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Mixed quark-nucleon phase in neutron stars and nuclear symmetry energy

M. Kutschera1,2 and J. Niemiec1
1H. Niewodniczan´ski Institute of Nuclear Physics, ul. Radzikowskiego 152, PL-31-342 Krako´w, Poland

2Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krako´w, Poland
~Received 1 November 1999; published 30 June 2000!

The influence of the nuclear symmetry energy on the formation of a mixed quark-nucleon phase in neutron
star cores is studied. We use simple parametrizations of the nuclear matter equation of state, and the bag model
for the quark phase. The behavior of nucleon matter isobars, which is responsible for the existence of the
mixed phase, is investigated. The role of the nuclear symmetry energy changes with the value of the bag
constantB. For lower values ofB the properties of the mixed phase do not depend strongly on the symmetry
energy. For largerB we find that a critical pressure for the first quark droplets to form in the nucleon medium
is strongly dependent on the nuclear symmetry energy, but the pressure at which last nucleons disappear is
independent of it. We study the implications of these results for the structure of neutron stars. The finite-size
effects are also considered. We find that the allowed range of surface tension for the mixed phase to be
energetically favorable depends strongly on the nuclear symmetry energy.

PACS number~s!: 26.60.1c, 21.65.1f, 97.60.Jd, 12.38.Mh
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I. INTRODUCTION

Recently, Glendenning@1# has shown that a proper con
struction of the nucleon-quark phase transition inside neu
stars implies the coexistence of nucleon matter and qu
matter over a finite range of pressure. This has the effect
a core, or a spherical shell, of a mixed quark-nucleon ph
can exist inside neutron stars. The fraction of space occu
by quark matter smoothly increases from zero at the c
boundary, which corresponds to a critical pressure for
first quark droplets to form in the neutron star matter,
unity when eventually the last nucleons dissolve into qua
Heiselberget al. @2# included surface and Coulomb effec
also in the mixed phase construction and concluded that
mixed phase remains the ground state of the neutron
matter for a physically reasonable range of surface tensi

In the original construction due to Glendenning, nucle
matter was treated in the relativistic mean field~RMF!
model. The nuclear symmetry energy in the RMF model
creases monotonically with the baryon number density@3#.
This is in contrast to several variational many-body~VMB !
calculations of the equation of state~EOS! of nuclear matter
@4#, which predict the symmetry energy to saturate and t
to decrease at high densities. The aim of this paper is
study how sensitive the formation of a mixed quark-nucle
phase in neutron stars is to the high density behavior of
nuclear symmetry energy.

It was suggested in Ref.@1# that the isospin properties o
the RMF model are responsible for the existence of
mixed quark-nucleon phase. We show here that it is the
havior of nucleon matter isobars that allows the existence
the mixed phase, irrespective of the particular form of
nuclear symmetry energy.

One should stress that different nuclear matter mod
which fit the saturation point, display a rather diverse h
density behavior of the nuclear symmetry energy. As m
tioned already, variational calculations with phenomenolo
cal nucleon-nucleon potentials predict a density depende
that is incompatible with that of the RMF models. This d
0556-2813/2000/62~2!/025802~9!/$15.00 62 0258
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crepancy leads to serious uncertainty about some astrop
cally relevant properties of the neutron star matter. Here
study the consequences of this uncertainty for the nucle
quark phase transition in neutron star cores.

II. QUARK MATTER IN NEUTRON STARS

Glendenning’s construction describes a global division
the baryon number between two phases. It is insensitive
the geometrical form of the volume enclosing, respective
nucleons and quarks. To account for the shape and siz
droplets of each phase, one should include the surface
sion at the interface between the nucleon matter and
quark matter, the Coulomb interaction, and the Deb
screening. Inclusion of these effects results in some cor
tions to the equation of state, which do not alter considera
the results of this simple approach. We discuss finite-s
effects in Sec. VI where both the Coulomb interaction a
the surface tension are included in the calculations.

