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Chiral quark model of the NN system within a Lippmann-Schwinger resonating group method

D. R. Entem, F. Ferna´ndez, and A. Valcarce
Grupo de Fı´sica Nuclear, Universidad de Salamanca, E-37008 Salamanca, Spain

~Received 22 March 2000; published 7 August 2000!

We analyze the two-nucleon system below the pion threshold, using a chiral quark cluster model. We solve
multichannel resonating group method equations in momentum space, treating them as a set of Lippmann-
Schwinger equations. Deuteron data and scattering phase shifts up to a total angular momentumJ56 are
presented. Full couplings toND and DD channels are considered and analyzed. High angular momentum
partial waves (L.2) provide a detailed test of chiral symmetry in the two-nucleon system.D waves still show
important short-range effects. Low angular momentum partial waves and deuteron observables are in good
agreement with the experimental data, showing that the underlying quark structure provides the required
short-range potential behavior.

PACS number~s!: 13.75.Cs, 12.39.Jh, 24.85.1p
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I. INTRODUCTION

The understanding of the interaction between two nuc
ons remains a fundamental problem in nuclear phys
There is no doubt that explicit quark degrees of freedom
required in order to describe deep-inelastic scattering at h
momentum transfer; however, it is still unclear how t
nuclear forces arise from the fundamental quark interactio
This difficulty is due to the non-Abelian character of QC
which implies that the gauge bosons~gluons! carry a color
charge and can couple to one another. On one hand, t
nonlinear couplings lead to asymptotic freedom which
lows to carry out meaningful perturbative calculations
high energies. On the other hand, the quark-quark force
comes extremely strong in the low-energy regime~the realm
of nuclear physics!, and this makes the calculations ve
hard and has prevented thus far any direct solution of
QCD equations. For this reason, the most accurate des
tions of theNN scattering data and deuteron properties h
been done in terms of multiboson exchanges at the ba
level, in the framework of old-fashioned perturbation theo
~i.e., the Bonn potential@1#!. Although the agreement with
experiment is impressively good, the justification of su
approaches in terms of QCD remains unclear.

During the last decade, there has been an effort to un
stand theNN force in a more fundamental way, based on t
symmetries of QCD. Although we are largely ignorant of t
nonperturbative dynamics of QCD at low energies, we kn
that an approximate chiral symmetry exists, which is brok
by the vacuum. The spontaneous breakdown of a symm
translates into the appearance of massless modes, the G
stone bosons. However, since chiral symmetry is only
proximate, we expect the associated Goldstone boson~i.e.,
the pion! to have a small but finite mass. As a consequen
QCD could be described in terms of an effective chiral L
grangian~with the Goldstone pions and the nucleons as
relevant degrees of freedom!, similar to the effective chiral
Lagrangian for nuclear forces proposed by Weinberg@2#.

A low-energy chiral Lagrangian of this type, providing
nonlinear realization of the SU(2)L3SU(2)R chiral symme-
try, has been used by Ordon˜ez, Ray, and van Kolck@3# for
the two-nucleon problem. These authors calculate the
0556-2813/2000/62~3!/034002~18!/$15.00 62 0340
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and two-pionNN potential, and use more than 20 paramet
to generate the short-range potential by means of con
terms. A good fit is obtained for the deuteron and for lo
partial waves below the pion threshold, but the large num
of parameters obscures the role of chiral symmetry in theNN
interaction. Recently, Epelbaum, Glo¨ckle, and Meissner@4#
have been able to reproduce the deuteron properties andNN
phase shifts by means of a chiral nucleon-nucleon poten
including one and two-pion exchanges~up to the next-to-
next-to-leading order! and contact interactions parametrize
in terms of only nine parameters.

A possible way of avoiding the introduction of a larg
number of parameters in these models is that of abando
a complete description of theNN observables, and explorin
only those regions which are governed by chiral symme
alone. This approach has been pursued by Kaiser, Bro
mann, and Weise@5#, who calculateNN phase shifts with
orbital angular momentumL>2 using an effective chira
Lagrangian and a minimal set of parameters. An alterna
way is provided by the chiral quark cluster model~CQC! @6#.
The starting point of this approach is the realization that
low energies, the relevant degrees of freedom are not
current quarks of the QCD Lagrangian, but, rather, the c
stituent quarks. Constituent quark mass and chiral symm
are closely related concepts. If one assumes that the c
symmetry is spontaneously broken at an energy scale hi
than the confinement scale, quarks acquire the constit
masses at energies in between these two scales. Then,
ons are described as clusters of three confined constit
quarks, interacting through gluons and through the elem
tary Goldstone bosons of the spontaneously broken sym
try. Minimal chiral symmetry is realized by means of tw
fields corresponding to the exchange of a pseudoscalar a
scalar Goldstone boson.

This model not only reduces the number of paramete
but also has several advantages concerning the descriptio
the baryon-baryon potential. Chiefly, by keeping the fund
mental interactions at the quark level, it is possible to ta
full advantage of the quark antisymmetry, which provides
mechanism to generate the short-rangeNN repulsion @7#.
This is an important difference with respect to those pot
tials where the short-range part is produced by fitting con
©2000 The American Physical Society02-1
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terms. Quark antisymmetry allows us to predict the sho
range behavior of less known systems~like N2D or D
2D) in a completely parameter-free way. By contrast,
fitted short-rangeNN potentials do not permit such immed
ate generalizations. Besides, the use of quark antisymm
provides a method for treating the nucleon and its resona
D, N* , . . . , in a single framework, without having to in
crease the number of parameters. Finally, this appro
opens the door to a consistent description of the bar
structure and of the baryon-baryon interaction.

Based on the liquid instanton model, Ferna´ndezet al. @6#
derived a quark-quark interaction in the QCD scheme, wh
has been applied to the description of theNN scattering
phase shifts and to the study of static and electromagn
properties of the deuteron. The calculations were done u
the resonating group method~RGM! in configuration space
below the pion threshold, and including the coupling of t
5D0

ND channel to the1S0
NN partial wave. This tensor couplin

is very similar to the3D1
NN2 3S1

NN in the deuteron case, an
generates the additional attraction needed to reproduce
experimental data@8#.

