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The QED radiative corrections to virtual Compton scatterirepctionep—epy) are calculated to first
order inag,=e?/4. A detailed study is presented for the one-loop virtual corrections and for the first order
soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail,
corresponding to photon emission processes, where the photon energy is not very small compared with the
lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show
for thee p—epy reaction how the observables are modified due to these first order QED radiative corrections.
We show results for both unpolarized and polarized observables of virtual Compton scattering in the low
energy region(where one is sensitive to the generalized polarizabilities of the nuglesnwell as for the
deeply virtual Compton scattering.

PACS numbd(s): 13.40.Ks, 13.60.Fz

I. INTRODUCTION on the nucleon performed at MAML1] indicates that QED
radiative corrections provide an important contribution to the
Virtual Compton scatteringVCS) has become in recent ep—epy reaction(of the order of 20% in the kinematics
years a new and versatile tool in the study of nucleon struceonsidered iff11]). The ep—epy reaction is particular in
ture and has triggered an important activity on both the thecomparison with, e.g., elastic electron scattering because the
oretical and experimental sideee, e.g.[1,2]). VCS, which  photon can be emitted from either the proton dithés is the
is accessed through the,@’y) reaction, is studied now in  vcs process which contains the nucleon structure informa-
various kinematical domains. . _ tion of interest or from one of the electronévhich is the
At low energy, below pion production threshold, it allows parasitic Bethe-Heitler processThe radiative corrections to
one to access generalized polarizabilities of the pr8l.  1he Bethe-Heitler process are formally different when com-

These response functions, which constitute new r"JCIeogared to the case of electron scattering. The importance of a

structure observables, have been calculated in various a ery good understanding of the radiative corrections is indis-

proaches and mode]8,5-9. To extract this nucleon struc- ble if | inf
ture information from VCS below pion production threshold, pensable it one wants to extract nucleon structure informa-

a considerable experimental effort is taking place at Variougon.from_thegpﬁepy reaction, eSpeC"”?"y in those k_|ne—
electron laboratories. The first few events of VCS were ob-m""t',c"j_II situations Wher_e the Bethe-Heitler Process 1S not
served in[10]. The first dedicated VCS experiment has beer€9ligible. The calculation of these QED _radlatlvg correc-
performed at MAMI and, for the first time, two combinations tions to theep—epy reaction to first order inveq=e/4m
of generalized polarizabilities have been determined at & 1/137.036, is the subject of this paper. _
four-momentum square®?=0.33 Ge\ [11]. An experi- Radiative corrections were first calculated by Schwinger
ment at higherQ? (1-2 Ge\?) at JLab[12] has already for potential scattering20]. Tsai[21] extended the calcula-
been performed, which is under analysis at the time of writtion of the radiative corrections to electron-proton scattering.
ing, and a further experiment at lowé¥ is planned at MIT-  The field has a long history and we refer to the standard
Bates[13]. review paper$22,23, which were used in the interpretation
The VCS is also studied vigorously in the Bjorken regimeof many electron scattering experiments.
(where the photon virtualit@)? and the photon-proton c.m. The outline of the present paper is as follows. In Sec. II,
energy./s are both large, witlQ?/s finite), which is referred  we introduce the kinematics and notations used foretpe
to as deeply virtual Compton scatterif@VCS). In this re- —epy reaction, and give the lowest order amplitudes.
gion, the DVCS amplitude is parametrized at leading order In Sec. Ill, we give the first order QED radiative correc-
in Q in terms of six generalized parton distributiddgl—16,  tions to theep—epy reaction. We first calculate, in Sec.
commonly denoted as skewed parton distributiqfeur  1ll A, the one-loop virtual radiative corrections originating
quark helicity conserving functions and two which involve afrom the lepton side, to thep— epy reaction. Our strategy
quark helicity flip. This field has generated by now a whole used to evaluate the rather complicated loop integrals, is to
theoretical industry, and first experiments of DVCS and re=solve first simpler loop integrals, which contain entirely the
lated hard electroproduction reactions are being performedjltraviolet(UV) and infrared(IR) divergences, and in which
analyzed or planned at JLgb7], HERMES/HERA[18], and  the lowest order amplitudes factorize. These simpler loop
COMPASS[19]. integrals are evaluated analytically. The finite remainder
The first absolute measurement of the VCS cross sectiowith respect to the original amplitude is then expressed
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through Feynman parameter integrals, which are calculate@e denote in this work the four-momenta of the initial and
numerically in this work. final electrons byk(Ee,k.) and k’(E.,K.); the four-

In Sec. lll B, we calculate the soft photon emission CoN-  menta of the initial and final brotons i(Ey.Fr) and
tributions from the lepton side, to tlepp— e py reaction. We P N PN

discuss the similarities and differences with the bremsstraiP’ (Ex,Py); and the four-momentum of the outgoing photon
lung contribution to elastic electron-nucleon scattering.by q’(|q’|,q’). Furthermore, we denotg=k—k’=p’'—p
These bremsstrahlung processes contain IR divergencesq’ andQ?=—q?>0. The masses of the electron and pro-
which are shown to cancel exactly the IR divergences fromon are denoted by andM , respectively. The helicities of
the virtual photon processes. the initial (final) electrons are denoted In¢h’); the spins of

In Sec. Il C, the numerical method to evaluate the re-; .. (final) protons bys,(s}); and the polarization four-

maining finite Feynman parameter integrals is presented. : : o
discuss subsequently the cases where the integrand is regu aerctor of the outgoing photon by. The spinors of initial and

or singular, the latter originating from the propagation of nal elgctrons are _d_enoted luj_k,h) andu(k’,h’); whereas
on-shell intermediate states in the one-loop corrections to thie spinors of ’|n|t’|a| and final protons are denoted by
ep— epy reaction. In particular, we discuss the different nu-N(PSp) andN(p’,s). Throughout this work, we follow the
merical checks performed and the accuracy of the calculsgeonventions of Bjorken and Dref25].
tion. In Figs. 1 (BHi) and (BHf), which are known as the
In Sec. Il D, we discuss the radiative corrections at theBethe-Heitler(BH) diagrams, a photon is emitted by either
proton side and the two-photon exchange corrections, by rghe incident or final electrons. The expressions for Figs. 1
ferring to the recent work of Maximon and Tj¢24]. (BHi) and (BHf) are given, respectively, by
In Sec. IV, we give a full numerical calculation for elastic
electron-proton scattering of the photon emission processes
where the photon energy is not very small compared with the
lepton momenta, and which makes up the radiative tail. We ;i =ie3U(k’ h')y”
: : : : BH )Y
compare this full calculation with an approximate procedure
based on the angular peaking approximation, and show to 1
what extent the full calculation validates the approximate * Nin! o /
method for the case of elastic electron-nucleon scattering. x4 u(k’h)(p'—p)zN(p S TP PIN(PSp),
The approximate method will be seen to be realistic enough 1)
to apply it next to the calculation of the radiative tail in the
case of VCS.
In Sec. V, we start by briefly discussing the radiative cor-
rections to elastic electron-proton scattering. We apply the . = — = (K'+¢'+m)
radiative corrections to elastic scattering data on the proton. Mgp=ie“u(k’,h")é C2k-q
We next give our results for thep— e py reaction, and in-
dicate how the observables are modified due to the first order , T -, ,
QED radiative corrections. We discuss first the polarizability Xy u(k,h)(p, — p)2N(p :Sp) T (P",PIN(P.Sp),
region for theep—epy reaction, corresponding to a low
outgoing photon energy. We show results for both unpolar- @
ized and polarized cross sections in MAMI and JLab kine-
matics. Subsequently, we give the effect of the first order
QED radiative corrections to the DVCS cross section and thevhere the electron charge is given by €) (i.e.,e>0 in this
electron single spin asymmetry. work). The on-shell electromagnetic vertex at the hadron
Finally, we give our conclusions in Sec. VI. sideI",, in Egs.(1) and(2) is given by
We present technical details needed in the calculations, in
two appendices. In Appendix A, we calculate the radiative
corrections to elastic lepton-nucleon scattering, which serves , N
as a point of comparison with thep—epy reaction. Inpar- 1 (o1 5y (p'—p)2)y, + F,(p' —p)ic, (P'—p)
ticular, we present the details of the calculation of the soft *" ' g o2My
photon emission contributions, and perform analytically the 3
phase space integral over the soft photon in an exact way.
We compare with other calculations in the literature. In Ap-

pendix B, we present some tech'nical details on the imegr"’\i\/hereFl andF, are, respectively, the Dirac and Pauli elec-
tion method used to evaluate singular Feynman parametgfomagnetiqon-shel) form factors of the nucleon. The four-
integrals. momentum squared of the virtual photon in the BH processes
is t=(p’—p)?, in contrast tog? which is the four-
momentum squared for the VCS procegsp— yp, where
the final photon is emitted from the hadron side.

The lowest ordefin a.,) contributions to theep—epy The amplitude of the VCS contribution to the p
reaction are given by the one-photon exchange processes:e™ py reaction is given by

(k=g +m)
“oka

IIl. LOWEST ORDER AMPLITUDES OF THE ep—epy
REACTION
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FIG. 1. Tree level contributions to thep
—epy reaction: Bethe-Heitler diagrams) and
(b); nucleon Born diagramé&) and (d).
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Remark that for a positively charged lepton, the VCS ampli-

tude changes sign. In E¢4), the gauge-invariant, hadronic where the vertex™# is now evaluated for off mass—_f,hell
tensorH*" is defined by values of one of its arguments. In R¢8], the Born dia-

grams were evaluated by using the vertex of &). Doing
so, the Born diagrams are separately gauge invariant. All
nucleon structure effects are then absorbed in a non-Born
) amplitude which is regular ig’ and for which the low en-
H#Y = —if d*x e " Xp'[T[j"(%),j*(0)]|p),  (5)  ergy theorem(LET) requires that it start at ordey’. The
nucleon structure effects to the VCS ten$gg. (5)] below
pion threshold, are then parametrized at omfem terms of
six generalizedi.e., Q? dependentnucleon polarizabilities

whereT represents the time ordering, ajidthe electromag- [3.4].
netic current operator.

For the DVCS process in the Bjorken limit, the hadronic lll. FIRST ORDER RADIATIVE CORRECTIONS
tensor of Eq(5) is parametrized in terms of six leading twist TO THE ep—epy REACTION
skewed parton distributionsee, e.g.[16]).

For the VCS process at low energy, as investigated ex-
perimentally in[11-13, an important contribution to the  In this section, we calculate the one-loop QED virtual
tensor of Eq.(5) originates from the nucleon pole contribu- radiative corrections to thep—epy reaction, which are
tions shown in Figs. 1BORNi) and (BORNf). The contri-  represented in Fig. 2. We first consider the corrections origi-
butions of the Born diagrams to the hadronic tensor are givefating from the leptonic side, which are numerically the
by dominant ones. The corrections originating from the had-

ronic side, for which a nucleon structure model is needed,
will be discussed and estimated in Sec. Il D.
The virtual radiative corrections to the BH process con-

A. Virtual radiative corrections

— (p—¢'+My) tain vertex corrections: Figs. @/1i-V3i) and (V1f—V3f);
HEorni = N(p’,sé)F”(p’,p—q’)W electron self-energy corrections: Figs(3, Sf; and vacuum
polarization corrections: Figs. @1i, P1j. We indicate in
XF”“(p—q’,p)N(p,sp), (6) our notation of the different diagrams whether the photon in

025501-3



M. VANDERHAEGHEN et al. PHYSICAL REVIEW C 62 025501

g

(V1i) (V2i) (V8i)
(V1) (V2f) (V3D

FIG. 2. First order virtual pho-
ton radiative corrections to the

s: - : ep—epy reaction.
(Si) (V4)

(P1i)

7 L

(Sf) (P1f)

the ep—epy reaction is emitted from the initigi) electron  Therefore, we give in Appendix ASecs. A 1-A 4 the deri-

or from the final(f) electron. vation and the expressions for these basic building blocks,
The part of the virtual radiative corrections to the VCS and we apply it to elastic electron-nucleon scattering. In our

process(i.e., where the photon in the reactiep—epy is  calculations, we use the dimensional regularization method

emitted from the hadronic siglevhich can be calculated to treat both ultravioletUV) and infrared(IR) divergences.

model-independently, consists of the vertex diagram showd his amounts to evaluate all loop integralsDrdimensions.

in Fig. 2 (V4) and the vacuum polarization diagram shown in The divergences then show uwhen one take®—4) as

Fig. 2 (P2. The blob in those figures represents the VcsPoles of the form ¥, wheree=2—-D/2. UV divergences

process. For VCS below pion threshold, the blob is given by2® regularized by takind<4 (i.e., eyy=2-D/2>0),

the Born diagram$Fig. 1 (BORNi) and (BORNf] + non- whereas IR divergences are regularized by tapn>§4 (i.e.,

Born diagrams, which describe the nucleon polarizability ef-61r=2—D/2<<0). Care has to be taken as to isolate the UV

fects. For DVCS, the blob is given in leading order by the@nd IR_d|yergent parts in the loop integrals first, as two dif-

so-called handbag diagrams, where the photon hits a quark fgrent limits are understood when one takes 4 at the end.

the proton[14,15,2. The te_chnlcal de'_[alls of our caICl_JIatlonaI method can alsc_J be
The calculation of the virtual radiative corrections to the found in Appendix A. We apply it here to calculate the dia-

VCS process is similar to that for electron scattering. Thedrams of Fig. 2 to thep—epy reaction.

virtual radiative corrections to the Bethe-Heitler process are

different, but involve the same one-loop building blocks, i.e.,

electron vertex, electron self-energy, and photon self-energy. The amplitude corresponding to Fig.(21i) is given by

1. Vertex correction diagrams of Figs. 2 (V1i) and (V1f)
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. e’
bemzN(p’,S,’))Fy(p’,p)N(p,sp)
A D il _ A — * (W —
XU(k’,h’)y"(k 4’ +m) 4D d®I vy (k=g ' —I+m)é* (k—f+m)y, utk,h), ®

—2k-q° * (2m)P [12][17=21 -K][1?=2l-(k—q")—2k-q']

where a mass scaje (renormalization scajes introduced when passing @+ 4 dimensions in order to keep the coupling
constant dimensionless. One sees by inspection that the loop integral i(8)Egvhen takingD=4, is IR finite (—0
behavioy, but has an UV divergencé-~ behavioj. Our strategy to evaluate a complicated loop integral as if&gqis to

solve first a simpler loop integral which contains entirely the UV divergence and which can be done analytically more easily.
We observe from Eq8) that only the term in the numerator proportionahttf¢*Iy,, is responsible for the UV divergence.

To evaluate it, we add a similar term by replacing one factor in the denominator and evaluate this term analytically. In order
to obtain the equivalence wnivrlvl, we have to subtract the added term again from the expression ¢8Eq.his leads to

e kb [, Ol Y18y,
MVl (p )ZN(p Sp)r (p p)N(p Sp)u(k h’ )7 Tq/ M (27T)D [|2][|2_2|k][|2_2|k/]
d4l TEX(k—q') +Ké*T—m2é* +4me* - (k—1)—ké* (K—¢q')
2| o (120721 K[1Z—21-(k—q')—2k-q']
d*l —2¢1[-(a—q') +k-q']
2f(277)4[|2][|2—2|-|<][|2—2|.k'][|2—2|-(k—q')—zk-q']]“'(k’h)' ®

It should be remarked that only the first term within curly brackets of(Bjs UV divergent and has therefore to be evaluated

in D dimensions using the dimensional regularization method. As can be seen by power counting, the rest is UV finite and can
therefore readily be evaluated f@=4. The denominator in the UV divergent term of E§) was chosen so that it
corresponds to the vertex correction which appears in electron scattering. Therefore, this UV divergent term can be calculated
analytically in a manner similar to that given in Appendix A. The result is given by

s f AP Y141y, i | PR LR S
T P A= 2K [12=21- K] @mZ|* |egy YETT Flovinl )| gt
1 v+1 v2+1
+Q7—In ké* k' + K’ é* K+ 5 aé* 4|, (10
wherev is defined as
) 4m?
UEl‘F?. (11)

The UV divergence in Eq.10) is removed by the corresponding vertex counterterm as given by(Efsand (A15)
(—€?) 47w2
I
(CT\,= m2

BH (477_)
where we have used the expression of @g.for the BH amplitudel\/IiBH. Adding the counterterm of Eq12) to Eq.(9) and
introducing a Feynman parametrization in the second and third terms ¢®)5g.order to perform the integrals ovEryields
the total, UV finite result:

4 )

—ve+In +2——yE+In

€Ir

+4] , (12

My (CT =My ( 2| ——ye+n 4”2‘2) e ]+ Ol N ST PN(RS,)
(4)* gIr m v—1 (4m)° (p'—p) L P
— (k—¢'+m) [ 1 v?+1 [v+1 v+1
XU(k’,h,)yVT'(:], ?{(—14—7 (Zf]é*(ll]—F ( _1){ké*k'+k’é*k}}

—2f dyf dx——[y(k G4/ %)% (K— ')+ yké* (K—d'x) +4m(s* -K) (L—y) — Ké* (K—¢') — m24*]
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1 1 1
—4J dxgxgj dxzxzf dx,
0 0 0

1 1 . :
(NéuWp'é*P'>(p'.(q—q’)+k.q’)

(
1 : :
—oa(d—d)HErPI+PIE(4-4")) Ju(k,h), (13
with the four-vectorP' defined by
P'=(k—q")(1-X3)+(K—0X1)XX3, (14
and the scalard' andB' defined by
A'=2k-q'(1—x3)+(P")? (15
and
Bi=2k-q’'x(1—y)+m?. (16)

Remark that although E@13) is UV finite, it contains now an IR divergence coming from the vertex counterterm ofi2).
as shown in Appendix AEq. (A15)]. We will demonstrate however in Sec. Il B, that all IR divergences, of the one-loop
corrections to theep— epy reaction, are cancelled by the soft photon emission contributions.

