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QED radiative corrections to virtual Compton scattering
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The QED radiative corrections to virtual Compton scattering~reactionep→epg) are calculated to first
order inaem[e2/4p. A detailed study is presented for the one-loop virtual corrections and for the first order
soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail,
corresponding to photon emission processes, where the photon energy is not very small compared with the
lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show
for theep→epg reaction how the observables are modified due to these first order QED radiative corrections.
We show results for both unpolarized and polarized observables of virtual Compton scattering in the low
energy region~where one is sensitive to the generalized polarizabilities of the nucleon!, as well as for the
deeply virtual Compton scattering.

PACS number~s!: 13.40.Ks, 13.60.Fz
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I. INTRODUCTION

Virtual Compton scattering~VCS! has become in recen
years a new and versatile tool in the study of nucleon str
ture and has triggered an important activity on both the t
oretical and experimental side~see, e.g.,@1,2#!. VCS, which
is accessed through the (e,e8g) reaction, is studied now in
various kinematical domains.

At low energy, below pion production threshold, it allow
one to access generalized polarizabilities of the proton@3,4#.
These response functions, which constitute new nucl
structure observables, have been calculated in various
proaches and models@3,5–9#. To extract this nucleon struc
ture information from VCS below pion production thresho
a considerable experimental effort is taking place at vari
electron laboratories. The first few events of VCS were
served in@10#. The first dedicated VCS experiment has be
performed at MAMI and, for the first time, two combination
of generalized polarizabilities have been determined a
four-momentum squaredQ250.33 GeV2 @11#. An experi-
ment at higherQ2 (1 –2 GeV2) at JLab@12# has already
been performed, which is under analysis at the time of w
ing, and a further experiment at lowerQ2 is planned at MIT-
Bates@13#.

The VCS is also studied vigorously in the Bjorken regim
~where the photon virtualityQ2 and the photon-proton c.m
energyAs are both large, withQ2/s finite!, which is referred
to as deeply virtual Compton scattering~DVCS!. In this re-
gion, the DVCS amplitude is parametrized at leading or
in Q in terms of six generalized parton distributions@14–16#,
commonly denoted as skewed parton distributions~four
quark helicity conserving functions and two which involve
quark helicity flip!. This field has generated by now a who
theoretical industry, and first experiments of DVCS and
lated hard electroproduction reactions are being perform
analyzed or planned at JLab@17#, HERMES/HERA@18#, and
COMPASS@19#.

The first absolute measurement of the VCS cross sec
0556-2813/2000/62~2!/025501~39!/$15.00 62 0255
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on the nucleon performed at MAMI@11# indicates that QED
radiative corrections provide an important contribution to t
ep→epg reaction~of the order of 20% in the kinematic
considered in@11#!. The ep→epg reaction is particular in
comparison with, e.g., elastic electron scattering because
photon can be emitted from either the proton side~this is the
VCS process which contains the nucleon structure inform
tion of interest! or from one of the electrons~which is the
parasitic Bethe-Heitler process!. The radiative corrections to
the Bethe-Heitler process are formally different when co
pared to the case of electron scattering. The importance
very good understanding of the radiative corrections is ind
pensable if one wants to extract nucleon structure inform
tion from the ep→epg reaction, especially in those kine
matical situations where the Bethe-Heitler process is
negligible. The calculation of these QED radiative corre
tions to theep→epg reaction to first order inaem[e2/4p
'1/137.036, is the subject of this paper.

Radiative corrections were first calculated by Schwing
for potential scattering@20#. Tsai @21# extended the calcula
tion of the radiative corrections to electron-proton scatteri
The field has a long history and we refer to the stand
review papers@22,23#, which were used in the interpretatio
of many electron scattering experiments.

The outline of the present paper is as follows. In Sec.
we introduce the kinematics and notations used for theep
→epg reaction, and give the lowest order amplitudes.

In Sec. III, we give the first order QED radiative corre
tions to theep→epg reaction. We first calculate, in Sec
III A, the one-loop virtual radiative corrections originatin
from the lepton side, to theep→epg reaction. Our strategy
used to evaluate the rather complicated loop integrals, i
solve first simpler loop integrals, which contain entirely t
ultraviolet ~UV! and infrared~IR! divergences, and in which
the lowest order amplitudes factorize. These simpler lo
integrals are evaluated analytically. The finite remaind
with respect to the original amplitude is then express
©2000 The American Physical Society01-1
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through Feynman parameter integrals, which are calcula
numerically in this work.

In Sec. III B, we calculate the soft photon emission co
tributions from the lepton side, to theep→epg reaction. We
discuss the similarities and differences with the bremsst
lung contribution to elastic electron-nucleon scatterin
These bremsstrahlung processes contain IR diverge
which are shown to cancel exactly the IR divergences fr
the virtual photon processes.

In Sec. III C, the numerical method to evaluate the
maining finite Feynman parameter integrals is presented.
discuss subsequently the cases where the integrand is re
or singular, the latter originating from the propagation
on-shell intermediate states in the one-loop corrections to
ep→epg reaction. In particular, we discuss the different n
merical checks performed and the accuracy of the calc
tion.

In Sec. III D, we discuss the radiative corrections at
proton side and the two-photon exchange corrections, by
ferring to the recent work of Maximon and Tjon@24#.

In Sec. IV, we give a full numerical calculation for elast
electron-proton scattering of the photon emission proce
where the photon energy is not very small compared with
lepton momenta, and which makes up the radiative tail.
compare this full calculation with an approximate proced
based on the angular peaking approximation, and show
what extent the full calculation validates the approxim
method for the case of elastic electron-nucleon scatter
The approximate method will be seen to be realistic eno
to apply it next to the calculation of the radiative tail in th
case of VCS.

In Sec. V, we start by briefly discussing the radiative c
rections to elastic electron-proton scattering. We apply
radiative corrections to elastic scattering data on the pro
We next give our results for theep→epg reaction, and in-
dicate how the observables are modified due to the first o
QED radiative corrections. We discuss first the polarizabi
region for theep→epg reaction, corresponding to a low
outgoing photon energy. We show results for both unpo
ized and polarized cross sections in MAMI and JLab kin
matics. Subsequently, we give the effect of the first or
QED radiative corrections to the DVCS cross section and
electron single spin asymmetry.

Finally, we give our conclusions in Sec. VI.
We present technical details needed in the calculations

two appendices. In Appendix A, we calculate the radiat
corrections to elastic lepton-nucleon scattering, which ser
as a point of comparison with theep→epg reaction. In par-
ticular, we present the details of the calculation of the s
photon emission contributions, and perform analytically
phase space integral over the soft photon in an exact w
We compare with other calculations in the literature. In A
pendix B, we present some technical details on the inte
tion method used to evaluate singular Feynman param
integrals.

II. LOWEST ORDER AMPLITUDES OF THE ep\epg
REACTION

The lowest order~in aem) contributions to theep→epg
reaction are given by the one-photon exchange proces
02550
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We denote in this work the four-momenta of the initial a
final electrons by k(Ee ,kWe) and k8(Ee8 ,kWe8); the four-

momenta of the initial and final protons byp(EN ,pW N) and
p8(EN8 ,pW N8 ); and the four-momentum of the outgoing photo

by q8(uqW 8u,qW 8). Furthermore, we denoteq[k2k85p82p
1q8 andQ252q2.0. The masses of the electron and pr
ton are denoted bym andMN, respectively. The helicities o
the initial ~final! electrons are denoted byh(h8); the spins of
initial ~final! protons bysp(sp8); and the polarization four-
vector of the outgoing photon by«. The spinors of initial and
final electrons are denoted byu(k,h) andu(k8,h8); whereas
the spinors of initial and final protons are denoted
N(p,sp) andN(p8,sp8). Throughout this work, we follow the
conventions of Bjorken and Drell@25#.

In Figs. 1 ~BHi! and ~BHf!, which are known as the
Bethe-Heitler~BH! diagrams, a photon is emitted by eith
the incident or final electrons. The expressions for Figs
~BHi! and ~BHf! are given, respectively, by

MBH
i 5 ie3ū~k8,h8!gn

~k”2q” 81m!

22k•q8

3«” * u~k,h!
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!,

~1!

MBH
f 5 ie3ū~k8,h8!«” *

~k” 81q” 81m!

2k8•q8

3gnu~k,h!
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!,

~2!

where the electron charge is given by (2e) ~i.e.,e.0 in this
work!. The on-shell electromagnetic vertex at the hadr
sideGn in Eqs.~1! and ~2! is given by

Gn~p8,p!5F1„~p82p!2
…gn1F2„~p82p!2

…isnl

~p82p!l

2MN
,

~3!

whereF1 andF2 are, respectively, the Dirac and Pauli ele
tromagnetic~on-shell! form factors of the nucleon. The four
momentum squared of the virtual photon in the BH proces
is t5(p82p)2, in contrast to q2, which is the four-
momentum squared for the VCS processg* p→gp, where
the final photon is emitted from the hadron side.

The amplitude of the VCS contribution to thee2p
→e2pg reaction is given by
1-2
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FIG. 1. Tree level contributions to theep
→epg reaction: Bethe-Heitler diagrams~a! and
~b!; nucleon Born diagrams~c! and ~d!.
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MVCS52 ie3ū~k8,h8!gnu~k,h!
1

q2 «m* Hmn. ~4!

Remark that for a positively charged lepton, the VCS am
tude changes sign. In Eq.~4!, the gauge-invariant, hadroni
tensorHmn is defined by

Hmn52 i E d4x e2 iq.x^p8uT@ j n~x!, j m~0!#up&, ~5!

whereT represents the time ordering, andj n the electromag-
netic current operator.

For the DVCS process in the Bjorken limit, the hadron
tensor of Eq.~5! is parametrized in terms of six leading twi
skewed parton distributions~see, e.g.,@16#!.

For the VCS process at low energy, as investigated
perimentally in @11–13#, an important contribution to the
tensor of Eq.~5! originates from the nucleon pole contribu
tions shown in Figs. 1~BORNi! and ~BORNf!. The contri-
butions of the Born diagrams to the hadronic tensor are gi
by

HBORN,i
mn 5N̄~p8,sp8!Gn~p8,p2q8!

~p”2q” 81MN!

22p•q8

3Gm~p2q8,p!N~p,sp!, ~6!
02550
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HBORN, f
mn 5N̄~p8,sp8!Gm~p8,p81q8!

~p” 81q” 81MN!

2p8•q8

3Gn~p81q8,p!N~p,sp!, ~7!

where the vertexGm is now evaluated for off mass-she
values of one of its arguments. In Ref.@3#, the Born dia-
grams were evaluated by using the vertex of Eq.~3!. Doing
so, the Born diagrams are separately gauge invariant.
nucleon structure effects are then absorbed in a non-B
amplitude which is regular inq8 and for which the low en-
ergy theorem~LET! requires that it start at orderq8. The
nucleon structure effects to the VCS tensor@Eq. ~5!# below
pion threshold, are then parametrized at orderq8 in terms of
six generalized~i.e., Q2 dependent! nucleon polarizabilities
@3,4#.

III. FIRST ORDER RADIATIVE CORRECTIONS
TO THE ep\epg REACTION

A. Virtual radiative corrections

In this section, we calculate the one-loop QED virtu
radiative corrections to theep→epg reaction, which are
represented in Fig. 2. We first consider the corrections or
nating from the leptonic side, which are numerically t
dominant ones. The corrections originating from the ha
ronic side, for which a nucleon structure model is need
will be discussed and estimated in Sec. III D.

The virtual radiative corrections to the BH process co
tain vertex corrections: Figs. 2~V1i–V3i! and ~V1f–V3f!;
electron self-energy corrections: Figs. 2~Si, Sf!; and vacuum
polarization corrections: Figs. 2~P1i, P1f!. We indicate in
our notation of the different diagrams whether the photon
1-3
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FIG. 2. First order virtual pho-
ton radiative corrections to the
ep→epg reaction.
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the ep→epg reaction is emitted from the initial~i! electron
or from the final~f! electron.

The part of the virtual radiative corrections to the VC
process~i.e., where the photon in the reactionep→epg is
emitted from the hadronic side! which can be calculated
model-independently, consists of the vertex diagram sho
in Fig. 2 ~V4! and the vacuum polarization diagram shown
Fig. 2 ~P2!. The blob in those figures represents the VC
process. For VCS below pion threshold, the blob is given
the Born diagrams@Fig. 1 ~BORNi! and ~BORNf!# 1 non-
Born diagrams, which describe the nucleon polarizability
fects. For DVCS, the blob is given in leading order by t
so-called handbag diagrams, where the photon hits a qua
the proton@14,15,2#.