With this paper, we undertake a description of the tw
nucleon problem in momentum space below and above
pion threshold, based on the CQC model. If one wants to
above pion threshold, then it is more convenient to work
momentum space, for several reasons. First of all, the ca
lation in coordinate space~which gives accurate results up
300 MeV of laboratory energy! is hardly applied at highe
energies, due to the rapid oscillation of the relative wa
function. Besides, the multichannel calculations includ
nucleon resonances are quite naturally done in momen
space, due to the parametrization of the resonance width

In the present work, we will formulate the momentu
space RGM calculation, introducing an alternative meth
for the solution of the coupled RGM equations, here trea
as a set of coupled Lippmann-Schwinger equations. Afte
detailed description of the technical aspects, the method
be tested by studying scattering and bound-state problem
theNN system below the pion threshold. We will pay spec
attention to high angular momentum partial waves (L>3),
never studied within the model. The deuteron and low an
lar momentum partial waves (L<2) are also studied, empha
sizing the effect of the full coupling toND andDD channels.
In a future work, we plan to extend our calculations to abo
the pion threshold.

The paper is organized as follows. In the next section,
review the main aspects of the chiral quark cluster mod
Section III is devoted to the formulation of RGM in mome
tum space and to its numerical solution. An estimate of
model parameter values is given in Sec. IV. In Sec. V,
study the two-nucleon bound-state problem, i.e., the d
teron. A detailed analysis of the influence ofDD channels in
the deuteron properties is performed. Section VI is dedica
to the study of theNN phase shifts for low and high angula
momentum partial waves. Finally, in Sec. VII we provide
summary of the main results of our work.

II. THE CHIRAL QUARK CLUSTER MODEL

The QCD Lagrangian with massless quarks forNf flavors
possesses a global symmetry under SU(Nf)3SU(Nf) inde-
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pendent rotations of the left and right-handed quark fiel
the chiral symmetry. If this symmetry were exact, one wou
observe chiral multiplets similar to those relating to the
most exact invariance of strong interactions under isos
rotations ~e.g., the doubletp2n and the tripletp12p0

2p2). However, splittings between chiral partners are hu
For example, the splitting between the vectorr and the axial
a1 mesons is about 500 MeV~2/3 of ther mass! and the
splitting between the nucleon and its chiral partner is ev
larger~939–1535!. These splittings are indeed too large to
explained by the small current quark masses, which br
chiral symmetry from the very beginning. The only concl
sion one can draw from these data is that the chiral symm
of QCD is spontaneously broken starting at a certain sc
LxSB.

Some years ago, Shuryak@9# proposed a QCD vacuum
model that explains in a simple and elegant way the spo
neous breaking of chiral symmetry. This model, develop
later on by Diakonovet al. @10#, suggests that the QCD pa
tition function is dominated by fluctuations of the gluon
field of instanton type, with quantum oscillations around
In this sense, the QCD vacuum is seen as an instanton liq
plus small quantum fluctuations of the gluonic field. Th
suggestion was recently tested by calculations on the lat
showing that a decrease of the gluonic field fluctuatio
~called acooling process! leaves as the only surviving con
figurations those of instanton and anti-instanton type@11#.

When light quarks are put into the instanton vacuum, th
develop a momentum-dependent dynamical mass which
be identified with the constituent mass. This dynamical m
breaks the chiral symmetry and, according to the Goldst
theorem, an interaction between quarks appears. Sta
from these ideas, Diakonov has deduced an effective p
tion function of the form@12#

Z5E DpAE Dc1Dc expH E d4x c1~x!

3@ igm]m1 iMeig5tW•fW / f p#c~x!J ~1!

from which an effective quark Lagrangian can be obtaine

L5c f
ā~ igm]m2M ~q2!eig5tW•fW / f p!cg

a , ~2!

wherec f
a is the quark spinor,a is the color index,f andg are

flavor indices, andM (q2) is the dynamical mass of th
quarks. Based on this Lagrangian, different models for
nucleon have been developed. For example, Diakonovet al.
@13# describe the nucleon as a soliton solution, giving rise
the chiral quark soliton model. A similar approach can be
found in Manohar and Georgi@14#.

Although attractive from the theoretical point of view
chiral solitons are complicated to adopt for the derivation
the baryon-baryon interaction. For this reason, we will u
here a simpler approach for the description of baryons
baryon-baryon interactions. Starting from the Hamiltoni
originating from Eq.~2!,
2-2
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CHIRAL QUARK MODEL OF THE NN SYSTEM WITHIN . . . PHYSICAL REVIEW C 62 034002
Hch5M ~q2!c f
āeig5tW•fW / f pcg

a ~3!

and with the philosophy of the linear sigma model,

pW 5f̂ f p sin~f/ f p!,

s5 f p@cos~f/ f p!21#, ~4!

one takes into account that the first term in the exponen
series of Eq.~3! produces the quark constituent mass, a
obtains the interacting Hamiltonian:

Hch'gchF~q2!c̄~s1 ig5tW•pW !c, ~5!

wheregch5mq / f p , F(q2)5M (q2)/M (0), andmq5M (0).
Hence, a scalar and a pseudoscalar field arise as a co
quence of the chiral symmetry breaking. Here,F(q2) is an
unknown function which suppresses the chiral fields in
energy region where chiral symmetry is exact. It will b
approximated by

F~q2!5F LxSB
2

LxSB
2 1q2G 1/2

, ~6!

where, as stated above,LxSB determines the scale at whic
chiral symmetry is broken, and its value ranges between
MeV and 1 GeV.

Hence, it is straightforward to write the nonrelativist
potentials generated in the static approximation in the
lowing way:

Vi j
PS~qW !52

1

~2p!3

gch
2

4mq
2

LxSB
2

LxSB
2 1q2

~sW i•qW !~sW j•qW !

mPS
2 1q2

~tW i•tW j !,

~7!

Vi j
S~qW !52

gch
2

~2p!3

LxSB
2

LxSB
2 1q2

1

mS
21q2

, ~8!

whereqW is the three-momentum transfer, thes ’s (t ’s! are
the spin~isospin! Pauli matrices, andmq , mPS, andmS are
the masses of the quark, pseudoscalar, and scalar bo
respectively. The potentials refer to momentum states n
malized to 1.

It is well established that theNN interaction at long-range
is governed by pseudoscalar exchanges, namely the one
exchange~OPE! interaction. Therefore, if one wants to re
produce accurately this piece of theNN interaction, one is
forced to identify the mass of the pseudoscalar field with
physical pion mass. The mass of the scalar field is obtai
by the chiral relation@15#

mPS
2 5mp

2 ,

mS
25mPS

2 14mq
2 . ~9!
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If we also introduce the QCD perturbative effects, whi
mimic the gluon fluctuations around the instanton vacuu
the one-gluon exchange~OGE! potential arises and can b
expressed as@16#,

Vi j
OGE~qW !5

1

~2p!3

1

4
~lW i•lW j !4pas

3H 1

q2
2

1

4mq
2 S 11

2

3
~sW i•sW j ! D

1
1

4mq
2

1

q2
@qW ^ qW #2

•@sW i ^ sW j #
2J , ~10!

where thel ’s are the color Gell-Mann matrices andas is the
strong-coupling constant.

