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Mixed quark-nucleon phase in neutron stars and nuclear symmetry energy
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The influence of the nuclear symmetry energy on the formation of a mixed quark-nucleon phase in neutron
star cores is studied. We use simple parametrizations of the nuclear matter equation of state, and the bag model
for the quark phase. The behavior of nucleon matter isobars, which is responsible for the existence of the
mixed phase, is investigated. The role of the nuclear symmetry energy changes with the value of the bag
constantB. For lower values oB the properties of the mixed phase do not depend strongly on the symmetry
energy. For largeB we find that a critical pressure for the first quark droplets to form in the nucleon medium
is strongly dependent on the nuclear symmetry energy, but the pressure at which last nucleons disappear is
independent of it. We study the implications of these results for the structure of neutron stars. The finite-size
effects are also considered. We find that the allowed range of surface tension for the mixed phase to be
energetically favorable depends strongly on the nuclear symmetry energy.

PACS numbes): 26.60+c, 21.65:+f, 97.60.Jd, 12.38.Mh

[. INTRODUCTION crepancy leads to serious uncertainty about some astrophysi-
cally relevant properties of the neutron star matter. Here we
Recently, Glendenninfl] has shown that a proper con- study the consequences of this uncertainty for the nucleon-
struction of the nucleon-quark phase transition inside neutroquark phase transition in neutron star cores.
stars implies the coexistence of nucleon matter and quark
matter over a finite range of pressure. This has the effect that Il. QUARK MATTER IN NEUTRON STARS
a core, or a spherical shell, of a mixed quark-nucleon phase

can exist inside neutron stars. The fraction of space OCCUpiegeGll)er]Sgr?nr:E?nzecfgztt:zgtelﬁntv(\jlgsgﬂggzsa Ig'lnl?sb?rlnsde“r/nlsiltci)\:‘eotfo

by quark matter smoothly increases from zero at the cor e geometrical form of the volume enclosing, respectivel
boundary, which corresponds to a critical pressure for th 9 9 pectively,
nucleons and quarks. To account for the shape and size of

first quark droplets to form in the neutron star matter, todro lets of each phase. one should include the surface ten-
unity when eventually the last nucleons dissolve into quarks.. P P ’

Heiselberget al. [2] included surface and Coulomb effects ngrkatnggftelf tiﬁzcecg&gvnfs nir:?eerar;ltjiglre Onann&atttﬁé a[r)lgbtf;e
also in the mixed phase construction and concluded that th . o o y
creening. Inclusion of these effects results in some correc-

mixed phase remains the ground state of the neutron st lons to the equation of state, which do not alter considerabl
matter for a physically reasonable range of surface tension quation ' . >laerably
the results of this simple approach. We discuss finite-size

In the original construction due to Glendenning, nucleon X . .
matter was treated in the relativistic mean figl@MF) effects in Sec. \./I Where both th? Coulomb |nteract|on and
the surface tension are included in the calculations.

model. The nuclear symmetry energy in the RMF model in- The equilibrium conditions, in the case where the geom-

creases monotonically with the baryon number densty .
This is in contrast to several variational many-ba¥vB) etry of droplets is neglected, are those for bulk systems. The
neutron star matter is assumed to Bestable and charge

calculations of the equation of stateOS of nuclear matter Heutral Thermal effects are not expected to play any impor-
[4], which predict the symmetry energy to saturate and the ant role in neutron star cores. We neglect them and put the

to decrease at high densities. The aim of this paper is temperatureTzO.

study how sensitive the formation of a mixed guark-nucleon The equilibrium conditions for the quark matter droplet to

phase in neutron stars is to the high density behavior of the . ; .
nuclear symmetry energy coexist with the nucleon medium are that pressure and