The calculation of the virtual radiative corrections to t
VCS process is similar to that for electron scattering. T
virtual radiative corrections to the Bethe-Heitler process
different, but involve the same one-loop building blocks, i.
electron vertex, electron self-energy, and photon self-ene
02550
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Therefore, we give in Appendix A~Secs. A 1–A 4! the deri-
vation and the expressions for these basic building bloc
and we apply it to elastic electron-nucleon scattering. In
calculations, we use the dimensional regularization met
to treat both ultraviolet~UV! and infrared~IR! divergences.
This amounts to evaluate all loop integrals inD dimensions.
The divergences then show up~when one takesD→4) as
poles of the form 1/«, where«[22D/2. UV divergences
are regularized by takingD,4 ~i.e., «UV522D/2.0),
whereas IR divergences are regularized by takingD.4 ~i.e.,
« IR522D/2,0). Care has to be taken as to isolate the U
and IR divergent parts in the loop integrals first, as two d
ferent limits are understood when one takesD54 at the end.
The technical details of our calculational method can also
found in Appendix A. We apply it here to calculate the di
grams of Fig. 2 to theep→epg reaction.

1. Vertex correction diagrams of Figs. 2 (V1i) and (V1f)

The amplitude corresponding to Fig. 2~V1i! is given by
1-4
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MV1
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!gn
~k”2q” 81m!

22k•q8
m42DE dDl

~2p!D

ga~k”2q” 82 l”1m!«” * ~k”2 l”1m!ga

@ l 2#@ l 222l •k#@ l 222l •~k2q8!22k•q8#
u~k,h!, ~8!

where a mass scalem ~renormalization scale! is introduced when passing toDÞ4 dimensions in order to keep the couplin
constant dimensionless. One sees by inspection that the loop integral in Eq.~8!, when takingD54, is IR finite (l→0
behavior!, but has an UV divergence (l→` behavior!. Our strategy to evaluate a complicated loop integral as in Eq.~8!, is to
solve first a simpler loop integral which contains entirely the UV divergence and which can be done analytically more
We observe from Eq.~8! that only the term in the numerator proportional togal”«” * l”ga is responsible for the UV divergence
To evaluate it, we add a similar term by replacing one factor in the denominator and evaluate this term analytically.
to obtain the equivalence withM v1

i , we have to subtract the added term again from the expression of Eq.~8!. This leads to

MV1
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!gn
~k”2q” 81m!

22k•q8 H m42DE dDl

~2p!D

gal”«” * l”ga

@ l 2#@ l 222l •k#@ l 222l •k8#

12E d4l

~2p!4

l”«” * ~k”2q” 8!1k”«” * l”2m2«” * 14m«* •~k2 l !2k”«”* ~k”2q” 8!

@ l 2#@ l 222l •k#@ l 222l •~k2q8!22k•q8#

12E d4l

~2p!4

22l”«” * l”@ l •~q2q8!1k•q8#

@ l 2#@ l 222l •k#@ l 222l •k8#@ l 222l •~k2q8!22k•q8#J u~k,h!. ~9!

It should be remarked that only the first term within curly brackets of Eq.~9! is UV divergent and has therefore to be evalua
in D dimensions using the dimensional regularization method. As can be seen by power counting, the rest is UV finite
therefore readily be evaluated forD54. The denominator in the UV divergent term of Eq.~9! was chosen so that i
corresponds to the vertex correction which appears in electron scattering. Therefore, this UV divergent term can be c
analytically in a manner similar to that given in Appendix A. The result is given by

m42DE dDl

~2p!D

gal”«” * l”ga

@ l 2#@ l 222l .k#@ l 222l •k8#
5

i

~4p!2 H «” * F 1

«UV
2gE1 lnS 4pm2

m2 D112v lnS v11

v21D G2
1

Q2 q”«” * q”

1
1

Q2v
lnS v11

v21D Fk”«” * k” 81k” 8«” * k”1S v211

2 Dq”«” * q” G J , ~10!

wherev is defined as

v2[11
4m2

Q2
. ~11!

The UV divergence in Eq.~10! is removed by the corresponding vertex counterterm as given by Eqs.~A6! and ~A15!

~CT!V1
i 5MBH

i ~2e2!

~4p!2 H F 1

«UV
2gE1 lnS 4pm2

m2 D G12F 1

« IR
2gE1 lnS 4pm2

m2 D G14J , ~12!

where we have used the expression of Eq.~1! for the BH amplitudeMBH
i . Adding the counterterm of Eq.~12! to Eq. ~9! and

introducing a Feynman parametrization in the second and third terms of Eq.~9! in order to perform the integrals overl, yields
the total, UV finite result:

MV1
i 1~CT!V1

i 5MBH
i e2

~4p!2 H 22F 1

« IR
2gE1 lnS 4pm2

m2 D G232v lnS v11

v21D J 1
ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!gn
~k”2q” 81m!

22k•q8 H 1

Q2 FX211
v211

2v
lnS v11

v21D Cq”«” * q”1
1

v
lnS v11

v21D $k”«” * k” 81k” 8«” * k” %G
22E

0

1

dyE
0

1

dx
1

B1
i @y~k”2q” 8x!«” * ~k”2q” 8!1yk”«” * ~k”2q” 8x!14m~«* •k!~12y!2k”«” * ~k”2q” 8!2m2«” * #
025501-5
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24E
0

1

dx3x3
2E

0

1

dx2x2E
0

1

dx1F S 1

Ai «” * 1
1

~Ai !2 P” i«” * P” i D „Pi
•~q2q8!1k•q8…

2
1

2Ai „~q”2q” 8!«” * P” i1P” i«” * ~q”2q” 8!…G J u~k,h!, ~13!

with the four-vectorPi defined by

Pi[~k2q8!~12x3!1~k2qx1!x2x3 , ~14!

and the scalarsAi andBi defined by

Ai[2k•q8~12x3!1~Pi !2 ~15!

and

B1
i [2k•q8x~12y!1m2y. ~16!

Remark that although Eq.~13! is UV finite, it contains now an IR divergence coming from the vertex counterterm of Eq.~12!
as shown in Appendix A@Eq. ~A15!#. We will demonstrate however in Sec. III B, that all IR divergences, of the one-
corrections to theep→epg reaction, are cancelled by the soft photon emission contributions.

The Feynman parameter integrals in Eq.~13! which orginate from the finite integrals in Eq.~9! remain to be evaluated. A
an analytical calculation of these integrals is rather complicated, we will evaluate them numerically in this paper, wh
be discussed in Sec. III C.

In a completely similar way as for Fig. 2~V1i!, the total amplitude including the counterterm corresponding to Fig. 2~V1f!
yields

MV1
f 1~CT!V1

f 5MBH
f e2

~4p!2 H 22F 1

« IR
2gE1 lnS 4pm2

m2 D G232v lnS v11

v21D J 1
ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!H 1

Q2 F X211
v211

2v
lnS v11

v21D Cq”«” * q”1
1

v
lnS v11

v21D $k”«” * k” 81k” 8«” * k” %G
22E

0

1

dyE
0

1

dx
1

B1
f @y~k” 81q” 8!«” * ~k” 81q” 8x!1y~k” 81q” 8x!«” * k” 8

14m~«* •k8!~12y!2~k” 81q” 8!«” * k” 82m2«” * #

14E
0

1

dx3x3
2E

0

1

dx2x2E
0

1

dx1F S 1

Af «” * 1
1

~Af !2 P” f«” * P” f D „Pf
•~q2q8!1k8•q8…

2
1

2Af „~q”2q” 8!«” * P” f1P” f«” * ~q”2q” 8!…G J ~k” 81q” 81m!

2k8•q8
gnu~k,h!, ~17!

with the four-vectorPf defined by

Pf[~k81q8!~12x3!1~k81qx1!x2x3 , ~18!

and the scalarsAf andB1
f defined by

Af[22k8•q8~12x3!1~Pf !2, ~19!

and

B1
f [22k8•q8x~12y!1m2y. ~20!

2. Vertex correction diagrams of Figs. 2 (V2i) and (V2f)

The amplitude corresponding to Fig. 2~V2i! is given by
025501-6
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MV2
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!m42DE dDl

~2p!D

ga~k” 82 l”1m!gn~k”2q” 82 l”1m!ga

@ l 2#@ l 222l •k8#@ l 222l •~k2q8!22k•q8#

~k”2q” 81m!

22k•q8
«” * u~k,h!. ~21!

One sees from Eq.~21! that again only the term proportional togal”gnl”ga in the numerator contains an UV divergence f
D54. To evaluate the loop integral of Eq.~21!, we therefore apply a similar trick as used before in Eq.~9!. This amounts to
adding and subtracting a term in Eq.~21! by replacing@ l 222l •(k2q8)22k•q8# in the denominator by (l 222l •k8), which
contains entirely the UV divergence. The further steps are then analogous to those following Eq.~9!, and yield the following
result for Fig. 2~V2i!:

MV2
i 1~CT!V2

i 5MBH
i e2

~4p!2H 22F 1

« IR
2gE1 lnS 4pm2

m2 D G232v lnS v11

v21D J 1
ie5

~4p!2

1

~p82p!2
N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!H 1

Q2 F X211
v211

2v
lnS v11

v21D Cq”gnq”1
1

v
lnS v11

v21D $k”gnk” 81k” 8gnk” %G
22E

0

1

dyE
0

1

dx
1

B2
i @y~k”2q” 8!gn

„k” 81~q”2q” 8!x…1y„k” 81~q”2q” 8!x…gnk” 8

14m~k8!n~12y!2~k”2q” 8!gnk” 82m2gn#

24E
0

1

dx3x3
2E

0

1

dx2x2E
0

1

dx1F S 1

Ai gn1
1

~Ai !2 P” ignP” i D „q8•~k2Pi !…

1
1

2Ai~q” 8gnP” i1P” ignq” 8!G J ~k”2q” 81m!

22k•q8
e” * u~k,h!, ~22!

whereAi is given as in Eq.~15! and where

B2
i [m2y1x2y~q2q8!212xk•q812xyk8•~q2q8!. ~23!

In an analogous way, the amplitude corresponding to Fig. 2~V2f! can be calculated, and yields

MV2
f 1~CT!V2

f 5MBH
f e2

~4p!2H 22F 1

« IR
2gE1 lnS 4pm2

m2 D G232v lnS v11

v21D J 1
ie5

~4p!2

1

~p82p!2
N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!e”*
~k” 81q” 81m!

2k8•q8 H 1

Q2 F X211
v211

2v
lnS v11

v21D Cq”gnq”1
1

v
lnS v11

v21D $k”gnk” 81k” 8gnk” %G
22E

0

1

dyE
0

1

dx
1

B2
i @yk”gn

„k”2~q”2q” 8!x…1y„k”2~q”2q” 8!x…gn~k” 81q” 8!

14m~k!n~12y!2k”gn~k” 81q” 8!2m2gn#

14E
0

1

dx3x3
2E

0

1

dx2x2E
0

1

dx1F S 1

Af gn1
1

~Af !2 P” fgnP” f D „q8•~k82Pf !…

1
1

2Af~q” 8gnP” f1P” fgnq” 8!G J u~k,h!, ~24!

whereAf is given as in Eq.~19! and where

B2
f [m2y1x2y~q2q8!222xk8•q822xyk•~q2q8!. ~25!

3. Vertex correction diagrams of Figs. 2 (V3i) and (V3f)

The amplitudeMV3
i corresponding to Fig. 2~V3i! is given by
025501-7
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MV3
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!m42DE dDl

~2p!D

ga~k” 81 l”1m!gn~k”2q” 81 l”1m!«” * ~k”1 l”1m!ga

@ l 2#@ l 212l •k8#@ l 212l •k#@ l 212l •~k2q8!22k•q8#
u~k,h!. ~26!

Remark that the loop integral in Eq.~26! is UV finite but contains an IR divergence forD54. This is because in Fig. 2~V3i!,
a soft virtual photon (l→0) couples on both sides to on-shell electron lines. To isolate the IR divergence, we first deco
the numerator in Eq.~26! by using the relationsū(k8,h8)ga(k” 81m)5ū(k8,h8)2ka8 and (k”1m)gau(k,h)52kau(k,h). This
yields

MV3
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!m42DE dDl

~2p!D

1

@ l 2#@ l 212l •k8#@ l 212l .k#@ l 212l •~k2q8!22k•q8#

3$4~k•k8!gn~k”2q” 81m!«” * 14~k•k8!gnl”«” * 12gn~k”2q” 81 l”1m!«” * l”k” 812k” l”gn~k”2q” 81 l”1m!«” *

1gal”gn~k”2q” 81 l”1m!«” * l”ga%u~k,h!. ~27!