The other QCD nonperturbative effect corresponds
confinement, and takes into account that the only obser
hadrons are color singlets. It is phenomenologically int
duced as a harmonic oscillator potential or as a linear po
tial. Confinement influences the spectrum, but itslW i•lW j
structure prevents contributions to the baryon-baryon in
action @17#.

It is worth noticing that the scalar and the one-gluon e
change interactions contain spin-orbit terms. In Ref.@18#, it
was shown that, while these terms provide an important p
of the spin-orbit force between nucleons, they are not eno
to explain the experimentally observed effects. The situat
of the spin-orbit force in quark-model potentials is still qui
controversial@19#, mainly due to our ignorance of the con
finement mechanism. Contributions which are usually
glected~antisymmetric spin-orbit terms, Thomas precess
terms, etc.! are even more important than those consider
Therefore, as not to obscure the discussion, we will postp
the study of this particular aspect of the interaction to a
ture work.

As we will use RGM to study theNN problem, we will
make the usual ansatz for the radial wave function of
quarks,

c~rW i !5)
i 51

3 F 1

pb2G 3/4

e2r i
2/2b2

, ~11!

so that the size of the baryon is fixed byb. One could argue
that, once a quark-quark potential has been determined
quark wave function of the three-quark clusters~baryons!
should be obtained by solution of the Schro¨dinger equation.
This process was carried out in Ref.@20#, but the obtained
wave functions are rather complicated for application to
calculation of the RGM kernels. However, in the same wo
@20#, it was also shown that theNN potential obtained in the
Born-Oppenheimer approach with these wave functions
very similar to the one obtained with Gaussian wave fu
tions for a certain value of the parameterb. This legitimizes
the Gaussian approach for low-energyNN scattering.

The wave function in momentum space corresponds to
Fourier transform of Eq.~11!,
2-3
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c~pW i !5)
i 51

3 Fb2

p G3/4

e2b2pi
2/2. ~12!

The baryon total wave function must include the spin, is
spin, and color degrees of freedom, and will be denoted

cB5fB~pW j1
,pW j2

!xBjc@13#;

fB~pW j1
,pW j2

!5F2b2

p G3/4

e2b2pj1

2 F3b2

2p G3/4

e2(3b2/4)pj2

2
,

~13!

where fB(pW j1
,pW j2

) takes into account the internal spati
baryon degrees of freedom and is obtained from Eq.~12! by
removing the center-of-mass wave function. Also,xB labels
the totally symmetric spin-isospin wave function coupled
the quantum numbers of the baryonB, and jc@13# is the
color singlet wave function. Built this way,cB is totally
antisymmetric in quark exchanges.

III. THE RESONATING GROUP METHOD FOR THE
TWO-BARYON SYSTEM IN MOMENTUM SPACE

In order to formulate RGM for theB1B2 system, we first
need to determine the two-baryon wave function. Start
from the one-baryon wave function given by Eq.~13!, the
two-baryon wave function is taken to be the productcB1

cB2

coupled to the corresponding baryonic quantum numbers
multiplied by a wave function which takes into account t
relative motion of the two baryons, here denoted asx(PW ).
Since the baryons are made up by fermions~quarks!, the
system should be in a totally antisymmetric state; theref
the two-baryon wave function is finally written as

cB1B2
5A@x~PW !cB1B2

ST #

5A†fB1
~pW jB1

!fB2
~pW jB2

!x~PW !xB1B2

ST jc@23#‡.

~14!

Here, A is the antisymmetrizer of the six-quark syste
fBi

(pW jBi
) is the internal spatial wave function defined in E

~13!, xB1B2

ST denotes the spin-isospin wave function of ba

onsB1 andB2 coupled to a total spin-isospin ST, andjc@23#
is the product of the two color singlets.

As the one-baryon wave functions are already antisym
trized, the antisymmetrizer may be written asA5 1

2 (1
2P)(129P36), where P36 is the operator that exchange
quarks 3 and 6 between the two clusters, andP
5P14P25P36 is the operator that exchanges all the qua
between the two baryons. The operator1

2 (12P) fixes the
symmetrym of the wave function at the baryonic level.
was shown in Ref.@21# that this operator is properly take
into account by writing the wave function as
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B1B2

JLSTC5
1

A2~11dB1B2
!

3@cB1B2

JLSTC1~21!m1S11S22S1T11T22TcB2B1

JLSTC#

~15!

provided that

L1m5odd. ~16!

We will call symmetric the combination withm even, and
antisymmetric that ofm odd. Thus, the antisymmetrizer re
duces toA5(129P36).

We also need to introduce the Schro¨dinger equation
which governs the dynamics of the system. We write it a
projection equation

~H2ET!uc&50⇒^dcu~H2ET!uc&50, ~17!

where

H5(
i 51

N pW i
2

2mq
1(

i , j
Vi j 2Tc.m. ~18!

with Tc.m. being the center-of-mass kinetic energy,Vi j is the
interaction described in the previous section, andmq is the
constituent quark mass.

In Eq. ~17!, the variations are performed on the unknow
relative wave functionx(PW ). In order to take it outside the
antisymmetrizer, we introduce a continuous parameterPW i

^pW jA
pW jB

PW PW c.m.uc&5E A@fA~pW jA
!fB~pW jB

!d3~PW 2PW i !#

3x~PW i !dPW i , ~19!

where we have only considered the spatial degrees of f
dom in order to simplify the equations. Putting coordina
into the projection equation, we proceed as in Ref.@22#
~changing the radial coordinateR into the momentumP, and
keeping in mind that some operators are not diagonal in m
mentum space! in order to integrate out all the internal de
grees of freedom of the clusters. Hence, we write the p
jected Schro¨dinger equation for the relative wave function
follows:

S PW 82

2m
2ED x~PW 8!1E „

RGMVD~PW 8,PW i !

1 RGMK~PW 8,PW i !…x~PW i !dPW i50, ~20!

whereE5ET2EA2EB is the relative energy of the cluster
and RGMVD(PW 8,PW i) and RGMK(PW 8,PW i) are the direct poten-
tial and the exchange kernel, respectively given by,
2-4
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RGMVD~PW 8,PW i !5 (
i PA, j PB

E fA* ~pW j
A8
!fB* ~pW j

B8
!Vi j ~PW 8,PW i !

3fA~pW jA
!fB~pW jB

!dpW j
A8
dpW j

B8
dpW jA

dpW jB

~21!

and

RGMK~PW 8,PW i !5 RGMHE~PW 8,PW i !2ET
RGMNE~PW 8,PW i !