It was suggested in Reff1] that the isospin properties of chemical potentials in both phases coincide. We choose pres-

the RMF model are responsible for the existence of th ure as an independent variable. The coexistence requires

mixed quark-nucleon phase. We show here that it is the be-hat

havior of nucleon matter isobars that allows the existence of Niny— 4 1
. . . . an(pP) = uy(Pp) (1)
the mixed phase, irrespective of the particular form of the
nuclear symmetry energy. and
One should stress that different nuclear matter models,
which fit the saturation point, display a rather diverse high up(P)=ud(p), 2

density behavior of the nuclear symmetry energy. As men-

tioned already, variational calculations with phenomenologiwhereuy and s, are the neutron chemical potentials in the
cal nucleon-nucleon potentials predict a density dependendwicleon and the quark phase, respectively. Similarfyand

that is incompatible with that of the RMF models. This dis- u3 are the proton chemical potentials in respective phases.
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To solve the above coexistence conditions we construct iso- 0.8
bars for both phases of baryon matter. 0.6 RMF
The B-equilibrium condition reads T; g;‘:
i C_ D8 ——
MUNT Mp=Me, 1=N,Q, () = .0
. . . 0.4 VMB
wherepu, is the electron chemical potential, anéndq refer 06
to the nucleon and the quark phases, respectively. It turns out T 0% o4 06 o8 1 12 14 1%
that muons can safely be neglected as the electron chemical n [fm~?]

potential remains low. We assume that the electron distribu-
tion is uniform. In this case, neglecting the electron rest
mass,

FIG. 1. The interaction energy,(n) as a function of the baryon
number density, for the VMB and RMF models.

_ 2, \13 31

(37%ne) 3, (4) T(n,x)=§ﬁ(3772n)2’3[(1—x)5’3+X5’3]. ®)
wheren, is the electron density.

Solutions of Eqgs.(1)—(3) provide the densities of both The functionsvy(n) andV,(n) represent the interaction en-
baryon phasesp andn,, wherenp is the proton density and ergy contributions. The forr(i7) of the energy per particle is
ng is the electric charge density of quarks in unitseolfhe  a very good approximation of the numerical calculations as

global charge neutrality condition requires that far as thex dependence is concerngl.
From Eq.(7) we obtain the pressure and chemical poten-

Vne=Vanp+Vqng, (5 tials of neutrons and protons. The pressure is
whereV, is the volume occupied by nucleons avg is the 21
volume of quarks. Sinc¥,+V,=V, the total available vol- P=z %(3w2n)2’3n[(1—x)5’3+ x53]
ume, we can define a quantity=V,/V, which is the frac-
tion of space containing nucleons. The quarks occupy a +n2V()(n)+(1—2x)2n2V§(n). 9
complementary fraction, X «, of the volume. From Eq5)
we obtaina in the form The chemical potentials read

o= Mla (6) uh =i(3w2n)2’3[(1—x)5’3+ X(1—x)23]+Vy(n)
Np—Nq NT2m 0
At a sufficiently low pressure we expeat=1, as free +nVg(n)+(1=4x*)Vo(n)+(1-2x)°nVy(n) +m,

guarks are absent in the neutron star matter. The first quark (10)

droplets form at some pressupg, which we refer to as the
lower critical pressure. It correspondsdastarting to deviate

from unity for the first time. With increasing pressure, more ,up=—(37r 2n) 29 x5+ (1—x)x?3]+ Vo(n) + nV4(n)
space is filled with the quark matter ard<l1. Nucleons

disappear at the upper critical presspre with «(ps)=0. +(—3+8x—4x*)V,(n)+(1-2x)nVj(n) +m.
For pressure in the rangge<p<ps, nucleon matter coexists

with quark matter. (11)

The lower and upper critical pressure valygsand p;

Our aim here is to study the influence of the nuclear sym-
depend on both the nucleon matter EOS and the model oft y y

etry energy on the mixed phase properties. The energy per
%artlcle Eq.(7), is well suited for this purpose as only the
functionV,(n) enters the expression for the nuclear symme-
try energy, which is

used in our calculations of properties of the mixed phase.

Ill. THE NUCLEAR SYMMETRY ENERGY AT HIGH

DENSITIES

5] +Vam). 12

Esyn{n)= §T

Following Ref.[5], we adopt a simple parametrization of
the nuclear matter EOS. As shown in Ri], the results of
variational many-body calculations with phenomenologica
nucleon-nucleon potentials can be simply parametrized as
function of the baryon number density and the proton frac
tion. The energy per particle can be expressed as