In Eq. ~27!, only the term in the numerator which isl independent~the first term within the curly brackets! contains an IR
divergence, whereas all the other terms are finite. As before, instead of aiming at an analytical formula for a rather com
integral, we evaluate the IR divergent part of the integral in Eq.~27! by adding and subtracting a term that contains
divergence and that can be performed analytically rather easily. In constructing this term, we are looking for a deno
which contains the same dependence as the basic BH process in order that this BH amplitude can be factored fro
divergent term. This yields the following expression, which is by construction identical to Eq.~27!:

MV3
i 5

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!H m42DE dDl

~2p!D

4~k•k8!gn~k”2q” 81m!«” *

@ l 2#@ l 212l •k8#@ l 212l •k#@22k•q8#

1E d4l

~2p!4

1

@ l 2#@ l 212l •k8#@ l 212l .k#@ l 212l •~k2q8!22k•q8# F4~k•k8!gn~k”2q” 81m!«” *
2 l 222l •~k2q8!

22k•q8

14~k•k8!gnl”«” * 12gn~k”2q” 81 l”1m!«” * l”k” 812k” l”gn~k”2q” 81 l”1m!«” * 1gal”gn~k”2q” 81 l”1m!«” * l”gaG J u~k,h!.

~28!

Remark that the added term@first term of Eq.~28!# contains the IR divergence whereas the other terms of Eq.~28! do not have
any divergences so that the corresponding integrals may be performed directly in four dimensions as indicated. For
term of Eq.~28! we furthermore see that thel-independent part of the energy denominator is the same as the one occur
the corresponding Bethe-Heitler diagram@Fig. 1~a!#. The l-dependent part of the energy denominator for this term is the s
as the one for the vertex correction to elastic electron scattering, Eq.~A9!. The corresponding integral may therefore
evaluated analytically in a similar way as was done in Appendix A. This yields for the IR divergent term in Eq.~28!

e5

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!gn
~k”2q” 81m!

22k•q8
«” * u~k,h!m42DE dDl

~2p!D

4~k•k8!

@ l 2#@ l 212l •k8#@ l 212l .k#

5MBH
i e2

~4p!2 H F 1

« IR
2gE1 lnS 4pm2

m2 D Gv211

v
lnS v11

v21D1
v211

2v
lnS v11

v21D lnS v221

4v2 D
1

v211

v FSpS v11

2v D2SpS v21

2v D G J . ~29!

The evaluation of the finite four-dimensional integral in Eq.~28! can be performed at the expense of the introduction of th
Feynman parameter integrals due to the four energy denominators:

1

@ l 2#@ l 212l •k8#@ l 212l •k#@ l 212l •~k2q8!22k•q8#
56E

0

1

dy y2E
0

1

dx2x2E
0

1

dx1

1

@~ l 1yPx1x2

i !22yCi #4 , ~30!

with the four-vectorPx1x2

i defined by
025501-8
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Px1x2

i [~q2x1q8!x21k8, ~31!

and the scalarCi defined by

Ci[2k•q8x1x21y~Px1x2

i !2. ~32!

The final result for the amplitudeMV3
i is then given by

MV3
i 5MBH

i e2

~4p!2 H F 1

« IR
2gE1 lnS 4pm2

m2 D Gv211

v
lnS v11

v21D
1

v211

2v
lnS v11

v21D lnS v221

4v2 D1
v211

v FSpS v11

2v D2SpS v21

2v D G J
1

ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!E
0

1

dyyE
0

1

dx2x2E
0

1

dx1ū~k8,h8!

3H gn
~k”2q” 81m!

22k•q8
«” * 4k•k8F 2

Ci 1
1

~Ci !2 „2y~Px1x2

i !212Px1x2

i
•~k2q8!…G

3
2

Ci @gn«” * k” 81k”gn«” * 24m«* n2gn~k”2q” 82yP” x1x2

i !«” * 1y«” * gnP” x1x2

i 1yP” x1x2

i «” * gn#

1
1

~Ci !2 @24~k•k8!gnP” x1x2

i «” * 22gn~k”2q” 82yP” x1x2

i 1m!«” * P” x1x2

i k” 822k”P” x1x2

i gn~k”2q” 82yP” x1x2

i 1m!«” *

1yP” x1x2

i
„22«” * ~k”2q” 82yP” x1x2

i !gn14m«* n
…P” x1x2

i #J u~k,h!. ~33!

The Feynman parameter integrals in Eq.~33! will be performed numerically as explained in Sec. III C.
In an analogous way, the result for the amplitudeMV3

f corresponding to Fig. 2~V3f! can be calculated, and yields as a res

MV3
f 5MBH

f e2

~4p!2 H F 1

« IR
2gE1 lnS 4pm2

m2 D Gv211

v
lnS v11

v21D
1

v211

2v
lnS v11

v21D lnS v221

4v2 D1
v211

v FSpS v11

2v D2SpS v21

2v D G J
1

ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!E
0

1

dyyE
0

1

dx2x2E
0

1

dx1ū~k8,h8!

3H «” *
~k” 81q” 81m!

2k8•q8
gn4k•k8F 2

Cf 1
1

~Cf !2 „2y~Px1x2

f !212Px1x2

f .~k81q8!…G
1

2

Cf @«” * gnk” 81k”«” * gn24m«* n2«” * ~k” 81q” 82yP” x1x2

f !gn1ygn«” * P” x1x2

f 1yP” x1x2

f gn«” * #

1
1

~Cf !2 @24~k•k8!«” * P” x1x2

f gn22«” * ~k” 81q” 82yP” x1x2

f 1m!gnP” x1x2

f k” 822k”P” x1x2

f «” * ~k” 81q” 82yP” x1x2

f 1m!gn

1yP” x1x2

f
„22gn~k” 81q” 82yP” x1x2

f !«” * 14m«* n
…P” x1x2

f #J u~k,h!, ~34!

with the four-vectorPx1x2

f defined by

Px1x2

f [2~q2x1q8!x21k, ~35!

and the scalarCf defined by
025501-9
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Cf[22k8•q8x1x21y~Px1x2

f !2. ~36!

Remark that in the loops of the vertex correction diagrams where the photon couples to the final electron~diagrams of Fig.
2 denoted byf ), the invariant mass of the virtual (e21g* ) state before radiating the photon is given bym212k8•q8>m2.
This means that an on-shell propagation is possible for the (e21g* ) state. This translates mathematically into the presenc
integrable singularities in the corresponding Feynman parameter integrals of Eqs.~17!, ~24!, and~34!, and yields an imaginary
part for the corresponding amplitude. In contrast, in the loops of the vertex correction diagrams where the photon co
the initial electron~diagrams of Fig. 2 denoted byi ), the invariant mass of the virtual (e21g* ) system before radiating th
photon is given bym2 which means that the corresponding integrals contain no singularities. The numerical treatment o
singular Feynman parameter integrals will be discussed in Sec. III C.

4. Electron self-energy diagrams of Figs. 2 (Si) and (Sf)

We next evaluate the electron self-energy diagrams of Figs. 2~Si! and~Sf!. We only have to consider those diagrams whe
a photon is emitted and reabsorbed by an intermediate electron line. The diagrams with a loop on the initial or final
lines are already absorbed in the wave function and electron mass renormalization, and therefore do not yield an a
correction. This can also be seen from the expression Eq.~A29! for the renormalized lepton self-energy, which vanish
on-shell.

The amplitude corresponding to Fig. 2~Si! is then given by

MSi5 ie3
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!gn
~k”2q” 81m!

22k•q8
S̃~k2q8!

~k”2q” 81m!

22k•q8
«” * u~k,h!, ~37!

where the renormalized self-energy is denoted byS̃ and is given by Eq.~A29!. Remark that the UV divergence in the loo
integral of Fig. 2~Si! has been removed through the renormalization of the electron field and electron mass. The UV
renormalized self-energyS̃ contains however an IR divergence from the counterterms. Inserting the expression forS̃ @Eq.
~A29!# into Eq. ~37!, yields

MSi5MBH
i e2

~4p!22F 1

« IR
2gE1 lnS 4pm2

m2 D G1
ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!gn
~k”2q” 81m!

22k•q8 H m~k”2q” 8!

m222k•q8 F11
22m216k•q8

m222k•q8
lnS 2k•q8

m2 D G1F32
2m212k•q8

m222k•q8
lnS 2k•q8

m2 D G J «” * u~k,h!.

~38!

The amplitude corresponding to Fig. 2~Sf! is given by

MS f5 ie3
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!ū~k8,h8!«” *
~k” 81q” 81m!

2k8•q8
S̃~k81q8!

~k” 81q” 81m!

2k•q8
gnu~k,h!, ~39!

which can be worked out analogously as before and yields

MS f5MBH
f e2

~4p!22F 1

« IR
2gE1 lnS 4pm2

m2 D G1
ie5

~4p!2

1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!

3ū~k8,h8!«” *
~k” 81q” 81m!

2k8•q8 H m~k” 81q” 8!

m212k8•q8 F11
22m226k8•q8

m212k8•q8
lnS 22k8•q8

m2 D G
1F32

2m222k8•q8

m212k8•q8
lnS 22k8•q8

m2 D G J gnu~k,h!. ~40!
e

de
ex
na ig.

stic
Note that in Fig. 2~Sf!, the four-momentum squared of th
(e21g* ) state in the loop is given by (k81q8)25m2

12k8•q8>m2. Therefore, the self-energy and the amplitu
for Fig. 2 ~Sf! is complex, as was also noted for the vert
diagrams of Fig. 2 where the photon is emitted from the fi
electron~denoted byf ). Equation~40! yields indeed a com-
02550
l

plex amplitude because ln(22k8•q8/m2)5ln(2k8•q8/m2)1ip,
for k8•q8.0.

5. Vertex correction diagram of Fig. 2 (V4)

The vertex correction to the VCS process is given by F
2 ~V4!, and its calculation is the same as the one for ela
1-10
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electron scattering. This yields for the renormalized ver
correction

MV452 ie3ū~k8,h8!F „F~Q2!2F~Q250!…gn

2G~Q2!isnk

qk

2mGu~k,h!
1

q2 «m* Hmn. ~41!

In Eq. ~41!, F(Q2)2F(Q250) is given by Eq.~A16! and
reduces in the ultrarelativistic limit (Q2@m2) to Eq. ~A18!.
The magnetic correctionG(Q2) is given by Eq.~A11!, and
vanishes in the ultrarelativistic limit.

6. Vacuum polarization diagrams of Figs. 2 (P1i, P1f) and (P2

The vacuum polarization corrections of Figs. 2~P1i, P1f!
and ~P2! involve the renormalized photon self-energ

P̃(Q2), which has been calculated in Appendix A. Ther
fore, we get for the vacuum polarization correction to the B
process@Figs. 2~P1i, P1f!#

M P1
i 5MBH

i 1

12P̃~2t !
, M P1

f 5MBH
f 1

12P̃~2t !
,

~42!

with t5(p82p)2.
Similarly, we get for the vacuum polarization correctio

to the VCS process@Fig. 2 ~P2!#

M P25MVCS

1

12P̃~Q2!
. ~43!

In the ultrarelativistic limit (Q2@m2), P̃(Q2) is obtained
from Eq. ~A39!

P̃~Q2!5
e2

~4p!2

4

3 H 2
5

3
1 lnS Q2

m2D J . ~44!

B. Soft-photon emission contributions and cancellation
of IR divergences

After removing the UV divergences from the virtual ph
ton corrections to theep→epg reaction in the last section
the resulting expressions still contain IR divergences. B
the corrections to the BH process of Figs. 2~V1i, V1f, V2i,
V2f, V3i, V3f, Si, and Sf! and the vertex correction of Fig.
~V4! to the VCS process contain IR divergences. It is kno
for QED since a long time@26,27#, that these IR divergence
are cancelled at the cross section level by soft photon e
sion contributions. These soft photons are emitted from
charged particle lines and can have energies up to s
maximal valueDEs which is related to the finite resolutio
of the detector. In Appendix A~Sec. A 5!, we calculate the
soft bremsstrahlung contribution to electron scattering
performing the phase space integral over the soft photo
an exact way, and give the finite correction~after cancella-
tion of all IR divergences! to the elastic electron scatterin
cross section. In this section, we generalize the result of
02550
x

-

h

n

is-
e
e

y
in

-

pendix A to the case of theep→epg reaction. The diagrams
for theep→epg reaction with one additional soft photon a
shown in Fig. 3, where the hard photon of theep→epg
process is indicated by its four-momentumq8. In this sec-
tion, we will show that the soft photon emission contrib
tions of Fig. 3 contain IR divergences which exactly can
the IR divergences appearing in the virtual photon correct
diagrams of Fig. 2. The process where the energyDEs of the
additionally emitted photon is not very small compared w
the lepton momenta in the process, makes up the radia
tail to the ep→epg reaction. Its calculation will be dis-
cussed in Sec. IV.

1. Factorization of amplitude for soft-photon emission processe

Here, we evaluate the diagrams of Fig. 3 in the soft p
ton limit, i.e., when the second emitted photon has an ene
much smaller than the initial and final lepton energies a
also smaller than the hard photon~denoted byq8) in order to
distinguish both photons. We will see that only the diagra
where a soft photon couples to an on-shell lepton contain
divergences and lead to a finite logarithmic correction
DEs .