~22!

with

RGMHE~PW 8,PW i !529E dpW j
A8

dpW j
B8

dpW jA
dpW jB

dPW

3fA* ~pW j
A8
!fB* ~pW j

B8
!

3HP36@fA~pW jA
!fB~pW jB

!d3~PW 2PW i !#.

~23!

A similar expression can be found for the normalization e
change kernel, replacingH with the identity operator. The
calculation of these kernels is detailed in the Append
Equation ~20! is readily generalized to a coupled-chann
equation, starting from a sum of wave functions of the ty
of Eq. ~14! for the different baryon channels considered.

The RGM equations have usually been solved by me
of a variational method developed by Kamimura@23#. With
this method, the relative wave function is expanded in
Gaussian basis, so that the integrodifferential equations
duce to a matricial set of equations in the coefficients of
expansion. We here formulate an alternative method for
solution of coupled-channel RGM equations, deriving fro
Eq. ~20! a set of coupled Lippmann-Schwinger equations
the form

Ta
a8~z;p8,p!5Va

a8~p8,p!1(
a9

E dp9p92Va9
a8~p8,p9!

3
1

z2Ea9~p9!
Ta

a9~z;p9,p!, ~24!

wherea labels the group of quantum numbersB1B2JLST

which defines a certain partial wave,Va
a8(p,8p) is the pro-

jected potential that contains the direct potential and
RGM exchange kernels, andEa9(p9) is the energy corre-
sponding to a momentump9, written as~in the nonrelativis-
tic case!:

Ea~p!5
p2

2ma
1DMa . ~25!

Here, ma is the reduced mass of theB1B2 system corre-
sponding to the channela, and DMa is the difference be-
tween the threshold of theB1B2 system and the one we tak
as a reference, theNN system. The mass differenceDMa is
obtained from the interaction terms for quarks belonging
03400
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the same baryon, which relate to the total energy of the s
tem ET and to the relative energy between clustersE.

We solve the coupled-channel Lippmann-Schwing
equation using the matrix-inversion method proposed in R
@24#, generalized in order to include channels with differe
thresholds. Once theT matrix is calculated, we determine th
on-shell part, which is directly related to the scattering m
trix. The relationship depends on the type of kinematics
ing used and, in the case of nonrelativistic kinematics,

Sa
a85122p iAmama8kaka8Ta

a8~E1 i01;ka8 ,ka! ~26!

with ka defined by

ka
252ma~E2DMa!, ~27!

so that, for channels above the threshold,ka
2.0.

If inelastic channels are not considered, the scattering
trix must be unitary. Therefore, if there is only one chann
above the threshold, the scattering matrix is directly para
etrized in terms of the phase shift. In the case of two coup
channels, the parametrization is not unique and we will
that of Stappet al. @25#.

For bound states, the integral equations do not have p
and the problem is simplified. Using the same discretizat
method as in the Lippmann-Schwinger equation problem,
Schrödinger equation can be written in the form

(
j

@Ei~pi !d i j 1Vi j 2Ed i j #c j50, ~28!

where i and j label the discretization of the integral and th
quantum numbers of the different channels included in
calculation, andc j is the value of the wave function in th
channel and momentum corresponding to the indexj.

In general, the matrix elementsVi j do not depend on en
ergy and it is sufficient to solve Eq.~28! as an eigenvalue
problem, with the negative solutions corresponding to
energies of the bound states. In the case of the RGM met
the matrix elementsVi j depend onE through the dependenc
of the exchange kernels. For this reason, we should first
the zeros of the Freedholm determinant by solving

uEi~pi !d i j 1Vi j 2Ed i j u50 ~29!

with the zeros being the energies of the bound states. O
we know these energies, Eq.~28! is solved for each value
and the wave function of the bound state is the eigenve
corresponding to the eigenvalue that coincides with the bi
ing energy.

IV. MODEL PARAMETERS

A rough estimate of the values of the model paramet
can be done based on the following arguments. As the p
doscalar field is identified at long-range with the pion, t
gch coupling constant should reproduce in an accurate w
the long-range interaction given by the OPE. If the tw
nucleons are separated enough, the central part of the p
doscalar interaction between quarks given by Eq.~7! gener-
2-5
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ates an interaction between nucleons of the form

Vc
PS~r !5

1

3

gch
2

4p

mp
2

4mq
2
r̃~ imp!2

e2mpr

r S 5

3D 2

~sW N•sW N!~tWN•tWN!,

~30!

where r̃(q) is the quark density Fourier transform of ea
nucleon normalized tor̃(q50)51. Comparing with the
standard OPE Yukawa potential,

Vc
OPE~r !5

1

3

f pNN
2

4p

e2mpr

r
~sW N•sW N!~tWN•tWN! ~31!

and usingr̃(q)5e2b2q2/6, one finally obtains

gch
2

4p
5S 3

5D 2f pNN
2

4p

4mq
2

mp
2

e2b2mp
2 /3. ~32!

This gives the chiral coupling constantgch in terms of the
pNN coupling constant, taken to bef pNN

2 /4p50.0749@26#.
As previously mentioned, the parameterb determines the

size of the nucleon quark content, and should not be c
fused with the nucleon charge radius. Usual values ra
between 0.4 and 0.6 fm, and we will here takeb50.518 fm.
This value was obtained by comparing the Bor
OppenheimerNN potential ~calculated from the wave
function solution of the bound-state problem for the Ham
tonian described in Sec. II! to the NN potential calculated
with a single Gaussian of parameterb.

LxSB controls the pion-gluon proportion in the model an
as a consequence, it controls the strength of the tensor fo

TABLE I. Model parameters.

b(fm) 0.518
mq(MeV) 313

LxSB(fm
21) 4.2997

mPS(fm
21) 0.7

gch
2 6.6608

as 0.4977
mS(fm21) 3.513
03400
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which is mainly due to the pion interaction. In order to fi
the value ofLxSB, one needs to examine a process dom
nated by the pion tensor term. Such a reaction may be
pp→nD11 because, at high momenta, more than 90%
the interaction corresponds to the pion tensor part. The
culation of Ref.@27# suggests a value close to 4.2 fm21 for
LxSB.

The value ofas is estimated by means of theN2D mass
difference, which has been traditionally explained in terms
the OGE. In the model presented here, however, there
contributions not only from OGE, but also from the pseud
scalar piece of the interaction, the latter contributing appro
mately half of the total mass difference. The rest is attribu
to the OGE, and the value ofas is adjusted to reproduce th
experimentalN2D mass difference.