[To account for the uncertainty in high density behavior of
I;Sy,,(n) we use different parametrizations \@§(n), keep-
ing the functionVy(n) fixed.
As an example of variational many-body calculations, we
use the EOS with the UVE4TNI interactions from Wiringa,
E(n,x)=T(n,x)+Vo(n)+(1—2x)2V,(n), 7) Fiks, and Fabrocini{4]. Polynomial fits of this EOS are
given in the Appendix. In Fig. 1 we show the functig(n)
wheren is the baryon number density and=np/n is the  corresponding to the UVE4TNI interactions. One should
proton fraction. The kinetic energy contribution is note that with thisV,(n) the symmetry energyl2) repro-
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FIG. 2. The proton fraction of th@-stable neutron star matter z
corresponding to the interaction energy(n) in Fig. 1, for VMB FIG. 3. Proton and neutron chemical potentials of nucleon mat-
and RMF models. ter as functions of the proton fraction for indicated values of pres-

sure, for VMB and RMF models.
duces the empirical valuds{ng) =34+4 MeV [6]. At

higher densities,Eqy{n) saturates and then decreaseswheren;, i=u,d,s are the quark number densities. The
reaching negative values for>1.0 fm 3, quark chemical potentials are
The energy per particle of the RMF model can also be o 13
i i in thi i (=N i=u,d,s. (15
cast in the form(7) [7]. The functionV,(n) in this case is Mi i 4
5 The pressure of quark matter reads
10
Vz(n)zggn. (13)

h~)

1
p= g2 (ki it ug) —B. (16

The coupling parametegzplmi is adjusted to fit the empirical Below we show results corresponding to two values of the
value of the nuclear symmetry energy,{no). The func- o4 congtanB=120 MeV/fn? andB=200 MeV/n?. We

tion V5(n), Eq.(13), grows linearly with the baryon number 5456 these values in order to assess the sensitivity of the
densityn, Fig. 1, and thus the nuclear symmetry energy "Mmixed phase properties to the bag constant, which is treated

the RMF model increases monotonically withAs we aré  pare a5 3 phenomenological parameter subject to a substan-
concerned here mainly with the role of the symmetry energy;;| uncertainty

we model the energy per particle corresponding to the RMF

theory using the functioW,(n) in the form(13) and keeping do

other contributions in Eq.7) the same as in the VMB case.
The B-equilibrium condition(3) and the formulag10) L= Ms, (17)

and (11) show that the proton fraction of the neutron star

matter is fully determined by the functiod,(n). In Fig. 2 and the chemical potential of up quarks satisfies the condi-

we show the proton fraction corresponding to both forms oftion

V,(n). For both curves, the proton fraction at is X

~0.05. This is due to the empirical val&g,{ny), which is Md= Myt Me- (18)

reproduced by both forms &f,(n). At higher densities, the ) o

behavior ofx(n) is different in the two cases. The RMF Proton and neutron chemical potentials in the quark phase

model predicts thak(n) monotonically increases with the 2'©

density, whereas folV,(n) corresponding to the UV14

+TNI interactions, the proton fraction decreases wittand

eventually_protons o!sappear completely at some qlensﬂy G oy 20

n,, x(n,)=0. The disappearance of the proton fraction at MNT HuT 2Md

high densities is a general property of nuclear interaction

models that give/,(n)<0 [8].

The B equilibrium requires that the chemical potential of
wn and strange flavors is the same,

wp=2pyt pg, (19

The simplest way to solve the equilibrium conditiofis
and (2) is to construct isobars for the nucleon and quark
matter in theup-wy plane. This can be done easily for the
IV. QUARK AND NUCLEON ISOBARS nucleon matter since proton and neutron chemical potentials,
. . . or a given value of pressure, are parametrized by one inde-
qu:tieor?%?rslfna?;at\ssg :Jssed?;ecggerzr(]je %grgr:érgegeag?gg;del?endent varigble. For the quark phase, we impose the condi-
The energy deﬁsity for three flavors is, neglecting br;tretIon (.17)’ wh|ch.reduces thg number of independent quark
masses ’ themical potentials, for a given pressure, to two. Hencg for
' each phase one can draw an isobar, a parametric curve in the
3 Mmp-myn plane corresponding to a fixed pressure.
_ > 213 43, 43, 43 For the nucleon phase we parametrize isobars by the pro-
€=z (Nu+Ng+nH+B, (14 ton fractionx. As an example, in Fig. 3 we show proton and
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FIG. 4. Proton and neutron chemical potentials in quark matter
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as functions of the down-quark chemical potential. VValues of pres-
sure and the bag constant are in MeVifrBolid and dashed curves (1) and(2) are fulfilled at the crossing point of the nucleon

correspond, respectively, to neutron and proton chemical potentialsnd quark

neutron chemical potentials as functionsxdr two values
of pressurep=20 MeV/fm® and p=100 MeV/fn?. One

isobars

py [fm™']