The amplitude corresponding with Fig. 3~b1i! is given by

Mb1i5 ie3ū~k8,h8!gn
~k”2q” 82 l”1m!

22k•q822l •~k2q8!

3«” * ~q8!
~k”2 l”1m!

22k• l
„2e«” * ~ l !…u~k,h!

3
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!, ~45!

wherel is the four-momentum of the soft photon. In the so
photon limit (l→0), Eq. ~45! simplifies by using (k”2 l”
1m)gau(k,h)5(2ka2 l”ga)u(k,h)'2kau(k,h), which
yields for Eq.~45! in the soft photon limit

Mb1i5MBH
i ~2e!«a* ~ l !F2

ka

k• l G , ~46!

where MBH
i is the Bethe-Heitler amplitude of Eq.~1!—

corresponding with photon emission from the initial lepto
Similarly, we can derive the amplitude for Figs. 3~b2i, b1f,
and b2f! which yields in the soft photon limit

Mb1i1Mb2i5MBH
i ~2e!«a* ~ l !F k8a

k8• l
2

ka

k• l
G , ~47!

Mb1f1Mb2f5MBH
f ~2e!«a* ~ l !F k8a

k8• l
2

ka

k• l
G , ~48!

where MBH
f is the Bethe-Heitler amplitude of Eq.~2!—

corresponding with photon emission from the final lepton
Figures 3~b3i! and ~b3f! contain the contributions wher

the soft photon couples to an off-shell lepton line. The a
plitude corresponding with Fig. 3~b3i! is given by
1-11
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FIG. 3. First order soft photon
emission contributions to theep
→epg reaction.
CS
Mb3i52 ie4ū~k8,h8!gn
~k”2q” 82 l”1m!

22k•q822l •~k2q8!

3«” * ~ l !
~k”2q” 81m!

22k•q8
«” * ~q8!u~k,h!

3
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!. ~49!

In the soft photon limit, Eq.~49! can be simplified by using

~k”2q” 82 l”1m!

22k•q822l •~k2q8!
ga

~k”2q” 81m!

22k•q8

'
~k”2q” 81m!

22k•q8
ga

~k”2q” 81m!

22k•q8

5
~k”2q” 81m!

22k•q8

~k2q8!a

2k•q8
2

ga

22k•q8
. ~50!

Consequently, the amplitude of Eq.~49! is given by
02550
Mb3i5MBH
i ~2e!«a* ~ l !

~k2q8!a

2k•q8

1 ie4ū~k8,h8!
gn«” * ~ l !«” * ~q8!

22k•q8

3u~k,h!
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!.

~51!

Similarly, the amplitude corresponding with Fig. 3~b3f! is
given by

Mb3f5MBH
f ~2e!«a* ~ l !

~k81q8!a

k8•q8

1 ie4ū~k8,h8!
«” * ~q8!«” * ~ l !gn

2k8•q8

3u~k,h!
1

~p82p!2N̄~p8,sp8!Gn~p8,p!N~p,sp!.

~52!

In complete analogy to Eqs.~47! and ~48!, we can also
calculate the soft photon emission contributions to the V
1-12
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process. They are shown in Figs. 3~b4! and ~b5!, and their
calculation in the soft photon limit yields

Mb41Mb55MVCS~2e!«a* ~ l !F k8a

k8• l
2

ka

k• l
G , ~53!

whereMVCS is the VCS amplitude of Eq.~4!.
We see from Eqs.~47!, ~48!, and ~53! that for the dia-

grams of Fig. 3 where the soft photon couples to an on-s
lepton, the original amplitude factorizes: in Eqs.~47! and
~48! the BH amplitude factorizes, and in Eq.~53! the VCS
amplitude factorizes. The resulting amplitudes are prop
tional to 1/l , which leads to a logarithmic divergence whe
integrating over the phase space of the soft photon. In c
trast, the amplitudes of Eqs.~51! and~52! where the photon
couples to an off-shell lepton line are finite whenl→0, and
the corresponding phase space integral becomes vanish
small in the limit l→0.

2. Radiative correction due to soft-photon emission processe

In the soft-photon limit we therefore need only keep t
bremsstrahlung corrections of Eqs.~47!, ~48!, and ~53!,
where the BH and VCS amplitudes factorize. To first ord
in aem ~relative to the BH1 VCS cross section! the brems-
strahlung correction therefore amounts to calculating
phase space integral of the form

ds;
d3kWe

8

~2p!32Ee8

d3qW 8

~2p!32uqW 8u

d3pW N
8

~2p!32EN8

d3 lW

~2p!32 l

3~2p!4d4~k1p2k82q82p82 l !

3uMBH1MVCSu2~2e2!F km8

k8• l
2

km

k• l G .F k8m

k8• l
2

km

k• l G ,
~54!

where l[u lWu denotes the soft photon energy, and where
total BH amplitude is given byMBH5MBH

i 1MBH
f . The cal-

culation of the bremsstrahlung integral of Eq.~54! goes
along similar lines as the corresponding integral for ela
scattering, for which the technical details can be found
Appendix A ~Sec. A 5!. We will point out in this section the
differences which arise for theep→epg reaction.

There are two practical ways to measure theep→epg
reaction by measuring two particles in the final state. O
way is to measure the outgoing electron in coincidence w
the recoiling nucleon: this is the ideal technique when m
suring theep→epg reaction at low outgoing photon energ
as is done in@11–13#. The alternative is to measure the ou
going electron in coincidence with the photon: this is t
technique when doing a very inelastic experiment, such
deeply virtual Compton scattering, where the photon is p
duced with a large energy. We discuss here first the c
where one detects the outgoing electron and photon, an
dicate at the end the changes which apply when measu
the outgoing electron and recoiling nucleon.
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If one measures theep→epg reaction by detecting the
outgoing electron and photon, one eliminates in Eq.~A40!

the integral overpW N8 with the momentum conservingd func-
tion, which gives

ds;
d3kWe

8

~2p!32Ee8

d3qW 8

~2p!32uqW 8u

d3 lW

~2p!32 l

1

2EN8

3~2p!d„Ee1EN2Ee82uqW 8u

2A~qW 1pW N2qW 82 lW !21MN
2 2 l …

3uMBH1MVCSu2~2e2!F km8

k8• l
2

km

k• l G•F k8m

k8• l
2

km

k• l G .
~55!

Due to the energy conservingd function in Eq.~A41!, the
upper limit in the integration over the soft photon pha
space depends on the angle. Therefore, this integration
ume has a complicated ellipsoidal shape in thelab system. In
order for the soft-photon phase space integration volume
be spherical, one has to perform the calculation in the c
systemS1 of the ~recoiling nucleon1 soft photon!, general-
izing the procedure of Appendix A for elastic scattering
the ep→epg reaction. The systemS1 is defined bypW N

8 1 lW

5pW N1qW 2qW 850. In the systemS1, the energy conserving
delta function in Eq.~55! is independent of the soft-photo
angles, and the maximal soft photon energy is isotropic. T
integral over the soft-photon momentum~up to some maxi-
mum valueDEs) can then be performed independently of t
integration over the soft photon emission angles. IfDEs is
sufficiently small, one can furthermore neglect the soft ph
ton energy with respect to the other energies in thed func-
tion, and perform the integral over the photon moment
uqW 8u in Eq. ~55! to obtain the correction to the fivefold dif
ferentialep→epg cross section. We indicate in the follow
ing only how the squared matrix element for theep→epg
reaction is modified due to soft photon emission. This c
rection due to soft bremsstrahlung is given by

uMep→epg
SOFTg u25uMBH1MVCSu2~2e2!E d3 lW

~2p!32 l

3F km8

k8• l
2

km

k• l G•F k8m

k8• l
2

km

k• l G . ~56!

The factor multiplyinguMBH1MVCSu2 is the correction fac-
tor to the fivefoldep→epg cross section. In Eq.~56!, the
soft-photon phase space integral is understood to be
formed in the systemS1, where the integration volume i
spherical. Its calculation is performed in Appendix A. O
sees that the integral in Eq.~56! has a logarithmic IR diver-
gence, corresponding to the emission of photons with z
energy. To evaluating it, one has to regularize it, which
done in this work by using dimensional regularization. Th
amounts to evaluating the soft-photon phase space inte
1-13
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~in the systemS1) in D21 spatial dimensions. This calcu
lation is performed in Appendix A and yields

uMep→epg
SOFTg u25uMBH1MVCSu23H e2

4p2F2
1

« IR
1gE

2 lnS 4pm2

m2 D GFv211

2v
lnS v11

v21D21G1dRJ .

~57!

In Eq. ~57!, dR is the finite part of the real radiative corre
tion corresponding with soft photon emission, and is given
in Appendix A @Eq. ~A65!# by

dR →
Q2@m2

aem

p H lnS ~DEs!
2

ẼeẼe8
D F lnS Q2

m2D21G2
1

2
ln2S Ẽe

Ẽe8
D

1
1

2
ln2S Q2

m2D2
p2

3
1SpS cos2

ũe

2
D J . ~58!

In Eq. ~58!, we next have to express the kinematical va
ables (Ẽe ,Ẽe8 ,cosũe) in the systemS1 ~denoted by tilded
quantities! in terms of thelab quantities, which we denote b
untilded quantities (Ee ,Ee8 ,cosue). To make the transforma
tion between the systemS1 and thelab system, we first in-
troduce the missing four-momentumpm1[pN

8 1 l . The sys-

tem S1 is defined bypW m150W , and the missing massMm1 of
the system (p81 l ) is defined by

Mm1
2 5~p81 l !25~p1q2q8!2. ~59!

We can then easily express the electron energies and ang
the systemS1 in terms oflab quantities:

Ẽe5
k•pm1

Mm1
5

1

Mm1
k•~p1q2q8!

5
MN

Mm1
S Ee2

Q2

2MN
2

k•q8

MN
D , ~60!

Ẽe85
k8•pm1

Mm1
5

1

Mm1
k8•~p1q2q8!

5
MN

Mm1
S Ee81

Q2

2MN
2

k8•q8

MN
D , ~61!

sin2 ũe/25
EeEe8

ẼeẼe8
sin2 ue/2. ~62!

The maximal soft-photon energyDEs in the systemS1 is
given by

DEs5
Mm1

2 2MN
2

2Mm1
. ~63!

If one measures theep→epg reaction by detecting the
outgoing electron and recoiling proton, the derivation go
02550
s
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along similar lines as above. One starts now by eliminat
in Eq. ~A40! the integral overqW 8. Then one goes into the
c.m. systemS2 of the~VCS photonq8 1 soft photon!, where
the energy conservingd function is independent of the soft
photon angles, and where the maximal soft photon energ
isotropic. This systemS2 is defined byqW 81 lW5pW N1qW 2pW N

8

50. The calculation of the soft-photon emission integral
then completely similar as above, and leads to the finite c
rection of Eq. ~58!, where the kinematical variable
(Ẽe ,Ẽe8 ,cosũe) are now understood in the systemS2. To
make the transformation between the systemS2 and thelab
system, we first introduce the missing four-momentumpm2

[q81 l . The systemS2 is defined bypW m250W , and the miss-
ing massMm2 of the system (q81 l ) is defined by

Mm2
2 5~q81 l !25~p1q2p8!2. ~64!

We can then easily express the electron energies and ang
the systemS2 in terms oflab quantities:

Ẽe5
k•pm2

Mm2
5

1

Mm2
k•~p1q2p8!

5
MN

Mm2
S Ee2

Q2

2MN
2

k•p8

MN
D , ~65!

Ẽe85
k8•pm2

Mm2
5

1

Mm2
k8•~p1q2p8!

5
MN

Mm2
S Ee81

Q2

2MN
2

k8•p8

MN
D , ~66!

sin2 ũe/25
EeEe8

ẼeẼe8
sin2 ue/2. ~67!

The maximal soft-photon energyDEs in the systemS2 is
given by

DEs5
Mm2

2
. ~68!

3. Cancellation of IR divergences

We can now demonstrate for theep→epg reaction that
the IR divergences from the soft photon emission correcti
exactly cancel against the IR divergences from the virt
radiative corrections, calculated in Sec. III A. Concentrati
here only on the IR divergent parts of the virtual radiati
corrections, we found in Sec. III A that the amplitudes
Eqs. ~13!, ~17!, ~22!, ~24!, ~33!, ~34!, ~38!, ~40!, and ~41!
contain IR divergences. Those IR divergent parts are gi
by

MV1
i 1~CT!V1

i 1MV1
f 1~CT!V1

f

→MBH

e2

4p2S 21

2 D F 1

« IR
2gE1 lnS 4pm2

m2 D G , ~69!
1-14
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MV2
i 1~CT!V2

i 1MV2
f 1~CT!V2

f

→MBH

e2

4p2S 21

2 D F 1

« IR
2gE1 lnS 4pm2

m2 D G , ~70!

