Pauli’s exclusion principle, whose contributions turn out
be of order 1/V ~i.e., 1/A) with respect to the direct, unlinke
ones.

The n(k) resulting from the nuclear matter calculation
Ref. @14# is shown in Fig. 1. It exhibits a discontinuity a
uku5kF and a tail extending to very large momenta, refle
ing the structure of the nuclear wave function at small int
03430
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particle distance. Equation~11! implies that in theA→`
limit n(k1 ,k2) contains the same dynamical information ca
ried by n(k).

Some insight on the role of short range correlations can
obtained rewritingn(k1 ,k2) in terms of the relative and cen
ter of mass momenta of the pair, defined asq5(k12k2)/2
andQ5k11k2, respectively, and studying the quantity

nrel~q!54puqu2E d3QnS UQ2 1qU DnS UQ2 2qU D . ~15!

Figure 2 illustrates the behavior ofnrel(q) at saturation den-
sity ~corresponding tokF51.33 fm21), evaluated using the
momentum distribution of Ref.@14# ~solid line!, compared to
the prediction of the Fermi gas model~dashed line!.

The inclusion ofNN interactions leads to a quenching
the peak, located atuqu;0.7–0.8 fm21, and to the appear
ance of a sizable tail atuqu.kF . It is interesting to single

FIG. 1. Single nucleon momentum distribution in nuclear m
ter, evaluated in Ref.@14# using CBF perturbation theory.

FIG. 2. The distributionnrel(q) defined in Eq.~15!. The solid
and dashed lines represent the results obtained using CBF pert
tion theory and the Fermi gas model, respectively. The meanin
the other curves is explained in the text.
4-3
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out the contributions tonrel(q) corresponding tok1 ,k2
,kF , k1,kF andk2.kF , andk1 ,k2.kF . They are repre-
sented in Fig. 2 by diamonds, squares, and crosses, re
tively ~note that the results shown by the crosses have b
enhanced by a factor of 10!. Thek1 ,k2,kF component pro-
vides about 72% of the normalization ofnrel(q) and be-
comes vanishingly small atuqu.kF . On the other hand, the
contributions coming from pairs in which at least one of t
nucleon momenta is larger thatkF are much smaller in size
~the curves marked with squares and crosses yield 26%
2% of the normalization, respectively! but extend up touqu
;4 fm21. Similar results have been recently obtained@19#
using the momentum distribution resulting from aG-matrix
perturbation theory calculation@20#.

III. CBF CALCULATION OF THE TWO-NUCLEON
SPECTRAL FUNCTION

The propagation of two hole states in nuclear matte
described by the hole-hole part of the two-body Gree
function @1#,

Ghh~k1 ,k2 ,E!5^0̄uak1

† ak2

† 1

H2E02E2 ih
ak2

ak1
u0̄&,

~16!

whereH is the nuclear matter Hamiltonian.Ghh is defined
for e(52E),2eF , eF being the Fermi energy.

The two-nucleon spectral function, given in Eq.~1!, is
straightforwardly related to the imaginary part ofGhh by

P~k1 ,k2 ,E!5
1

p
ImGhh~k1 ,k2 ,E!. ~17!

CBF perturbation theory employs the set of correla
states given in Eq.~5!. Note that the basis states are non
thogonal to each other. Orthogonalization has been im
mented using the procedure proposed in Ref.@21#, which
preserves the diagonal matrix elements of the Hamilton
between correlated states. This technique has been su
fully applied to the calculation of the one-body spectral fun
tion in Ref. @13# ~hereafter denoted I!.

The perturbative expansion is obtained separating
nuclear HamiltonianH into two parts:H5H01HI , and us-
ing standard Rayleigh-Schro¨dinger type expansions. The un
perturbed and interaction terms, denoted byH0 andHI , re-
spectively, are defined through

^NuH0uM &5dNM^NuH0uN&5dNMEN
v , ~18!

^NuHI uM &5~12dNM!^NuHI uM &. ~19!

The expectation value in Eq.~16! is calculated by expand
ing

u0̄&5

(
n

~2 !n@~H02E0
v!21~HI2DE0!#nu0&

u^0̄u0̄&u1/2
, ~20!
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whereDE05E02E0
v . Perturbative corrections to the inte

mediate statesuN& are taken into account carrying out a
analogous expansion in powers of (HI2DE0) for the propa-
gator appearing in Eq.~16!, as discussed in I:

1

~H2E02E2 ih!
5

1

~H2E0
v2E2 ih!

3(
n

~2 !nH ~HI2DE0!

3
1

~H2E0
v2E2 ih!

J n

. ~21!

We will now describe the structure of then50 ~i.e.,
variational! and higher order terms of the CBF perturbati
expansion ofP(k1 ,k2 ,E).