The Feynman parameter integrals in EE3) which orginate from the finite integrals in E(Q) remain to be evaluated. As
an analytical calculation of these integrals is rather complicated, we will evaluate them numerically in this paper, which will
be discussed in Sec. Il C.

In a completely similar way as for Fig. &/1i), the total amplitude including the counterterm corresponding to Fiy1#®)
yields

2 5

ML, +(CT) =ML S TN (i | PR ot | L L N(p.SIT (P p)N
vit(CT)y, = BHW - a_VE n_mz_ —o—vin v—1 4m)2 (p' —p)? (p !Sp) (P, PIN(P,Sp)

1
Q?

v+
v

o [( 02+1(v+1))* 1( 1)*,,*}
Xu(k',h") -1+ 20 In -1 qé Q+;|n Tl{ké K+ K &* K}

1 1 1
—2f dyf dx§r[y(k’+¢1’)é*(k’+d’x)+y(k’—HZ]’X)é*k’
0 0 1

+4m(e* K ) (1—y)— (K +¢")é* k' —mPé*]

1 1 1
+4f dX3X§f dxzxzf dxq
0 0 0

1 1
Kfé*_i_ (A )ZPfé* Pf)(Pf'(q_q,)+k,'q,)

1 (K'+4¢'+m)
- ﬁr«q—vr)é*v’wPfé*m—ea'))HWv”u(k,h), (17
with the four-vectorP’ defined by
P'=(K +9')(1—xX3) + (K’ +0X1)XpXs, (18
and the scalard’ andB! defined by
Al=—2k"-q'(1-x3)+(P"? (19
and
Bi=—2k"-q'x(1—y)+m?. (20)

2. Vertex correction diagrams of Figs. 2 (V2i) and (V2f)
The amplitude corresponding to Fig.(22i) is given by

025501-6



QED RADIATIVE CORRECTIONS TO VIRTUA. . .. PHYSICAL REVIEW C 62 025501

e5

M=z p) T (P PIN(P.Sp)

— e - d®l YK =I+m)y"(k—=¢ =I+m)y, (k—¢'+
xu(k’h)pt DJ mP [I1I7][17=21-k'][1?=2l-(k—q')—2k-q'] —2k-q

é* u(k,h). (21

One sees from Eq21) that again only the term proportional t¢'f y'I'y, in the numerator contains an UV divergence for
D=4. To evaluate the loop integral of E1), we therefore apply a similar trick as used before in @g. This amounts to
adding and subtracting a term in E&1) by replacing[1?—21- (k—q’)—2k-q'] in the denominator byl¢—2I-k'), which
contains entirely the UV divergence. The further steps are then analogous to those followi{8y Bgd yield the following
result for Fig. 2(V2i):

1

2
My, +(CT)y,= IBHW[ -2 o

41 p? v+1 ied 1 - ,
—mz—”—S—v In<v_1)}+(4w)2 (p,_p)zN(p Sp) I (P",PIN(P, Sp)

v2+1

_ 1 v+1
Xu(k’,h’){az{(—rk B In

dy"q-+ —|n( ){kv”k’ k’v”k}}

1 11
=2 [ dy | Ty - )y 0+ (8- 80+ -4k
0 0 2

+am(k')"(1-y) = (k=d")y"K' —m?y"]

1 1 1
—4f dx3x§f dxzxzf dx,
0 0 0

1 1 . ) )
(KH’” WP'VVP')(Q"(k— P'))

s @ ye ey | ™ o (22)
2A! Y —2k.q’ o
whereA! is given as in Eq(15) and where
BL=m?y+x%y(q—q’)%+2xk-q' +2xyk' - (q—q’). (23

In an analogous way, the amplitude corresponding to Fig/ZX) can be calculated, and yields

e? 1 A’ v+1 ie® 1
MU +(CT),= BH(4 )2 |_ a_')’E_Hn m'lzL ”_3_U|n<v_1)]+(4ﬂ_)z (o — )2’\l(p Sp) (P, PIN(P,Sp)
(K m) [ 1 ( UZ+1 v+1) , ( ) o
Xu(k’,h")é Tq, ? -1+ 2 4y Qﬁ-f- {ky"k’' + K" y"k}

1 11
=2 [ dy [ Ik k- (d- )0+ y K- (@0 (K + )
0 0 2

+4m(k)"(1-y) —Ky" (K +¢') —m?y"]

1 1 1
+4J dX3X§f dxzxzf dx,
0 0 0

] u(k,h), (24

1 v 1 f.vpf ’ ’ f
ATy +W)—2P7P @ -(k"'=P%)

1 vpf fov
+ﬁr(¢4 Y'P Py
whereA' is given as in Eq(19) and where
By=m?y+x*y(d—q’)’—2xK'-q' —2xyk-(4—0'). (25

3. Vertex correction diagrams of Figs. 2 (V3i) and (V3f)
The amplitudeM i\,g corresponding to Fig. 2V3i) is given by
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) es
Ml\/szmzN(p',S,ﬁ)Fy(D',D)N(D,Sp)
_ d®I K +1+m)y " (k—¢’ +f+m)é* (k+f+m
W U(K’ h) 4P y4( )y (k=4 )€™ ( )Va a(k,h). 26)

(2mP [I7[12+21 - K [12+ 21 -K][12+ 2l - (k—=q')— 2k-q]

Remark that the loop integral in E(6) is UV finite but contains an IR divergence fBr=4. This is because in Fig. &/3i),

a soft virtual photonl(—0) couples on both sides to on-shell electron lines. To isolate the IR divergence, we first decompose
the numerator in Eq.26) by using the relationsi(k’,h") y*(k’' +m)=u(k’,h") 2k, and &+m)y,u(k,h)=2k,u(k,h). This

yields

i eS INTP AR ’ L kY - le 1
MV3:WZN(ID !Sp)rv(p vp)N(p!Sp)u(k h )M4 b (27T)D [|2][|2+2|k/][|2+2|k][|2+2| (k_qr)_qur]
X LA(K-K' )y (K— @' + M) &* +4(k-K') Y"1 4* + 29" (K— ' +1+m)£* 1K’ + 2K y*(K— &’ + 1+ m) &*
+ vy (k—q' +I+m)é*Iy,tu(k,h). (27)

In Eq. (27), only the term in the numerator which lisndependentthe first term within the curly bracketgontains an IR
divergence, whereas all the other terms are finite. As before, instead of aiming at an analytical formula for a rather complicated
integral, we evaluate the IR divergent part of the integral in &§) by adding and subtracting a term that contains the
divergence and that can be performed analytically rather easily. In constructing this term, we are looking for a denominator
which contains the same dependence as the basic BH process in order that this BH amplitude can be factored from this IR
divergent term. This yields the following expression, which is by construction identical tG2E2q.
e° PN dPl 4(k-K' )y (k—¢' +m)é*
IV|V3 (p )2N(p Sp)r (p p)N(p Sp)u(k )( f(ZW)D [|2][|2+2|k/][|2+2|k][_qu/]

d4l 1 —21-(k—q")
2m)? [+ 21 K J[12+ 21 K][I?+ 21 - (k—q')—2k-q'] —2k-q’

[4(k-k’)y”(k—¢|’+m)é* —

+A(K-K ) Y TE* + 29" (K— 8 +T+m)E*TK + 2K y"(K— ¢ +1+m)é* + yLy*(k—d' +1+m)é*1y,,

]u(k,h).
(28)

Remark that the added teffirst term of Eq.(28)] contains the IR divergence whereas the other terms ofZ8)do not have

any divergences so that the corresponding integrals may be performed directly in four dimensions as indicated. For the first
term of Eq.(28) we furthermore see that théndependent part of the energy denominator is the same as the one occuring in
the corresponding Bethe-Heitler diagr@fig. 1(a)]. Thel-dependent part of the energy denominator for this term is the same

as the one for the vertex correction to elastic electron scattering(A=). The corresponding integral may therefore be
evaluated analytically in a similar way as was done in Appendix A. This yields for the IR divergent term (88Eq.

65 N( S )F ( )N( S )U(k’ h ) Vﬂé*u(k h) 47Df 4(k.k')
(p’ p)2 p’, p/* v p'.p P:Sp —-2k-q’ T (27T)D [|2][|2+2|k1][|2+2|k]
=My ¢ 1 | 4’ U2+1| v+1 l)2+1I v+1 | v2-1
= H(4’7T) 7E+ n m2 v n U—l + 2U n U_l n 4v2
1)2-‘;-1 S v+1 S v—1 N
TN @9

The evaluation of the finite four-dimensional integral in E28) can be performed at the expense of the introduction of three
Feynman parameter integrals due to the four energy denominators:

1 1 1 1 1
[IZJ[|2+2|-k'][|2+2|-k][|2+2|-<k—q'>—2k~q']ZGLdyffodXZXZLdx1[<|+yp;lxz>2—yci]4’ %0

with the four-vectorP, , defined by
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xlx2 (q X149 )X2+k (31)

and the scala€' defined by

C'=2k-q'x X+ y(P! 1X2)2. (32

The final result for the amplitud®!,, is then given by

v?+1 (v+1
n
v v—1

{5 -5 5|

1
)zN(p ST (P, PIN(p, sp)f dyyf dXzXzf dxgu(k’,h")

1 41’

m2

2
MVS M;BH(4,JT) [

+vz+1|
n
2v

v+1 |
-1

v2—1\ v2+1
n 4p?

1%
ied
(477) (p'—

(k—q'+

* !
y—qu £*4k-k

X

2 1 .

ot VP 1x2>2+2P;1x2-<k—q'>)}

XEF[ VIR + KyPd* —Ame* ¥ — v(k_q/_ Pi )é*-{— &% VPi + Pi &% V]
c Y Y € Y YFPx.x, YV P, TY P, Y

[—4(k-k')yVP‘X1X2é*—27V(k—q'—yv>‘xlx+m)é* K = kP! y'(k—q' —

XX2

xyx, T M)E

1
T {ce
+yr°‘x1x2(—2é*<k—ez’—yP;1X2>7V+4ms*V)Ple2]]u(k,h>. (33

The Feynman parameter integrals in E8@) will be performed numerically as explained in Sec. Il C.
In an analogous way, the result for the amplitu)tll§3 corresponding to Fig. 2/3f) can be calculated, and yields as a result

M ! e [[1 o 4rp®\Jv?+1 [v+1
V3= BH(4,n.) —vetin 2 » nv—l
+v2+1| v+1 | v2-1 +02+1 s v+1 s v—1
2v nv—l n 4p? v 2v 2v

5

ie 1 — 1 1 1
+(47)2WN(D Sp) (P ,D)N(p,sp)fo dyyfo dszzfo dxgu(k’,h")

"+¢4'+m
X(é*(ZK?—-q,)’yV‘lk.k,

3f+—1f—2<—y<Pix>2+2PLX <k'+q'>)}
C (CH 1%X2 1%X2
2 f
+ Ef[é* ,ka/+ké* ,yV_4m8* V_é*(k!+q/ X ),y +y,yVé* PX X +yPX1X ,}/Vé*]
1

eyl Atk kg Pl Y —28% (K +d' —yP  +m)y"P} K —2KP, , 6*(K'+4'—yP, , +m)y"

+Y Pl (— 27 (K +d' —yP), )% +ame* )P, THu(k,h), (34)
with the four-vectorP; , defined by

Pl =—(q—x.0" )Xo +k, (35)

X1Xp
and the scala€' defined by
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C'=—2k"-q'x X +Y(Pf 4 )2 (36)
Remark that in the loops of the vertex correction diagrams where the photon couples to the final élitagyrams of Fig.

2 denoted byf), the invariant mass of the virtuae( + y*) state before radiating the photon is giventg+2k’-q’=m?.

This means that an on-shell propagation is possible forehe-(y*) state. This translates mathematically into the presence of

integrable singularities in the corresponding Feynman parameter integrals ¢ilBg$24), and(34), and yields an imaginary

part for the corresponding amplitude. In contrast, in the loops of the vertex correction diagrams where the photon couples to

the initial electron(diagrams of Fig. 2 denoted hy, the invariant mass of the virtuaé{ + y*) system before radiating the

photon is given bym? which means that the corresponding integrals contain no singularities. The numerical treatment of those

singular Feynman parameter integrals will be discussed in Sec. Il C.

4. Electron self-energy diagrams of Figs. 2 (Si) and (Sf)

We next evaluate the electron self-energy diagrams of Fi¢Si)2nd(Sf). We only have to consider those diagrams where
a photon is emitted and reabsorbed by an intermediate electron line. The diagrams with a loop on the initial or final electron
lines are already absorbed in the wave function and electron mass renormalization, and therefore do not yield an additional
correction. This can also be seen from the expression(&2P) for the renormalized lepton self-energy, which vanishes
on-shell.

The amplitude corresponding to Fig.(8i) is then given by

(k=4 +r,n)é*u(k,h), 37)

k—¢'+m)~
(k=4 m)z(k_q,)W

. 1 INT ! u(
Msi=ie? i yaN(P ST u(p" PIN(P.spU(K h) =~

(p'—p)?

where the renormalized self-energy is denotedibynd is given by Eq(A29). Remark that the UV divergence in the loop
integral of Fig. 2(Si) has been removed through the renormalization of the electron field and electron mass. The UV finite

renormalized self-energ) contains however an IR divergence from the counterterms. Inserting the expressbr Eop.
(A29)] into Eq. (37), yields

2 2 5

ie 1 —
(4,”_)2 (pl_p)ZN(p,lsé)rv(p,ap)N(pxSp)

(k—¢'+m) [ m(k—q") —-2m?+6k-q" (2k-q’ 2m?+2k-q" [2k-q’
’ 7 2 7 2 7 2 2 7 in 2 £*u(k,h).
—-2k-q m-—2k-q m<—2k-q m m-—2k-q m

) e
Mgi=M; —2[—— +1In
Si BH(4,n.)2 . YE

+

m2

xu(k',h")y

(38)
The amplitude corresponding to Fig.(8f) is given by

Mr=ie® —N(p’ ST (' PIN(P. s, aK )8+ o DS oy KA 39
Si= 18 Ty (p",sp)T(P",PIN(P,sp)u(k’,h") T g (k' +q )Tq’y u(k,h), (39)
which can be worked out analogously as before and yields
Mo Mby 2 ) S e sorp N
Sf— BH(4_T)2 a_‘)/E—i_ n m2 +(47T)2(p/_p)2' (p 1Sp) V(p 1p) (pasp)

_ (K'+d'+m)( mk +¢') [ —2m’—6k'-q" -2k q’
! ! *
Xu(k ,h )é 2k,'q, m2+2k’~Q' m2+2k!_q/ n m2
2m2—2k'-q'I —2K-aN e 4
- m2+2k’-q’ n m2 y’u(k,h). (40)

Note that in Fig. 2(Sf), the four-momentum squared of the plex amplitude because @k’ -q'/m?)=In(2k’-q'/mP)+ir,
(e"+9*) state in the loop is given byk(+q’')?=m?  fork’-q’>0.

+2k’-q'=m?. Therefore, the self-energy and the amplitude
for Fig. 2 (Sf) is complex, as was also noted for the vertex
diagrams of Fig. 2 where the photon is emitted from the final The vertex correction to the VCS process is given by Fig.
electron(denoted byf). Equation(40) yields indeed a com- 2 (V4), and its calculation is the same as the one for elastic

5. Vertex correction diagram of Fig. 2 (V4)
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electron scattering. This yields for the renormalized vertexpendix A to the case of thep— e py reaction. The diagrams

correction for thee p— epy reaction with one additional soft photon are
shown in Fig. 3, where the hard photon of te@—epy
a3 2 2_ process is indicated by its four-momentugh. In this sec-
Mva=—ie“u(k’.h )[(F(Q )=FQ=0)7, tion, we will show that the soft photon emission contribu-

tions of Fig. 3 contain IR divergences which exactly cancel

u(k h)izs*H"“’. (41) the IR divergences appearing in the virtual photon correction
gt M diagrams of Fig. 2. The process where the enétgy of the

o additionally emitted photon is not very small compared with
In Eq. (41), F(Q?*)—F(Q?=0) is given by Eq.(A16) and  the lepton momenta in the process, makes up the radiative
reduces in the ultrarelativistic limit@*>m?) to Eq.(A18).  tajl to the ep—epy reaction. Its calculation will be dis-
The magnetic correctio®(Q?) is given by Eq.(A11), and  cyssed in Sec. IV.
vanishes in the ultrarelativistic limit.

