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Choice of colliding beams to study deformation effects in relativistic heavy ion collisions
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It has been suggested that collisions between deformed shapes will lead to interesting effects on various
observables such &s production and elliptic flow. Simple formulas can be written down which show how to
choose the colliding beams which will maximize the effects of deformation.

PACS numbds): 25.75~q, 21.60.Ev, 24.10.Lx

In the nuclear periodic table there are large regions wherentrinsic state with respect to the lab. All of this is, of course,
nuclei are deformed with prolate intrinsic shapes. Recent cala very standard rotational model.
culations[1,2] suggest that if one can arrange to have tip-on- We need to chooseM such that the one-body density in
tip collisions (collision axis=symmetry axi$ of two prolate  the lab is as deformed as possible. This is not so transparent.
shapes, the physical results are significantly different fronHowever, if the expectation value of the quadrupole moment
when the collisions are side-on-sitbe collision axis is per- is large the density should show large deformation since the
pendicular to the symmetry axisif unpolarized beams are quadrupole mode is the basic deviation from sphericity. To
used, interesting events will be buried among many uninterevaluate the expectation value of the quadrupole operator
esting ones. The occurrence of the interesting events can b8Y,y(x) in the lab we express the operator in the body-fixed
enhanced by using polarized beams. We perform a quantitaystem: r?Y,o(x)==,,D3,* (Q)r?Y,,(x’). One then ob-
tive estimate here. tains

For an unpolarized beam, the average density is spherical.
One still will see effects of deformation because we shall (¥ yk|r2Yao(X)| ¥ mk)=(12MO|IM)(12KO|IK)
assume that heavy ion collisions sample many-body correla (D (X)[F2Y s X )| (X))

tions contained iN¥ (r,,r,, . ...ra)|? the collision knocks
out all particles. Having a patrticle 51; influences the prob- (4)

ability of seeing a particle at,, etc. But not having control  |n this equation, the first two terms on the right-hand side are
of the overall orientation is a problem: we would, for ex- Clebsch-Gordan coefficients, the third one is the deformation
ample, like to enhance the chance of tip-on-tip collision. It isof the intrinsic state. One might want to argue that the last
then necessary to control even the one-body density. orbital is just one of many orbitals and can be dropped:
We use the rotational modgB] to extract answers. The (D (X) 1Y (X )| P (X)) = (Do (X ) |F2Y poX") | Do (X)).
wave function of the ground state of an oddeeformed |n that case the only role of the last odd particle is to align

nucleus can be written as the nucleus. The product of the two Clebsch-Gordan coeffi-
cients is the reduction in perfect alignment brought about by
21+1 i
-~ - , quantum mechanics.
Pimk=\ 162 [Dwic™ () Pk (x") Since we are in the ground staté=1, the key factor is
+(=)' KDYy * (D _((x)]. 1) R=(12MO|IM)(1210]I1). (5)
The symmetrization will play no role in what follows so we Clearly forM=1 one has approximate alignment in the di-
will use rection of the symmetry axis. The value of2(0|11)? is
[1(21=1)]/[(1+1)(21 +3)]. This goes to 1 as—o. This
21+1_, is the limit at which the frequency of the tip-on-tip collision
Wik = ?DM,K*(Q)(I)K(X’)- (2 is 100%.
T

For an oddA nucleus, assuming the direction ofs de-
fined by the collision axis, we need to ha\lel/2) to have
the “best” body-on-body collisions. The reduction factor is
simply calculated by the above formula.
D (X )=Do(X") r(X'). (3) The arguments presented here for @dddrclei should
hold for odd-odd nuclei as well. It is advantageous to choose
The ®y(x") is the intrinsic deformed state of the even-evena nucleus with a large ground state spin. Ground state spins
core andg,(x’) is the Nilsson model type orbitalp, (x’)  of 9/2 in the deformed regions are available. Perhaps the
=3,Cj|jk). One may wish to include antisymmetrization most advantageous nucleus from this point of view & u
between the core and the extra nucleon but for what we dwhich has 7 as its ground state spin.
later this will not matter. For many applicationBg(x") If a density in the intrinsic statpy(x’) is assumed, the
plays no role and is suppressed. As us(ak o, 8,y are the  one-body density of the stati,,,« can be numerically com-
Eulerian angles specifying the orientation of the deformedputed from[(21+1)/4a]f|d}, «(8)|?sinBdBdyp4(X',B,7).

We use the convention of Rogd] for D functions. The
quantity ®«(x") consists of two parts:
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To conclude, we find that in order to study the role of  We are thankful to E. Shuryak for emphasizing to us the
deformation in high energy heavy ion collisions it will be many-body correlation aspects of relativistic heavy ion col-
judicious to choose nuclei with high spin in the ground statelisions, and to J. Barrette, C. M. Ko, and C. Pruneau for
By choosing|l1) states where the axis is the collision axis useful exchanges. This work was supported in part by the
one can enhance tip-on-tip collisions. By choosing/2) Natural Sciences and Engineering Research Council of
states one can enhance body-on-body collisions. Quantu@anada and in part by the Fonds FCAR of the reeGov-

mechanics will prevent a perfect alignment. ernment.
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