The equilibrium conditions, in the case where the geo
etry of droplets is neglected, are those for bulk systems.
neutron star matter is assumed to beb stable and charge
neutral. Thermal effects are not expected to play any imp
tant role in neutron star cores. We neglect them and put
temperatureT50.

The equilibrium conditions for the quark matter droplet
coexist with the nucleon medium are that pressure
chemical potentials in both phases coincide. We choose p
sure as an independent variable. The coexistence req
that

mN
n ~p!5mN

q ~p! ~1!

and

mP
n ~p!5mP

q ~p!, ~2!

wheremN
n andmN

q are the neutron chemical potentials in th
nucleon and the quark phase, respectively. Similarly,mP

n and
mP

q are the proton chemical potentials in respective pha
©2000 The American Physical Society02-1
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To solve the above coexistence conditions we construct
bars for both phases of baryon matter.

The b-equilibrium condition reads

mN
i 2mP

i 5me , i 5n,q, ~3!

whereme is the electron chemical potential, andn andq refer
to the nucleon and the quark phases, respectively. It turns
that muons can safely be neglected as the electron chem
potential remains low. We assume that the electron distr
tion is uniform. In this case, neglecting the electron r
mass,

me5~3p2ne!
1/3, ~4!

wherene is the electron density.
Solutions of Eqs.~1!–~3! provide the densities of both

baryon phasesnP andnq , wherenP is the proton density and
nq is the electric charge density of quarks in units ofe. The
global charge neutrality condition requires that

Vne5VnnP1Vqnq , ~5!

whereVn is the volume occupied by nucleons andVq is the
volume of quarks. SinceVn1Vq5V, the total available vol-
ume, we can define a quantitya5Vn /V, which is the frac-
tion of space containing nucleons. The quarks occup
complementary fraction, 12a, of the volume. From Eq.~5!
we obtaina in the form

a5
ne2nq

nP2nq
. ~6!

At a sufficiently low pressure we expecta51, as free
quarks are absent in the neutron star matter. The first q
droplets form at some pressurepi , which we refer to as the
lower critical pressure. It corresponds toa starting to deviate
from unity for the first time. With increasing pressure, mo
space is filled with the quark matter anda,1. Nucleons
disappear at the upper critical pressurepf , with a(pf)50.
For pressure in the rangepi,p,pf , nucleon matter coexist
with quark matter.

The lower and upper critical pressure valuespi and pf
depend on both the nucleon matter EOS and the model o
quark matter. In the next section we specify the quanti
used in our calculations of properties of the mixed phase

III. THE NUCLEAR SYMMETRY ENERGY AT HIGH
DENSITIES

Following Ref.@5#, we adopt a simple parametrization
the nuclear matter EOS. As shown in Ref.@5#, the results of
variational many-body calculations with phenomenologi
nucleon-nucleon potentials can be simply parametrized
function of the baryon number density and the proton fr
tion. The energy per particle can be expressed as

E~n,x!5T~n,x!1V0~n!1~122x!2V2~n!, ~7!

wheren is the baryon number density andx5nP /n is the
proton fraction. The kinetic energy contribution is
02580
o-

ut
cal
u-
t

a

rk

he
s

l
a

-

T~n,x!5
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5

1

2m
~3p2n!2/3@~12x!5/31x5/3#. ~8!

The functionsV0(n) andV2(n) represent the interaction en
ergy contributions. The form~7! of the energy per particle is
a very good approximation of the numerical calculations
far as thex dependence is concerned@5#.

From Eq.~7! we obtain the pressure and chemical pote
tials of neutrons and protons. The pressure is

p5
2

5

1

2m
~3p2n!2/3n@~12x!5/31x5/3#

1n2V08~n!1~122x!2n2V28~n!. ~9!

The chemical potentials read

mN
n 5

1

2m
~3p2n!2/3@~12x!5/31x~12x!2/3#1V0~n!

1nV08~n!1~124x2!V2~n!1~122x!2nV28~n!1m,

~10!

mP
n 5

1

2m
~3p2n!2/3@x5/31~12x!x2/3#1V0~n!1nV08~n!

1~2318x24x2!V2~n!1~122x!2nV28~n!1m.