K

~G(QVi

1. Factorization of amplitude for soft-photon emission processes

6. Vacuum polarization diagrams of Figs. 2 (P1i, P1f) and (P2 . . .
P g g ( ) (P2) Here, we evaluate the diagrams of Fig. 3 in the soft pho-

The vacuum polarization corrections of Figs(F2Li, P1§  ton limit, i.e., when the second emitted photon has an energy
and (P2) involve the renormalized photon self-energy much smaller than the initial and final lepton energies and
I1(Q?), which has been calculated in Appendix A. There-also smaller than the hard phot@denoted byg’) in order to
fore, we get for the vacuum polarization correction to the BHdistinguish both photons. We will see that only the diagrams

procesqFigs. 2(P1i, P1j] where a soft photon couples to an on-shell lepton contain IR
divergences and lead to a finite logarithmic correction in
. . 1 1 AE;.
Mp1=Mpy——= . Mp=Mpy——= ' The amplitude corresponding with Fig(B1i) is given b
1-TI(~1) 1-TI(—1) : y
(42) _ (K—¢'—1+m)
Mpi=ie3u(k’,h’)y” - -
with t=(p’ —p)2. bli ( )Y -2k-q'—21-(k—q")
Similarly, we get for the vacuum polarization correction (K=1+m)
to the VCS procesfFig. 2 (P2)] Xé*(q’)T(—eé*(l))u(k,h)
Mp,=M ! (43) 1
p2=Mvecs—— =~ INTEN A '
1-T1(Q?) ><WN(IO Sp) (P, PIN(P.Sp),  (45)

In the ultrarelativistic limit Q%>m2), T1(Q?) is obtained wherel is the four-momentum of the soft photon. In the soft
from Eq. (A39) photon limit (—0), Eq. (45 simplifies by using k—/
) , +m)yeu(k,h) = (2k*—I y*)u(k,h)=2ku(k,h),  which
~ e~ 4 5 Q yields for Eq.(45) in the soft photon limit
2\ — D i,
Q)= 72 3[ 3+In(m2)]. (44) a

“il (46)

Mp1i=Mpu(—€)ek(l)

B. Soft-photon emission contributions and cancellation

of IR divergences i . . .
where Mg, is the Bethe-Heitler amplitude of Eql)—

After removing the UV divergences from the virtual pho- corresponding with photon emission from the initial lepton.

the resulting expressions still contain IR divergences. Botiyng p2§ which yields in the soft photon limit
the corrections to the BH process of Figs(\2i, V1f, V2i,

V2f, V3i, V3f, Si, and Sj and the vertex correction of Fig. 2 [,

(V4) to the VCS process contain IR divergences. It is known Moyt Meo=ME(—e)e* (1) ﬁ_ ﬁ 47
for QED since a long tim§26,27), that these IR divergences bi T b2 T BH T T )

are cancelled at the cross section level by soft photon emis-
sion contributions. These soft photons are emitted from the [ Ko ke

charged particle lines and can have energies up to some ot (AL o~ &
maximal valueAE which is related to the finite resolution Mozt Mpar=Mep( e)sa(l)_k’ 1 kel (48)
of the detector. In Appendix ASec. A5, we calculate the

soft bremsstrahlung contribution to electron scattering bywvhere M5, is the Bethe-Heitler amplitude of Eq2)—
performing the phase space integral over the soft photon inorresponding with photon emission from the final lepton.
an exact way, and give the finite correctitafter cancella- Figures 3(b3i) and (b3f) contain the contributions where
tion of all IR divergencesto the elastic electron scattering the soft photon couples to an off-shell lepton line. The am-
cross section. In this section, we generalize the result of Applitude corresponding with Fig. ®3i) is given by
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q q !
(bli) (b2i) (b3i)
q d !
FIG. 3. First order soft photon
emission contributions to thep
—epy reaction.
(b1f) (b26) (b3
oy ¢ w 7
o (K—=4'—1+m) i (k=q")*
- _in4 2 ’ v — | _ *
Mb3| e U(k !h )7 —2k'q’—2|'(k—q’) Mb3| MBH( e)sa(l) —k'q’
(K—=4'+m) = Y€ (1)£*(q)
* AL S ’ 4 Y AN N L
X% (1) T £*(q")u(k,h) +ieu(k’,h") kg’
1 — _
X—— _N(p'.s ' . Xu(k,h)——=N(p’,s )T, (p’,p)N(p,s,).
(p/_p)ZN(p !Sp)rv(p !p)N(paSp) (49) ( )(p _p)2 (p p) (p p) (p p)

(51)

In the soft photon limit, Eq(49) can be simplified by using Similarly, the amplitude corresponding with Fig.(B3f) is

given by
— I __ + _ I+ (k/+q!)a
(kmg—Trm) (ko4 m) M= M(—€)ek (1)
—2k-q'=2l-(k—q") —-2k-q’ q
-q —q' — £5(q)éx )y
_(k=d'+m) ya(k 4’ +m) L iefu(k hY) (q ), (,)7
—2k-q’ —-2k-q’ 2k’'-q
(k=d'+m) (k=a)* " Uk, NN (p’ ST (p’
- - ) ——5N(p",sp)I'.(p",P)N(P,Sp).
—2kq —kd  —okq (50) P —p) p p
(52)
In complete analogy to Eq$47) and (48), we can also
Consequently, the amplitude of E@9) is given by calculate the soft photon emission contributions to the VCS
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process. They are shown in Figs(l#) and (b5), and their If one measures thep—epy reaction by detecting the
calculation in the soft photon limit yields outgoing electron and photon, one eliminates in Ey0)
the integral oveﬁ,’V with the momentum conserving func-
tion, which gives

!
[e3 o

k
Mb4+Mb5:Mvcs(_e)8§(|)[m—m], (53

] d3k,, d3q’ dc*r 1
g~ ] > ’
whereM,csis the VCS amplitude of Eq4). (2m)%2E; (2m)%2|q'| (27)°2 | 2E

We see from Eqs(47), (48), and (53) that for the dia- -
grams of Fig. 3 where the soft photon couples to an on-shell X (2m) 8(Eet+ En—Ee—|q |
lepton, the original amplitude factorizes: in Eq4.7) and = = o, 5
(48) the BH amplitude factorizes, and in E(:3) the VCS —\/(q+pN—q =M= 1)
amplitude factorizes. The resulting amplitudes are propor- / K ke KA
tional to 11, which leads to a logarithmic divergence when X Mg+ Mycd?(—e?)| 2 — & || ——— —|.
integrating over the phase space of the soft photon. In con- K1 kel (kT ke
trast, the amplitudes of Eq&1) and(52) where the photon (55)

couples to an off-shell lepton line are finite whier 0, and

the corresponding phase space integral becomes vanishingly,e to the energy conserving function in Eq.(A41), the

small in the limitl 0. upper limit in the integration over the soft photon phase
space depends on the angle. Therefore, this integration vol-
2. Radiative correction due to soft-photon emission processes me has a complicated ellipsoidal shape inlgesystem. In
In the soft-photon limit we therefore need only keep theorder for the soft-photon phase space integration volume to
bremsstrahlung corrections of Eq&l7), (48), and (53), be spherical, one has to perform the calculation in the c.m.
where the BH and VCS amplitudes factorize. To first ordersystems; of the (recoiling nucleont soft photon, general-
in ey (relative to the BH+ VCS cross sectionthe brems-  izing the procedure of Appendix A for elastic scattering to
strahlung correction therefore amounts to calculating thehe e p—epy reaction. The systens; is defined byﬁ,’ﬁf

phase space integral of the form =pn+g—q =0. In the systemS;, the energy conserving
delta function in Eq(55) is independent of the soft-photon
g d3k,, d3q’ d3py LER angles, and the maximal soft photon energy is isotropic. The
o~ EDY=0 = REY=0 3 integral over the soft-photon momentuup to some maxi-
(2m)°2B, (2m)2|q | (2m)72Ey (2m)72] mum valueAE) can then be performed independently of the
X (2m)*8*k+p—k'—q' —p'—1) integration over the soft photon emission anglesAE is

sufficiently small, one can furthermore neglect the soft pho-

5 P P N S ton energy with respect to the other energies in dhfeinc-
X[Mgp+Mycd“(—€?) K1 kIl'lka1 k1l tion, and perform the integral over the photon momentum
(54) lg'| in Eq. (55) to obtain the correction to the fivefold dif-

ferentiale p—epy cross section. We indicate in the follow-
. ing only how the squared matrix element for tbp—epy
where E|I| denotes the soft photon energy, and where thgeaction is modified due to soft photon emission. This cor-
total BH amplitude is given blgy=Mpg,+Mfy,. The cal-  rection due to soft bremsstrahlung is given by

culation of the bremsstrahlung integral of E(4) goes

along similar lines as the corresponding integral for elastic 437
scattering, for which the technical details can be found in IMSOFTY 12— Mg+ My 542(_62)] -
. . . . . . C
Appendix A (Sec. A5. We will point out in this section the epmepy (2m)°21
differences which arise for thep— e py reaction. K K ke ke
There are two practical ways to measure #g@—epy X| - B ] (56)
reaction by measuring two particles in the final state. One K-l kD) [k ke

way is to measure the outgoing electron in coincidence with

the recoiling nucleon: this is the ideal technique when meaThe factor multiplying|M g+ My cd? is the correction fac-
suring thee p—epy reaction at low outgoing photon energy tor to the fivefoldep—epy cross section. In Eq56), the

as is done i11-13. The alternative is to measure the out- soft-photon phase space integral is understood to be per-
going electron in coincidence with the photon: this is theformed in the systen®;, where the integration volume is
technique when doing a very inelastic experiment, such aspherical. Its calculation is performed in Appendix A. One
deeply virtual Compton scattering, where the photon is prosees that the integral in E6) has a logarithmic IR diver-
duced with a large energy. We discuss here first the casgence, corresponding to the emission of photons with zero
where one detects the outgoing electron and photon, and irenergy. To evaluating it, one has to regularize it, which is
dicate at the end the changes which apply when measurindpne in this work by using dimensional regularization. This
the outgoing electron and recoiling nucleon. amounts to evaluating the soft-photon phase space integral
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(in the systemsS;) in D—1 spatial dimensions. This calcu- along similar lines as above. One starts now by eliminating
lation is performed in Appendix A and yields in Eq. (A40) the integral overg’. Then one goes into the
c.m. systends, of the (VCS photong’ + soft photon, where
_ i+ the energy conserving function is independent of the soft-
€R Ve photon angles, and where the maximal soft photon energy is
isotropic. This systens, is defined byq +1=py+q—py
) =0. The calculation of the soft-photon emission integral is
then completely similar as above, and leads to the finite cor-
(570  rection of Eq. (58), where the kinematical variables

(E.,E.,cosf) are now understood in the systef3. To
make the transformation between the syst®and thelab
%ystem, we first introduce the missing four-momentpyp
Eq’+l. The systens, is defined byﬁmzzﬁ, and the miss-
ing massM ,,, of the system ¢’ +1) is defined by

2
e
IMSSFar |=Mgy+ Mvcslzx[—z

ep—epy A
47T,LL2
_ln 2
m

v2+1I
2v :

v+1

v—1 -1

+ R

In Eq. (57), &g is the finite part of the real radiative correc-
tion corresponding with soft photon emission, and is given a:
in Appendix A[Eqg. (A65)] by

Q%>m? 2 2
aem‘ In( (AE) [In(%z) - 1} - %In2

5R —
1 2 772 "é . . .
n Elnz( %) — n Sp( cod 7e) } . (58) We can then easily express the electron energies and angle in

e

E

!
e—e

!
e

M2,=(q’+1)2=(p+q—p")2. (64)

the systemS, in terms oflab quantities:

In Eq. (58), we next have to express the kinematical vari- B K-Pm2 ik tq-p)
ables €.,E.,cosf,) in the systemS; (denoted by tilded © Mp Mp (pra-p
guantitie$ in terms of thdab quantities, which we denote by M 2 koo
untilded quantities &, ,E.,cosf,). To make the transforma- - _N /E _ kb ) (65)
tion between the systei®, and thelab system, we first in- M| ° 2My My )’

troduce the missing four—momentupmzp,'\,ﬂ. The sys-

~ k' 1
i pm2:

tem S, is defined byp,,;=0, and the missing magd,; of ! k'-(p+q—p')
the system ¢’ +1) is defined by Mmz Mmz
M Q2 k' p/
M2 _ " 2_ +a—a’ 2. 59 _ N ' _
m=(p +H*=(p+aq—q’) (59 M Ee+—2MN M) (66)
We can then easily express the electron energies and angle in
the systemS, in terms oflab quantities: ~ E.E.
YIETBy a SIF? Be/2= = =Sir? 6/2. 67)
k- Pm1 EeEe

~ 1

Ee= . “m_K((+ta-a’) , , _
ml ml The maximal soft-photon energyEg in the systemsS, is

My | Q? k-q’) given by

= Ee— - (60)
Mml—® 2My My M.,
, AESIT. (68)
= k pm1 1 ’ ’
Ee=v_. — v K (Pta—qa’)
mi mi 3. Cancellation of IR divergences
2 ’ ’
— Mn / E/+ Q _ k'-q ) (61) We can now demonstrate for tleg— e py reaction that
Mm\ € 2My My /' the IR divergences from the soft photon emission corrections

exactly cancel against the IR divergences from the virtual
e EE. | radiative corrections, calculated in Sec. Il A. Concentrating
Sin’ 0e/2= g E’sz 0/2. (62 here only on the IR divergent parts of the virtual radiative
e-e corrections, we found in Sec. Il A that the amplitudes of
Egs. (13), (17), (22), (24), (33), (34), (398), (40), and (41)
contain IR divergences. Those IR divergent parts are given

The maximal soft-photon energ§E; in the systems; is

iven b
g y by
M — MY [ [ f f
AE=—+~—— (63)  My;+(CT)yy+ My +(CT)y,y
2M 1
If one measures thep—epy reaction by detecting the M e_2 “Hr +In AL’U“Z (69)
outgoing electron and recoiling proton, the derivation goes BHA72\ 2 ||en 'E m? ||’
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My, +(CT),+MI,+(CT)!, Among the pne-loop vi.rtua.l radiat?ve _corrgctions to the
ep—epy reaction shown in Fig. 2, six give rise to simple

e? [—1\[ 1 b p? analytical formulas. For the six vertex diagrams, denoted by
—>MBH4—2(7) — —vyg+In mT” (700 V1, v2i, V3i, V1f, V2f, and V3f, the trick consisting of
m gIr adding and subtracting the divergent term for each of them

(as explained in Sec. Ill Agives rise to Feynman parameter

integrals that are rather complicated to be done analytically.

Therefore, we will evaluate them in this work by a numerical

) procedure. Although these Feynman parameter integrals are

1 ym on fini : :

— — yetln 71) by construction finite, appropriate numerical methods are
E m? ||’ needed to perform them. Two main difficulties are encoun-

tered in these numerical integrations. First, the variations of

v+1
v—1

l)vz+1

ZUn

e (1\[ 1 4’ the integrated functions are always extremely sharp near the
Msi+ MSfHMBHW(E) o retinl = ” integration limits. In fact, a typical behavior is a rather flat
IR (72) dependence in the middle of the domain and two pronounced
rises when approaching 0 or 1 for the Feynman parameters
e2 /1 0241 [v+1 with a width of orderm/E.. The contribution of these two
MV4+(CT)V4—>MVCS4W2\§ o In oy b } peaks has to be evaluated carefully in order to obtain a good
precision for the final result. Secondly, we know that the
1 A7 p? virtual radiative corrections to thep—epy reaction allow
X a—yEHn 2 ) (73)  the propagation of on-shell staté¢see Sec. Il A. This is

mathematically expressed by the presence of integrable sin-
gularities in the Feynman parameter integrals which require
an analytical continuation into the complex plane and gives
rise to an imaginary part for the amplitude.