FIG. 6. The same as in Fig. 5 for pressyre 100 MeV/fnT.

on theup-uy plot. Also, the

B-equilibrium condition(3) is satisfied at this point with the

electron chemical potentigbe=up— uy. This formula al-
lows us to calculate the density of the homogeneous electron

can see that fop=20 MeV/fn?® the proton and neutron backgroundh, from Eq. (4).
chemical potentials corresponding to VMB and RMF models  The quark matter isobars are calculated assuming the

do not differ much

from one another.

Fomp

strange quark mass to vanishy=0. This approximation is

=100 MeV/fn?, the VMB and RMF curves deviate signifi- justified for pressure values relevant to our analysis, as in

cantly. In particular, the differenceuy(p,x=0)— up(p,X

this range isobars correspondingnig=0 and to the empiri-

=0) decreases with pressure for the VMB model, whereas igal value of the strange quark mass,=150 MeV, are
similar. Also, the lowest values of the strange quark chemi-

increases for the RMF one.

In the quark phase, using the condititk¥), one finds an

cal potential obtained from the coexistence conditi¢hs

isobaric relation between up and down quark chemical poand (2), us~400 MeV, exceed the empirical massg
=150 MeV considerably. Corrections due to the empirical
value of the strange quark mass would result in small

tentials in the form

py=47%(p+B)—2ug.

(21)

changes of the critical parameters corresponding to the for-

mation of the first quark droplets.

We chooseuy as an independent variable. In Fig. 4 the pro-
ton and neutron chemical potentials in the quark matter are

shown for the same values of pressure as abqve,

=20 MeV/fm® and p=100 MeV/fn?, for both values of

the bag constanB=120 MeV/fn? andB=200 MeV/fn?.
that the curve corresponding o
=20 MeV/fm® and B=200 MeV/fn? coincides with that

One can see

for p=100 MeV/fn? andB=120 MeV/fnt.

Isobars for the two phases are shown in Figs. 5 and
where up is plotted againsjy for p=20 MeV/fm® andp
=100 MeV/fn?, respectively. The coexistence conditions

6_ - T \‘
T T RN !
e PP y J
5 - - T i ,//
:_|‘_‘ e /'/.“I s //
E 7 K
:’ 4 ,,// /,/'/
= |[—=rwMr B=120 ,~ 7
3 - VMB 4
_____ QUARKS 7 ~B=200
| p:20 MeV/fm3 //,/’ ,-/,
25 § 35 1 45 5§ 555
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FIG. 5. VMB and RMF nucleon isobars, and quark isobars for
two values of the bag constant, for presspre20 MeV/fn?.

V. RESULTS AND IMPLICATIONS FOR NEUTRON

STARS

In order to find a critical pressure indicating the onset of
the phase transition to quark matter, we analyze how the
crossing of nucleon and quark isobars changes with pressure.
For very low values of pressurep<1 MeV/fm®, the

Bhucleon isobars for both VMB and RMF models do not cross
the quark isobars, for both values of the bag constant. With
increasing pressure, the lower end point of the nucleon iso-

bar, corresponding ta=0, merges with the quark isobar at
some pressure valy®. At this pressure pure neutron matter
can coexist with quark matter. This, however, is not the situ-
ation encountered in neutron stars, where at this value of
pressure the neutron star matter contains a small proton frac-
tion of about 5%, as shown in Fig. 2. For higher pressure,
p>po, the proton fraction at the crossing point of the
nucleon isobar with the quark isobar increases. The forma-
tion of the first quark droplets in the nucleon medium starts
at such a pressung that the proton fraction of the nucleon
matter at the crossing of the isobars coincides with that of the
[B-stable neutron star matter at this pressure. The pregsure
is referred to as the lower critical pressure.

ForB=120 MeV/fn?, the lower critical pressure for the

VMB and RMF isobars is, respectivelyy;=2 MeV/fm®
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FIG. 7. The fraction of the mixed phase volume filled with _ _ _
nucleons as a function of pressure for VMB and RMF models and FIG. 9. Concentrations of quark flavors in quark matter coexist-
for both values oB. ing with nucleon matter as functions of the quark baryon density.