~11!

Our aim here is to study the influence of the nuclear sy
metry energy on the mixed phase properties. The energy
particle, Eq.~7!, is well suited for this purpose as only th
functionV2(n) enters the expression for the nuclear symm
try energy, which is

Esym~n!5
5

9
TS n,

1

2D1V2~n!. ~12!

To account for the uncertainty in high density behavior
Esym(n), we use different parametrizations ofV2(n), keep-
ing the functionV0(n) fixed.

As an example of variational many-body calculations,
use the EOS with the UV141TNI interactions from Wiringa,
Fiks, and Fabrocini@4#. Polynomial fits of this EOS are
given in the Appendix. In Fig. 1 we show the functionV2(n)
corresponding to the UV141TNI interactions. One should
note that with thisV2(n) the symmetry energy~12! repro-

FIG. 1. The interaction energyV2(n) as a function of the baryon
number density, for the VMB and RMF models.
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MIXED QUARK-NUCLEON PHASE IN NEUTRON STARS . . . PHYSICAL REVIEW C 62 025802
duces the empirical value,Esym(n0)53464 MeV @6#. At
higher densities,Esym(n) saturates and then decreas
reaching negative values forn.1.0 fm23.

The energy per particle of the RMF model can also
cast in the form~7! @7#. The functionV2(n) in this case is

V2~n!5
1

8

gr
2

mr
2

n. ~13!

The coupling parametergr
2/mr

2 is adjusted to fit the empirica
value of the nuclear symmetry energyEsym(n0). The func-
tion V2(n), Eq. ~13!, grows linearly with the baryon numbe
densityn, Fig. 1, and thus the nuclear symmetry energy
the RMF model increases monotonically withn. As we are
concerned here mainly with the role of the symmetry ener
we model the energy per particle corresponding to the R
theory using the functionV2(n) in the form~13! and keeping
other contributions in Eq.~7! the same as in the VMB case

The b-equilibrium condition~3! and the formulas~10!
and ~11! show that the proton fraction of the neutron s
matter is fully determined by the functionV2(n). In Fig. 2
we show the proton fraction corresponding to both forms
V2(n). For both curves, the proton fraction atn0 is x
'0.05. This is due to the empirical valueEsym(n0), which is
reproduced by both forms ofV2(n). At higher densities, the
behavior ofx(n) is different in the two cases. The RM
model predicts thatx(n) monotonically increases with th
density, whereas forV2(n) corresponding to the UV14
1TNI interactions, the proton fraction decreases withn, and
eventually protons disappear completely at some den
nv , x(nv)50. The disappearance of the proton fraction
high densities is a general property of nuclear interact
models that giveV2(n),0 @8#.

IV. QUARK AND NUCLEON ISOBARS

The quark matter is described by a simple bag-mo
equation of state. We use the same parameters as in Ref@2#.
The energy density for three flavors is, neglecting b
masses,

eq5
3

4
p2/3~nu

4/31nd
4/31ns

4/3!1B, ~14!

FIG. 2. The proton fraction of theb-stable neutron star matte
corresponding to the interaction energyV2(n) in Fig. 1, for VMB
and RMF models.
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where ni , i 5u,d,s are the quark number densities. Th
quark chemical potentials are

m i5p2/3ni
1/3, i 5u,d,s. ~15!

The pressure of quark matter reads

p5
1

4p2 ~mu
41md

41ms
4!2B. ~16!

Below we show results corresponding to two values of
bag constant,B5120 MeV/fm3 andB5200 MeV/fm3. We
choose these values in order to assess the sensitivity o
mixed phase properties to the bag constant, which is tre
here as a phenomenological parameter subject to a sub
tial uncertainty.

The b equilibrium requires that the chemical potential
down and strange flavors is the same,

md5ms , ~17!

and the chemical potential of up quarks satisfies the co
tion

md5mu1me . ~18!

Proton and neutron chemical potentials in the quark ph
are

mP
q 52mu1md , ~19!

mN
q 5mu12md . ~20!