To evaluate the Feynman parameter integrals, our strategy

Adding them all up gives the following correction to the
squared amplitude for the virtual radiative corrections:

|M BH+ M DVCS+ MV|RTUAL’y|2

ep—epy is to perform the first integration analytically. The last inte-
e? [vz+ 1 [p+1 grations will then be performed numerically using the Gauss-
=|Mgy+Mycd? 1+ -— In - } Legendre integration method. The analytical calculation of
am’l 2v v-1 the first integration provides a shorter calculational time and
1 Al a higher precision. The main advantage however is that in
X a— vetin ) ) ]+ (74 the case of a singularity, the pole is avoided by deforming

the integration contour into the complex plane, using analyti-

where the ellipses denote the finite virtual radiative correc-Cal continuation. In this way, one removes the difficulties for

) ) - ; the remaining integrations along the real axis.
t!on. Addlng the virtuafEq. (74)] and .reaI[Eq. (57)]. rad|a- To classify the Feynman parameter integrals that occur in
tive corrections to theep—epy reaction, one verifies that

. X ; I5he six vertex diagrams under study, we start by factorizing
the IR divergences in the sum exactly cancel, showing QE all the Diracy matrices and decomposing the components of
at work. Note that this cancellation is different than in the Y P 9 P

case of elastic electron scattering. Indeed, for the virtual phot-he four-vectors. All resulting integrals then reduce to the

ton correction diagrams to the Bethe-Heitler process, therd®neMe form:

are three types of vertex diagrafitsgs.(69), (70), and(71)], 1 P(X1,X,X3)

the self energy diagrarfEq. (72)], and the corresponding f f f dxq dX, dXgr———, (75
counterterms, which have an IR divergence. On the other 0 Qx1,%2,%3)

hand, for the virtual radiative corrections to elastic electron N
scattering, there is only one vertex diagram which is lRwhereP andQ are polynomials in three Feynman parameters

X1,X2,X3. Let us choose; to be the most internal variable.

ivergent. - oL
divergent Then the first integration is either of the form
C. Integration method for the virtual photon corrections 1 Xrlndxl
i i i S E— (76)
At this stage of the calculation of the first order QED fo (axg+ B)"

radiative corrections to thep— e py reaction, the treatment

of all UV and IR divergences, resulting from the radiative

corrections at the electron side, has been performed. The UV

divergences have been removed by the renormalization pro- N m
) X1 d%y

cedure whereas the IR divergences were shown to cancel at f B St S— (77)

the cross section level when adding the soft photon emission 0 (ax§+,8xl+ )"

processes. Now, the evaluation of the remaining Feynman

parameter integrals in the finite terms such as in(E§. has  wherea, B, andy are polynomials irx, andxz with coef-

to be done. ficients that are functions of kinematical variables. In Egs.
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(76) and(77), mvaries from O to 4 and is equal to 1 or 2, complex plane. In this way, the integral alof@,1] is re-
to accommodate all cases appearing in Sec. lll A. These su@laced by an integration along a semicir¢leith origin at
cessive decompositions increase the number of terms to cal-5+0i and radius 1/Rin the opposite complex half-plane
culate but they have the advantage of providing two simplewvith respect to the pole. A comparison between the two
classes of integrals without any vector or matrix dependencenethods shows a perfect agreement. Only in the special
The possibility of poles in the integrands of Eqg6) and cases where one pole comes close to an edge of the domain
(77) naturally splits the problem into two parts, whether theof integration[0,1] (typically within a distancenzlEi to 0 or
integrand is regular or singular. 1), need one increase the number of integration points of the
numerical method to obtain the same precision.

1. Regular integrand

. . o 3. Numerical checks and accurac
When the denominator does not have any singularities, Y

some recurrence relations exist for these integrals and can be Thanks to the analytical calculation of the first integration
found in Ref.[28]. Unfortunately for small values of as in the Feynman parameter integrals under study, singularities
compared tg3 or to v, it has been seen that these relationsOn the real axis have been removed and the two remaining
are numerically unstable. This has thus led us to use severfitegrations can then be performed numerically using the
methods of integration, each with a different domain of va-Gauss-Legendre method. In the implementation of this algo-
lidity. For ratiosr [r=a/pB for Eq. (76) or r=aly for Eq.  fithm the major difficulty consisted in finding the suitable
(77)] small compared to 1, we perform a Taylor expansion oftinning of the integration domain and in determining the
the integral and tune the order of each development to conffumber of points per bins. A detailed study of the integrated
plete a fixed criterion of convergenctor example, we re- functions has been performed to estimate the width and am-
quire that the ratio between the last and the first terms is oflitude of the sharp variations close to the ends of the do-
the order of the numerical precision in double precisiétor ~ Main. In this paragraph we discuss various checks of the
r>1 the recurrence relatiofig8g] are used as they are stable precision of our results as well as their numerical stability.

in this range. In the intermediate zone (82<1), we use A strong cross check of the reliability of our calculations
the Gauss-Legendre numerical integration method. is the exact agreement between two programs developed in
parallel [29,30. Both of them use the same numerical
2. Singular integrand method but they have been coded independently using in

most cases a different decomposition of the terms and differ-

€ent order in the integration variables, which checks the sym-
metry in the permutation of;, X,, andx; variables. Com-
arison at each intermediate stage of the calculation also

cludes any misprints in the writing of the quite extensive
pressions.

Besides this agreement between two independent pro-
rams, the next requirement is the numerical convergence of
e calculations. Figures 4 and 5 show results obtained for

typical MAMI and JLab kinematics, respectively. Beyond a
ertain density of integration bins and points per bin, the

numerical instabilities are brought down to a few ®f the

m m lowest order cross section. This accuracy is far below all the

f 1oxpdx f ! xpdx other theoretical uncertainties related to the performed ap-

0 (ax;+Bxie)" 0 (axX2+ Bxy+ y*i en’ proximations or experimental knowledge of the form factors
(78)  (of the order of 1% Nevertheless this kind of very good
convergence is useful since numerical instabilities can be

The prescription for on-shell propagation is of course alreadymplified in the coherent sum of all the diagrams or when

taken into account in the propagators and determines the siggomputing higher energy kinematics. In the case of the

in front of ie (which can also be obtained by applying the deeply virtual Compton scattering, we have checked that one
simple trick m—m—ie/2). Complications can occur from has to double the number of integration points to get the
the possibility of two distinct roots in the intervg0,1] for ~ same numerical precision.

the second order polynomial. An important remark then con- Some features of the electromagnetic interaction itself can

cerns the variable of integration. In E5), the choice ok, also be used to check further the validity of our results. Let

as the more internal dimension was purely arbitrary. In factus consider the total amplitude of the sum of all the virtual
all the decompositions in the three parameters have bee@diative correction diagranig. 2). Denoting the Lorentz
derived and it has been shown that it was always possible tindex associated with the real photon vertexythis am-

find an expansion providing at most one singularity. plitude can be written as the scalar prodWi¢te* where e*

In Appendix B, we give the analytical results for the in- stands for the polarization vector of the real photon with
tegrals of Eq(78). We checked these results with a numeri-four-vectorq’ and whereT#* represents the electromagnetic
cal method, where one pole along the intery@ll] is current. The gauge invariance of electromagnetism implies
avoided by analytically continuing the integrand into theT“q;Lzo and provides us with a powerful test of our calcu-

In the case of the propagation of on-shell intermediat
states, the polynomials of the denominators in E@6) and
(77) acquire ongor two) roots in the domain of integration.
Some simple physical considerations have shown that amo
the six diagrams numerically evaluated, the three processes
where the photon in thep—epy reaction is emitted from
the initial electron line are free of poléSec. Il A). In con-
trast, the three vertex graphs where the photon is emitte
from the final electron line were seen to contain singularities
The corresponding integrals are then defined by an analytic
continuation into the complex plane and take the form
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FIG. 4. Test of convergence: The relative effect of the virtual FIG. 5. Analogous test of convergence as in Fig. 4 but for JLab
radiative corrections to the BH Born cross section is shown as a kinematics.
function of the angle between the two photonsq(’) for a typical
MAMI kinematics. The curves correspond to tests performed withrections rapidly decreases, which reflects the suppression of
different densities of integration zones and points near the edge gfhoton emission by a heavy particle.
the integration domain. They show the good numerical convergence
obtained. . . .
D. Radiative corrections on the proton side and two-photon
lations. Since our numerical accuracy is finite, we cannot get exchange corrections
exactly zero. Therefore, we rather define a quantity com- In Secs. Ill A-lll C, we calculated the radiative correc-
pared to which the scalar produ'Et‘q;L has to be small. A tions to theep—epy reaction, corresponding with the dia-
natural quantity is the product of the norms of the two Lor-grams of Figs. 2 and 3. They are the virtual radiative correc-
entz vectors. The gauge invariance criteria thus becomestions on the lepton side, the vacuum polarization
test of the smallness of the following dimensionless ratio: contributions and the soft-photon emission from the lepton.
These can be calculated model-independently as has been
ITHq" |2 shown above. Although these corrections are the dominant
# (79 ones(whenQ?>m?, leading to large logarithmswe want
to estimate in this section how large are the virtual radiative
corrections on the proton side, the two-photon exchange cor-
This ratio is shown in Fig. 6 as a function of the angle be-rections (direct and crossed box diagramand the soft-
tweenq andq’. The gauge invariance is verified by the fact photon emission from the proton. Generally, the radiative
that the smallest ratigsolid curve stays in the range corrections from the proton side are typically suppressed
[10 4,10 ®] and is obtained when the complete set of dia-compared with those from the electron, due to the much
grams with analyticat numerical terms is included im*. larger mass of the proton. However, to calculate the first
As a last consistency check, we investigated the masarder radiative corrections to theep—epy reaction which
dependence of the virtual radiative corrections. The relativeriginate from the proton side, one needs a model for the
effect in the BH+ Born cross section is illustrated in Fig. 7 VCS process. We do not aim in this paper to calculate these
for different values of the mass of the lepton. For this test wecorrections within a given model. However, to provide some
kept track of the mass dependence in all the kinematicafjuantitative estimate, we will follow the results §24],
variables. We observe that when increasing the lepton masshere the corrections at the proton side were studied for
(at fixed lepton kinematigsthe effect of the radiative cor- elastic scattering.

T 102 S+
[ TET,[(a")
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FIG. 6. Test of gauge invariance for MAMI kinematics. The  FIG. 7. Mass dependence of the virtual radiative corrections for
dotted curve showgfor illustrative purpose onlythe result when ~ MAMI kinematics.

only the diagramgVV2i) and (V2f) of Fig. 2 are included. The . . L.
dashed curve is the result of all analytically calculated virtual radia-Iatecj for elastic scattering. For the soft-photon emission, one

tive corrections. The full curve shows the result when the numericaf@" aggln factorlge thelorlglnal amplitude, so that the same
contributions(Feynman parameter integraire also included. correction factor is obtained for tlep—epy reaction as for
elastic scattering. The proton vertex correction has been split

) o ) in [24] into two parts. The first part contains entirely the IR
The Z-dependent corrections originate from the interfer-giyergence, which cancels the IR divergence from soft-

ence between soft-photon emission from the electron anghoton emission from the proton, and in which the original
from the proton, and from the two-photon exchange contriamplitude factorizes. The second term in the proton vertex
butions (direct and crossed box diagram$oth processes correction depends on the nucleon structioem factor de-
contain IR divergences, which cancel in their sum at thependence for elastic scatteringnd will be different when
cross section level. The interference between the SOft-phOt%’bing from elastic Scattering to t%epy reaction. For
emission from the electron and from the proton can be calg|astic scattering, this structure dependent term was however
culated along the same lines as in Appendix A5 for thefound[24] to be quite small, except when going to very large
electron (neglecting form factor effects in the soft-photon G2 (mych larger tharM2). When staying in the few G/
limit). For the two-photon exchange contributions, the Ca|CUTegion, this correction was calculated[i?4] to be well be-

lation is dominated by those regions in the integration wherg,, 10 Therefore. we approximate ti## dependent cor-
one of the two exchanged photons is soft. Therefore, one cgRction to the ep—epy reaction by the structure-

evaluate the rest of this amplitude by taking the momem“”i‘ndependent term of EqAT76), as calculated if24], and

of either of the two exchanged photons to be zero. In thiyi neglect in the following the structure dependent term.
approximation, the original amplitude factorizes and one can

follow the derivation of 24, Where this same calculation has IV. RADIATIVE TAIL EOR ELASTIC SCATTERING AND
been performed for elastic scattering. Therefore, the

.. . . . VCS

Z-dependent radiative corrections can be estimated in the

soft-photon limit by the same correction factor of E474) Besides the knowledge of the virtual radiative corrections
as for elastic scattering. and the soft-photon emission contributions to #@—epy

The Z2-dependent corrections originate from the soft-reaction, which were studied in Sec. IlI, the accurate deter-
bremsstrahlung from the proton and from the proton vertexmination of thee p— epy cross section from measured spec-
corrections. 1N 24], these corrections have also been calcu+ra also implies the knowledge of the radiative tail. The ra-
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diative tail consists of the photon emission processes where@n be written as the product of a number of factors, of
semihard photofwith energy not very small compared with, which the first one is given by
e.g., the lepton energigess radiated from the electrofor ol a
proton. (AEy) (80)
The radiative tail to elastic or inelastic lepton-nucleon E.E. |’
scattering has been the subject of numerous studies in the
literature[31,32,22,33 The elastic radiative tail also makes Wherea is given by[see Eq(A65)]
a sizeable contribution to the inclusive cross sections for )
deep-inelastic lepton-nucleon scatteriisge, e.g.[34]). Yem Q_ -~
a m2) 1], (81

In

One should notice that the distinction between the soft- T
photon emission and the radiative tail is not a fundamental
one, the latter being just the extension of photon emissio@nd where the tilded quantities in E@O) are expressed in
processes to higher energies. Although the formulas given ithe ¢.m. system ofsoft photon+ recoiling proton as ex-
this paper for the real radiative corrections can in principlePlained in Appendix A5. Because in a simulation it is more
be extended and applied to higher energiesy., Egs. Straightforward to apply radiative effects in thab, we ex-
(A70)—(A72) for elastic scatteriny in some cases the char- Press Eq(80) in lab quantities, by using EqA48), which
acteristics of the experimental detection apparatus can b4elds

such that the cut ife,®'— E., (elastic casgor in the missing (pAE!)?) 2
massM2 (M2, or M2, for the VCS casecannot be cleanly (”—f) , (82)
defined, because the apparatus can have a changing accep- EeEe

tance as a function &'~ E/, or M2, introducing a bias in Vel e _ _

the radiative tail. Therefore, it is useful to consider the radia—"VhereAzEe :,Ee ~Ee . Introducing furthermore the quantity

tive tail separately and to generate it in a Monte Carlo simuAEe=7"AE,, we can write Eq(82) as

lation. In doing such a simulation, it can be very helpful to , , ,

have a “recipe,” because it is a way to fold radiative effects (nAEg)? a: AEA Ee)a: AEe>a AE.

with acceptance functions and other effe@tsg., multiple EcE. EE; Ee Ee

scattering, energy loss by collision, external radiative ef-

fects. In the literature such “recipes” were quite often pre- The energy changeAE, (AE.) can be interpreted as the

sented. Many of them are based on one or another version ehergy losses of the incomin@utgoing electron due to

the peaking approximation, introduced originally by Schiff radiation before(after the scattering process, respectively.

[35]. In the peaking approximation, the photon is radiatedWe can then interpret the factoh E./E.)? as the fraction of

along either the initial or final electron directions, i.e., theincoming electrons which have lost an energy between 0 and

direction of the electron is not changed while radiating, onlyAE,, after being subject to real internal radiation in an

its energy is changed. equivalent radiator with thickness The factor AE/E[)?
Below, we start by giving such a recipe, based on thenhas a similar interpretation, but then on the outgoing electron

formulas presented in this paper. What one essentially needsde! Given this interpretation, if one uses\E distribution

for a Monte Carlo simulation is an electron energy loss dis1, (E,AE,a), which satisfies

tribution due to real internal radiative effects. For each event

one can then sample in such a distribution, both for the in- AE

coming and the outgoing electron. We next give a compari- Jo lin(E,AE,Q)d(AE)=| =

son between such a method based on the peaking approxi-

mation, with an exact numerical calculation of the radiativethen it is clear that by sampling such a distribution in a

ta” We ShOW to What extent the fu” CaICUIation Validates theMonte Carlo simu|ation, the Correction factor is Correctly

approximate method for the case of elastic electron-nucleogptained. The distribution;,,, which has this property is

scattering, and show that this method is realistic enough tgjyen by

apply it to the calculation of the radiative tail in the case of

the VCS. a

Iint(EaAEva): E

) . (83

a

; (84

(85

AE\?
E )
A. Energy loss distribution for real internal radiative effects and is normalized to 1:

The details of the calculation of the real radiative correc-
tions can be found in Appendix A. It is discussed there how
the real internal radiative corrections give rise to a correction i\qte that when applying Eq83) to the radiative tail, i.e., when
factor e’ to the cross section. The part 6 giving rise to considering the emission of a photon whose energy is not very
the radiative tai(when differentiatingdr with respect to the  small compared with the electron energies, we calciféin the
electron energy logsis the first term of Eq(A65), which  formula for AE, using the elastic scattered energy corresponding to
contains the maximal energy of the emitted photdBs,  an initial electron which has radiated and whose energy is given by
which is defined as in EqA48). The correction factoe’r E.—AE.. In the soft-photon limit this difference disappears.
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Flim(E,AE,a)d(AE)=1. (86)
0

n

o
(=}
o

ey Sty

B. Evaluation of the radiative tail and comparison
with an exact numerical calculation 1500
for elastic electron-proton scattering

Given the above distribution, a method for introducing a
radiative tail due to internal radiation in a Monte Carlo simu-
lation for elastic electron scattering suggests itself.