The values of the parameters are finally fine tuned in
der to reproduce the binding energy of the deuteron in p
ence of the coupling toDD channels. The parameters used
the present calculations are quoted in Table I.

V. BOUND-STATE PROBLEM: THE DEUTERON

Traditionally, the deuteron has been understood as aJp

511 two-nucleon system, thus corresponding to an isos
singlet in even partial waves~i.e., 3S1 and 3D1). However, it
could also be described as a linear combination of pairs
baryonic resonances, provided the resonances have the
isospin to ensure that the total isospin is zero. The prese
of color through the quark model in the hadron dynam
adds the possibility of new exotic components, such as
hidden color states. They correspond to two color octe
coupled to a singlet. In some works, their contribution to t
deuteron wave function was estimated and found to be
large as 5%@28#, i.e., the same order of magnitude of th
deuteronD component. However, it is possible to demo
strate @29# that any hidden color state can always be ex
pressed as a linear combination of physical states given
Eq. ~13!.

Since the deuteron is the only bound two-nucleon syst
there has been much experimental and theoretical work c
cerning the presence of other components, mainly isobar
addition to the two nucleons. We will assume that t
deuteron can be described as configurations of two clus
l
ial is
TABLE II. Probability of the different deuteron components. The symbol3 indicates that the partia
wave is not included in the calculation. In calculation 8, a multiplicative factor in the scalar potent
introduced as explained in the text.

3S1
NN ~%! 3D1

NN (%) 3S1
DD ~%! 3D1

DD ~%! 7D1
DD ~%! 7G1

DD ~%! ED(MeV)

1 95.1989 4.5606 0.1064 0.0035 0.1243 0.0063 22.2246
2 96.3966 3.6034 3 3 3 3 21.0234
3 96.0860 3.8340 0.0800 3 3 3 21.2114
4 96.3828 3.6156 3 0.0029 3 3 21.0356
5 95.6593 4.2332 3 3 0.1075 3 21.8353
6 96.2854 3.7104 3 3 3 0.0042 21.0685
7 95.3295 4.4451 0.1034 3 0.1219 3 22.1327
8 95.3780 4.6220 3 3 3 3 22.2246
2-6
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CHIRAL QUARK MODEL OF THE NN SYSTEM WITHIN . . . PHYSICAL REVIEW C 62 034002
of three quarks. In order of increasing mass, the poss
combinations are N(939)N(939), N(939)N* (1440),
D(1232)D(1232), andN(939)N* (1650). From the energy
point of view, the most important corrections to the deute
NN wave function should come from theN(939)N* (1440)
configuration, being the one with the next lowest mass. R
@30# obtained a 0.16% probability for this configuratio
However, the uncertainties associated with the coupling c
stants of the transition potential make this number not v
significant. Glozmanet al. @31# have calculated the spectro
scopic factors of the different configurations for the deute
wave function corresponding to the Paris potential. Their
timate for the spectroscopic factor of theN(939)N* (1440)
configuration isSNN*

d
,1023. But, for the next mass configu

ration,D(1232)D(1232) with a mass of only about 60 Me
higher, the estimated factor wasSDD

d ;531022, predicting
this effect as more important than theN(939)N* (1440).

Taking into account that there are no experimental data
the N(939)N* (1440) configuration @whereas, for the
D(1232)D(1232) configuration, Allasiaet al. @32# estab-
lished a significant upper limit of about 0.4%#, we will carry
out a coupled-channel calculation includingN(939)N(939)
andD(1232)D(1232) components for partial waves with th
deuteron quantum numbers. In particular, besides the3S1

NN

and 3D1
NN components, we will include the followingDD

components: 3S1
DD , 3D1

DD , 7D1
DD , and 7G1

DD .
In Table II, we show the contribution of eachDD com-

ponent to the deuteron binding energy. For the sake of c
parison, we present a calculation includingNN components
only, and labeled as number 8. For this particular case, le
ing out theDD components, we had to artificially increas
the attraction by means of a multiplicative factor~1.0635! in
the coupling constant of the scalar potential. As can be
served, the probability ofDD components is very small. Th
probabilities of the3S1

DD and 7D1
DD are by far the most im-

TABLE III. Probability for theDD components in the deutero
compared to baryonic models: Arenho¨vel @33# and Dymarz and
Khanna@34#.

% CQC Ref.@33# Ref. @34# (w/s)

3S1
DD 0.1064 0.1700 0.340/0.13

3D1
DD 0.0035 0.0500 0.040/0.03

7D1
DD 0.1243 0.5100 0.100/0.38

7G1
DD 0.0063 0.0500 0.005/0.02

Total 0.2405 0.7800 0.485/0.56

TABLE IV. Deuteron properties.

Quarka Quarkb OBEP @1# Paris@35# Expt. @36#

ED(MeV) 2.2246 2.2246 2.2246 2.2249 2.224575~9!

r m(fm) 1.985 1.976 1.9688 1.9717 1.971~6!

AS(fm21/2) 0.8941 0.8895 0.8860 0.8869 0.8846~8!

h 0.0250 0.0251 0.0264 0.0261 0.0256~4!

aCalculation 1 in Table II.
bCalculation 8 in Table II.
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portant, due to their strong tensor couplings. This is in agr
ment with the results of baryonic models@33,34#. Besides,
the total probability forDD components in the deuteron
compatible with the experimental limits given by Allas
et al. @32#. This is not the case for baryonic models. Thus,
example, Arenho¨vel @33# carried out a coupled-channel ca
culation using, for theNN→DD transition potential, a com-
bination of p and r exchanges, and the Reid soft core p
tential for the rest. Table III shows that, although t
probabilities have the same distributions as ours, the t
probability is three times larger than the one we obtained
our model. A similar comment could be made about the c
culations of Dymarz and Khanna@34#, where, in spite of the
distributions being similar to ours, the total probability
twice as much. One must be aware that calculations at
baryonic level are not fully consistent, as they use, for
NN interaction, potentials~Reid soft core or Paris! which
were designed, in principle, without explicitD degrees of
freedom: therefore, parts of the contributions from theD
degrees of freedom are implicitly included in the parame
zation of the potentials.

In Table IV, we show some of the properties of the de
teron. A good agreement with the experimental data can
observed. The effect of theDD components on the mean
square radius is negligible;0.01%, due to the low probabil
ity of these components and to the fact that their contribut
occurs fundamentally for small values of the radiusr. A
similar agreement can be obtained with nucleonic chann
only ~see column three!. This result tells us that, for globa
properties, the influence of theDD channels can be simu
lated by a small change of the parameters~a multiplicative
factor on the scalar potential!. Nevertheless, as we will ex
plain below, one has to keep in mind that these parame
are strongly correlated to the calculation of other obse
ables, and therefore should not be freely modified.