The simplest way to solve the equilibrium conditions~1!
and ~2! is to construct isobars for the nucleon and qua
matter in themP-mN plane. This can be done easily for th
nucleon matter since proton and neutron chemical potent
for a given value of pressure, are parametrized by one in
pendent variable. For the quark phase, we impose the co
tion ~17!, which reduces the number of independent qu
chemical potentials, for a given pressure, to two. Hence
each phase one can draw an isobar, a parametric curve i
mP-mN plane corresponding to a fixed pressure.

For the nucleon phase we parametrize isobars by the
ton fractionx. As an example, in Fig. 3 we show proton an

FIG. 3. Proton and neutron chemical potentials of nucleon m
ter as functions of the proton fraction for indicated values of pr
sure, for VMB and RMF models.
2-3
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neutron chemical potentials as functions ofx for two values
of pressure,p520 MeV/fm3 and p5100 MeV/fm3. One
can see that forp520 MeV/fm3 the proton and neutron
chemical potentials corresponding to VMB and RMF mod
do not differ much from one another. Forp
5100 MeV/fm3, the VMB and RMF curves deviate signifi
cantly. In particular, the differencemN(p,x50)2mP(p,x
50) decreases with pressure for the VMB model, wherea
increases for the RMF one.

In the quark phase, using the condition~17!, one finds an
isobaric relation between up and down quark chemical
tentials in the form

mu
454p2~p1B!22md

4 . ~21!

We choosemd as an independent variable. In Fig. 4 the p
ton and neutron chemical potentials in the quark matter
shown for the same values of pressure as abovep
520 MeV/fm3 and p5100 MeV/fm3, for both values of
the bag constant,B5120 MeV/fm3 andB5200 MeV/fm3.
One can see that the curve corresponding top
520 MeV/fm3 and B5200 MeV/fm3 coincides with that
for p5100 MeV/fm3 andB5120 MeV/fm3.

Isobars for the two phases are shown in Figs. 5 and
wheremP is plotted againstmN for p520 MeV/fm3 and p
5100 MeV/fm3, respectively. The coexistence conditio

FIG. 4. Proton and neutron chemical potentials in quark ma
as functions of the down-quark chemical potential. Values of p
sure and the bag constant are in MeV/fm3. Solid and dashed curve
correspond, respectively, to neutron and proton chemical poten

FIG. 5. VMB and RMF nucleon isobars, and quark isobars
two values of the bag constant, for pressurep520 MeV/fm3.
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~1! and ~2! are fulfilled at the crossing point of the nucleo
and quark isobars on themP-mN plot. Also, the
b-equilibrium condition~3! is satisfied at this point with the
electron chemical potentialme5mP2mN . This formula al-
lows us to calculate the density of the homogeneous elec
backgroundne from Eq. ~4!.

The quark matter isobars are calculated assuming
strange quark mass to vanish,ms50. This approximation is
justified for pressure values relevant to our analysis, as
this range isobars corresponding toms50 and to the empiri-
cal value of the strange quark mass,ms5150 MeV, are
similar. Also, the lowest values of the strange quark che
cal potential obtained from the coexistence conditions~1!
and ~2!, ms;400 MeV, exceed the empirical massms
5150 MeV considerably. Corrections due to the empiric
value of the strange quark mass would result in sm
changes of the critical parameters corresponding to the
mation of the first quark droplets.

V. RESULTS AND IMPLICATIONS FOR NEUTRON
STARS

In order to find a critical pressure indicating the onset
the phase transition to quark matter, we analyze how
crossing of nucleon and quark isobars changes with press
For very low values of pressure,p<1 MeV/fm3, the
nucleon isobars for both VMB and RMF models do not cro
the quark isobars, for both values of the bag constant. W
increasing pressure, the lower end point of the nucleon
bar, corresponding tox50, merges with the quark isobar a
some pressure valuep0. At this pressure pure neutron matt
can coexist with quark matter. This, however, is not the s
ation encountered in neutron stars, where at this value
pressure the neutron star matter contains a small proton
tion of about 5%, as shown in Fig. 2. For higher pressu
p.p0, the proton fraction at the crossing point of th
nucleon isobar with the quark isobar increases. The form
tion of the first quark droplets in the nucleon medium sta
at such a pressurepi that the proton fraction of the nucleo
matter at the crossing of the isobars coincides with that of
b-stable neutron star matter at this pressure. The pressupi
is referred to as the lower critical pressure.