(i) For the incoming electron, sample an energy lA&s
using the distributior{85) with E= E, the incoming electron
energy. 500

(ii) Apply elastic electron scattering using the reduced
electron energ¥.— AE,., and if the cross section behavior
is used in the simulation, use the elastic scattering cross sec
tion at the reduced electron energy. After the elastic scatter o
ing process, the outgoing electron has an en&fy.

(ii ) For the outgoing electron, sample an energy IbEg
using the distribution(85) with E=E_®'. The final electron
energy is nowE.®'— AE/. “tagg 02

To calculate the equivalent radiator thicknesof Eq.

U0/ \URGUsZgUSL)

1000

2
0 p,%(deg)

(81), one needs the value @2, which on n in princiole FIG. 8. Detail of the cross section for photon emission from an
» ON€ NEEds the value ' ch one ca P P electron(Bethe-Heitler cross sectipnwhen the photon is emitted

only calculate after the complete process has taken pIaCgtround the incoming electron direction. The electron kinematics
However, one can show that the above procedure reproducggrrespond With E.—855.0 MeV. E'=621.4 MeV. and 6
e . ’ e . ’ e

the correction facto(82) with a very good accuracy already _g5 1g°.
by calculating the value ad? with elastic electron scattering

kiner_na_tics_._ . Fig. 8. More details on this numerical integration can be
Itis intuitively clear that the_ abgve pr(()jcedltljlre, in tge Casr?‘ound in [36]. The result of this integration is the absolute

where a constant cross section is used, will reproduce thg e section of the radiative tail, differential in the outgoing

correction factor of Eq(82). In case the actual elastic scat- electron’s momentum and angles. It is shown by the points in

tering cross section behavior is used, the cross sectiogig 9 for E,=855.0 MeV andf,=52.18°. The energy of
“walk” with the incoming electron energy is taken into ac- ' € ' is th N o _rel

. . IB,=E
count. Remark that the above procedure implies an electro%1e outgoing electron is then  determined N

. . : —AE/ . The points are compared with the analytical result in
:ir:jeersg'y loss at both the incoming and the outgoing eIectrort'nhe soft-photon limit, obtained by different.iatilng the expres-
The discussed method implies, however, the assumptioﬁIon of Eq..(A65) for 5R_f9r phgton. emission fronLtlhe
of a strict alignment of the bremsstrahlung photons in theelectrc.)n—wrth respect tAE,. This Q'Ves a stricE, ,
direction of the radiating leptons, which is known as thePehavior, yielding the cross sectionr,=ogorna/AE,
(angulay peaking approximation. The strength on the otherVhere the proportionality factaris given as in Eq(81). The
hand is found by integrating the correct angular shape in th&0ft-photon formula gives thus a straight line when both the
soft photon limit, as done in Appendix A5. To test the va- Cross section and E; are presented on a logarithmic scale.
||d|ty of this approximate procedure, we performed a fu||y The deviation can be seen in the lower plOt of Flg 9. From
numerical calculation of the radiative tail for elastic electron-the keV region up to about 1 MeV fakE,, the deviation is
proton scattering. It consists of integrating over the photoriess than 10% which can be taken as an upper limit for the
phase space in the diagrams where a photon is emitted frogrror of the numerical integration procedure. This agreement
an electroricf. BH diagrams of Figs. ®) and Xb)], as well demonstrates that the soft-photon approximation holds to
as the diagrams where a photon is emitted from the nucleowery good precision in this region. For higher valuea\&, ,
[cf. Born diagrams of Figs.(&) and Xd)]. In doing so, we a raise of the photon emission cross section is observed as is
nowhere neglect the photon momentlinin contrast to the expected due to the change of kinematics leading to a lower
soft-photon limit calculation of Appendix A5. For fixed momentum transfer to the proton, and to a resulting “walk”
electron kinematics, the angular phase space of the soft phof the cross section. We also show on the lower plot of Fig.
ton is covered by a grid with about 225000 points, choser® the result when both radiation from the electron and proton
with increased density in the peak regions in order to keegre considered. For better presentation, both results are nor-
the point-to-point change of the cross section smaller thamalized to the cross sectiom, for soft-photon emission
10%. Attention has to be paid right in the middle of the from the electron, as defined above.
peaks where the cross section drops very rapidlgptacti- In Fig. 10, we compare for two kinematics the exact nu-
cally) zero within the characteristic angi®'E., as shown in  merical calculation of the radiative tail with the approximate
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10° C. Application to virtual Compton scattering

The above procedure can also be applied to VCS, as long
as the angular peaking approximation is used, i.e., the elec-
tron does not change its direction while losing energy by
internal real radiation. Indeed, E8) is completely similar
to the elastic case, when expressing it in the c.m. system of
either (soft photon+ outgoing nucleonor (soft-photon+
outgoing photoh depending on how the p—epy reaction
10FL b is measured, as explained in Sec. Ill B. After exponentiation,

10 10 AE, [Me1V] 10 10 one can apply a factorization completely similar as in Eq.
(83). Because under the assumption of the angular peaking

approximationAES/E is constant under a Lorentz transfor-
wk mation, we obtain the property that the shape of the distribu-
E tion (85) is system independent, only its endpoint vakie
30 F . changes. As a result, one can apply the distribution of Eq.
3 (85) in thelab for VCS, but then usingab values forkE, and
3 - E.. For VCS, one certainly can have a changing acceptance
10F .0 of the detection apparatus as a function of missing mass
3 s et o (making a “clean” cut in missing mass on the data impos-
OF o— s s = oso o af sible), so that generating a radiative tail in a Monte Carlo
107 107 10 10° simulation with the above described method is probably the
best way to implement the radiative tail correction to the
FIG. 9. Radiative tail of elastic electron-proton scattering for thedata. Such a simulation was implemented for the VCS ex-
kinematics: E.=855.0 MeV; #,=52.18°. Upper plot: fully nu- periments already performed at MAN11] and at JLal§12],
merical calculatior(black point$ compared with the WE, depen-  and will be fully described in a forthcoming papé&7].
dence of the soft photon resutraight ling. Lower plot: deviation

102
10
1

107

do/{dQ,dk.)® [ub/(sr GeV)]

(do/do,—1) * 100

1
AE.. [MeV1

between the full calculation, when only radiation from the electron V. RESULTS AND DISCUSSION
is included(open diamondsand when both radiation from electron . .
and proton are taken into accoubtack pointg, with the soft pho- A. Elastic electron-proton scattering

ton result(straight lines. See text for details. Before showing results for VCS, we briefly discuss first

the effect of the radiative corrections to elastic electron-

proton scattering, in order to have a point of reference. The
method of the Monte Carlo simulation as discussed aboveadiative corrections to elastic electron-proton scattering are
(see also Fig. 11 The simulation has been investigated by presented in detail in Appendix A. In Table I, we show for
running it with and without the cross section behavidi  different elastic kinematic8AMI, JLab) the numerical val-
pole form factors assumgdand the ratio between the two ues of the vertex correctiofid,erex Of EQ. (A67)], the
versions is presented by the lines, the outer lines representingcuum polarization correctidnd, .. of Eq. (A69)], and the
the statistical accuracy. One notices that the increase of theal radiative correction at the electron sifléz of Eqg.
radiative tail is reproduced, but somewhat overestimatedA65)]. We also show th& and Z? dependent corrections,
compared with the exact calculation. 61 [Eq. (A74)] and 5(20) [Eq. (A76)], respectively, as derived

a0

30—

FIG. 10. Radiative tail of elastic electron-
proton scattering at.=855.00 MeV and 6,
=52.18°. A comparison is shown between fully
numerical calculation(indicated by the poinjs
and the simulatiorfcurves, see text

20
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30

20

. FIG. 11. Same as for Fig. 10, but for elastic
. electron-proton scattering & ,=705.11 MeV
and 0,=42.67°.

(do/do,~1) * 100

o[
TIII I reren 111 LIl | T 1 riin 1
1078 1072 107 10 102

1
AE. [MeVI

in the recent work of24]. We omit here the small part in the In an elastic scattering experiment, one measures a scat-
Z? dependent correction which depends on the particulatered electron spectrum and one has to evaluate the real ra-
model for the nucleon structutén the elastic case, the form diative corrections as a function of the c&.f'— E.) which
factorg, as can be found if24]. In Table |, we indicate the one performs in the spectrum. Dividing the measured cross
total radiative correctiord,,; as the sum of all the different section by the correction factor (16, and plotting the
contributions as in Eq(A73). From Table |, we see that by result as function of E.%'—E(), should then lead to a “pla-

far the largest contribution to the radiative correction comeseau” behavior, which demonstrates the consistency of the
from the large logarithm and double logarithm@f/m? in  procedure[within a certain range of the valueE[®'—E.)
the electron vertex correction. When evaluating the real rawhere one knows the radiative tail to sufficient accutacy
diative corrections foE,®'—E.=0.01E,, the total effect of The determination of the elastic cross section for the ki-
the radiative correction is an upwards correction of the datmematicsE.=705.11 MeV, §,=42.6° is shown in Fig. 12.
(for negatived,,,) of the order 20—25 %. In the last column The upper plot shows theéE-spectrum of elastic data taken
of Table | (denoted by EXR we also indicate the result (during the beam time of the VCS experimeat MAMI.
when exponentiating all corrections except the vacuum poThe dashed line shows the result of a full Monte Carlo simu-
larization contribution, which—as modification of the photon lation, taking into account energy loss by collision, internal
propagator—is resummed as in E4.72). One sees that this and external radiation, multiple scattering, spectrometer
can lead to differences of the order of 2%. resolution, and cross section behavior. On the lower plot, the

TABLE |. Radiative corrections to elastic electron-proton scattering for MAMI and JLab kinematics. First
column:E, in GeV; second columné, in deg; third columnQ? in GeV2. See text for details on the different
contributions. The real radiative corrections are calculated V\Eﬁgf'& E;)=0.01 E;. The total radiative
correction(to first ordej is indicated byé,,;, and the exponentiate@EXP) result (except for the vacuum
polarization contribution, see texs shown in the last column.

Ee '96 Q2 5vertex 5vacp0| 5R 51 5(20) 5t0t EXP

0.705 40.66 0.203 —-0.1673 0.0208 —0.0453 -—-0.0067 —0.0018 —0.2003 -—0.2025
0.855 52.18 0.418 —-0.1881 0.0228 -0.0245 -—-0.0123 -0.0034 -—0.2054 -—-0.2087

4000 1543 1.000 —0.2149 0.0254 -0.0260 —0.0046 —0.0055 -—-0.2255 -—0.2277
4000 23.82 2.000 —0.2374 0.0275 0.0018 —0.0107 —0.0096 —0.2285 —0.2322
4000 3245 3.000 —0.2511 0.0287 0.0300 —0.0180 -—0.0128 -—-0.2232 —0.2292
4.000 4291 4.000 —0.2611 0.0296 0.0623 —0.0265 —0.0150 -—0.2106 —0.2200

6.000 1493 2.000 —0.2374 0.0275 -0.0097 -—0.0062 —0.0089 —0.2348 —0.2371
6.000 19.40 3.000 —0.2511 0.0287 0.0092 —0.0103 -0.0121 —0.2355 -0.2390
6.000 23.96 4.000 —0.2611 0.0296 0.0284 —0.0149 -0.0146 —0.2326 -—-0.2376
6.000 28.95 5.000 —0.2689 0.0303 0.0490 —0.0200 -0.0166 —0.2263 —0.2334
6.000 34.76 6.000 —0.2754 0.0308 0.0718 —0.0257 -0.0181 -—0.2165 -—0.2261
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FIG. 12. Determination of the elastic cross section for the kine-
maticsE,=705.11 MeV andd,=42.6°.

0.1

ratio of the experimental spectrum integrated up to the value
AE/, to the simulation integrated also upAd,, is shown as T
function of the cutoff energyAE;. This gives the elastic 0_175 150 125 100 75 50 25 0 25
cross section, which is seen to be stable below the 1% level e" (deg)
over a long interval up to the cut by the acceptance of the em
spectrometer. The slow descent for highét,, indicates that FIG. 13. Differentialep—epy cross section for MAMI kine-
the simulation overestimates slightly the radiative tail. matics atq’ =33 MeV/c. Dashed-dotted curve: BH Born con-

tribution; dashed curve: BH Born + virtual radiative correction;

B. VCS below pion production threshold full curve: BH + Born + total radiative correction. The real radia-

. . tive correction is shown here for a maximal soft-photon energy of
We next turn to thep— e py reaction below pion thresh- e _ 15 mev
s .

old. It was discussed in Sec. Il, that the lowest or@er, )

amplitude of theep—epy process at low outgoing photon tve corrections have to be estimated as function of the cut

energiesq’z|q'| is given by the BH+ Born processes. The which one performs in the missing mass spectrum. The VCS

deviation from the BH+ Born amplitudes grows withy’, experiments below pion threshold measuredipe-epy re-

and can be parametrizédt low q’) in terms of six general- action by detecting the outgoing electron and proton, and

ized polarizabilities(GP’s) of the nucleon, which are func- reconstruct the missing mabs,,, as defined in Eg(64). In

tion of Q2. Fig. 13, the real radiative corrections are shown for a value
A first VCS experiment has been performed at MAMI of AE,=10 MeV, where the soft-photon enerdyE; is de-

[11]. It consisted of measuring thep—epy reaction at termined from the cut in the missing mass according to Eq.

five values ofq’ below pion threshold, ranging from’ (68). For the small value 'q=33 MeV/c, the real radiative

=33 MeV/c to q'=111.5 MeVk. At the lowest valuey’ correction depends only very little on the anglg, [through

=33 MeV/c, where the polarizability effect is negligibly the last terms on the right-hand si@ds) of Egs. (65) and

small, the measurement is a test of the low energy theorert66)]. For AE;=10 MeV, the real radiative correctiofy is

(LET). The measured deviation as functionggfcan then be  given by g~ —0.025, which corresponds with increasing

interpreted as the effect of the GP’s. It is clear that both tahe uncorrected data by about 2.5%. RDE,=20 MeV,

test the LET as well as to extract the GP’s from the measuredr~ + 0.02 (reducing the uncorrected data by about)2%

deviation with respect to the BH- Born result(which is  and for AE;c=30 MeV, dg~ + 0.045 (reducing the uncor-

expected to be of the order 10—20 % at the higlyéstalue), rected data by about 4.5%T o determine the p—epy cross

it is a prerequisite to know very accurately how the result issection from the measured missing mass spectra, one has to

modified due to radiative corrections. perform a consistency check by plotting the experimentally
In Fig. 13, we first show the differential cross section for measureduncorrectegicross section divided by the radiative

MAMI kinematics at a low valueg’ =33 MeV/c, as func-  correction factor as function of the cut in the missing mass

tion of the c.m. angle of the emitted real photon with respectpectrum. In this way, one has to find a “plateau” behavior,

to the direction of the virtual photon. One sees from Fig. 13as was demonstrated before for elastic data. This consistency

that the virtual radiative corrections reduce the BHBorn  check was also performed on the VCS data measured at

result in these kinematics by about 18% when applied to MAMI [11], and will be shown in a forthcoming publication

data, increase the uncorrected data by L6Pke real radia- [37].
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FIG. 14. Differentialep—epy cross section for MAMI kine- FIG. 15. Differentialep— epy cross section for JLab kinemat-

matics atq’=111.5 MeVk. Curve conventions as in Fig. 13. The jcs atq'=120 MeV/c. The BH + Born result is compared with
real radiative correction is shown here for a maximal soft-photonthe result including virtual radiative corrections.

energy ofAE;=10 MeV.
get (along either of the three aXe®r alternatively by mea-

In Fig. 14, we show the the differential cross section forsuring the recoil nucleon polarization, provide three new
MAMI kinematics at the highest measured outgoing photonobservables to extract the three additional nucleon response
energy:q'=111.5 MeVk. The virtual radiative corrections functions[38,2]. In Fig. 16, we show the double polarization
are mainlyq’ independentfor these rather small valueand ~ asymmetries for MAMI kinematics, by measuring the recail
lead thus also here to a reduction of the BHBorn result by ~ Polarization components along thelirection(virtual photon
about 16%. The real radiative corrections are again showdirection or along thex direction (perpendicular to the vir-
for AEc=10 MeV, and exhibit a slight angular dependence.tual photon but parallel to the scattering plar@ne aims to