FIG. 1. Probability densityh(k)5k2uC(k)u2 in momentum
space for the3S1

NN deuteron component. The solid line represe
the full calculation includingDD channels. Dashed line corre
sponds to calculation 8 in Table II.
2-7
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D. R. ENTEM, F. FERNA´ NDEZ, AND A. VALCARCE PHYSICAL REVIEW C 62 034002
Figure 1 shows the probability distribution in momentu
space for the3S1

NN deuteron component: once again, it
seen that the effect of theDD components can be simulate
by readjusting the strength of the scalar potential. Howe
this is not the case for the momentum distributionsk2h(k)
which are shown in Fig. 2 forS-wave deuteron component
As can be observed, theDD components extend to highe
momenta regions. This may influence the structure func
B(q) which presents a zero for momentum at around
fm21. Including only NN components, this result alway
comes lower, being theDD components a possible candida
to solve the problem@34,37#. As a consequence, although th
probability of DD components is small, its influence cou

FIG. 2. Momentum distribution for the3S1
NN and 3S1

DD deuteron
components.~a! Solid and dashed lines are the same as in Fig. 1.~b!
The solid line corresponds to the full calculation, dotted and das
lines to calculations 3 and 7 in Table II.
03400
r,

n
1

be relatively important for certain specific aspects, and no
easily replaced by other mechanisms.

VI. SCATTERING STATES PROBLEM:
NN PHASE SHIFTS

In this section, we present and discuss our results for
NN phase shifts below the pion threshold. In the calcu

d

FIG. 3. NN S wave phase shifts forT51 ~a! and T50 ~b!.
Experimental points with and without error bars correspond to
energy-independent and energy dependent solutions of Arndtet al.
@38#, respectively. All these data have been obtained through
interactive programSAID @39# corresponding to the solutionSP98.
The phase shifts shown and the analysis correspond to the ne
proton.~a! The dashed line represents the calculation includingNN
channels only, dotted line includes alsoND components, and solid
line is the full calculation withNN, ND, andDD channels.~b! The
dashed line is the calculation withNN only, and solid line is the full
calculation includingNN andDD channels.
2-8
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CHIRAL QUARK MODEL OF THE NN SYSTEM WITHIN . . . PHYSICAL REVIEW C 62 034002
tions, we will include couplings toDD channels for iso-
singlet (T50) partial waves, and toND and DD channels
for isotriplet (T51) partial waves. As explained in the in
troduction, the CQC model provides a way to study theD
excitation for theNN elastic scattering in a completel
parameter-free fashion. We will use as reference the exp
mental data of Arndtet al. @38#. All these data have bee
obtained through the interactive programSAID @39# corre-
sponding to the solutionSP98. The phase shifts shown and th
analysis correspond to the neutron proton.

For the discussion of the results, we will divide the pha
shifts into three groups. First, we will considerL50 waves.
They are the most sensitive to the short-range part of
interaction: therefore, one would expect that quark dynam
play an important role. A second group will beP, D, andF
waves. They are still sensitive to the short-range part
therefore to quark dynamics, but the middle-range and
spin-orbit terms also play a dominant role. Finally, wav
with orbital angular momentumL.3 depend fundamentally
on the middle and long-range part of the interaction. Qu
dynamics should not be relevant, but these waves may
used to study the chiral component of theNN interaction.
We will also present our results for the mixing paramete

A. S waves

In Fig. 3~a!, we show the results for the1S0
NN partial

wave. Angular momentum selection rules prevent this ch

FIG. 4. NN 1P1 phase shift. The dashed and solid lines have
same meanings as in Fig. 3~b!. The dashed-dotted line shows th
effect of antisymmetry, corresponding to the result when all
exchange kernels are removed.

TABLE V. Low-energy scattering parameters.

Quark OBEP@1# Paris@35# Expt. @42#

anp (fm) 227.010 223.750 217.612 223.748(10)
r np (fm) 2.64 2.71 2.88 2.75~5!

at (fm) 5.437 5.424 5.427 5.419~7!

r t (fm) 1.779 1.761 1.766 1.754~8!
03400
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FIG. 5. NN 3PJ phase shifts.~a! Same meaning as in Fig. 3~a!.

~b!, ~c! The dashed line corresponds to the result withNN channels
only, and the solid line includesNN andND channels.
2-9
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nel from coupling to otherNN channels. As pointed ou
before, the chiral components of theNN interaction do not
provide enough attraction to reproduce the experimental
~dashed line!. The required attraction is supplied by the co
pling to the 5D0

ND channel~dotted line!. A complete agree-
ment with the experimental data is obtained when the c
pling to DD channels is included~solid line!. For the
isotriplet partial waves, the effect of the coupling toDD
channels is very small as shown here, and as will be a
seen for higher angular momentum partial waves. Theref
in order to simplify the calculations, we will simulate th
coupling ~which always translates into an additional attra
tion! by means of a small modification of the mass of t
scalar potential for these channels. As a consequence, fo
rest of the isotriplet partial waves, we will adopt a mass
3.421 fm21 for the scalar particle. This is the same val
used in a recent study of the1S0 partial wave@40#, where we
did not includeDD channels. In Fig. 3~b!, results corre-
sponding to the deuteron quantum numbers are shown.
agreement with the experimental data is also good. The c
pling to theDD channels~solid line! has a very small influ-
ence on the phase shift, showing that the important chan
are those coupled by tensor potentials.

The short-range repulsion of the potential is very w
reproduced without introducing any additional paramete
The presence of a pseudoscalar interaction reduces the
of as in the OGE~the interaction usually advocated to e
plain the short-range repulsion of theNN potential!, but Ref.
@41# shows that antisymmetry effects on the pseudosc
potential provide a strong spin-isospin independent rep
sion, which allows us to reproduce the behavior of t
S-wave phase shifts even in the absence of OGE.

We show in Table V the low-energy scattering para
eters. TheNN scattering length in the1S0 state is extremely
sensitive to small changes in the strength of the force as t

FIG. 6. NN 1D2 phase shift. The solid, dashed, and dotted lin
have the same meanings as in Fig. 3~a!. The dashed-dotted line
represents the result without exchange kernels.
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FIG. 7. NN 3DJ phase shifts.~a! Lines are labeled as in Fig
3~b!. ~b!, ~c! The solid line corresponds to the result withNN
channels only.
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FIG. 8. NN F phase shifts. In theT50 sector, the solid line includesNN channels only. In theT51 sector, the dashed line correspon
to includingNN channels only, and the solid line considers alsoND channels.
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exists an almost bound state in this partial wave. A deta
discussion of the scattering length problem in the sa
model presented here~as mentioned above without includin
DD channels! has been done in Ref.@40#. One should be
aware that the quark model results in Table V have b
calculated with a unique set of parameters, without differ
tiating T50 andT51 channels. A nonsignificant modifica
tion on the mass of the scalar boson in theT51 channel will
drive the exact result for this observable.