For B5120 MeV/fm3, the lower critical pressure for the
VMB and RMF isobars is, respectively,pi52 MeV/fm3

r
-

ls.

r

FIG. 6. The same as in Fig. 5 for pressurep5100 MeV/fm3.
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andpi53 MeV/fm3. The upper critical pressurepf at which
the last nucleon droplets immersed in quark matter fina
dissolve, is the same for both VMB and RMF isobars,pf
5115 MeV/fm3 ~see Fig. 6!.

In the case ofB5200 MeV/fm3, the lower critical pres-
sure for VMB and RMF models is, respectively,pi
5215 MeV/fm3 and pi535 MeV/fm3. The value of the
upper critical pressure ispf5290 MeV/fm3.

The fraction of volume filled with nucleons,a, is shown
in Fig. 7. For the lower value of the bag constant,B
5120 MeV/fm3, the curves for VMB and RMF models ar
very similar. This is because the lower critical pressurepi is
almost identical in the two cases. The situation is quite d
ferent for B5200 MeV/fm3. In this case the phase trans
tion for the VMB model starts at much higher pressure th
for the RMF model. This reflects the fact that the VM
isobar becomes much shorter at high pressure than the R
one. One can easily see this difference in Fig. 6 where
showp5100 MeV/fm3 isobars.

The results shown in Fig. 7 prove that the properties
the nucleon-quark phase transition are very sensitive to
nuclear symmetry energy, for higher values of the bag c
stant. This is because, generally, the phase transition oc
at a higher pressure for higher values of the bag constant,
the VMB and RMF isobars differ much more at high valu
of pressure. For low values ofB, the phase transition starts
a low enough pressure for the nuclear symmetry energy
to affect the isobars significantly.

In Fig. 8 we show the proton fraction of nucleon matt
coexisting at a given pressure with quark matter, as a fu

FIG. 7. The fraction of the mixed phase volume filled wi
nucleons as a function of pressure for VMB and RMF models
for both values ofB.

FIG. 8. The proton fraction of nucleon matter coexisting w
quark matter as a function of the mean baryon number density
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tion of the mean baryon number densityn̄,

n̄5an1~12a!nQ, ~22!

where n and nQ5(nu1nd1ns)/3 are the baryon numbe
densities of, respectively, nucleon and quark matter. T
density corresponding to the lower critical pressurepi at
which the phase transition starts isn̄i . The phase transition is
completed at the densityn̄f corresponding to the upper criti
cal pressurepf . For B5120 MeV/fm3, n̄i50.17 fm23 is
approximately the same for VMB and RMF models. One c
notice that nucleon matter becomes more proton rich w
increasing pressure irrespective of the nuclear symmetry
ergy. At the upper critical pressurepf disappearing nucleon
droplets for both nuclear models are composed of symme
nuclear matter. The corresponding density isn̄f50.8 fm23.
For B5200 MeV/fm3 the quark droplets start to form at
densityn̄i50.84 fm23 andn̄i50.35 fm23, respectively, for
the VMB and RMF models. Nucleons disappear atn̄f
51.39 fm23.

Properties of quark matter in the mixed phase are d
played in Fig. 9, where the flavor composition is shown
both values of the bag constant. The flavor concentrati
are f i5ni /nQ, i 5u,d,s. A strong dependence of the mixe
phase properties on the symmetry energy forB
5200 MeV/fm3 is best visible in this figure. Quark matte
forming the first droplets at the lower critical pressurepi , is
composed mostly of negatively charged quarks. With
creasing pressure the flavor composition becomes more s
metric, and, at the upper critical pressurepf , the concentra-
tions of all flavors become equal,f u5 f d5 f s . Quark matter
at p>pf is charge neutral.