These corrections were applied to the data from the unpola€X{ract the polarizability effect in these observables from the
ized MAMI experiment of{11]. From the deviation of the deviation of the measured asymmetry and the BH8orn

radiatively corrected data and the BH Born result, two result (see, e.gl.[38] for an estimate of this effect within a
model calculation Therefore, it is important to know how

comblnatlons_ of GP's have been extracted @ much the BH+ Born result is affected by the radiative cor-

=0.33 Ge\f in [11]. . . rections before extracting the polarizability effect. It is seen
An experl,ment t_Jelowzpmn production threshold to mea-, Fig. 16 that the effect of the radiative corrections on the

sure the GP's at highd” has also been performed at JLab ., ,1e nolarization asymmetries nearly drops out in the ratio

[12] and is under analysis at the time of writing. In Fig. 15, (much less than 1% chan ;
L . ge of the asymmelridsthe low
we show how the BH+ Born cross section is modified due values of the outgoing photon energy’ (e.g., g’

to the virtual radiative corrections. It is seen that for the JLab_ 54 MeV/c) where the polarizability effect is very small,

kinematics of Fig. 15, the BH Eorn resultis reduced at the o asymmetries are also hardly affected by radiative cor-
backw?rd angles by about 20% due to the virtual radl""t'verections. Therefore, these asymmetries can also provide an
cor_lr_(ra]c 1ons. larized VCS tion bel ion thresh I'ndependent check of the LET. An experiment to measure

€ unpolarize cross section below pion trésholG,q /cs double polarization observables by measuring the

prowdes three mdependent .structure. functiewsen vary- recoil nucleon polarization is planned at MAMI in the near
ing the value of in the experiment which allows to extract future [39]

three of the six(lowest order generalized nucleon polariz-
abilities. To extract the three remaining nucleon polarizabil-
ities, one has to resort to double polarization observables as
discussed irf38]. In particular, double polarization observ-  Besides the low energy region, the VCS process is also
ables with polarized electron beam and with a polarized tarstudied in the Bjorken regime, whef@? and v=p-q/My

C. Deeply virtual Compton scattering
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VCS DOUBLE POLARIZATION ASYMM

FIG. 17. Differentiale” p—e~ py cross section ifab: DVCS
kinematics at JLab. BHdotted curvg DVCS (dashed curve BH

025 b L L b L b L LA + DVCS (dashed-dotted curyeBH + DVCS + virtual radiative
-180 -160 -140 -120 -100 -80 -60 -40 -20 O correctiong(thin full curve). The thick full curve represents the BH
@W (deg) + DVCS + virtual and real radiative corrections, where the real
c.m. radiative corrections are calculated withE;=0.1 GeV, which

o ) corresponds with a cut in the missing mass specfiiam (59)] of
FIG. 16. Double polarization asymmetry for VCS with proton \j2 _M2~0.21 Gef.

polarized along the axis (upper panglor polarized along the axis
(lower panel for MAMI kinematics. Dashed-dotted curve: BH the ansatz for the SPD’s p#1]. It is seen from Fig. 17, that
Born; full curve: BH + Born + radiative correctiongboth curves the BH indeed dominates over the DVCS cross section in
nearly coincidg these kinematics, and that the DVCS cross section gets en-
hanced due to its interference with the BH. One furthermore
are large, withxg=Q?/(2Myv) fixed. In this kinematical sees that the virtual radiative corrections reduce the BH
region, the process is refered to as deeply virtual Compto®VCS cross section by about 23% in these kinematics. This
scattering DVCS). In the Bjorken regime, the DVCS ampli- is mainly due to the reduction of the BH process when in-
tude factorizes into a perturbatively calculable hard scattereluding virtual radiative corrections. The real radiative cor-
ing amplitude, and into a nonperturbative part at the protomections are shown in Fig. 17 for a valleE,=0.1 GeV,
side, expressed in terms of so-called skewed parton distribwhich corresponds with a cut in the recoiling hadronic miss-
tions (SPD’s which generalize the ordinary parton distribu- ing mass spectrunidefined in Eq.(59)] of M2,—M3
tions. These SPD’s are new nucleon structure observables0.21 Ge\f. Remark that we did not consider here the
which one aims to extract by measuring, e.g., the exclusivemission of additional hard real photons, supposing that the
ep—epy reaction in the Bjorken regime. Similarly as was experiment has sufficient resolution to distinguish these pro-
seen before in the threshold region, thp—epy reaction cesses from the exclusive DVCS reaction considered. For the
can have an important contribution from the BH processcalculation of the contribution of hard real photon emission
besides the DVCS process of actual interest. However, th® the inclusive deep-inelastic scattering cross section, an
BH and DVCS contributions behave differently as functionanalytical formula has been given in RE34].
of the lepton beam energy, as studied in Rg4§,2,41. In In Ref.[2], it was suggested that an exploratory study of
particular, at the lower beam energies, such as, e.g., availablee DVCS process might be possible by studying ¢he
at JLab, the BH process dominates in the forward direction- e py reaction with a polarized electron beam. The electron
over the DVCS process. In this region, the DVCS processingle spin asymmetrySSA does not vanish out of plane
becomes only measurable due to its interference with the Blnd is only due to the interference of the BH amplitude and
process. In order to extract the DVCS procdasd the the imaginary part of the DVCS amplitudee., the BH am-
nucleon structure informatigrirom its interference with the plitude does not lead to a SSA, because it is purely).real
BH, it is therefore important to have good knowledge of howTherefore, one expects this SSA to be less sensitive to radia-
the radiative corrections modify the BH amplitude. tive corrections on the BH amplitude. However, as the BH
In Fig. 17, we show thep—epy cross section in kine- amplitude enters the SSA linearly in the numerator, but qua-
matics accessible at JLab, where such an experiment @ratically in the denominatofas in the unpolarized cross
planned 17]. The DVCS cross section is calculated by usingsection, one might wonder what is the residual effect of the
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- 0 duction of the theory VCS double polarization asymmetries
5_7 where shown to be insensitive to radiative corrections.
= 005 For the exclusive DVCS reaction, we calculated radiative
g : corrections for JLab kinematics and found the virtual radia-
~ 01 tive corrections to lead to an enhancement of the data by
) ' about 23%. The single spin asymmetry was shown to be only
= o015 - slightly reduced by radiative corrections.
e Although we focused here on the kinematical regimes of
I ongoing or planned experiments, the present work can also
< 02 F . ) .
A serve as a tool in the analysis of future VCS experiments.
[70]
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extracting the DVCS amplitude in a region where the BH LEPTON-NUCLEON SCATTERING USING THE
process dominates. Its measurement is also envisaged S]IMENSIONAL REGULARIZATION METHOD FOR BOTH
JLab in the near futurgl?]. UV AND IR DIVERGENCES

VI. CONCLUSIONS In this Appendix, we provide the reader with some details
L . ! .. of the derivation of the radiative corrections to elastic lepton

We studied in this work the first order QED radiative goattering at one-loop level. In our derivation, we use the
corrections to theep—epy reaction. The one-loop virtual - gimensional regularization procedure to regularize both ul-
radiative corrections have been evaluated by a combineg,yiolet and infrared divergences.
analytical-numerical method. Several tests were shown 10 agier 4 short introduction of the renormalization method,
cross-check the numerical method used. Furthermore, it Wage calculate subsequently the vertex diagram at the lepton
shown how all IR divergences cancel when adding the SOﬁ'side[Fig. 19a)], the lepton self-energy diagrafiig. 19b)],
photon emission processes._A_fuIIy numerical method Washe vacuum polarization diagraffFig. 19c)], and give an
presented for the photon emission processes where the phoqayrical result, without approximations, for the soft photon
ton.energy. is not very small conjpgred Wlth thg electron engmission at the lepton sid€igs. 19d) and 19€)]. We com-
ergies, which makes up the radiative tail. Besides, we havgare oyr results with other derivations found in the literature.
also presented an approximate calculation of the radiativ( the end we collect the results to correct the elastic lepton-
tail, which was shown to be realistic enough for use in @,,cleon scattering cross sections and discuss the role of the
Monte Carlo simulation. _ _ radiative corrections at the proton side and the two-photon

We compared our results first to elastic electron-protony change corrections by referring to the recent work of Ref.
scattering. Subsequently, the results for the radiative COIMe4). In this Appendix, we use the same notations as ex-
tions to thee p—epy reaction were shown both below pion plained in Sec. .
threshold and in the deeply virtual Compton scattering re-
gime.

Below pion threshold, our calculations were applied to the
first dedicated VCS experiment at MAMI, and show that the In calculating QED radiative corrections in this work, we
effect of the radiative corrections results in an enhancemerdre using the BPHZ renormalization meth@s$ explained,
of the uncorrected data by about 20 an equivalent re- e.g., in Ref[42]), which consists of replacing in the unrenor-

1. Renormalization method
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whereLg represents the renormalized Lagrangian in terms of
the physical(finite) quantities

J— 1 J—
L= (17"3,~ MW~ ZF, F*"— eV y"VA,,
(A5)

and whereL.t is called the counterterm Lagrangian

Lor=(Zy—1)Wiykd, W —(Z,Zpm—1)¥

1 J—
MY —(Zg—1) 7F, F*' = (Zi—1)eV y*VA,.

(AB)

(c) In Eq. (A6), the vertex renormalization constadi is de-
fined asZ,=Z4Z,Z3”. For a renormalizable theory such as
QED, all divergences obtained by calculating loop diagrams
with the renormalized Lagrangiadg are cancelled by the
corresponding contributions in the counterterm Lagrangian
Lct. It will be shown below how the QED renormalization
gl ql constants are calculated to ord®@fe?) by calculating the

vertex diagram, the lepton self-energy diagram, and the pho-
> ton polarization diagram at the one-loop level.

(@) (e) As QED is a gauge invariant theory, we will simplify all
calculations in this work by using the Feynman gauge.

FIG. 19. First order virtual and real radiative correction pro-

cesses(a) vertex diagram(b) lepton self-energy diagrantc) pho- 2. Vertex diagram

ton polarization diagramd) and(e) soft-photon emission contribu- )

tions to elastic lepton-nucleon scattering. The on-shell photon-lepton-lepton vertex is represented
by

malized Lagrangian all bare quantities by renormalized ones.
For QED, the bare Lagrangian is given fwe are using the
conventions of Bjorken and DreR5] in this work)

Me=u(k’,h")[—ieA*(k" k) Ju(k,h), (A7)

and the on-shell vertex of EGA7) can be parametrized as

1 — _
Lg=Vg(iy d,—mg)Vg— ZFB/LVFEV_eB‘PByM\PBAB;L! u(k’,h")A#(K",k)u(k,h)

(A1) _ . q,
=U(k' )| (14 F(Q%) 9"~ G(Q@)ioH

u(k,h),

where the bare field tenséig” is given by
(A8)

MV __ gAYV _ gVA M
Fg'=0d"Ag=d"Ag. (A2) whereq=k—k’.

To orderO(e?) , the vertexA* [corresponding with Fig.
The renormalization of the theory amounts in redefining thel9(a)] is giverg b))/ [ P g g

bare quantities in terms of renormalized ones:

dPl
LY — a2, 4—D
V=273, AL=71Ar, A*(K" k) =y —ie“u (2m)P
mg=Z,Mm, eB:de_ (A3) Y (5 +ZY+m) ?’l“(kz'“'m) Ya +O(94),
[1e)[1e+21- k' ][ 19+ 21 - k]
In Eq. (A3), the renormalized finite quantities ae, A*,m, (A9)

ande. A theory in which all divergences can be absorbed
into renormalization constants such&asZ;,Z,,, andZg in where a mass scale (renormalization scajehas to be in-
Eq. (A3), is calledmultiplicatively renormalizableThis pro-  troduced when passing @+ 4 dimensions in order to keep
cedure leads to a decomposition of the QED Lagrangian ofhe coupling constant dimensionless. It is immediately seen
Eq. (A1) into by power counting that in four dimension® €4), the one-
loop integral in Eq(A9) contains an ultravioletl (~ =) loga-
Leg=Lg*+ LT, (A4) rithmic divergence and an infraret0) logarithmic diver-
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gence. To subtract the divergent patty the corresponding which is the result first obtained by Schwindds.

countertermp of expressions such as EGA9), one has to To remove the UV divergence from the vertex correction

regularize them first. Eqg. (A10), one has to determine the vertex renormalization
We follow in this work the dimensional regularization constantZ, of Eq. (A6). Z, is determined by requiring that

procedure to regularize both ultraviolet and infrared diver-the total vertex

gences. The dimensional regularization method amounts in

calculating loop diagrams iB dimensions. Physical observ- ~

ables are obtained by lettifig— 4 at the end. To obtain an A#=AE+ (2= 1) y", (A14)

integral which is ultraviolet convergent, one has to téke

<4, oreyy=2-D/2>0 in expressions such as BA9). To  gefines the physical electron chargeQ#=0, i.e.,

obtain an integral which is infrared convergent, one has to

take D>4, or ¢g=2—D/2<0. The two different limits

show that care has to be taken with the limit-4, which Z,=1-F(Q*=0)
means that the parts in EGA9) that are infrared divergent 2 2
- . e 1 41

and the parts that are ultraviolet divergent have to be sepa- =1— . +In

! ; / > (4m)? eI Tmz
rated and in the corresponding terms, two different limits (4m guv
have to be taken when one approacbes4. Although the 1 b p?
dimensional regularization scheme has been applied origi- +2|——vg+In 5 ) +4(+0(eh.
nally to ultraviolet divergent expressions as it respects the €Ir m
symmetries of the theor{in particular the gauge symmetry (A15)

for a gauge theoy it has also been applied in a few works
to regularize infrared divergencg43,44].

When working out the integral in EqA9), one obtains
after some algebra the following expressionsF¢Q?) and
G(Q?) to orderO(e?):

It is seen that the vertex renormalization consantontains
besides the UV divergence also an IR divergence. The renor-
malized vertex of Eq(A14) is determined by the vertex
correction functionF(Q?) —F(Q?=0) which is given to

i o2 1 o first order inaep, (Where aen=e2/47) by the expression
=— | — — e+
F(Q ) (477_)2{ euy YE In m2 ):|
o
1 4rp®\Tv?+1 [v+1 F(Q%)—-F(Q%*=0)= em( e
— 2
i EIR vethn m? v Mo=1 T L8R
2 2
v?+1 [v+1| [(v?-1| 20%+1 [v+1 P G Y L e B
+ In In In n m2 20 n v—1
2v v—1 4p? v v—1
v2+1 v+1 v—1 +vz+1| v+1 | v?-1
+— Sp( 5 —Sp( 5 )” (A10) 2o =]l
+202+1| v+l
and 2 Moo1)”
e v2-1 [v+1 v2+1 v+1 v—1
G(Q?) = In , All - _
Q) (4m)° v v—1 (A1) 2v SF{ 2v SF{ 2v ) ]

(A16)
wherev is given by Eq.(11), with Q?=—g%>0. In Eq.
(A10), ve represents the Euler constant, and the Spéace The expression for the vertex correction functi®Q?)
dilogarithmig function is defined by —F(Q?=0), which was calculated here using the dimen-
sional regularization method for both the UV and IR diver-
gences, agrees with the ones derived in many textbimees
e.g., Eq.(47.52 of Ref. [46] where a full derivation is
given|. The correspondence with the calculations which use
a finite photon mass\( as IR regulator is found to be

In(1—t)
—

Spx)=— foxdt (A12)

From Eq.(A11), the one-loop radiative correction to the

2 2
electron magnetic moment follows as i_ 4mu A
en ’yE+|n —mr — |nm7 (Al?)
e e @ In the ultrarelativistic limit Q%>m?), the vertex correc-
- 2y o em n the ultrarelativistic ,
He 2m(1+G(Q 0)) om| 1T 277)’ (AL3) tion Eq. (A16) F(Q?) —F(Q?=0) becomes
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Q2
el
1 QZ 2
* (‘ E'”Z(W t

em

FQ)-F(Q*=0) — &

3 [Q?
E'n(mz)—z

! +1
— —vetin
IR

25 2
Q>m* {

4’7T,LL2)

n (A18)

It is seen from Eq(A18) that the finite part of the vertex )
correction at highQ? is dominated by a quadratic logarith- S~ ~=(k—m)
mic term.