3 o . tion of the mean baryon number densﬁy
andp;=3 MeV/fm°. The upper critical pressupg at which

the last nucleon droplets immersed in quark matter finally n=an+(1—a)n%, (22)
dissolve, is the same for both VMB and RMF isobgps,
=115 MeV/fn? (see Fig. 6. where n and n®=(n,+ny+n)/3 are the baryon number

In the case oB=200 MeV/fn?, the lower critical pres- densities of, respectively, nucleon and quark matter. The
sure for VMB and RMF models is, respectively; density corresponding to the Igwer critical presspreat
=215 MeV/fn? and p;=35 MeV/fm®. The value of the which the phase transition startsis The phase transition is
upper critical pressure ig; =290 |\_/|eV/fm3. _ completed at the density; corresponding to the upper criti-

_ The fraction of volume filled with nucleonsy, is shown pressurg; . For B=120 MeV/fn?, n,=0.17 fm 2 is

in Fig. 7. For the lower value of the bag constal, ,nhroximately the same for VMB and RMF models. One can

=120 MeV/f’, the curves for VMB and RMF models are qtice that nucleon matter becomes more proton rich with

very similar. This is because the lower critical pressires  increasing pressure irrespective of the nuclear symmetry en-
almost identical in the two cases. The situation is quite d'f'ergy. At the upper critical pressugg disappearing nucleon

ferent for B=200 MeV/f. In this case the phase transi- 4roplets for both nuclear models are composed of symmetric
tion for the VMB model starts at much higher pressure than 3

for the RMF model. This reflects the fact that the VMB huclear matter. The corresponding densityis-0.8 fm =,
isobar becomes much shorter at high pressure than the RI\/’:I'—Or ET:_ZOO MeV/frTi the quark droplegs start to.form ata
one. One can easily see this difference in Fig. 6 where wéensitynj=0.84 fm = andn;=0.35 fm™*, respectively, for
showp=100 MeV/fn? isobars. the VMB and RMF models. Nucleons disappear rat

The results shown in Fig. 7 prove that the properties of=1.39 fm 3.
the nucleon-quark phase transition are very sensitive to the Properties of quark matter in the mixed phase are dis-
nuclear symmetry energy, for higher values of the bag conplayed in Fig. 9, where the flavor composition is shown for
stant. This is because, generally, the phase transition occub®th values of the bag constant. The flavor concentrations
at a higher pressure for higher values of the bag constant, ardef;=n;/n®, i=u,d,s. A strong dependence of the mixed
the VMB and RMF isobars differ much more at high valuesphase properties on the symmetry energy f&
of pressure. For low values & the phase transition starts at =200 MeV/fnT is best visible in this figure. Quark matter,

a low enough pressure for the nuclear symmetry energy ndbrming the first droplets at the lower critical presspre is
to affect the isobars significantly. composed mostly of negatively charged quarks. With in-

In Fig. 8 we show the proton fraction of nucleon matter creasing pressure the flavor composition becomes more sym-
coexisting at a given pressure with quark matter, as a funametric, and, at the upper critical pressyme the concentra-
tions of all flavors become equdl,=f4=f,. Quark matter
at p=ps is charge neutral.

The electron density is shown in Fig. 10. At the lower
critical pressurep;, n.=np, as only electrons compensate
the positive charge carried by protons. With increasing pres-
sure, negatively charged quarks become more abundant and

0.5
0.4+
© 0.3

0-29 the electron density decreases. Electrons disappear at the
0.14 ’m‘ pressureps when the whole available volume is filled with

. . . ___VMB electrically neutral quark matter.

02 04 06 [fn?g] 12 14 To investigate the consequences of the existence of a

mixed quark-nucleon phase for neutron stars we construct

FIG. 8. The proton fraction of nucleon matter coexisting with the equation of statp= p(;), where the mass density of the
quark matter as a function of the mean baryon number density. mixed phase is
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FIG. 12. Neutron star masses as functions of the radius for the

In Fig. 11 masses of neutron stars are shown as functions §fMe equations of state as in Fig. 11. The cross and the error box
the central density for pure nucleon matter and for the mixediepresent empirical constraints for the x-ray source MXB 1636-536.
guark-nucleon phase. The phase transition to quark matter . . .
makes the equation of state softer. The maximum mass odel than in the VMB case. Correspondingly, the_ mixed
neutron stars containing the mixed phase decreases as Com]-""sl’le c]corg[hof\}&eB ma>(<j|rrl1l:kr]n ”}asihneé"lt/rl?:n star is much
pared with the pure nucleon case. The effect is stronger formalier for the modet than for the one.