The electron density is shown in Fig. 10. At the low
critical pressurepi , ne5nP , as only electrons compensa
the positive charge carried by protons. With increasing pr
sure, negatively charged quarks become more abundant
the electron density decreases. Electrons disappear a
pressurepf when the whole available volume is filled wit
electrically neutral quark matter.

To investigate the consequences of the existence o
mixed quark-nucleon phase for neutron stars we const
the equation of statep5p( r̄), where the mass density of th
mixed phase is

d FIG. 9. Concentrations of quark flavors in quark matter coex
ing with nucleon matter as functions of the quark baryon densi
2-5
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r̄5
1

c2 @aenuc1~12a!eq#. ~23!

In Fig. 11 masses of neutron stars are shown as function
the central density for pure nucleon matter and for the mi
quark-nucleon phase. The phase transition to quark ma
makes the equation of state softer. The maximum mas
neutron stars containing the mixed phase decreases as
pared with the pure nucleon case. The effect is stronger
low values of the bag constant, as the mixed phase comp
more mass of the star than for higherB. Results shown in
Fig. 11 exclude, in fact, low values of the bag constant,
for B<120 MeV/fm3 the maximum mass is below the ob
servational limit. ForB5200 MeV/fm3 the maximum mass
safely exceeds this limit. In this case, the influence of
nuclear symmetry energy is clearly visible. The maximu
mass corresponding to the RMF model is well below that
the VMB model. Generally, reduction of the maximum ma
due to the presence of the mixed phase is much more sig
cant for the RMF model than for the VMB one. This reflec
the fact that forB5200 MeV/fm3 the phase transition to
quark matter starts at much lower pressure in the R

FIG. 10. The electron density of the uniform electron bac
ground as a function of the mean baryon number density.

FIG. 11. Neutron star masses as functions of the central den
The dotted line corresponds to pure nucleon matter in the R
model. The dash-dotted line is for pure nucleon VMB equation
state. Solid and dashed curves are for equations of state invo
the mixed quark-nucleon phase. The horizontal line shows the
pirical lower limit to the maximum neutron star mass.
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model than in the VMB case. Correspondingly, the mix
phase core of the maximum mass neutron star is m
smaller for the VMB model than for the RMF one.

We also show in Fig. 12 neutron star masses as funct
of the radius for the same EOS’s as in Fig. 11. The error b
indicates the constraints on the mass-radius relation for
x-ray burst source MXB 1636-536. In this case, equations
state involving a mixed phase with the bag constantB
5120 MeV/fm3 are marginally compatible with the data.

It is interesting to note that the structure of a neutron s
of the canonical massM51.44M ( is even more sensitive to
the form of the nuclear symmetry energy. ForB
5200 MeV/fm3, with the RMF symmetry energy, such
star, whose radius is;12 km, possesses a mixed phase c
of ;7 km radius. In the VMB model, the star is compos
entirely of nucleons. The central pressure of the VMB st
pc5120 MeV/fm3, is below the lower critical valuepi
5215 MeV/fm3 at which the phase transition to the mixe
quark-nucleon matter begins.

VI. COULOMB AND SURFACE EFFECTS

Up to now we did not consider the space structure of
mixed phase. When the Coulomb interaction and the surf
tension are included in the calculations, one can find a v
ety of geometric structures formed by regions filled w
nucleons and quarks that have opposite electric charge
sity @9#. The form of these structures changes with the fr
tion of space filled with nucleons,a. It should be stressed
however, that the mixed phase~called also, following Ref.
@2#, the droplet phase! is the ground state of the neutron st
matter only if the surface tension at the interface betwe
nucleon and quark matter remains sufficiently small@2#. In
the opposite case, the mixed phase will not be favored e
getically and a phase transition will lead to the coexisten
of two bulk electrically neutral phases. We investigate h
how the high density behavior of the nuclear symmetry
ergy influences the Coulomb and surface effects in the dr
let phase.