B. P, D and F waves

Among the fourL51 waves, only the1P1 is not affected
by the spin-orbit interaction. As we can see in Fig. 4, t
result of our calculation~corresponding to the solid line! is in
perfect agreement with the experimental data. Let us n
that this calculation, as well as all others that we will sho
next, is a parameter-free calculation, in the sense expla
in Sec. III: that is, the model parameters of Table I are fit
03400
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to different observables. It is also interesting to notice th
for the 1P1 partial wave, the quark substructure of th
nucleon still plays an important role. Indeed, in the sa
figure, we denote by the dashed-dotted line the calcula
done by removing the terms coming from the antisymme
of the quarks, and the phase shift becomes attractive.
result is easily understood in terms of the pseudoscalar in
action ~OGE does not contribute toP waves because of its
d-like behavior!. In fact, at short range, the direct pseud
scalar potential is repulsive forS waves, but is attractive for
the 1P1 wave due to the sign change of the spin-isos
matrix element. Only the antisymmetry terms of the pseu
scalar potential produce this correct behavior.

In Fig. 5, the 3PJ triplet phase shifts are shown. As w
can see in Fig. 5~a!, and has been explained forSwaves, the
coupling toDD channels in higher angular momentum is
triplet partial waves is very small. A lack of spin-orbit inte
action prevents an appropriate reproduction of the exp
2-11



D. R. ENTEM, F. FERNA´ NDEZ, AND A. VALCARCE PHYSICAL REVIEW C 62 034002
FIG. 9. NN G phase shifts. Lines have the same meanings as in Fig. 8.
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mental data. The coupling toND channels, suggested as
possible solution of the spin-orbit problem, does not impro
the description.

D waves are shown in Figs. 6 and 7. As a general tre
one observes that there is too much attraction, except for
3D1 partial wave where the experimental data are perfe
reproduced. While for isotriplet partial waves1D2 the cou-
pling to ND channels is still important~worsening the qual-
ity of the results!, the coupling toDD channels does no
produce any considerable effect. For this reason, the c
pling to DD channels will not be included for higher isotrip
let partial waves. We also notice that, for these waves,
influence of the antisymmetry diminishes as compared tS
andP waves.

As in the case of Kaiseret al. @43#, we observe how theD
waves are correctly reproduced up to about 80–100 M
03400
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d,
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,

which may be considered as the characteristic window wh
theNN interaction is basically governed by chiral symmetr
Higher energies require an improvement in the description
short-range effects, as could be the spin-orbit force wh
still plays an important role forD waves.

The phase shifts forF waves are shown in Fig. 8. We se
how, in general, there is a better agreement than inD waves
up to higher energies of 150–200 MeV. We have includ
again the calculation without coupling toND channels for
isotriplet partial waves. As forP andD waves, the coupling
to ND channels produces too much attraction. An agreem
is obtained of the same quality as the results reported
Refs.@5,43#.

A comment must be made about the3F2 phase shift. This
wave is coupled to the3P2 wave, which has a strong influ
ence of the spin-orbit interaction. The spin-orbit interacti
2-12
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FIG. 10. NN H phase shifts. Lines have the same meanings as in Fig. 8.
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is attractive for the3P2 wave and repulsive for the3F2.
Therefore, we expect that when the3P2 wave approaches th
experimental data, the3F2 will also do the same.

C. G, H, and I waves

In Figs. 9, 10, 11, and 12, we show the results forG, H, I,
andJ partial waves up toJ56. The predictions of the mode
are in good agreement with the experimental data, being
damentally dominated by the interaction of chiral orig
Isotriplet partial waves show that the coupling toND chan-
nels, so important for low angular momenta, becom
smaller but contributes to improve the results.

For high angular momentum partial waves, our results
similar to those obtained by effective theories@5,43#, indicat-
ing that these waves are governed exclusively by chiral s
03400
n-
.

s

re

-

metry. However, as previously discussed, the effective th
ries trying to reproduce low partial waves need to introdu
a large number of parameters~more than 20 in Ref.@3#!.

D. Mixing parameters

Finally, we show in Fig. 13 the mixing parameters for t
tensor couplings between differentNN partial waves. As can
be seen, all of them are correctly reproduced except fore1
~which represents the tensor coupling3S12 3D1) and e2
~which represents the tensor coupling3P223F2).

For e2, we cannot draw any definite conclusions, beca
our model does not describe accurately the3P2 and 3F2
partial wave phase shifts. However, fore1 @solid line in Fig.
13~a!#, we have a very good description of the3S1 and 3D1
phase shifts, and we see that the mixing parameter has
2-13
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FIG. 11. NN I phase shifts withJ,6. Lines have the same
meanings as in Fig. 8.
03400
right behavior only at very low energies. This seems to in
cate the existence of a weak short-range tensor force, an
introduction of some new mechanism may be needed. If
includeNN components only~dashed line!, the result seems
to be in better agreement with the experimental data. Thi
only due to the fact that the3S1 phase shift has, in this case
a lower value and it is not an effect due toDD components.

Higher angular momentum mixing parameters are g
erned by the pseudoscalar tensor term and have a g
agreement with the experimental data.

VII. SUMMARY

Starting from the common belief that QCD is the unde
lying theory of the strong interaction, one is entitled to d
mand that hadron physics be formulated in terms of the b
quark degrees of freedom. Only in this way will we be ab
to describe the hadron structure and the hadron-hadron in
action in a consistent framework, and possibly shed so
light on the true nature of nuclear forces. This work attem
to be a step in that direction. We use constituent quarks
the basic degrees of freedom in a model which incorporat
spontaneously broken symmetry of the QCD Lagrangian~the
chiral symmetry!. We are able to formulate QCD at low
energy as an effective theory of massive quarks interac
through gluons and Goldstone bosons. Keeping the qu
degrees of freedom~and not integrating them out, as done
effective field theories! is of capital importance in order to
generate the short-range part of theNN interaction through
the quark Pauli principle. As a consequence, one obtain
physical mechanism which does not resort to contact te
and limits the number of free parameters in the model. B
sides, such a mechanism allows us to generate the s
range behavior of any other hadron-hadron potential in
completely parameter-free way.