MV3
i 1MV3

f →MBH

e2

4p2 S 1

2D v211

2v
lnS v11

v21D
3F 1

« IR
2gE1 lnS 4pm2

m2 D G , ~71!

MSi1MS f→MBH

e2

4p2S 1

2D F 1

« IR
2gE1 lnS 4pm2

m2 D G ,
~72!

MV41~CT!V4→MVCS

e2

4p2S 1

2D Fv211

2v
lnS v11

v21D21G
3F 1

« IR
2gE1 lnS 4pm2

m2 D G . ~73!

Adding them all up gives the following correction to th
squared amplitude for the virtual radiative corrections:

uMBH1MDVCS1Mep→epg
VIRTUALgu2

5uMBH1MVCSu2H 11
e2

4p2Fv211

2v
lnS v11

v21D21G
3F 1

« IR
2gE1 lnS 4pm2

m2 D G J 1•••, ~74!

where the ellipses denote the finite virtual radiative corr
tion. Adding the virtual@Eq. ~74!# and real@Eq. ~57!# radia-
tive corrections to theep→epg reaction, one verifies tha
the IR divergences in the sum exactly cancel, showing Q
at work. Note that this cancellation is different than in t
case of elastic electron scattering. Indeed, for the virtual p
ton correction diagrams to the Bethe-Heitler process, th
are three types of vertex diagrams@Eqs.~69!, ~70!, and~71!#,
the self energy diagram@Eq. ~72!#, and the corresponding
counterterms, which have an IR divergence. On the o
hand, for the virtual radiative corrections to elastic electr
scattering, there is only one vertex diagram which is
divergent.

C. Integration method for the virtual photon corrections

At this stage of the calculation of the first order QE
radiative corrections to theep→epg reaction, the treatmen
of all UV and IR divergences, resulting from the radiati
corrections at the electron side, has been performed. The
divergences have been removed by the renormalization
cedure whereas the IR divergences were shown to canc
the cross section level when adding the soft photon emis
processes. Now, the evaluation of the remaining Feynm
parameter integrals in the finite terms such as in Eq.~13! has
to be done.
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Among the one-loop virtual radiative corrections to t
ep→epg reaction shown in Fig. 2, six give rise to simp
analytical formulas. For the six vertex diagrams, denoted
V1i, V2i, V3i, V1f, V2f, and V3f, the trick consisting of
adding and subtracting the divergent term for each of th
~as explained in Sec. III A! gives rise to Feynman paramet
integrals that are rather complicated to be done analytica
Therefore, we will evaluate them in this work by a numeric
procedure. Although these Feynman parameter integrals
by construction finite, appropriate numerical methods
needed to perform them. Two main difficulties are encou
tered in these numerical integrations. First, the variations
the integrated functions are always extremely sharp near
integration limits. In fact, a typical behavior is a rather fl
dependence in the middle of the domain and two pronoun
rises when approaching 0 or 1 for the Feynman parame
with a width of orderm/Ee . The contribution of these two
peaks has to be evaluated carefully in order to obtain a g
precision for the final result. Secondly, we know that t
virtual radiative corrections to theep→epg reaction allow
the propagation of on-shell states~see Sec. III A!. This is
mathematically expressed by the presence of integrable
gularities in the Feynman parameter integrals which requ
an analytical continuation into the complex plane and giv
rise to an imaginary part for the amplitude.

To evaluate the Feynman parameter integrals, our stra
is to perform the first integration analytically. The last int
grations will then be performed numerically using the Gau
Legendre integration method. The analytical calculation
the first integration provides a shorter calculational time a
a higher precision. The main advantage however is tha
the case of a singularity, the pole is avoided by deform
the integration contour into the complex plane, using anal
cal continuation. In this way, one removes the difficulties
the remaining integrations along the real axis.

To classify the Feynman parameter integrals that occu
the six vertex diagrams under study, we start by factoriz
all the Diracg matrices and decomposing the components
the four-vectors. All resulting integrals then reduce to t
generic form:

E E E
0

1

dx1 dx2 dx3

P~x1 ,x2 ,x3!

Q~x1 ,x2 ,x3!
, ~75!

whereP andQ are polynomials in three Feynman paramet
x1 ,x2 ,x3. Let us choosex1 to be the most internal variable
Then the first integration is either of the form

E
0

1 x1
mdx1

~ax11b!n
~76!

or

E
0

1 x1
mdx1

~ax1
21bx11g!n

, ~77!

wherea, b, andg are polynomials inx2 andx3 with coef-
ficients that are functions of kinematical variables. In E
1-15
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~76! and~77!, m varies from 0 to 4 andn is equal to 1 or 2,
to accommodate all cases appearing in Sec. III A. These
cessive decompositions increase the number of terms to
culate but they have the advantage of providing two sim
classes of integrals without any vector or matrix dependen
The possibility of poles in the integrands of Eqs.~76! and
~77! naturally splits the problem into two parts, whether t
integrand is regular or singular.

1. Regular integrand

When the denominator does not have any singularit
some recurrence relations exist for these integrals and ca
found in Ref.@28#. Unfortunately for small values ofa as
compared tob or to g, it has been seen that these relatio
are numerically unstable. This has thus led us to use sev
methods of integration, each with a different domain of v
lidity. For ratios r @r 5a/b for Eq. ~76! or r 5a/g for Eq.
~77!# small compared to 1, we perform a Taylor expansion
the integral and tune the order of each development to c
plete a fixed criterion of convergence~for example, we re-
quire that the ratio between the last and the first terms i
the order of the numerical precision in double precision!. For
r .1 the recurrence relations@28# are used as they are stab
in this range. In the intermediate zone (0.2<r<1), we use
the Gauss-Legendre numerical integration method.

2. Singular integrand

In the case of the propagation of on-shell intermedi
states, the polynomials of the denominators in Eqs.~76! and
~77! acquire one~or two! roots in the domain of integration
Some simple physical considerations have shown that am
the six diagrams numerically evaluated, the three proce
where the photon in theep→epg reaction is emitted from
the initial electron line are free of poles~Sec. III A!. In con-
trast, the three vertex graphs where the photon is emi
from the final electron line were seen to contain singulariti
The corresponding integrals are then defined by an analy
continuation into the complex plane and take the form

E
0

1 x1
mdx1

~ax11b6 i e!n
or E

0

1 x1
mdx1

~ax1
21bx11g6 i e!n

.

~78!

The prescription for on-shell propagation is of course alre
taken into account in the propagators and determines the
in front of i e ~which can also be obtained by applying th
simple trick m→m2 i e/2). Complications can occur from
the possibility of two distinct roots in the interval@0,1# for
the second order polynomial. An important remark then c
cerns the variable of integration. In Eq.~75!, the choice ofx1
as the more internal dimension was purely arbitrary. In fa
all the decompositions in the three parameters have b
derived and it has been shown that it was always possibl
find an expansion providing at most one singularity.

In Appendix B, we give the analytical results for the i
tegrals of Eq.~78!. We checked these results with a nume
cal method, where one pole along the interval@0,1# is
avoided by analytically continuing the integrand into t
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complex plane. In this way, the integral along@0,1# is re-
placed by an integration along a semicircle~with origin at
0.510i and radius 1/2! in the opposite complex half-plan
with respect to the pole. A comparison between the t
methods shows a perfect agreement. Only in the spe
cases where one pole comes close to an edge of the do
of integration@0,1# ~typically within a distancem2/Ee

2 to 0 or
1!, need one increase the number of integration points of
numerical method to obtain the same precision.

3. Numerical checks and accuracy

Thanks to the analytical calculation of the first integrati
in the Feynman parameter integrals under study, singular
on the real axis have been removed and the two remain
integrations can then be performed numerically using
Gauss-Legendre method. In the implementation of this al
rithm the major difficulty consisted in finding the suitab
binning of the integration domain and in determining t
number of points per bins. A detailed study of the integra
functions has been performed to estimate the width and
plitude of the sharp variations close to the ends of the
main. In this paragraph we discuss various checks of
precision of our results as well as their numerical stabilit

A strong cross check of the reliability of our calculation
is the exact agreement between two programs develope
parallel @29,30#. Both of them use the same numeric
method but they have been coded independently using
most cases a different decomposition of the terms and dif
ent order in the integration variables, which checks the sy
metry in the permutation ofx1 , x2, andx3 variables. Com-
parison at each intermediate stage of the calculation
excludes any misprints in the writing of the quite extens
expressions.

Besides this agreement between two independent
grams, the next requirement is the numerical convergenc
the calculations. Figures 4 and 5 show results obtained
typical MAMI and JLab kinematics, respectively. Beyond
certain density of integration bins and points per bin, t
numerical instabilities are brought down to a few 1024 of the
lowest order cross section. This accuracy is far below all
other theoretical uncertainties related to the performed
proximations or experimental knowledge of the form facto
~of the order of 1%!. Nevertheless this kind of very goo
convergence is useful since numerical instabilities can
amplified in the coherent sum of all the diagrams or wh
computing higher energy kinematics. In the case of
deeply virtual Compton scattering, we have checked that
has to double the number of integration points to get
same numerical precision.

Some features of the electromagnetic interaction itself
also be used to check further the validity of our results. L
us consider the total amplitude of the sum of all the virtu
radiative correction diagrams~Fig. 2!. Denoting the Lorentz
index associated with the real photon vertex bym, this am-
plitude can be written as the scalar productTmem* wheree*
stands for the polarization vector of the real photon w
four-vectorq8 and whereTm represents the electromagnet
current. The gauge invariance of electromagnetism imp
Tmqm8 50 and provides us with a powerful test of our calc
1-16
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lations. Since our numerical accuracy is finite, we cannot
exactly zero. Therefore, we rather define a quantity co
pared to which the scalar productTmqm8 has to be small. A
natural quantity is the product of the norms of the two Lo
entz vectors. The gauge invariance criteria thus becom
test of the smallness of the following dimensionless ratio

uTmqm8 u2

uTmTm
† u~q80!2

!1. ~79!

This ratio is shown in Fig. 6 as a function of the angle b
tweenq andq8. The gauge invariance is verified by the fa
that the smallest ratio~solid curve! stays in the range
@1024,1026# and is obtained when the complete set of d
grams with analytical1numerical terms is included inTm.

As a last consistency check, we investigated the m
dependence of the virtual radiative corrections. The rela
effect in the BH1 Born cross section is illustrated in Fig.
for different values of the mass of the lepton. For this test
kept track of the mass dependence in all the kinemat
variables. We observe that when increasing the lepton m
~at fixed lepton kinematics!, the effect of the radiative cor

FIG. 4. Test of convergence: The relative effect of the virtu
radiative corrections to the BH1 Born cross section is shown as
function of the angle between the two photons (q,q8) for a typical
MAMI kinematics. The curves correspond to tests performed w
different densities of integration zones and points near the edg
the integration domain. They show the good numerical converge
obtained.
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rections rapidly decreases, which reflects the suppressio
photon emission by a heavy particle.

D. Radiative corrections on the proton side and two-photon
exchange corrections

In Secs. III A–III C, we calculated the radiative corre
tions to theep→epg reaction, corresponding with the dia
grams of Figs. 2 and 3. They are the virtual radiative corr
tions on the lepton side, the vacuum polarizati
contributions and the soft-photon emission from the lept
These can be calculated model-independently as has
shown above. Although these corrections are the domin
ones~when Q2@m2, leading to large logarithms!, we want
to estimate in this section how large are the virtual radiat
corrections on the proton side, the two-photon exchange
rections ~direct and crossed box diagrams! and the soft-
photon emission from the proton. Generally, the radiat
corrections from the proton side are typically suppres
compared with those from the electron, due to the mu
larger mass of the proton. However, to calculate the fi
order radiative corrections to theep→epg reaction which
originate from the proton side, one needs a model for
VCS process. We do not aim in this paper to calculate th
corrections within a given model. However, to provide som
quantitative estimate, we will follow the results of@24#,
where the corrections at the proton side were studied
elastic scattering.

l

h
of
ce

FIG. 5. Analogous test of convergence as in Fig. 4 but for JL
kinematics.
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The Z-dependent corrections originate from the interf
ence between soft-photon emission from the electron
from the proton, and from the two-photon exchange con
butions ~direct and crossed box diagrams!. Both processes
contain IR divergences, which cancel in their sum at
cross section level. The interference between the soft-ph
emission from the electron and from the proton can be
culated along the same lines as in Appendix A 5 for
electron ~neglecting form factor effects in the soft-photo
limit !. For the two-photon exchange contributions, the cal
lation is dominated by those regions in the integration wh
one of the two exchanged photons is soft. Therefore, one
evaluate the rest of this amplitude by taking the moment
of either of the two exchanged photons to be zero. In t
approximation, the original amplitude factorizes and one
follow the derivation of@24#, where this same calculation ha
been performed for elastic scattering. Therefore,
Z-dependent radiative corrections can be estimated in
soft-photon limit by the same correction factor of Eq.~A74!
as for elastic scattering.