low values of the bag constant, as the mixed phase comprise? We als_o show in Fig. 12 neu,tron ;tar_masses as functions
more mass of the star than for highr Results shown in of the radius for the same EOS'’s as in Fig. 11. The error box
Fig. 11 exclude, in fact, low values of the bag constant agndicates the constraints on the mass-radius relation for the

for B=120 MeV/fn? the maximum mass is below the ob- &y burst source MXB 1636-536. In this case, equations of

servational limit. FoB=200 MeV/fn? the maximum mass St involving a mixed .phase . .the b_ag constant
safely exceeds this limit. In this case, the influence of the™ 129 'MeV/frrf are marginally compatible with the data.
It is interesting to note that the structure of a neutron star

nuclear symmetry energy is clearly visible. The maximum

mass corresponding to the RMF model is well below that forOf the canonical masl =1.44M, is even more sensitive to
the VMB model. Generally, reduction of the maximum masst"€ _form of the nuclear symmetry energy. Fd
200 MeV/fn?, with the RMF symmetry energy, such a

due to the presence of the mixed phase is much more signifi- W .
cant for the RMF model than for the VMB one. This reflects Star, whose radius is 12 km, possesses a mixed phase core
the fact that forB=200 MeV/fn? the phase transition to °f ~7 km radius. In the VMB model, the star is composed
quark matter starts at much lower pressure in the RMpENtirely of nucleons_. The central pressure _o_f the VMB star,
p.=120 MeV/fn?, is below the lower critical valuep;

9.9 =215 MeV/fn? at which the phase transition to the mixed

T quark-nucleon matter begins.
L UVIA+INI—L e
$a B=200 VI. COULOMB AND SURFACE EFFECTS
PSRBIOI3+I6 S S N . :

1.49 iy 120 Up to now we did not consider the space structure of the
2(9 . mixed phase. When the Coulomb interaction and the surface
S tension are included in the calculations, one can find a vari-
= ety of geometric structures formed by regions filled with

0.6 nucleons and quarks that have opposite electric charge den-

' sity [9]. The form of these structures changes with the frac-
--- VMB : ! .
tion of space filled with nucleonsy. It should be stressed,

0.27 however, that the mixed phagealled also, following Ref.

N Y T [2], the droplet phagds the ground state of the neutron star

3] matter only if the surface tension at the interface between
nucleon and quark matter remains sufficiently snp2]l In

FIG. 11. Neutron star masses as functions of the central densityN® OPposite case, the mixed phase will not be favored ener-
The dotted line corresponds to pure nucleon matter in the RMFIEtically and a phase transition will lead to the coexistence
model. The dash-dotted line is for pure nucleon VMB equation ofof two bulk electrically neutral phases. We investigate here
state. Solid and dashed curves are for equations of state involvingow the high density behavior of the nuclear symmetry en-
the mixed quark-nucleon phase. The horizontal line shows the energy influences the Coulomb and surface effects in the drop-
pirical lower limit to the maximum neutron star mass. let phase.
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We perform calculations using the Wigner-Seitz approxi- 4
mation. In this approach we assume that characteristic sizes
of structures in the droplet phase are less than the Debye
screening length, which is about 10 fm for the nucleon phase
and 5 fm for quark$2]. In this case electrons are essentially
uniformly distributed over the whole system and so are other
particles within a given phase. When the spatial scale of
structures is larger than the screening length the charge den-
sity becomes nonuniform and the mixed phase resembles
two coexisting neutral phases.