A. The variational spectral function

At the lowest order in the perturbative expansion t
spectral function is given by

Pvar~k1 ,k2 ,E!5(
n

u^0uak1

† ak2

† un~A22!&u2

3d@E2En
v~A22!1E0

v~A!#, ~22!

where the correlated states~5!, and their energiesE0
v(A) and

En
v(A22) are used.
The main contributions to the sum in Eq.~22! come from

correlated two-hole (2h) and three-hole one-particle (3h1p)
intermediate states. In the uncorrelated Fermi gas onlyh
states contribute toP(k1 ,k2 ,E), leading to the well known
result

P2h,FG~k1 ,k2 ,E!5Q~kF2uk1u!Q~kF2uk2u!

3dS E1
\2

2m
uk1u21

\2

2m
uk2u2D ,

~23!

whereQ(x) denotes the usual step function. The presence
correlations, besides changing the structure of the 2h contri-
bution in the way we will discuss below, allows for nonv
nishing contributions from other intermediate states, with
consequent quenching of the 2h peak, since part of the
strength is moved to higher excitation energies.

The variational 2h spectral function is given by

P2h,v~k1 ,k2 ,E!5
1

2 (
h1 ,h2

uFk1 ,k2

h1 ,h2u2Q~kF2uk1u!

3Q~kF2uk2u!d~eh1

v 1eh2

v 1E!,

~24!

whereeh
v5^huHuh&2E0

v is the variational single particle en
ergy and the 2h overlap matrix element,Fk1 ,k2

h1 ,h2, is

Fk1 ,k2

h1 ,h25^0uak1

† ak2

† uh1 ,h2&. ~25!
4-4
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The correlated 1h overlap matrix element, Fk
h

5^0uak
†uh&, was computed in I using cluster expansion tec

niques. The same method is used for the 2h overlap, with the
result that onlyunlinked cluster diagrams~i.e., diagrams
where the points reached by thek1,2 lines are not connecte
to each other by any dynamical,f 221 and f 21, or statisti-
cal correlations! contribute. Thelinked diagrams contribu-
tions turn out to be of order 1/A, and therefore vanish in
infinite nuclear matter. Note that the factorization property
the two-nucleon momentum distribution, illustrated by E
~11!, is also a consequence of the fact thatlinked diagrams
do not contribute in theA→` limit. The definitions, as well
as the technicalities entering the cluster expansion me
can be found in I and in the related references and will no
repeated here. Because of the factorization property
nuclear matter we obtain

Fk1 ,k2

h1 ,h25Fk1

h1Fk2

h2dh12k1
dh22k2

, ~26!

the CBF expression ofFk
h being given in I@Eq. ~A19!#.

The correlated 2h spectral function retains the Fermi ga
delta shaped peak. However, correlations quench the p
itself ~via the 2h overlap matrix element! and move it toE
52eh1

v 2eh2

v .

The 3h1p contribution reads

P3h1p,v~k1 ,k2 ,E!5
1

6 (
h1 ,h2 ,h3 ,p1

uFk1 ,k2

h1 ,h2 ,h3 ,p1u2

3d~eh1

v 1eh2

v 1eh3

v 2ep1

v 1E!,

~27!

the overlap matrix element being given by

Fk1 ,k2

h1 ,h2 ,h3 ,p15^0uak1

† ak2

† uh1 ,h2 ,h3 ,p1&. ~28!

In the limit A→` the contributions of fully linked dia-
grams vanish in the 3h1p overlap as well. As a conse
quence,

Fk1.kF ,k2.kF

h1 ,h2 ,h3 ,p1 50. ~29!

In the other cases we obtain

Fk1,kF ,k2.kF

h1 ,h2 ,h3 ,p1 5( Fk1

h1Fk2

h2 ,h3 ,p1dh12k1
, ~30!

and

Fk1,kF ,k2,kF

h1 ,h2 ,h3 ,p1 5( @Fk1

h1Fk2

h2 ,h3 ,p1dh12k1
1k1↔k2#,

~31!
03430
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where the sums include all permutations of thehi indices,
while the structure of the 2h1p overlap Fk

h1 ,h2 ,p1

5^0uak
†uh1 ,h2 ,p1& is discussed in I~Appendix B!.

Unlike the 2h contribution, P3h1p,v is no longer delta
shaped, but it is rather spread out in energy. It may be in
preted as a background contribution to be added to the t
quasiparticle part of the spectral function.

The next intermediate state to be considered is the 4h2p
one, whose contribution may be written in terms of produ
of two squared 2h1p overlap matrix elements. This term i
numerically negligible with respect to the 3h1p one~several
order of magnitudes smaller! and can be safely neglected
However, it has to be stressed that 4h2p are the first inter-
mediate states to give a nonvanishing contribution atk1 ,k2
.kF in the A→` limit.