dx
1-——|  +(Z,-1)

ak . +[(1-2Z,)Z,m
=m

=3 (k=m)]+O((k—m)?). (A24)
3. Lepton self-energy diagram

The free lepton propagatotfor a lepton with four- Requiring that the total propagatShas a pole ak=m with

momentumk) residue 1, determines the renormalization constZpteind
Z, as
SO(k) ki m (A19)
Ry R
k"—m“+ie as
Z,=1+ K , (A25)
is modified through the lepton self-energy(k), to the full k=m

lepton propagator
1-Z2,)Z,m= =m). A26
S(k)=$°(k) + S°(K)Z (k) S(K). (A20) (1-Zy)Zom=3%(k=m) (A26)
To first order, the lepton self-enerdifig. 19b)] is given by Using the first order expression of EGA22) for the lepton
self-energy yields
d®l Y (k+I+m)y,

—i3(k)=—e?u*P

(2mP [P (k+1)2—me] ¢ . L
(A21) 22_1 (47T)2 Eyv ’)/E+In m2
. . . 2
By power counting, it is seen that the integral of E421) i_ 4
contains a linear UV divergence but is IR finite in the limit 2 €IR vetin m? T4 +O(e,
D—4. The integral of Eq(A21) yields (A27)
S(0= -~ [ 2 e 272 | k- am) 2 )
=T a2 | m -~ vetin 2 —4m € A
(4m)?||e m =
uv Zlp=1 @m2|%ley yetIn 2
1 Ko ~ u?
+kK 1+ﬁ+(|~(z)z(1_k)|”(1_k) +2| ——yetin| —| | +8/ +0(eh
|
(A28)

2 - ~
+2m —3—T<—2(1—k2)ln(1—k2)”, (A22)

Remark that although the unrenormalized lepton self-energy
wherek2=K2/m2. 2(k) of Eq. (A21) is IR finite: the Iepto_n field renormaliza-
tion constaniZ, contains an infrared divergence for the de-
rivative of 3 that appears in its definitiofsee Eq.(A26)].
Furthermore, a comparison of the first order expressions for
the lepton field renormalization constatyt [Eq. (A27)] with
the vertex renormalization constady [Eq. (A15)] shows
~ that they are the sam@ is known as a Ward identity and

2(K)=2(K) = (Z;= DK+ (Z2Z,—1)m.  (A23)  can be shown to hold to all orders as a consequence of the
gauge invariance of QED
Inserting Eq.(A23) into Eq.(A20) and developing. (k) as a Finally, using the expressions of Eq#27) and (A28),
Taylor series expansion aroutd=m yields for inverse of the renormalized lepton self-energy to first orderdig,, is
the total lepton propagator given by

To remove the UV divergence from the self-energy Eq.
(A22), one has to determine the renormalization constauts
andZ, from Eg. (A6). This counterterm contribution leads
to the renormalized self-energy

025501-29



M. VANDERHAEGHEN et al. PHYSICAL REVIEW C 62 025501

2

2
~ Qem 1 477.#2 ) 1 (0% = e 1 +l 47T,u,) ( ) 8)
= — - _ — - = — —_ — — n — —
3 (k) 41_r|lk 2(8|R ye+In —mz—) 3+~k2 (Q%) @2 3|egy 'F e B
~ (v2-3) (v-i—l)
1-k* ~ 1
L8 1w - m —2(——7E oIl o)) (A3H)
k* EIRr
5 wherev is given by Eq.(11).
A 4 ~o ~o The UV divergent term in Eq(A35) is removed by add-
+in m? ) _2+T<_2(1_k )In(1-k )” ing the counterterm irZ; of Eq. (A6). This leads to the
renormalized photon propagator
(A29)
— QMY
It is seen from Eq.(A29) that for an on-shell lepton D“”(Q)=ﬁ+ termin g*q”, (A36)
(k=m), the renormalized lepton self-enerdy is exactly q°(1—11(q%))
zero. Consequently, this correction has only to be applied for ) o~
internal lepton lines. where the renormalized photon polarizatidnis given by

4. Vacuum polarization diagram I(Q%)=11(Q*) —(Z3—1). (A37)

Starting from the free propagator of a photon with four- Requiring that the renormalized photon propagaftgng.
momentuny (as stated before, we give all expressions in the A34)] has a pole aj?=0 with residue 1, determines the

Feynman gauge renormalization constart;:

y —g*’ Z;=1+11(g?=0). (A38)

D" ()= (A30) :
Consequently, the renormalized finite photon polarization is
the full photon propagator can be written as found from Eqs(A35) and (A37) to be given by
Vo) — AV « v ~ 1 8 (3-v?) [(v+1
D#*(q)=D4"(q)+D**(q)I1,,(q)Dg"(q), (A31) oy Zem i o ©
) A 0 I1(Q°) 3|V T3 +v 5 In pery I

where Il ,,(q) represents the vacuum polarization correc- (A39)

tion. To orderO(e?), the vacuum polarizatiofcorrespond-
ing with Fig. 19c)] due to lepton loopswith lepton |
=e,u,7) IS given by

which agrees with the result derived in Rp46].

5. Soft photon emission contributions

—iTTAY(q) = —62M4_Df d®l The calculation of the one-loop vertex correction of Eq.
(2)P (A9) was seen to be both UV and IR divergent. The ultra-

, violet divergence was removed by renormalizing the fields

Ty I+ g+my"(d+m)y; +0(eh and parameters of the theory. The remaining infrared diver-

[(1+g)*—m?][1?—m?] gences are cancelled at the cross section level by the soft
(A32) bremsstrahlung contributiori6,27).

In this bremsstrahlung procelsee Figs. 1@&l) and 19e)],
The gauge invariance of QED leads to the relationan €lectron is accompanied by the emission of a soft photon

q“gqMI,,(q)=0 (Ward-Takahashi identily Consequently, ©Of maximal energyAEs (which is related to the detector

the vacuum p0|arizati0n correction can be written as resolution and is therefore much smaller than the electron
energy which radiates this soft phojoiio first order ina,p,
,,(9)=(—9.00a%+9,90)11(g?), (A33) (relative to the Born cross sectipthe bremsstrahlung cross

section amounts to calculating a phase space integral of the
where the functiodl(g?) is IR convergent and contains only form
a logarithmic UV divergence as can be seen from (B82).

Using Eq.(A33), the self-consistent relation for the full d3k,, d3py a3 .
photon propagatdiEq. (A31)] yields dUN(Z’TT)SZEé (2m)%2E, (272 j(27)
— MV LA 2/ A2
D,u.V(q): 5 9 5 + term irq,u.qV’ (A34) X54(k+p k p I)|MBORI\J ( € )
q (1_H(q )) Kk’ Kk K'H k&
O PRCEY ) . (A40)
where we do not have to specify the termgtiq”, as the k-1 k-I| k-1 K-I]

photon propagator will be contracted with conserved cur- .
rents. Evaluating the one-loop integral of E#32), one  where kE|l| denotes the soft photon energy, and where
obtains Mgorn denotes the Born amplitude for elastic lepton-
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nucleon scattering. In EqA40), terms in the soft photon tem S is defined byp,,=0, and the soft photon limit implies

momentum were neglected compared with the electron moy0 <M, . We can then easily express in the syst§nthe

mentak and k', except in the denominators of the lepton gnergies for the external particles in the elastic scattering

propagators where they matter. _ process, in terms dab quantities:

If one performs an experiment where the outgoing elec-
tron is detected, and where the recoiling proton remains un- _  k-p,, 1 ) ,
detected(i.e., if one measures a single arm electron spec- Ee”,\/|—N:,\/|—N'<'(FhL q)= M_N(MNEe_Q 12)=Eg,
trum), one eliminates in EqA40) the integral oveﬁgl with (A43)

the momentum conserving function, which gives

£ k’.pm_ 1 " _ 1 ML E’ 20 _E
g d3l2‘; d3r 1 ) e MN _M_N (p+q)_M_N( N e+Q )_ e
O 2m2EL (2m21 26} 2™ (A44)
' = - o - : 1
X 8(Ee+En—E{—(G+py—1)2+M2— 1) En~ pMpm=M—p-(p+q)=MN+Ee—Eé:E,’\‘,
N N
k! k k'# kM (A45)
20 @2y #*+ M
X|MBORI\J( e)k/‘l K- k' k-11"

where the elastic scattering conditip®2=2M y(Ee— Eol
(A41) has been used in the last step in Eg8!3) and (A44). The
Due to the energy conserving-function in Eq.(A41), the angle 6, in the frame is obtained fromk: k' =EE4(1
integration volume for the soft photon has a complicated cosfe)=EE(1-cos), which shows[using Egs.(A43)

ellipsoidal shape in théab system. In order for the soft- and (A44)] that in the soft-photon limit, this angle is the

photon phase space integration volume to be spherical, orfi@me as in théab system, i.e., CO8;=C0S6.

has to perform the calculation in the c.m. systéhof the The integral of Eq(A42) extends up to a maximal soft-
(recoiling nucleon+ soft photon, as discussed if21]. The ~ photon energy\Es in the systemS,, which is expressed in
systemS is thus defined bpy+ =g+ py=0. In the system (€rms of thelab quantitiesE. andE., by using

S, the energy conserving delta function is independent of the
soft-photon angles, and the maximal soft photon energy is
isotropic. The integral over the soft-photon moment(mp =2p-(k—k")+(k—k")%,  (A46)

to some maximum valuAE;) can then be performed inde-

pendently from the integration over the soft photon emissiorwhich leads (for soft-photon energies, i.e., keeping only
angles. IfAE; is sufficiently small, one can furthermore ne- terms of first order i\ Ey) to

glect the soft photon energy with respect to the other ener-

gies in the s function, and perform the integral over the ~ 2MNAEg~2My(Eo—Eg) —4E.E(sin6,/2,

(p'+1)2=MZ=(p+k—k')*=MJ

electron momentunﬂzg in Eqg. (A41). The integration over = 2M(E,—E.)— 2M(Eo— ELehE//E e!.
the outgoing electron momentum eliminates #éunction, ¢ e e e TeTe
which implies the elastic scattering constraint. This yields (A4T7)

then for the differential cross section with respect to the OUtI;AII quantities on the right-hand sidens) of Eq. (A47) are in

the lab, and the elastic scattering condition has been used in
the last line E.' denotes the elastic scattered electtain
energy, to distinguish it fronk.). From Eq.(A47), one de-

bremsstrahlung:

-
(d_ar :(d_a,) (_eZ)j #d ! termines them\E; in terms oflab quantities from the scat-
d€e REAL SOFF d€, BORN (2m)°21 tered electron spectrum through
o Ku K| KK AEs= n(E[S'~EY), (A48)
kK-l k-l| [kK'-I k-1]’

where the recoil factor is given by n=E./E.®".
(A42) Deviations from the soft-photon emission formula Eq.

. . _%A42) will show up whenAEg is not very small compared
where the soft-photon phase space integral is performed i}y, yhe |epton momenta in the process. The emission of

the systems, in which the integration volume is spherical. g,y 3 semihard photon is what is usually referred to as the
We will denote in the following the external kinematics in o gjative tail. Although the distinction is somewhat arbitrary,
the systemsS by tilded quantities E,Eg ,Ey,Ey) to distin-  one can always split the integral for photon emission into
guish them from théab quantities, which we denote by un- two parts, one by integrating up to a small val\E,, where
tilded quantities E¢,E; ,EN=My,E\). To make the trans- the soft-photon approximation in writing down EGA42)
formation between the systefhand thelab system, we first  holds, and a second integral, starting from this snflailt
introduce the missing four-momentupy,=py+I. The sys- nonzerg value of AE up to the energy where one performs
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the cut in the spectrum. This second integral is finite and caimtegral for dimension® # 4. Before continuing the integral

be performed numerically. Such a numerical calculation ofof Eq. (A42) into D — 1 dimensions, the integration limits for

the radiative tail without approximations is presented in Secl have to be made dimensionless, which leads in the dimen-

IV. In the present section, we give an analytical result for thesional regularization scheme to the introduction of the same

soft-photon(i.e., smallAE) integral of Eq.(A42), without  scaleu in Eq. (A49) as was introduced when changing the

any further approximationfgemark that in22] only an ap-  dimension of the virtual photon loop integral of EGA9).

proximate evaluation of EqA42) has been given This leads then iD—1 dimensions, to the bremsstrahlung
As is immediately seen by power counting, the integral inintegral:

Eq. (A42) has a logarithmic IR divergence, corresponding to

the emission of photons with zero energy. To demonstrate, [ '<8Es/e  d°~H [ ki K, k'« k®
the cancellation with the IR divergence of the vertex diagram '~ 2mP 20k -1 k1| |kK-I k|
as stated above, one has to regularize the integral of Eq. (A49)

(A42). In this work this is performed by also using dimen-

sional regularization. The soft photon integral is then evalu- The integral in Eq.(A49) is worked out by introducing
ated inD —1 dimensions D —4 corresponds to the physical polar coordinates i —1 dimensions. To define the polar
limit). One now sees that it is extremely advantageous t@ngle in the interference term of EGA49), a Feynman pa-
have a spherical integration volume, in order to evaluate theametrization is performed. This leads foto the expression

_ 2JI<AEsl,u dl |P-2
=€, 2mP 12 P

Kk k' [+ 1 1-B.2 1- B2
fldy ~(A=BS Be) | (A50)

><fD—deI E.E./-1 %12 512 3.1)2
ee (1=By-D (1=Be )" (1=Be-1)

wherel is the unit vector along the soft photon directiq?ig,ELéel, Eéz|,é;| are the incoming and outgoing electron velocities

(in the systemS), respectively, and WherﬁyE|Ey| with

W

>

Be=

- >

1 ~,1
' ByEIBeE(l—’_y)—’_ﬁeE(l_y)- (A51)

|7W
ol

~,
v Be=

Mg

m
m

e
The integrals over | and the azimuthal angular inte¢pakr D — 2 dimensionscan be performed immediately which yields

“26rR ] 2@ 1

WGIRF(]._ ElR)

e (ZW)ZE'R(AES

(2m)3
[ f f —x2)~ E'R_( _ﬂ )f elR—(l—B’z)f dx w] (A52)
(1 Byx)? ¢ <1 Bef ST -z |

The IR divergent term and the finite term are obtained by developing the polar angular integral( AbEqas

+1 (1—X2)*€|R_ +1 1 +1 |n(]_ x?) 5
J o = | o] i ot ho9

_4E|R ’

Performing the integrations in EgA53) [the second integral in EA53) is simplified by making the substitution—u
=B/(1-Bx) ]yields

1-B
In4+,8 1+,3

2
AT 1= R

J‘+1 (1—x?)"€R 2
+O(6|R) (A54)

Consequently, the IR divergent term and the finite term of the intégred obtained by using E¢A54) in Eq. (A52) and by
developing all other factors also to ordgg:
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e? 1 4ru?  4A(AE)? 1 .
- o _ 4 _ _ ! (1)
| = 4772[ 6|R+7E In 2 F1n 2 1 2(1 BefeCos) |y
1-8., 1 1-B. 1 .. .
+|—=1In fe+T,|n f‘f—z(l—ﬁeﬁgcosae)l(ﬁ”, (A55)
2B, 1+Be 2B, 1+B.

where the remaining Feynman parameter integr{éPsandlf) are given by

+1 1 +1 1 1-3
|<yl>sJ dy——=5, |§2>EJ dy=—-—=51In By (A56)
11 1 UB(1-BY) 1+ B,
and whereB, is given by Eq.(A51). The integrall { in Eq. (A56) can be performed easily and yields

I(l)ZZEeTEé v2-1 n
y m’  2v

v+1
v—1

, (A57)

with v as defined in Eq(1l). To obtain an analytical formula for the integrlé?) is much harder but was performed in Ref.
[47], which we checketand which yields the result

1 sinha+sinhg¢, sinha—sinh¢,
@_ _ Ll e SHRaTSTNe - Shfa— ST ey
== = [ 2In(2)+2In(S|nkFa sintf¢,) Insinha—sinh¢>l In(sinha+ sinh¢;)In A Snia
| Be— Baltanha
_e“+e®1] cosha+coshg, sinha+sinh¢, e*—e?1\? ef1—e |2
+21Ine *——=|In - . a1 |~ Pl e | [P~ 02y,
e “+e®1|  cosha—cosh¢y 2 sinha e“+e”1 e’1+e
(A58)
wherea, ¢,, and ¢, are given by
coshazM(a>0),
BEBESInae
- — BeBLcosb+ B2 » BeBLcosb,— BL?
cosh¢,=B.cosha, sinh¢,;= Biﬂf, - - 'Be, cosh¢,= Bicosha, sinh¢>2='ga%~,—_e~'&e. (A59)
BeBeSinbe BeBeSiNbe
The function® in Eq. (A58) is given by
x In|1—t]|
CD(X)E—f dt — (A60)
0

which agrees with the Spence functifdig. (A12)] whenx<1. Compared with previous calculations in the literature, it was
shown in Ref[47] that this integral {?) was approximated in Ref48] and that the calculation of this integral in Rg49]

contains a factor 2 error. We also checked the analytical formula of(&8B) by performing the integral of EqA56)
numerically.