The geometric forms of structures considered here are
droplets or bubbles, rods, plates, and also intermediate '
forms, each of them characterized by a continuous dimen- 7 [fm9]
sionality parameted ranging fromd=3 for droplets tod

=1 for plates. For all these geometries the minimized sum of F'G- 13. The energy density of the mixed phase in th% VMB
Coulomb and surface energy densities reads model, for indicated values of surface tension(in MeV/fm?),

relative to its value forr=0 (solid curve$. The dashed curve is the
1/3 energy gain in the mixed phase with=0, with respect to electri-
cally neutral nucleon matter, quark matter and coexisting phases of
nucleon and quark matter. Open circles correspond to bulk neutral
(24) nucleon matter and quark matter that can coexist in the first order
phase transition.
The radius of the rare phase bubble immersed in the domi-
nant phase is are absent the mixed phase is energetically favored, as we
showed in Sec. IV by performing a proper construction of
the phase transition. Nevertheless, whea0 the situation
is different and for some high values of the surface tension
the mixed phase becomes energetically unfavorable. There-
Herenp(a) andny(a) are charge densities of nucleons andfore to see what is the ground state of neutron star matter one
quarks, in units ok, corresponding to a given proportion of should compare the energy density of the droplet phase with
phasesy. The quantityr expresses the characteristic sizes ofthe energy densities of nucleon matter, quark matter, and
geometric forms and particularly for droplets and rods iscoexisting electrically neutral phases of nucleon and quark
their radius, and in the case of plates is their half thicknessmatter.
In the above equationg is the fraction of volume occupied To account for the energy density of coexisting phases of
by the rare phase. It is equal to-x when nucleons are the electrically neutral nucleon matter and quark matter we per-
dominant phased=1/2) and quarks form different struc- form a double-tangent construction of the phase transition
tures, and it is simplyr in the opposite situationa(<1/2). It ~ from nucleon to quark matter. The energy density gain in the
also defines the half distance between structiResshich is ~ mixed phase with respect to nucleon matter, quark matter,
the radius of the Wigner-Seitz cell. The fractigncan be  and coexisting neutral phases of nucleon and quark matter,

VMB o=15

€ — & [MeV /fm?]

o?d[np(a) —ng(a)1%e*f4(x)
1672

ecte,= 677)((

ﬂ_[nP(a')_nq(a’)]zezfd(X) B

od

r=|4 (25)

expressed in terms of the two scaleandR as e— €, Wheree is the energy density of the mixed phase for
g o=0, is shown as a dashed curve in Fig. 13 and Fig. 14 for
x=(r/R)". (260  vMB and RMF models, respectively.
The functionfy(x) is 30

RMF c=200

DO
i

o0 = oe| o (2—dyt 20+ 2
a(x) dr2 d_2( X +x|. (27)

=i
It has a correct logarithmic limit fod=2. iQO
Having the values ofi, andn, from Egs.(1)—(3), and(5) = 15
we are able to calculate finite-size effects in the quark- -,
nucleon mixed phase. The values of betht ¢, andr are I
obtained by minimization of the energy, E@4), with re- l 104

spect tod for a given proportion of phasesand for fixedo.
Because the exact value of the surface tension is unknown
we keep it as in the work of Heiselbeeg al.[2] as a param-

eter which for simplicity is density independent. 0 04 06 08 1 12 14
For the mixed phase to be favorable, its energy density ) R 3 ' )
must be less than the energy densities of all other phases of fi [fm™]
baryon matter. Whemr=0 and Coulomb and surface effects FIG. 14. The same as in Fig. 13 for the RMF model.
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60 and their separations for the VMB and RMF model, respec-
_Vg/iBw tively. As one sees in Figs. 15 and 16, for higher values of
50+ the surface tension the characteristic sizes of structures are
re larger than screening lengths in nucleon and quark matter so
E that the assumption of uniform charge distribution may not
304 be valid.
S 20+
10 VII. DISCUSSION
We have studied the formation of a mixed quark-nucleon
0 0's ] phase in neutron stars, for different models of the nuclear

& symmetry energy. We conclude that the behavior of nucleon

FIG. 15. Diameteflower curve and separatiotupper curve of matter isobars in the.p-uy plane, as, e.g., in Figs. 5 and 6,
structures in the mixed phase for the VMB model. The surfacds fully responsible for the existence of the mixed phase. The
tension isc=10 MeV/fn?. isobars, for any pressure, have a common end point, corre-

sponding tax=1/2, which is thus independent of the nuclear

We show here results only for the bag constéht sSymmetry energy. Fork<<1/2 the isobars corresponding to
=200 MeV/fn? as possibly realized in nature. As one seesyarious forms of the nuclear symmetry energy differ consid-
the difference in energy densities is strongly dependent oprably. The most different is the location of tke=0 end
the nuclear symmetry energy. For the VMB model it is only point of isobars(see Figs. 5 and)6
a few MeV/fn? whereas it is almost 25 MeV/ffnfor the The lower critical pressurg; for the first quark droplets
RMF model. This implies that the allowed range of finite- to form is determined by the location of the=0 end point
size effects for the droplet phase to be energetically favorpf g nucleon isobar, which strongly depends on the form of
able will be smaller in the former case and larger in theyne nuclear symmetry energy. The upper critical prespyre