The above intermediate states completely exhaust the
mentum distribution sum rule in nuclear matter at the var
tional level:

nv~k1 ,k2!5
^0uak1

† ak2

† ak2
ak1

u0&

^0u0&
5nv~k1!nv~k2!

5E dEPvar~k1 ,k2 ,E!. ~32!

B. Perturbative corrections

The admixture ofm-hole n-particle correlated states i
uN̄& originate CBF perturbative corrections. As far as t
ground state is concerned, they correspond to then>1 terms
in Eq. ~20!.

Following the strategy developed in I, the perturbati
corrections are classified asdPGR(k1 ,k2 ,E) and
dPINT(k1 ,k2 ,E), coming from ground and intermediat
state corrections, respectively. The total spectral function
then given by

P~k1 ,k2 ,E!5Pvar~k1 ,k2 ,E!1dPGR~k1 ,k2 ,E!

1dPINT~k1 ,k2 ,E!. ~33!

Here we consider 2h2p admixtures to the ground stat
and 2h1p admixtures to the 1h intermediate states. The firs
ones contribute for alluku values~both below and abovekF),
and their contribution can be expressed in terms of the c
relation self energySCO(k,E), whose imaginary part is
given by

ImSCO~k,E!5
p

2 ( u^0uHukp2h1h2&u2

3d~E1ep2

v 2eh1

v 2eh2

v !, ~34!

at uku.kF andE,eF
v and
4-5
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FIG. 3. Two examples of two-nucleon spectral function atuk1u,uk2u,kF . The delta-shaped peaks represent the variational one-
(P1h,v) and two-hole (P2h,v) spectral functions, while the totalP(k1 ,k2 ,E) ~enhanced by a factor of 10! is given by the solid line. The
dashed and dot-dashed lines show the single-particle~enhanced by a factor of 10! and correlation~enhanced by a factor of 102) contributions
to P(k1 ,k2 ,E), respectively.
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ImSCO~k,E!5
p

2 ( u^0uHup1p2kh2&u2

3d~E1eh2

v 2ep1

v 2ep2

v !, ~35!

at uku,kF and E.eF
v . The self energy is computed usin

correlated states and retaining two- and three-body sepa
contributions in the cluster expansion of the relevant ma
element@22,23#.

The 2h1p intermediate state contribution involves the p
larization self energySPO(k,E). The corresponding imagi
nary part reads

ImSPO~k,E!5
p

2 ( u^kuHup2h1h2&u2

3d~E1ep2

v 2eh1

v 2eh2

v !, ~36!

at uku,kF andE,eF
v and

ImSPO~k,E!5
p

2 ( u^kuHup1p2h2&u2

3d~E1eh2

v 2ep1

v 2ep2

v !, ~37!

at uku.kF andE.eF
v .

The effects of these corrections on the spectral functi
at uk1u,uk2u,kF are as follows:~i! an additional quenching o
the variational two-quasiparticle strength and a shift of
position by a quantitydek1

CO1dek2

CO(k), with

dek
CO5

1

pEeF
v

`

dE
ImSCO~k,E!

ek
v2E

, ~38!
03430
ble
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from ground state corrections, and~ii ! a broadening of the
deltalike peak itself, roughly proportional to ImSPO(k1 ,E
52ek1

v )1ImSPO(k2 ,E52ek2

v ), from intermediate state ad

mixtures.
The expression for the totaldP at uk1u,uk2u,kF reads

dP~k1 ,k2 ,E!

52P2h,v~k1 ,k2 ,E!1
1

p
Im$@ uFk1 ,k2

k1 ,k2u2

1S2
PO~k1 ,E!1S2

PO~k2 ,E!#

3@a~k1 ,k2!~2ek1

v 2ek2

v 2E!2dek1
2dek2

2Re„SPO~k1 ,E!2SPO~k1 ,E52ek1

v !

11→2…2 i ~SPO~k1 ,E!11→2!#21%, ~39!

where a(k1 ,k2)512dn2(k1)2dn2(k2)2dn28(k1)
2dn28(k2). The quantitiesdn2(k), dn28(k), and S2

PO(k,E)
are defined in I.

Figure 3 gives two examples of the two-nucleon spec
function belowkF . The figure shows the variational one
hole (P1h,v) and two-hole (P2h,v) peaks and the total spec
tral function ~solid line!. The one-nucleon spectral functio
below kF can be separated into asingle particleand acor-
relatedpart @24#. The former originates from 1h intermedi-
ate states and their admixtures, the latter fromn-hole (n
21)-particle states, and it would be strictly zero in absen
of correlations. The corresponding contributions for the tw
nucleon spectral functions are shown in the figure as das
and dot-dash lines, respectively. The correlated part has b
enhanced by a factor of 102, while the single particle and
total ones by a factor of 10. The figure also gives the bar
visible variational correlated part~dotted lines!.
4-6
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FIG. 4. Two examples of two-nucleon spectral function atuk1u,kF ,uk2u.kF . The delta-shaped peak represents the variational one-
(P1h,v) spectral function atk5k1, while the dashed, dotted, and solid lines show the variational two-nucleon spectral functio
perturbative corrections, and the totalP(k1 ,k2 ,E), respectively.
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Ground state 2h2p corrections give the leading contribu
tions todP when one of the momenta is abovekF . So, for
uk1u,kF and uk2u.kF , we obtain

dP~k1 ,k2 ,E!5
1

p
ImH uFk1

k1u2
SCO~k2 ,E1ek1

!