For the solution of the two-body problem, we have dev
oped a RGM calculation in momentum space. We have p
posed a method to solve the resulting coupled-chan

FIG. 12. NN 3J6 phase shift. Lines have the same meanings
in Fig. 8.
2-14
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FIG. 13. Mixing parametere for coupledNN partial waves.~a! Lines have the same meanings as in Fig. 3~b!. All others labeled as in
Fig. 8.
034002-15
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Lippmann-Schwinger equations. This new formalism will a
low us to extend the calculation to above the pion thresh
Our method was used to obtain theNN scattering phase
shifts ~up to a total angular momentumJ56), and the deu-
teron observables. Full couplings toND and DD channels
were considered. The model here proposed is able to re
duce theNN phase shifts with good precision, except for t
3PJ waves. The3PJ problem relates closely to the lack of
spin-orbit force in our potential, a topic which deserves s
cial treatment outside this general work. Deuteron obse
ables are also reproduced with high accuracy with the s
model parameters.

For low angular momentum partial waves, the influen
of the antisymmetry between quarks is very important, p
viding the short-range repulsion needed to reproduce the
perimental data. The quark Pauli principle affects not o
the S waves, but has also importance for theP waves.

The ND components give an important contribution
the1S0

NN channel through the tensor coupling1S0
NN2 5D0

ND .
This coupling, which plays a similar role to the3S1

NN

2 3D1
NN in the 3S1

NN channel, provides the attraction need
to reproduce the experimental data. The coupling toDD
channels can be quantitatively simulated by a slight mod
cation of the model parameters. However, there are ind
tions that certain observables~like the structure functions o
the deuteron! require the presence of these components in
wave function of the deuteron. Higher angular moment
partial waves are dominated by the pseudoscalar interac
and a good agreement with the experimental data is obtai

The mixing parameterseJ deserve special mention. I
general, they are well reproduced, except fore1 and e2.
While the disagreement fore2 can be easily understood, th
case ofe1 seems to indicate that there are details concern
the tensor force which are still missing in our model.

The present model, based on quite simple physical
potheses and a reduced number of parameters, provid
promising description of theNN system below the pion
threshold. The next step concerns the study above the
threshold, which will be addressed in the near future.
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APPENDIX

In this Appendix, we give the formulas needed for t
calculation of the kernels appearing in Eq.~20!. All results
are written as operators in spin-isospin-color space. The
responding matrix elements in these spaces are evaluate
means of standard SU~2! and SU~3! techniques@44#.

The internal energy of each baryon appearing in Eq.~20!
is calculated as

EB5TB
int1^BuV12

intuB& ~A1!
03400
d.

ro-

-
v-

e

e
-
x-
y

-
a-

e

n,
d.

g

y-
s a

on

-

e

r-
by

with

TB
int5

3

2mqb2
,

V12
int5334pE e2(b2/2)q2

V12~q!q2 dq. ~A2!

The norm and kinetic energy exchange kernels appea
in Eq. ~22! can be calculated analytically,

RGMNE~PW 8,PW i !529F3b2

4p G3/2

3e2(5/12)b2(P821Pi
2)1 ~1/2! b2PW 8•PW iP36

STC,

~A3!

RGMTE~PW 8,PW i !5 RGMNE~PW 8,PW i !H 33
3

4mqb2
1

1

8mq

3~3P8213Pi
22PW 8•PW i !J , ~A4!

where we use natural units (\5c51) andP36
STC is the ex-

change operator for quarks 3 and 6 in the spin-isospin-c
space.

In general, the interactions kernelsRGMVD(PW 8,PW i) and
RGMVE(PW 8,PW i) for two-body potentials depending on mo
mentum transfer are given by

Vi j 5Vi j ~pW i j8 2pW i j !d
3~PW i j8 2PW i j ! )

kÞ i , j
d3~pW k82pW k!,

~A5!

whereVi j (pW i j8 2pW i j ) is the sum of the potentials with differ
ent spin-isospin-color dependences, and

pW i j 5
1

2
~pW i2pW j !,

PW i j 5pW i1pW j . ~A6!

The direct potential is given by

RGMVD~PW 8,PW i !59 e2[b2(PW 82PW i )
2]/3Vqq~PW 82PW i !, ~A7!

while the exchange terms are

TABLE VI. Coefficients for the RGM kernels of the Appen
dix.

i j a i j bi j ci j M i j

36 3/4 1/2 1/2 1
14 1 21 1 4
13 11/16 21/4 3/4 4
16 11/16 3/4 21/4 4
2-16



nt

n
o-

CHIRAL QUARK MODEL OF THE NN SYSTEM WITHIN . . . PHYSICAL REVIEW C 62 034002
RGMVi jE~PW 8,PW i !529Mi j F3b2

4p G3/2

3e2b2[(5/12)PW 821(5/12)PW i
22(1/2)PW 8•PW i ]

3E dqW e2b2[ai j q
W 21bi j q

W
•PW 81ci j q

W
•PW i ]

3Vi j ~qW !P36
STC,
.

y

.

cs

03400
RGMV12E~PW 8,PW i !5~V12
int1V45

int! RGMNE~PW 8,PW i !, ~A8!

wherei and j refer to the pair of interacting quarks, andMi j
is a multiplicity factor indicating the number of equivale
interactions. The coefficientsai j , bi j , ci j , andMi j are given
in Table VI.

Formulas~A7! and ~A8! contain an angular integratio
which can be done explicitly for central and tensor-type p
tentials.
Central potentials.

RGMVi jE~PW 8,PW i !529Mi j F3b2

4p G3/2

e2b2[(5/12)P821(5/12)Pi
22(1/2)PW 8•PW i ]4p

3E dq q2 i 0~b2qAbi j
2 P821ci j

2 Pi
212bi j ci j PW 8•PW i !e

2b2ai j q
2
Vqq~q!P36

STC, ~A9!

wherei l(x) are the modified spherical Bessel functions of the first kind.
Tensor potentials. Assuming a tensor potential at quark level of the type

Vi j
T ~qW !5Vc

T~q!@qW ^ qW #2
•@s i
W ^ s j

W #2, ~A10!

the result for the kernels is

RGMVi j
T

E~PW 8,PW i !529Mi j F3b2

4p G3/2

e2b2[(5/12)P821(5/12)Pi
22(1/2)PW 8•PW i ]4pE dq q4

i 2~b2qAbi j
2 P821ci j

2 Pi
212bi j ci j PW 8•PW i !

bi j
2 P821ci j

2 Pi
212bi j ci j PW 8•PW i

3e2b2ai j q
2
Vc

T~q!@~bi j PW 81ci j PW i ! ^ ~bi j PW 81ci j PW i !#
2
•@sW i ^ sW j #

2P36
STC. ~A11!
,
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