In the ultrarelativistic limit B.,B,— 1), the integral §,2) of Eq. (A58) reduces to

°Note that the relevant formula quoted in REf7] contains some typing errors.
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Be~1.B,~1 1 1 1
1 - = {—§|n2(1—73§)—§|n2(1—73,;2)+|n4|n(1—73§)+|n4|n(1—73,g2)
2sirt —
2
.ﬁée Aée . Ee m? . Ee
+4(In2( sm;) —1In? 2)—2 In( co§?) In( stE) - ?—ZSp( smz?) ] . (A61)

Putting all pieces together, the result for the bremsstrahlung cross section accompanying elastic electron scattering is
obtained as

( da’) dcr) (aem 1 N | (47T,uz) v2-|—1I v+1 s (A62)
ey =\ 307 ——_tvye—In 2 n—=|— R[
A0/ penrsors 9%/ goral T L R m 2v vl
where the finite parbg of the real radiative corrections is given by
a 4(AE9?\[v2+1 [v+1 1 [1-P 1 [1-BL\ 1 . .
Sp=—0 |n< ( 23) In ~1|——1In Ee ——1In fe + S(1—BeBicosbe) 1P 1, (AB3)
W m 20 -l 2B \1+Be) 2B, \1+Bs) 2

Q2>m2 A 2 2 1_“‘2 1_“/2 _ _ _
- aem||n<%)[m(%)—1}—;m( 4&)_}'”( . )—%Inz(l—ﬁg)—j'—llnz(l—ﬁéz)HnZIn(l—,Bﬁ)

T 2
- ) -
+In2 In(1—,~8é2)+2(ln2< sin%) —In? 2)— %JrSp( cosz%) ] , (AB4)
em| [(AEY?\[ [Q? 1 (Bl 1 ,/Q% «° Be
:aw |In< ZE )[In(ﬁ)—l}—ilnz(ﬁ—é +§In2(ﬁ)—%+8p(co§§)], (AB5)

where the expression of EgA64) in the Q?>m? limit has been rewritten in EqLA65) to allow comparison with other
expressions found in the literature.

Finally to evaluatedgz, we have to express the quantities in the sysfeim terms oflab quantities. The relations given in
Egs. (A43) and (A44) yield for elastic scattering,=E/, E,=E,, and co®,=cosf,. From the formula forég [e.g., Eq.
(A65)], one then sees that one formally obtains exactly the same expression in termdaif thmntitiesg, ,E.,6,. The
quantity AE is calculated from the cut in the electron spectrum, using the expression GAZR).

A comparison of expressions E@#62) and(A63) with the literature, shows that the same result is obtained as iff 4R@f.

A comparison with the expression used by Mo and T&ai will be given in the next section when we add the vertex
correction and soft photon emission contribution, because only their sum is IR famte thus independent of the IR
regularization procedure used

6. Elastic lepton-nucleon scattering

In this section, we bring together the first order radiative corrections at the leptoflegitlen vertex and soft bremsstrah-
lung from the leptopand the photon polarization correction to correct the elastic lepton-nucleon scattering cross section. As
was shown in the previous sections, these corrections can be calculated model-independently. In the next section, we discuss
the additional radiative corrections to the lepton-proton cross section, which originate from the protdpraide vertex
correction, soft bremsstrahlung from proton and two-photon exchange correcliorelculate these corrections at the proton
side, a model for the off-shellor half off-shel) yNN vertex is needed however, and which is therefore to some extent
model-dependent. For this latter part, we will refer to the recent work of [Réf.

The elastic lepton scattering cross section, corrected to first ordegjrfor the lepton vertex contribution and for the
photon polarization contribution, is given by
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do do , L
d_Q';)V'RTUALvm(dﬂé)BORN(l—ﬁ(QZ))Z(1+2{F(Q )~F(Q™=0)})
o) el L [ Y )
d€, Born(1—T1(Q?))? T [€IR m 2v v—1
(A66)

where the finite parb,q;iex Of the lepton vertex correction is found from Ed\16) to be given by

s _ Qem vz-l—lI v-l—lI v2-1 2v2-|—1I v+1 2+v2+ﬂS vt+1 S v—1
verte™ 1 Ty M p—1) | 42 20 Mou-1 20 "M 20 20 ||’
=3 QP 1 ,(Q? a2

em - < | s a2 X o

In writing down Eq.(A66) to first order inaep,, the con-  wheres, .c, S,ertex» aNd g are given by EqsiA68), (A67),
tribution of the anomalous magnetic moment te&tQ?) in and (A63)—(A65), respectively. Bringing the three contribu-
the vertex correction EqA8) has been dropped. This con- tions together, leads to the expressionthe Q?>m? limit)
tribution vanishes in the ultrarelativistic limitQ?>m?) as
can be seen from E4A11). The first term in the last line of Qem (AEg)? Q2
Eq. (A67) corresponds to the vertex correction term quoted Svact dvertext Or= . [In( E.E/ )[In(ﬁ) _l}
by Mo and TsaiEq. (I.5) of Ref.[22]]. ee

The finite part of the photon polarization correction, 13I Q2| 28 1I o[ Ee w2
5,ac=2I1(Q?), follows from Eq.(A39) as TeMmz g 2 E.] 6
2 09
5 _@em2[( , 8 . (3—v)|n v+1 +S cosZE , (A71)
vacm T3\ Y T3 TV T2 v—1/|

(AB8)  \vherea Es, which is the maximum soft photon energy in the

c.m. system of(recoiling proton+ soft photon, is deter-

Q*=my, o 5 Q2 mined as in Eq(A48), when applying this formula to the
el —Z+In —z) ] (A69)  scattered electron spectrum.
7 3 3 m We can compare EqA71) with the recent calculation of

Maximon and Tjor{24], where this calculation was also per-
which agrees with the expression quoted by Mo and Tsaformed (using a finite photon mass to regularize the IR di-
[Eq. (1.4) of Ref.[22]]. To evaluate the vacuum polarization vergencep without doing any approximations. Comparing
due tox ™ u~ andr' 7~ pairs at intermediat®?, one has to  Ed.(A71) with their Z-independent termZ being the hadron
use Eq.(A68) instead of the limit of Eq(A69).2 charge—i.e., when not considering radiative corrections at
When adding the redEq. (A62)] and virtual[Eq. (A66)]  the proton side or two-photon exchange contributions at this
radiative corrections at the lepton side, one verifies that th@oint—we find exactly the same result. As was noted in Ref.
IR divergent parts exactly cancel. The remaining finite con{24], the last two terms of Eq(A71) were omitted by Mo

tribution is given to first order inxey, by and Tsai22]. . . _
We can approximately take into account the higher order

radiative corrections by exponentiating the first order vertex

d_U d_O‘ and real radiative corrections. This is strictly true only for the
dQ; VIRTUAL . REAL SOFT, IR divergent part of the vertex correction and soft photon
7 emission contribution, and was demonstrated in Refs.

do [26,48 (see, e.g., Ref$51,57 for pedagogical derivations
=|3q (1+ 8yact Gpertext Or),  (A70)  The application of this exponentiation procedure also to the
¢/ BORN finite part consists of an approximation which can be

checked by comparing the result with the first order formula
of Eq. (A70). For the photon polarization contribution, we

3Note that an incorrect expression is used5f] for the vacuum iterate the first order vacuum polarization contribution of Eq.
polarization contribution due tp "~ pairs[Eq. (A5) in their pa-  (A68) to all orders[resumming all vacuum bubbles of the
per]. type of Fig. 19c)] by keeping the photon self-energy in the
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denominator as in EA66). Remark that a resummation of where s, .., 8,ertex aNd g are given as aboviEg. (A71)].
the first order vacuum polarization contribution doeslead  The terms in Eq(A73) proportional toZ (hadron charge

to an exponentiated form. Assuming exponentiation for theand Z? contain the corrections from the proton side. The
finite parts of the vertex and soft photon emissioncorrectionsd;, proportional toZ, was calculated in Ref24]
contributions—as occurs for their IR divergent pieces—leadsas

then to the radiative correction formula

do do 2 4(AEy)? 1
(_dQ’ +(_dﬂ’> 8,= aem[ln( ( 25) In77+8p(1—2)—8p(1——)},
e/ VIRTUALy e/ REAL SOFF QX X 77&74)
_( dO’) edvertext R 72)
“lago’ T s o2
dQe BORN(l dvac/2) whereAEg and % are given as in Eq(A48) and where the

variablex is defined by
7. Radiative corrections at the proton side and two-photon
exchange contributions

(Q+p)?

In the previous sections, we considered radiative correc- X=-——5— p’=Q%+4M3. (AT5)
tions to elastic electron scattering originating solely from the 4My
electron side(vertex correction and bremsstrahlyngnd
from the vacuum polarization. These corrections, which are
the dominant ones, can be calculated model independent
and follow from QED. To calculate the first order radiative
corrections originating from the proton sidproton vertex
correction, bremsstrahlung from proton and direct and
crossed two-photon exchange contributipnene needs a

he correction proportional t8% was split into two parts in
ef.[24]. The contributionsy’?, independent of the nucleon
form factors was calculated in RéR4] as

2
model for the internal structure of the nucleon because one o0 = Zem ww) (IE_,Nm x—1|+1
requires knowledge of off-shefbr half off-shel) yNN ver- My [pul
tices. This model dependence will become important if one , 5
aims at a precision of electron scattering experiments at the n ﬂ(_ Elnzx— In x In( p +Inx
1% level. To quantify the magnitude of those effects, we |§,'\I| 2 ﬁﬁ
refer to the recent work of Maximon and Tjg24], where an
initial study was performed of the size of internal structure 1 1) =?
effects. —-Sp 1—- ? +2Sp — ; ? , (A76)

In Ref. [24], the proton current was taken to have the
usual on-shell form and form factors were included in the
calculation. The calculation of Reff24] goes beyond previ-
ous works[21,27], as the proton vertex correction and the
bremsstrahlung from the proton were calculated without ap
proximations within the given model for the proton current.
In the calculation of the direct and crossed box diagram
(two-photon exchange contributions less drastic approxi-
mation was made ih24] than in[21] (where those box dia-
grams were only calculated in the soft-photon approxima-

wherep is defined as in EA75), and whereE}, (|py|) are
the lab energy(momentum of the recoiling nucleon. For the
fengthier expression 05(21), which depends on the nucleon
gorm factors, we refer to Ref24].

APPENDIX B: TREATMENT OF SINGULARITIES

tion). _ _ _ In the numerical calculation of the amplitudes for the vir-
The calculation of Ref[24] yields then the correction tual photon radiative corrections to thegp—epy reaction,
formula for elastic electron scattering we need to calculate two or three dimensional Feynman pa-
d d rameter integrals, as discussed in Sec. Il C. In the integra-
(_‘T - _‘T) (14 8, ac+ Syertext Ont 20, tion over the first variable, the numerator consists of polyno-
dQg TOTAL dQg BORN vac” vere mials and the denominators may have structures of the form
) ©. <0 (a'x+ B zie")", or (@' X2+ B'x+ 7y +ie")" with n=1,2.
+Z5(6y 7+ 657), (A73)  Therefore, in the calculations, the following integrals appear:
_ b XM dx _ b XM dx
im [ ——— — or lim 5 _ . (B1)
o otdala'x+p xig")" o ordala' X+ BIx+y xig")"
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When the denominator has no singularities in the integration _ b dx .
range, it is, in principle, easy to calculate these integrals lim f mZJlilm (B6)
which have the form empt 2T 70T
. b xdx i
Jb XM dx J‘b XM dx (BZ) lim amz\]z-i- XOJ11I7TX0, (B?)
7 _ ot *
a(a'x+pB')" a(a'x2+B'x+y')" °

b x?dx
; _ 29 —:i 2
Some recurrence relations for these integrals are known I|m+ Lx—xotis Jo+ 2Xodot XpdiFimxp, (BE)
[53,54, but for small values ofr’ as compared t@’ or to o0
y', these relations are unstable numerically. In these cases, 3
: ; . b x°dx 5 3 .3

we have u_sed e|ther a Taylor expansion or the usual Gauss- |im - =J4+3XJ3+ 3Xpdo+ Xpd1 F i X,
Legendre integration method to get very accurate results. ., ,+/aX~Xo=1€

In the following part of this Appendix, we give the rela- (B9)
tions used when the denominators in EB1) have singu-
larities in the integration range exceptaror b. The details ) b x*dx
are given elsewherg28]. The principle of the method is lim J

based on the following relation: e—0"

] b xMdx ] ]
lim —— = |lim lim

AN
. otla(X—Xp*ie) 60" 0"

_ 2 3 4
. m =J5+4Xpds+6X5)3+ 4Xgdo+ Xd1

Fimxg, (B10)
fxo— 7 xMdx

a  (X—=Xpxie)"

m Forn=2 anda’>0, we have
+f><o+7z xMdx

xo—7 (X—Xo*ie)" ) b xMdx 1 b xMdx
Ilmf—. =—|mf—_ .
b Xx™dx Joordala'x+p xie")? a'? i Ja(x—Xe*ie)?
+J o B3 (B11)
xo+ n(X—Xo*ie)"

When a’' <0, we have only to replacezie by *ie in the

Each integral can be separated in a real part and an imagﬁtht'r_“'?‘”d_ side of Eq(B11). We next define the following
nary part and we can use for them the analytical expressiorffdantities:

given in[53].

Let us start with the case where the denominator is a | = 1 1 (B12)
polynomial of degree 1 in the integration variable. In that Ta-x, b—xq’
case, there is only one singularity fag=—B8'/a’ and the
sign of the imaginary part will depend on the signdagf. For 1 (b—Xg)?
n=1 ande’>0, we have |1:§|09m1 (B13)

b m b m ! 1
lim J’ x—dx:i lim f x—dx szs—. ln=——=[(b=X)" t=(a—xp)" 1], n=2.
o oordaa'x+p xie’ a', j+JaXTXoEle a n-1
(B4) (B14)

In terms of these quantities, the integrals of Hgl) with
When a' <0, we have only to replacecie by =ie inthe n=2 are given by
right-hand side of Eq(B4). We now define the following

guantities: i fb dx | ©15
im | —————=l,,
1 (b—xo) ool (x—xoEie)?
—X
5= aloge 0
2 "(a—xo) , b xdx _
lim ———— =11+ Xl oFim, (B16)
o otda(X—xo*ie)?
1
— _ n-1_ _ n—-1
In=r7[(0=X0) (a=x9)"" 7], n=2 (B _ b x2dx .
lim fam=|2+zxo|l+XO|O+I27TX0,
8—>0+ - 0—
to obtain the relations (B17)
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x3 dx

J‘b
a(X—Xp*ig)?

lim :|3+3X0|2+3X(2)|1+X8|01|37TX3,

e—0"

(B18)

We can notice that the real part of these integralsnfor

PHYSICAL REVIEW C 62 025501

=1 as well as fom=2 can be derived from the binomial With the definitions

expansion X+ X)™. In the case oh=1, the imaginary part
is proportional torrf(xy) wheref(x) is the numerator of the
integrand. Fom=2, it is straightforward to sho28] that
the imaginary part is proportional tef’(Xo).

When the form of the denominator isx(x>+ 8'x+ 7y’

i Jb xMdx
im
oot da (X2 Bx+ yxie)"
_ b XM dx
=I|mJ = T
= orda(x=xi+ie)" (x—xZ—ig)"
(B21)
—B++\o —B—+\6 -~ e
xE=BTJ—, xR = '82 J—, e=—. (B22)

These integrals can be easily calculated using the decompo-
sition of the fraction into elementary fractions. For 1, we

+ie’)", i.e., a polynomial of degree 2 in the integration obtain
variable, it is always possible to come back to the preceding

cases. Whem' >0, we have

) b xMdx
Ilmj -
oot da(al X3+ BIx+y xig)"
1 b XM dx
= Ilmj 5 — (B19)
a'.grJa(XT+ Bx+yxie)
with the following definitions:
’ ! 8[
B:ﬁ_,v 727_,! 8__, (820)
o o a

The integrand in Eq(B19) has some singularities wheh
=B2— 4+ is positive. Whem' <0, we have only to replace
*ie by Fie on the right-hand side of E¢B19).

It can be showrj28] that

xMdx 1

) b ) XM dx
lim TP lim
axX“+ pBX+y=*ie

b
ot \/—'o‘;%wfax—xiiiz
1 b xMdx
——lim J' T R_.~
\/EE_W aX—X"Fie
(B23)
and forn=2
x™dx

b
lim J 5 —
a(X°+ Bx+y=xie)

e—0"

xMdx

ax—xR+ie

1|_ fb XM dx 2 i fb
=—Ilm | ———————lim
o la(x—xRxig)? &%

e—0 -0t
ll' fb xMdx 2 i fb xMdx
+—<lm | ————==+—/Ilm | ————=.
5;_>0+ a(x—xR¥ig)? 6\9’/2;_>0+ ax—x2Fie

(B24)
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