-

ty.
F
f
ng

-

FIG. 12. Neutron star masses as functions of the radius for
same equations of state as in Fig. 11. The cross and the error
represent empirical constraints for the x-ray source MXB 1636-5
2-6
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We perform calculations using the Wigner-Seitz appro
mation. In this approach we assume that characteristic s
of structures in the droplet phase are less than the De
screening length, which is about 10 fm for the nucleon ph
and 5 fm for quarks@2#. In this case electrons are essentia
uniformly distributed over the whole system and so are ot
particles within a given phase. When the spatial scale
structures is larger than the screening length the charge
sity becomes nonuniform and the mixed phase resem
two coexisting neutral phases.

The geometric forms of structures considered here
droplets or bubbles, rods, plates, and also intermed
forms, each of them characterized by a continuous dim
sionality parameterd ranging fromd53 for droplets tod
51 for plates. For all these geometries the minimized sum
Coulomb and surface energy densities reads

eC1es56pxS s2d2@nP~a!2nq~a!#2e2f d~x!

16p2 D 1/3

.

~24!

The radius of the rare phase bubble immersed in the do
nant phase is

r 5S 4p
@nP~a!2nq~a!#2e2f d~x!

sd D 21/3

. ~25!

HerenP(a) andnq(a) are charge densities of nucleons a
quarks, in units ofe, corresponding to a given proportion o
phasesa. The quantityr expresses the characteristic sizes
geometric forms and particularly for droplets and rods
their radius, and in the case of plates is their half thickne
In the above equationsx is the fraction of volume occupied
by the rare phase. It is equal to 12a when nucleons are th
dominant phase (a>1/2) and quarks form different struc
tures, and it is simplya in the opposite situation (a<1/2). It
also defines the half distance between structures,R, which is
the radius of the Wigner-Seitz cell. The fractionx can be
expressed in terms of the two scalesr andR as

x5~r /R!d. ~26!

The functionf d(x) is

f d~x!5
1

d12S 1

d22
~22dx122/d!1x D . ~27!

It has a correct logarithmic limit ford52.
Having the values ofnP andnq from Eqs.~1!–~3!, and~5!

we are able to calculate finite-size effects in the qua
nucleon mixed phase. The values of botheC1es and r are
obtained by minimization of the energy, Eq.~24!, with re-
spect tod for a given proportion of phasesa and for fixeds.
Because the exact value of the surface tension is unkn
we keep it as in the work of Heiselberget al. @2# as a param-
eter which for simplicity is density independent.

For the mixed phase to be favorable, its energy den
must be less than the energy densities of all other phase
baryon matter. Whens50 and Coulomb and surface effec
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are absent the mixed phase is energetically favored, as
showed in Sec. IV by performing a proper construction
the phase transition. Nevertheless, whensÞ0 the situation
is different and for some high values of the surface tens
the mixed phase becomes energetically unfavorable. Th
fore to see what is the ground state of neutron star matter
should compare the energy density of the droplet phase
the energy densities of nucleon matter, quark matter,
coexisting electrically neutral phases of nucleon and qu
matter.

To account for the energy density of coexisting phases
electrically neutral nucleon matter and quark matter we p
form a double-tangent construction of the phase transi
from nucleon to quark matter. The energy density gain in
mixed phase with respect to nucleon matter, quark ma
and coexisting neutral phases of nucleon and quark ma
e2 ē, whereē is the energy density of the mixed phase f
s50, is shown as a dashed curve in Fig. 13 and Fig. 14
VMB and RMF models, respectively.

FIG. 13. The energy density of the mixed phase in the VM
model, for indicated values of surface tensions ~in MeV/fm2),
relative to its value fors50 ~solid curves!. The dashed curve is the
energy gain in the mixed phase withs50, with respect to electri-
cally neutral nucleon matter, quark matter and coexisting phase
nucleon and quark matter. Open circles correspond to bulk neu
nucleon matter and quark matter that can coexist in the first o
phase transition.