latter. In Figs. 13 and 14 the solid curves represent the Oy, he |ast nucleons to dissolve into quarks is the same for
tributions of Coulomb and surface effects to the energy dené” isobars that differ only in the form of the function,(n)

sity of the_ droplet phas_e, for the indice_lted yalues of the SurEjetermining the nuclear symmetry energy. This explains why
face tension. If the solid curve for a givenlies below the 1000 matter coexisting with quark matter becomes proton

dashed one in some range of the baryon number density rich with increasing pressure, and disappearing nucleon mat-
then the droplet phase will be the gr_ound state of neutron stag, 4t the critical pressurp; is symmetric. In Ref[1] the
matter. If not, the droplet phase will not be preferred ENeMncrease of the proton fraction of nucleon matter coexisting

gﬁt'ca”yw‘i?d trapsﬂoni be:]wsvin twro rele(ﬁcrlcaillyl Inlegtralin the mixed phase was attributed to the particular form of
phases oceur. AS 1S SNOWN, our Tesults y the nuclear symmetry energy in the RMF model.

MeV/fm? for the VMB model andr<150 MeV/fn? for the ies of q d on both | q
RMF one. We can thus conclude that the appearance of the Prqpertles of neutron stars depen on oth lower and up-
mixed phase, although dependent on the exact value of tHeer critical pressure valuep; andp; . Since the lower criti-

surface tension, is also very sensitive to the form of the®@! Pressurep; strongly depends on the nuclear symmetry

nuclear symmetry energy. energy, properties of neutron stars also depend on it. In par-
The above calculations were made neglecting the Deby#cular, the size of the mixed phase core, which determines
screening, which is justified for small size of the structuresthe maximum mass of a neutron star, is rather sensitive to the

In Fig. 15 and Fig. 16 we show typical diameters of bubbleguclear symmetry energy. Conclusions concerning the pres-
ence of the mixed quark-nucleon phase in neutron stars are

60 thus subject to some uncertainty that reflects incompatible
_ RM J high density predictions of the nuclear symmetry energy.
sdt | e=10 : When the Coulomb interaction and the surface tension are

O : included in the calculations, one can determine the surface

tension values for which the mixed quark-nucleon phase is
the ground state of neutron star matter. As shown in Fig. 13
and Fig. 14 the allowed range of is very narrow for the
VMB model (¢0<10 MeV/fn?), whereas it is much wider
for the RMF model G<150 MeV/fnt).

D, S [fm)]
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APPENDIX and

We fit the interaction energidg,(n) andV,(n) from Ref.
[4] corresponding to the UVIATNI interactions with the

: o V,(n)=0.05281*+0.1n*— 0.83612+ 0.43%+ 0.0365.
following polynomials:

(A2)
Vo(n)=—0.0821*—0.3111%+2.2624%—1.181n
—0.0571 (A1)  Values of both functions are in fit.
[1] N. K. Glendenning, Phys. Rev. B6, 1274(1992. Groote, E. R. Hilf, and K. Takahashhid. 17, 418 (1976); P.
[2] H. Heiselberg, C. J. Pethick, and E. F. Staubo, Phys. Rev. Lett. ~ A. Seeger and W. M. Howardbid. 17, 428(1976; M. Bauer,
70, 1355(1993. ibid. 17, 442(1976; J. Jmecke and B. P. Eynoiihid. 17, 467
[3] B. D. Serot and H. Uechi, Ann. Phy&\.Y.) 179 272(1987. (1976.
[4] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 3B, [7] M. Kutschera, Z. Phys. /848 263(1994).
1010(1988. _ [8] M. Kutschera, Acta Phys. Pol. B9, 25 (1998.
[5]1. E. Lagaris and V. R. Pandharipande, Nucl. Pl4869, 470 [g] p. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev.
(1981. Lett. 50, 2066(1983.

[6] W. D. Myers, At. Data Nucl. Data Tabld¥, 411(1976; H. v.

025802-9