The Z2-dependent corrections originate from the so
bremsstrahlung from the proton and from the proton ver
corrections. In@24#, these corrections have also been cal

FIG. 6. Test of gauge invariance for MAMI kinematics. Th
dotted curve shows~for illustrative purpose only! the result when
only the diagrams~V2i! and ~V2f! of Fig. 2 are included. The
dashed curve is the result of all analytically calculated virtual rad
tive corrections. The full curve shows the result when the numer
contributions~Feynman parameter integrals! are also included.
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lated for elastic scattering. For the soft-photon emission,
can again factorize the original amplitude, so that the sa
correction factor is obtained for theep→epg reaction as for
elastic scattering. The proton vertex correction has been
in @24# into two parts. The first part contains entirely the I
divergence, which cancels the IR divergence from so
photon emission from the proton, and in which the origin
amplitude factorizes. The second term in the proton ver
correction depends on the nucleon structure~form factor de-
pendence for elastic scattering! and will be different when
going from elastic scattering to theep→epg reaction. For
elastic scattering, this structure dependent term was how
found@24# to be quite small, except when going to very lar
Q2 ~much larger thanMN

2 ). When staying in the few GeV2

region, this correction was calculated in@24# to be well be-
low 1%. Therefore, we approximate theZ2 dependent cor-
rection to the ep→epg reaction by the structure
independent term of Eq.~A76!, as calculated in@24#, and
will neglect in the following the structure dependent term

IV. RADIATIVE TAIL FOR ELASTIC SCATTERING AND
VCS

Besides the knowledge of the virtual radiative correctio
and the soft-photon emission contributions to theep→epg
reaction, which were studied in Sec. III, the accurate de
mination of theep→epg cross section from measured spe
tra also implies the knowledge of the radiative tail. The

-
al

FIG. 7. Mass dependence of the virtual radiative corrections
MAMI kinematics.
1-18
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QED RADIATIVE CORRECTIONS TO VIRTUAL . . . PHYSICAL REVIEW C 62 025501
diative tail consists of the photon emission processes whe
semihard photon~with energy not very small compared with
e.g., the lepton energies! is radiated from the electron~or
proton!.

The radiative tail to elastic or inelastic lepton-nucle
scattering has been the subject of numerous studies in
literature@31,32,22,33#. The elastic radiative tail also make
a sizeable contribution to the inclusive cross sections
deep-inelastic lepton-nucleon scattering~see, e.g.,@34#!.

One should notice that the distinction between the s
photon emission and the radiative tail is not a fundame
one, the latter being just the extension of photon emiss
processes to higher energies. Although the formulas give
this paper for the real radiative corrections can in princi
be extended and applied to higher energies@e.g., Eqs.
~A70!–~A72! for elastic scattering#, in some cases the cha
acteristics of the experimental detection apparatus can
such that the cut inEe8

el2Ee8 ~elastic case! or in the missing
massMx

2 (Mm1
2 or Mm2

2 for the VCS case! cannot be cleanly
defined, because the apparatus can have a changing a
tance as a function ofEe8

el2Ee8 or Mx
2 , introducing a bias in

the radiative tail. Therefore, it is useful to consider the rad
tive tail separately and to generate it in a Monte Carlo sim
lation. In doing such a simulation, it can be very helpful
have a ‘‘recipe,’’ because it is a way to fold radiative effec
with acceptance functions and other effects~e.g., multiple
scattering, energy loss by collision, external radiative
fects!. In the literature such ‘‘recipes’’ were quite often pr
sented. Many of them are based on one or another versio
the peaking approximation, introduced originally by Sch
@35#. In the peaking approximation, the photon is radia
along either the initial or final electron directions, i.e., t
direction of the electron is not changed while radiating, o
its energy is changed.

Below, we start by giving such a recipe, based on
formulas presented in this paper. What one essentially ne
for a Monte Carlo simulation is an electron energy loss d
tribution due to real internal radiative effects. For each ev
one can then sample in such a distribution, both for the
coming and the outgoing electron. We next give a comp
son between such a method based on the peaking app
mation, with an exact numerical calculation of the radiat
tail. We show to what extent the full calculation validates t
approximate method for the case of elastic electron-nucl
scattering, and show that this method is realistic enoug
apply it to the calculation of the radiative tail in the case
the VCS.

A. Energy loss distribution for real internal radiative effects

The details of the calculation of the real radiative corre
tions can be found in Appendix A. It is discussed there h
the real internal radiative corrections give rise to a correct
factor edR to the cross section. The part ofdR giving rise to
the radiative tail~when differentiatingdR with respect to the
electron energy loss! is the first term of Eq.~A65!, which
contains the maximal energy of the emitted photonDEs ,
which is defined as in Eq.~A48!. The correction factoredR
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can be written as the product of a number of factors,
which the first one is given by

S ~DEs!
2

ẼeẼe8
D a

, ~80!

wherea is given by@see Eq.~A65!#

a5
aem

p F lnS Q2

m2D 21G , ~81!

and where the tilded quantities in Eq.~80! are expressed in
the c.m. system of~soft photon1 recoiling proton! as ex-
plained in Appendix A 5. Because in a simulation it is mo
straightforward to apply radiative effects in thelab, we ex-
press Eq.~80! in lab quantities, by using Eq.~A48!, which
yields

S ~hDEe8!2

EeEe8
D a

, ~82!

whereDEe85Ee8
el2Ee8 . Introducing furthermore the quantit

DEe5h2DEe8 , we can write Eq.~82! as

S ~hDEe8!2

EeEe8
D a

5S DEeDEe8

EeEe8
D a

5S DEe

Ee
D aS DEe8

Ee8
D a

. ~83!

The energy changesDEe (DEe8) can be interpreted as th
energy losses of the incoming~outgoing! electron due to
radiation before~after! the scattering process, respective
We can then interpret the factor (DEe /Ee)

a as the fraction of
incoming electrons which have lost an energy between 0
DEe , after being subject to real internal radiation in a
equivalent radiator with thicknessa. The factor (DEe8/Ee8)

a

has a similar interpretation, but then on the outgoing elect
side.1 Given this interpretation, if one uses aDE distribution
I int(E,DE,a), which satisfies

E
0

DE

I int~E,DE,a!d~DE!5S DE

E D a

, ~84!

then it is clear that by sampling such a distribution in
Monte Carlo simulation, the correction factor is correc
obtained. The distributionI int , which has this property is
given by

I int~E,DE,a!5
a

DE S DE

E D a

, ~85!

and is normalized to 1:

1Note that when applying Eq.~83! to the radiative tail, i.e., when
considering the emission of a photon whose energy is not v
small compared with the electron energies, we calculateEe8

el in the
formula forDEe8 using the elastic scattered energy corresponding
an initial electron which has radiated and whose energy is given
Ee2DEe . In the soft-photon limit this difference disappears.
1-19
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E
0

E

I int~E,DE,a!d~DE!51. ~86!

B. Evaluation of the radiative tail and comparison
with an exact numerical calculation
for elastic electron-proton scattering

Given the above distribution, a method for introducing
radiative tail due to internal radiation in a Monte Carlo sim
lation for elastic electron scattering suggests itself.

~i! For the incoming electron, sample an energy lossDEe
using the distribution~85! with E5Ee the incoming electron
energy.

~ii ! Apply elastic electron scattering using the reduc
electron energyEe2DEe , and if the cross section behavio
is used in the simulation, use the elastic scattering cross
tion at the reduced electron energy. After the elastic sca
ing process, the outgoing electron has an energyEe8

el.
~iii ! For the outgoing electron, sample an energy lossDEe8

using the distribution~85! with E5Ee8
el. The final electron

energy is nowEe8
el2DEe8 .

To calculate the equivalent radiator thicknessa of Eq.
~81!, one needs the value ofQ2, which one can in principle
only calculate after the complete process has taken pl
However, one can show that the above procedure reprod
the correction factor~82! with a very good accuracy alread
by calculating the value ofQ2 with elastic electron scatterin
kinematics.

It is intuitively clear that the above procedure, in the ca
where a constant cross section is used, will reproduce
correction factor of Eq.~82!. In case the actual elastic sca
tering cross section behavior is used, the cross sec
‘‘walk’’ with the incoming electron energy is taken into ac
count. Remark that the above procedure implies an elec
energy loss at both the incoming and the outgoing elec
sides.

The discussed method implies, however, the assump
of a strict alignment of the bremsstrahlung photons in
direction of the radiating leptons, which is known as t
~angular! peaking approximation. The strength on the oth
hand is found by integrating the correct angular shape in
soft photon limit, as done in Appendix A 5. To test the v
lidity of this approximate procedure, we performed a fu
numerical calculation of the radiative tail for elastic electro
proton scattering. It consists of integrating over the pho
phase space in the diagrams where a photon is emitted
an electron@cf. BH diagrams of Figs. 1~a! and 1~b!#, as well
as the diagrams where a photon is emitted from the nuc
@cf. Born diagrams of Figs. 1~c! and 1~d!#. In doing so, we
nowhere neglect the photon momentuml, in contrast to the
soft-photon limit calculation of Appendix A 5. For fixe
electron kinematics, the angular phase space of the soft
ton is covered by a grid with about 225 000 points, chos
with increased density in the peak regions in order to k
the point-to-point change of the cross section smaller t
10%. Attention has to be paid right in the middle of th
peaks where the cross section drops very rapidly to~practi-
cally! zero within the characteristic anglem/Ee , as shown in
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Fig. 8. More details on this numerical integration can
found in @36#. The result of this integration is the absolu
cross section of the radiative tail, differential in the outgoi
electron’s momentum and angles. It is shown by the point
Fig. 9 for Ee5855.0 MeV andue552.18°. The energy of
the outgoing electron is then determined byEe85Ee8

el

2DEe8 . The points are compared with the analytical result
the soft-photon limit, obtained by differentiating the expre
sion of Eq. ~A65! for dR—for photon emission from the
electron—with respect toDEe8 . This gives a strictDEe8

21

behavior, yielding the cross sectionsa[sBORNa/DEe8
where the proportionality factora is given as in Eq.~81!. The
soft-photon formula gives thus a straight line when both
cross section andDEe8 are presented on a logarithmic sca
The deviation can be seen in the lower plot of Fig. 9. Fro
the keV region up to about 1 MeV forDEe8 , the deviation is
less than 1023 which can be taken as an upper limit for th
error of the numerical integration procedure. This agreem
demonstrates that the soft-photon approximation holds
very good precision in this region. For higher values ofDEe8 ,
a raise of the photon emission cross section is observed
expected due to the change of kinematics leading to a lo
momentum transfer to the proton, and to a resulting ‘‘wal
of the cross section. We also show on the lower plot of F
9 the result when both radiation from the electron and pro
are considered. For better presentation, both results are
malized to the cross sectionsa for soft-photon emission
from the electron, as defined above.

In Fig. 10, we compare for two kinematics the exact n
merical calculation of the radiative tail with the approxima

FIG. 8. Detail of the cross section for photon emission from
electron~Bethe-Heitler cross section!, when the photon is emitted
around the incoming electron direction. The electron kinema
correspond with Ee5855.0 MeV, Ee85621.4 MeV, and ue

552.18°.
1-20
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QED RADIATIVE CORRECTIONS TO VIRTUAL . . . PHYSICAL REVIEW C 62 025501
method of the Monte Carlo simulation as discussed ab
~see also Fig. 11!. The simulation has been investigated
running it with and without the cross section behavior~di-
pole form factors assumed!, and the ratio between the tw
versions is presented by the lines, the outer lines represen
the statistical accuracy. One notices that the increase o
radiative tail is reproduced, but somewhat overestima
compared with the exact calculation.

FIG. 9. Radiative tail of elastic electron-proton scattering for
kinematics:Ee5855.0 MeV; ue552.18°. Upper plot: fully nu-
merical calculation~black points! compared with the 1/DEe8 depen-
dence of the soft photon result~straight line!. Lower plot: deviation
between the full calculation, when only radiation from the electr
is included~open diamonds! and when both radiation from electro
and proton are taken into account~black points!, with the soft pho-
ton result~straight lines!. See text for details.
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C. Application to virtual Compton scattering

The above procedure can also be applied to VCS, as l
as the angular peaking approximation is used, i.e., the e
tron does not change its direction while losing energy
internal real radiation. Indeed, Eq.~58! is completely similar
to the elastic case, when expressing it in the c.m. system
either ~soft photon1 outgoing nucleon! or ~soft-photon1
outgoing photon! depending on how theep→epg reaction
is measured, as explained in Sec. III B. After exponentiati
one can apply a factorization completely similar as in E
~83!. Because under the assumption of the angular pea

approximationDEs /Ẽ is constant under a Lorentz transfo
mation, we obtain the property that the shape of the distri
tion ~85! is system independent, only its endpoint valueE
changes. As a result, one can apply the distribution of
~85! in the lab for VCS, but then usinglab values forEe and
Ee8 . For VCS, one certainly can have a changing accepta
of the detection apparatus as a function of missing m
~making a ‘‘clean’’ cut in missing mass on the data impo
sible!, so that generating a radiative tail in a Monte Ca
simulation with the above described method is probably
best way to implement the radiative tail correction to t
data. Such a simulation was implemented for the VCS
periments already performed at MAMI@11# and at JLab@12#,
and will be fully described in a forthcoming paper@37#.