FIG. 14. The same as in Fig. 13 for the RMF model.
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We show here results only for the bag constantB
5200 MeV/fm3 as possibly realized in nature. As one se
the difference in energy densities is strongly dependen
the nuclear symmetry energy. For the VMB model it is on
a few MeV/fm3 whereas it is almost 25 MeV/fm3 for the
RMF model. This implies that the allowed range of finit
size effects for the droplet phase to be energetically fav
able will be smaller in the former case and larger in t
latter. In Figs. 13 and 14 the solid curves represent the c
tributions of Coulomb and surface effects to the energy d
sity of the droplet phase, for the indicated values of the s
face tension. If the solid curve for a givens lies below the
dashed one in some range of the baryon number densitn̄,
then the droplet phase will be the ground state of neutron
matter. If not, the droplet phase will not be preferred en
getically and transition between two electrically neut
phases will occur. As is shown, our results yields<10
MeV/fm2 for the VMB model ands<150 MeV/fm2 for the
RMF one. We can thus conclude that the appearance o
mixed phase, although dependent on the exact value o
surface tension, is also very sensitive to the form of
nuclear symmetry energy.

The above calculations were made neglecting the De
screening, which is justified for small size of the structur
In Fig. 15 and Fig. 16 we show typical diameters of bubb

FIG. 15. Diameter~lower curve! and separation~upper curve! of
structures in the mixed phase for the VMB model. The surfa
tension iss510 MeV/fm2.

FIG. 16. The same as in Fig. 15 for the RMF model and fors
510, 50, and 150 MeV/fm2.
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and their separations for the VMB and RMF model, resp
tively. As one sees in Figs. 15 and 16, for higher values
the surface tension the characteristic sizes of structures
larger than screening lengths in nucleon and quark matte
that the assumption of uniform charge distribution may n
be valid.

VII. DISCUSSION

We have studied the formation of a mixed quark-nucle
phase in neutron stars, for different models of the nucl
symmetry energy. We conclude that the behavior of nucle
matter isobars in themP-mN plane, as, e.g., in Figs. 5 and 6
is fully responsible for the existence of the mixed phase. T
isobars, for any pressure, have a common end point, co
sponding tox51/2, which is thus independent of the nucle
symmetry energy. Forx,1/2 the isobars corresponding t
various forms of the nuclear symmetry energy differ cons
erably. The most different is the location of thex50 end
point of isobars~see Figs. 5 and 6!.

The lower critical pressurepi for the first quark droplets
to form is determined by the location of thex50 end point
of a nucleon isobar, which strongly depends on the form
the nuclear symmetry energy. The upper critical pressurepf

for the last nucleons to dissolve into quarks is the same
all isobars that differ only in the form of the functionV2(n)
determining the nuclear symmetry energy. This explains w
nucleon matter coexisting with quark matter becomes pro
rich with increasing pressure, and disappearing nucleon m
ter at the critical pressurepf is symmetric. In Ref.@1# the
increase of the proton fraction of nucleon matter coexist
in the mixed phase was attributed to the particular form
the nuclear symmetry energy in the RMF model.

Properties of neutron stars depend on both lower and
per critical pressure values,pi andpf . Since the lower criti-
cal pressurepi strongly depends on the nuclear symme
energy, properties of neutron stars also depend on it. In
ticular, the size of the mixed phase core, which determi
the maximum mass of a neutron star, is rather sensitive to
nuclear symmetry energy. Conclusions concerning the p
ence of the mixed quark-nucleon phase in neutron stars
thus subject to some uncertainty that reflects incompat
high density predictions of the nuclear symmetry energy.

When the Coulomb interaction and the surface tension
included in the calculations, one can determine the surf
tension values for which the mixed quark-nucleon phase
the ground state of neutron star matter. As shown in Fig.
and Fig. 14 the allowed range ofs is very narrow for the
VMB model (s,10 MeV/fm2), whereas it is much wider
for the RMF model (s,150 MeV/fm2).
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APPENDIX

We fit the interaction energiesV0(n) andV2(n) from Ref.
@4# corresponding to the UV141TNI interactions with the
following polynomials:

V0~n!520.0827n420.3111n312.2624n221.181n

20.0571 ~A1!
e

02580
and

V2~n!50.0528n410.1n320.836n210.433n10.0365.
~A2!

Values of both functions are in fm21.
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