~E1ek1
1ek2

!2

1Fk1

k1
S4

GR~k2 ,E1ek1
!

E1ek1
1ek2

J , ~40!

whereS4
GR(k,E) is again given in I.

The spectral functions for two such cases are shown
Fig. 4, together with the one-hole variational peaks cor
sponding to the momenta belowkF . The whole spectra
function now comes from the correlated part. The figu
gives the total~solid lines! and variational~dotted lines! P, as
well as the perturbative corrections~dashed lines!.

Corrections atuk1u,uk2u.kF are quadratic in the self
energies and have not been considered.

IV. SUMMARY AND CONCLUSIONS

We have carried out a calculation of the nuclear ma
two-nucleon spectral functionP(k1 ,k2 ,E) within the frame-
work of CBF perturbation theory. The zeroth order appro
mation, corresponding to a variational estimate, has b
supplemented with higher order corrections associated
both 2h2p admixture to the ground state and 2h1p admix-
tures to the 1h states.

The results show that the inclusion ofNN interactions
produces drastic changes in the behavior ofP(k1 ,k2 ,E),
with respect to the predictions of the Fermi gas model. T
peaks correponding to the single particle states get quen
already at zeroth order, and aquire a width when higher o
corrections are included. Due to strong short rangeNN cor-
relations, the strength removed from the quasiparticle pea
pushed to large values of momenta and removal energy,
ing rise to a broad background.
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The factorization property exhibited by the two-nucle
momentum distribution of a normal Fermi liquid has be
found to hold at the level of the amplitudes entering t
calculation ofP(k1 ,k2 ,E) as well. As a result, all the linked
cluster contributions to the two-nucleon spectral functi
vanish in the infinite nuclear matter limit. Factorization o
viously implies that, in the limitA→` and in absence o
long range order,P(k1 ,k2 ,E) carries the same amount o
dynamical information as the single nucleon spectral fu
tion P(k,E). As a consequence, the PWIA (e,e8NN) and
(e,e8p) cross sections also contain the same information
the limit of infinite nuclear matter.

In principle, the results discussed in this paper may
used to estimatecorrelation observables, related to the small
components ofP(k1 ,k2 ,E), whose measurement represen
the ultimate goal of the (e,e8NN) experimental programs
However, it has to be emphasized that any attempt to qu
titatively describe the data shouldconsistentlytake into ac-
count processes involving meson exchange currents@26# or
more complicated mechanisms, such as the excitation
nucleon resonances@27# and two-step reactions@28#. More-
over, as pointed out in Ref.@8#, in order to single out the
relevant dynamical information the kinematical setup has
be carefully selected and the effects of FSI, which are
accounted for in the PWIA picture, have to be included. F
example, according to PWIA, working in coplanar kinema
ics and detecting two protons with momentap andp8 such
that (p•q)/(upuuqu)5(p8•q)/(up8uuqu)5cosu it is possible to
carry out a simultaneous measurement of the relative
center of mass momentum distributions of a correlated tw
nucleon pair by varying the value ofu. At small u, however,
the applicability of PWIA breaks down and FSI between t
two emitted nucleons, that are also very sensitive toNN cor-
relations, become dominant. A quantitative andconsistent
description of both initial@i.e., associated withP(k1 ,k2 ,E)#
and final~i.e., associated with FSI! state correlations, as we
as of their interplay, appears therefore to be called for.

In applying the results presented in this paper to the c
4-7
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culation of the PWIA (e,e8NN) cross section one shoul
also keep in mind that finite size and shell effects, that
not present in infinite nuclear matter, are known to play
important role in nuclei. Although the nuclear matt
P(k1 ,k2 ,E) is expected to provide a reasonable approxim
tion for heavy nuclei, in order to carry out fully quantitativ
calculations of the PWIA cross section, our approach sho
be extended to finite systems, working along the line p
posed in Refs.@15,25#. The analysis of theA dependence o
P(k1 ,k2 ,E) would also give a clue to the relevance of t
ev
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linked contributions of order~1/A!, carrying dynamical infor-
mation not contained in the single nucleon spectral functi
and the applicability of the factorized approximations for t
two-nucleon spectral function and momentum distribution
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