V. RESULTS AND DISCUSSION

A. Elastic electron-proton scattering

Before showing results for VCS, we briefly discuss fir
the effect of the radiative corrections to elastic electro
proton scattering, in order to have a point of reference. T
radiative corrections to elastic electron-proton scattering
presented in detail in Appendix A. In Table I, we show f
different elastic kinematics~MAMI, JLab! the numerical val-
ues of the vertex correction@dvertex of Eq. ~A67!#, the
vacuum polarization correction@dvac of Eq. ~A69!#, and the
real radiative correction at the electron side@dR of Eq.
~A65!#. We also show theZ and Z2 dependent corrections
d1 @Eq. ~A74!# andd2

(0) @Eq. ~A76!#, respectively, as derived
-

ly
FIG. 10. Radiative tail of elastic electron
proton scattering atEe5855.00 MeV andue

552.18°. A comparison is shown between ful
numerical calculation~indicated by the points!
and the simulation~curves, see text!.
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FIG. 11. Same as for Fig. 10, but for elast
electron-proton scattering atEe5705.11 MeV
andue542.67°.
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in the recent work of@24#. We omit here the small part in th
Z2 dependent correction which depends on the partic
model for the nucleon structure~in the elastic case, the form
factors!, as can be found in@24#. In Table I, we indicate the
total radiative correctiond tot as the sum of all the differen
contributions as in Eq.~A73!. From Table I, we see that b
far the largest contribution to the radiative correction com
from the large logarithm and double logarithm inQ2/m2 in
the electron vertex correction. When evaluating the real
diative corrections forEe8

el2Ee850.01Ee , the total effect of
the radiative correction is an upwards correction of the d
~for negatived tot) of the order 20–25 %. In the last colum
of Table I ~denoted by EXP!, we also indicate the resu
when exponentiating all corrections except the vacuum
larization contribution, which—as modification of the photo
propagator—is resummed as in Eq.~A72!. One sees that this
can lead to differences of the order of 2%.
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In an elastic scattering experiment, one measures a s
tered electron spectrum and one has to evaluate the rea
diative corrections as a function of the cut (Ee8

el2Ee8) which
one performs in the spectrum. Dividing the measured cr
section by the correction factor (11d tot) and plotting the
result as function of (Ee8

el2Ee8), should then lead to a ‘‘pla-
teau’’ behavior, which demonstrates the consistency of
procedure@within a certain range of the value (Ee8

el2Ee8)
where one knows the radiative tail to sufficient accuracy#.

The determination of the elastic cross section for the
nematicsEe5705.11 MeV,ue542.6° is shown in Fig. 12.
The upper plot shows thedE-spectrum of elastic data take
~during the beam time of the VCS experiment! at MAMI.
The dashed line shows the result of a full Monte Carlo sim
lation, taking into account energy loss by collision, intern
and external radiation, multiple scattering, spectrome
resolution, and cross section behavior. On the lower plot,
First
t

TABLE I. Radiative corrections to elastic electron-proton scattering for MAMI and JLab kinematics.
column:Ee in GeV; second column:ue in deg; third column:Q2 in GeV2. See text for details on the differen
contributions. The real radiative corrections are calculated with (Ee8

el2Ee8)50.01 Ee . The total radiative
correction~to first order! is indicated byd tot , and the exponentiated~EXP! result ~except for the vacuum
polarization contribution, see text! is shown in the last column.

Ee ue Q2 dvertex dvacpol dR d1 d2
(0) d tot EXP

0.705 40.66 0.203 20.1673 0.0208 20.0453 20.0067 20.0018 20.2003 20.2025
0.855 52.18 0.418 20.1881 0.0228 20.0245 20.0123 20.0034 20.2054 20.2087

4.000 15.43 1.000 20.2149 0.0254 20.0260 20.0046 20.0055 20.2255 20.2277
4.000 23.82 2.000 20.2374 0.0275 0.0018 20.0107 20.0096 20.2285 20.2322
4.000 32.45 3.000 20.2511 0.0287 0.0300 20.0180 20.0128 20.2232 20.2292
4.000 42.91 4.000 20.2611 0.0296 0.0623 20.0265 20.0150 20.2106 20.2200

6.000 14.93 2.000 20.2374 0.0275 20.0097 20.0062 20.0089 20.2348 20.2371
6.000 19.40 3.000 20.2511 0.0287 0.0092 20.0103 20.0121 20.2355 20.2390
6.000 23.96 4.000 20.2611 0.0296 0.0284 20.0149 20.0146 20.2326 20.2376
6.000 28.95 5.000 20.2689 0.0303 0.0490 20.0200 20.0166 20.2263 20.2334
6.000 34.76 6.000 20.2754 0.0308 0.0718 20.0257 20.0181 20.2165 20.2261
1-22
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ratio of the experimental spectrum integrated up to the va
DEe8 , to the simulation integrated also up toDEe8 is shown as
function of the cutoff energyDEe8 . This gives the elastic
cross section, which is seen to be stable below the 1% l
over a long interval up to the cut by the acceptance of
spectrometer. The slow descent for higherDEe8 indicates that
the simulation overestimates slightly the radiative tail.

B. VCS below pion production threshold

We next turn to theep→epg reaction below pion thresh
old. It was discussed in Sec. II, that the lowest order~in aem)
amplitude of theep→epg process at low outgoing photo
energiesq8[uqW 8u is given by the BH1 Born processes. The
deviation from the BH1 Born amplitudes grows withq8,
and can be parametrized~at low q8) in terms of six general-
ized polarizabilities~GP’s! of the nucleon, which are func
tion of Q2.

A first VCS experiment has been performed at MAM
@11#. It consisted of measuring theep→epg reaction at
five values ofq8 below pion threshold, ranging fromq8
533 MeV/c to q85111.5 MeV/c. At the lowest valueq8
533 MeV/c, where the polarizability effect is negligibly
small, the measurement is a test of the low energy theo
~LET!. The measured deviation as function ofq8 can then be
interpreted as the effect of the GP’s. It is clear that both
test the LET as well as to extract the GP’s from the measu
deviation with respect to the BH1 Born result ~which is
expected to be of the order 10–20 % at the highestq8 value!,
it is a prerequisite to know very accurately how the resul
modified due to radiative corrections.

In Fig. 13, we first show the differential cross section f
MAMI kinematics at a low valueq8533 MeV/c, as func-
tion of the c.m. angle of the emitted real photon with resp
to the direction of the virtual photon. One sees from Fig.
that the virtual radiative corrections reduce the BH1 Born
result in these kinematics by about 16%~or when applied to
data, increase the uncorrected data by 16%!. The real radia-

FIG. 12. Determination of the elastic cross section for the ki
maticsEe5705.11 MeV andue542.6°.
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tive corrections have to be estimated as function of the
which one performs in the missing mass spectrum. The V
experiments below pion threshold measure theep→epg re-
action by detecting the outgoing electron and proton, a
reconstruct the missing massMm2 as defined in Eq.~64!. In
Fig. 13, the real radiative corrections are shown for a va
of DEs510 MeV, where the soft-photon energyDEs is de-
termined from the cut in the missing mass according to
~68!. For the small value q8533 MeV/c, the real radiative
correction depends only very little on the angleugg @through
the last terms on the right-hand side~rhs! of Eqs. ~65! and
~66!#. For DEs510 MeV, the real radiative correctiondR is
given by dR'20.025, which corresponds with increasin
the uncorrected data by about 2.5%. ForDEs520 MeV,
dR'10.02 ~reducing the uncorrected data by about 2%!,
and for DEs530 MeV, dR'10.045 ~reducing the uncor-
rected data by about 4.5%!. To determine theep→epg cross
section from the measured missing mass spectra, one h
perform a consistency check by plotting the experimenta
measured~uncorrected! cross section divided by the radiativ
correction factor as function of the cut in the missing ma
spectrum. In this way, one has to find a ‘‘plateau’’ behavi
as was demonstrated before for elastic data. This consist
check was also performed on the VCS data measure
MAMI @11#, and will be shown in a forthcoming publicatio
@37#.

-

FIG. 13. Differentialep→epg cross section for MAMI kine-
matics atq8533 MeV/c. Dashed-dotted curve: BH1 Born con-
tribution; dashed curve: BH1 Born 1 virtual radiative correction;
full curve: BH 1 Born 1 total radiative correction. The real radia
tive correction is shown here for a maximal soft-photon energy
DEs510 MeV.
1-23
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In Fig. 14, we show the the differential cross section
MAMI kinematics at the highest measured outgoing pho
energy:q85111.5 MeV/c. The virtual radiative corrections
are mainlyq8 independent~for these rather small values! and
lead thus also here to a reduction of the BH1 Born result by
about 16%. The real radiative corrections are again sho
for DEs510 MeV, and exhibit a slight angular dependen
These corrections were applied to the data from the unpo
ized MAMI experiment of@11#. From the deviation of the
radiatively corrected data and the BH1 Born result, two
combinations of GP’s have been extracted atQ2

.0.33 GeV2 in @11#.
An experiment below pion production threshold to me

sure the GP’s at higherQ2 has also been performed at JLa
@12# and is under analysis at the time of writing. In Fig. 1
we show how the BH1 Born cross section is modified du
to the virtual radiative corrections. It is seen that for the JL
kinematics of Fig. 15, the BH1 Born result is reduced at th
backward angles by about 20% due to the virtual radia
corrections.

The unpolarized VCS cross section below pion thresh
provides three independent structure functions~when vary-
ing the value of« in the experiment!, which allows to extract
three of the six~lowest order! generalized nucleon polariz
abilities. To extract the three remaining nucleon polariza
ities, one has to resort to double polarization observable
discussed in@38#. In particular, double polarization observ
ables with polarized electron beam and with a polarized

FIG. 14. Differentialep→epg cross section for MAMI kine-
matics atq85111.5 MeV/c. Curve conventions as in Fig. 13. Th
real radiative correction is shown here for a maximal soft-pho
energy ofDEs510 MeV.
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get ~along either of the three axes!, or alternatively by mea-
suring the recoil nucleon polarization, provide three n
observables to extract the three additional nucleon respo
functions@38,2#. In Fig. 16, we show the double polarizatio
asymmetries for MAMI kinematics, by measuring the rec
polarization components along thez direction~virtual photon
direction! or along thex direction ~perpendicular to the vir-
tual photon but parallel to the scattering plane!. One aims to
extract the polarizability effect in these observables from
deviation of the measured asymmetry and the BH1 Born
result ~see, e.g.,@38# for an estimate of this effect within a
model calculation!. Therefore, it is important to know how
much the BH1 Born result is affected by the radiative co
rections before extracting the polarizability effect. It is se
in Fig. 16 that the effect of the radiative corrections on t
double polarization asymmetries nearly drops out in the ra
~much less than 1% change of the asymmetries!. At the low
values of the outgoing photon energyq8 ~e.g., q8
.33 MeV/c) where the polarizability effect is very smal
these asymmetries are also hardly affected by radiative
rections. Therefore, these asymmetries can also provide
independent check of the LET. An experiment to meas
the VCS double polarization observables by measuring
recoil nucleon polarization is planned at MAMI in the ne
future @39#.

C. Deeply virtual Compton scattering

Besides the low energy region, the VCS process is a
studied in the Bjorken regime, whereQ2 and n5p•q/MN

n

FIG. 15. Differentialep→epg cross section for JLab kinemat
ics at q85120 MeV/c. The BH 1 Born result is compared with
the result including virtual radiative corrections.
1-24
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QED RADIATIVE CORRECTIONS TO VIRTUAL . . . PHYSICAL REVIEW C 62 025501
are large, withxB5Q2/(2MNn) fixed. In this kinematical
region, the process is refered to as deeply virtual Comp
scattering~DVCS!. In the Bjorken regime, the DVCS ampl
tude factorizes into a perturbatively calculable hard scat
ing amplitude, and into a nonperturbative part at the pro
side, expressed in terms of so-called skewed parton distr
tions ~SPD’s! which generalize the ordinary parton distrib
tions. These SPD’s are new nucleon structure observa
which one aims to extract by measuring, e.g., the exclus
ep→epg reaction in the Bjorken regime. Similarly as wa
seen before in the threshold region, theep→epg reaction
can have an important contribution from the BH proce
besides the DVCS process of actual interest. However,
BH and DVCS contributions behave differently as functi
of the lepton beam energy, as studied in Refs.@40,2,41#. In
particular, at the lower beam energies, such as, e.g., avai
at JLab, the BH process dominates in the forward direct
over the DVCS process. In this region, the DVCS proc
becomes only measurable due to its interference with the
process. In order to extract the DVCS process~and the
nucleon structure information! from its interference with the
BH, it is therefore important to have good knowledge of ho
the radiative corrections modify the BH amplitude.

In Fig. 17, we show theep→epg cross section in kine-
matics accessible at JLab, where such an experimen
planned@17#. The DVCS cross section is calculated by usi

FIG. 16. Double polarization asymmetry for VCS with proto
polarized along thez axis~upper panel! or polarized along thex axis
~lower panel! for MAMI kinematics. Dashed-dotted curve: BH1
Born; full curve: BH1 Born 1 radiative corrections~both curves
nearly coincide!.
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the ansatz for the SPD’s of@41#. It is seen from Fig. 17, tha
the BH indeed dominates over the DVCS cross section
these kinematics, and that the DVCS cross section gets
hanced due to its interference with the BH. One furtherm
sees that the virtual radiative corrections reduce the BH1
DVCS cross section by about 23% in these kinematics. T
is mainly due to the reduction of the BH process when
cluding virtual radiative corrections. The real radiative co
rections are shown in Fig. 17 for a valueDEs50.1 GeV,
which corresponds with a cut in the recoiling hadronic mi
ing mass spectrum@defined in Eq. ~59!# of Mm1

2 2MN
2

.0.21 GeV2. Remark that we did not consider here th
emission of additional hard real photons, supposing that
experiment has sufficient resolution to distinguish these p
cesses from the exclusive DVCS reaction considered. For
calculation of the contribution of hard real photon emissi
to the inclusive deep-inelastic scattering cross section,
analytical formula has been given in Ref.@34#.

In Ref. @2#, it was suggested that an exploratory study
the DVCS process might be possible by studying theep
→epg reaction with a polarized electron beam. The electr
single spin asymmetry~SSA! does not vanish out of plan
and is only due to the interference of the BH amplitude a
the imaginary part of the DVCS amplitude~i.e., the BH am-
plitude does not lead to a SSA, because it is purely re!.
Therefore, one expects this SSA to be less sensitive to ra
tive corrections on the BH amplitude. However, as the B
amplitude enters the SSA linearly in the numerator, but q
dratically in the denominator~as in the unpolarized cros
section!, one might wonder what is the residual effect of t

FIG. 17. Differentiale2p→e2pg cross section inlab: DVCS
kinematics at JLab. BH~dotted curve!; DVCS ~dashed curve!; BH
1 DVCS ~dashed-dotted curve!; BH 1 DVCS 1 virtual radiative
corrections~thin full curve!. The thick full curve represents the BH
1 DVCS 1 virtual and real radiative corrections, where the re
radiative corrections are calculated withDEs50.1 GeV, which
corresponds with a cut in the missing mass spectrum@Eq. ~59!# of
Mm1

2 2MN
2 .0.21 GeV2.
1-25
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radiative corrections on this observable. In Fig. 18, we sh
the SSA for DVCS at JLab. One sees that the SSA gets o
slightly reduced due to the radiative corrections. The red
tion of the SSA amounts to maximum 5% of its value arou
5°, where the asymmetry reaches its maximal value. Th
fore, the SSA shows to be a rather ‘‘clean’’ observable
extracting the DVCS amplitude in a region where the B
process dominates. Its measurement is also envisage
JLab in the near future@17#.

VI. CONCLUSIONS

We studied in this work the first order QED radiativ
corrections to theep→epg reaction. The one-loop virtua
radiative corrections have been evaluated by a comb
analytical-numerical method. Several tests were shown
cross-check the numerical method used. Furthermore, it
shown how all IR divergences cancel when adding the s
photon emission processes. A fully numerical method w
presented for the photon emission processes where the
ton energy is not very small compared with the electron
ergies, which makes up the radiative tail. Besides, we h
also presented an approximate calculation of the radia
tail, which was shown to be realistic enough for use in
Monte Carlo simulation.

We compared our results first to elastic electron-pro
scattering. Subsequently, the results for the radiative cor
tions to theep→epg reaction were shown both below pio
threshold and in the deeply virtual Compton scattering
gime.

Below pion threshold, our calculations were applied to
first dedicated VCS experiment at MAMI, and show that t
effect of the radiative corrections results in an enhancem
of the uncorrected data by about 20%~or an equivalent re-

FIG. 18. Electron single spin asymmetry for thee2p→e2pg
reaction: DVCS kinematics at JLab. Dashed-dotted curve: BH1
DVCS; full curve: BH1 DVCS 1 radiative corrections.
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duction of the theory!. VCS double polarization asymmetrie
where shown to be insensitive to radiative corrections.

For the exclusive DVCS reaction, we calculated radiat
corrections for JLab kinematics and found the virtual rad
tive corrections to lead to an enhancement of the data
about 23%. The single spin asymmetry was shown to be o
slightly reduced by radiative corrections.

Although we focused here on the kinematical regimes
ongoing or planned experiments, the present work can
serve as a tool in the analysis of future VCS experiment
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APPENDIX A: RADIATIVE CORRECTIONS TO ELASTIC
LEPTON-NUCLEON SCATTERING USING THE

DIMENSIONAL REGULARIZATION METHOD FOR BOTH
UV AND IR DIVERGENCES

In this Appendix, we provide the reader with some deta
of the derivation of the radiative corrections to elastic lept
scattering at one-loop level. In our derivation, we use
dimensional regularization procedure to regularize both
traviolet and infrared divergences.

After a short introduction of the renormalization metho
we calculate subsequently the vertex diagram at the lep
side@Fig. 19~a!#, the lepton self-energy diagram@Fig. 19~b!#,
the vacuum polarization diagram@Fig. 19~c!#, and give an
analytical result, without approximations, for the soft phot
emission at the lepton side@Figs. 19~d! and 19~e!#. We com-
pare our results with other derivations found in the literatu
At the end we collect the results to correct the elastic lept
nucleon scattering cross sections and discuss the role o
radiative corrections at the proton side and the two-pho
exchange corrections by referring to the recent work of R
@24#. In this Appendix, we use the same notations as
plained in Sec. II.

1. Renormalization method

In calculating QED radiative corrections in this work, w
are using the BPHZ renormalization method~as explained,
e.g., in Ref.@42#!, which consists of replacing in the unreno
1-26
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malized Lagrangian all bare quantities by renormalized on
For QED, the bare Lagrangian is given by~we are using the
conventions of Bjorken and Drell@25# in this work!

LB5C̄B~ igm]m2mB!CB2
1

4
FBmnFB

mn2eBC̄BgmCBABm ,

~A1!

where the bare field tensorFB
mn is given by

FB
mn5]mAB

n 2]nAB
m . ~A2!

The renormalization of the theory amounts in redefining
bare quantities in terms of renormalized ones:

CB5Z2
1/2C, AB

m5Z3
1/2Am,

mB5Zmm, eB5Zge. ~A3!

In Eq. ~A3!, the renormalized finite quantities areC,Am,m,
and e. A theory in which all divergences can be absorb
into renormalization constants such asZ2 ,Z3 ,Zm, andZg in
Eq. ~A3!, is calledmultiplicatively renormalizable. This pro-
cedure leads to a decomposition of the QED Lagrangian
Eq. ~A1! into

LB5LR1LCT , ~A4!

FIG. 19. First order virtual and real radiative correction pr
cesses:~a! vertex diagram;~b! lepton self-energy diagram;~c! pho-
ton polarization diagram;~d! and~e! soft-photon emission contribu
tions to elastic lepton-nucleon scattering.
02550
s.

e

d

of

whereLR represents the renormalized Lagrangian in terms
the physical~finite! quantities

LR5C̄~ igm]m2m!C2
1

4
FmnFmn2eC̄gmCAm ,

~A5!

and whereLCT is called the counterterm Lagrangian

LCT5~Z221!C̄ igm]mC2~Z2Zm21!C̄

mC2~Z321!
1

4
FmnFmn2~Z121!eC̄gmCAm .

~A6!

In Eq. ~A6!, the vertex renormalization constantZ1 is de-
fined asZ15ZgZ2Z3

1/2. For a renormalizable theory such a
QED, all divergences obtained by calculating loop diagra
with the renormalized LagrangianLR are cancelled by the
corresponding contributions in the counterterm Lagrang
LCT . It will be shown below how the QED renormalizatio
constants are calculated to orderO(e2) by calculating the
vertex diagram, the lepton self-energy diagram, and the p
ton polarization diagram at the one-loop level.

As QED is a gauge invariant theory, we will simplify a
calculations in this work by using the Feynman gauge.

2. Vertex diagram

The on-shell photon-lepton-lepton vertex is represen
by

M v
m5ū~k8,h8!@2 ieLm~k8,k!#u~k,h!, ~A7!

and the on-shell vertex of Eq.~A7! can be parametrized as

ū~k8,h8!Lm~k8,k!u~k,h!

5ū~k8,h8!F „11F~Q2!…gm2G~Q2!ismn
qn

2mGu~k,h!,

~A8!

whereq5k2k8.
To orderO(e2) , the vertexLm @corresponding with Fig.

19~a!# is given by

Lm~k8,k!5gm2 ie2m42DE dDl

~2p!D

3
ga~k” 81 l”1m!gm~k”1 l”1m!ga

@ l 2#@ l 212l •k8#@ l 212l •k#
1O~e4!,

~A9!

where a mass scalem ~renormalization scale! has to be in-
troduced when passing toDÞ4 dimensions in order to kee
the coupling constant dimensionless. It is immediately s
by power counting that in four dimensions (D54), the one-
loop integral in Eq.~A9! contains an ultraviolet (l→`) loga-
rithmic divergence and an infrared (l→0) logarithmic diver-
1-27
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gence. To subtract the divergent parts~by the corresponding
counterterms! of expressions such as Eq.~A9!, one has to
regularize them first.

We follow in this work the dimensional regularizatio
procedure to regularize both ultraviolet and infrared div
gences. The dimensional regularization method amount
calculating loop diagrams inD dimensions. Physical observ
ables are obtained by lettingD→4 at the end. To obtain an
integral which is ultraviolet convergent, one has to takeD
,4, oreUV[22D/2.0 in expressions such as Eq.~A9!. To
obtain an integral which is infrared convergent, one has
take D.4, or e IR[22D/2,0. The two different limits
show that care has to be taken with the limitD→4, which
means that the parts in Eq.~A9! that are infrared divergen
and the parts that are ultraviolet divergent have to be se
rated and in the corresponding terms, two different lim
have to be taken when one approachesD54. Although the
dimensional regularization scheme has been applied o
nally to ultraviolet divergent expressions as it respects
symmetries of the theory~in particular the gauge symmetr
for a gauge theory!, it has also been applied in a few work
to regularize infrared divergences@43,44#.

When working out the integral in Eq.~A9!, one obtains
after some algebra the following expressions forF(Q2) and
G(Q2) to orderO(e2):

F~Q2!5
e2

~4p!2 H F 1

«UV
2gE1 lnS 4pm2

m2 D G
1F 1

« IR
2gE1 lnS 4pm2

m2 D Gv211

v
lnS v11

v21D
1

v211

2v
lnS v11

v21D lnS v221

4v2 D1
2v211

v
lnS v11

v21D
1

v211

v FSpS v11

2v D2SpS v21

2v D G J ~A10!

and

G~Q2!5
e2

~4p!2

v221

v
lnS v11

v21D , ~A11!

where v is given by Eq.~11!, with Q252q2.0. In Eq.
~A10!, gE represents the Euler constant, and the Spence~or
dilogarithmic! function is defined by

Sp~x![2E
0

x

dt
ln~12t !

t
. ~A12!

From Eq.~A11!, the one-loop radiative correction to th
electron magnetic moment follows as

me5
e

2m
„11G~Q250!…5

e

2m S 11
aem

2p D , ~A13!
02550
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which is the result first obtained by Schwinger@45#.
To remove the UV divergence from the vertex correcti

Eq. ~A10!, one has to determine the vertex renormalizat
constantZ1 of Eq. ~A6!. Z1 is determined by requiring tha
the total vertex

L̃m5Lm1~Z121!gm, ~A14!

defines the physical electron charge atQ250, i.e.,

Z1512F~Q250!

512
e2

~4p!2 H F 1

«UV
2gE1 lnS 4pm2

m2 D G
12F 1

« IR
2gE1 lnS 4pm2

m2 D G14J 1O~e4!.

~A15!

It is seen that the vertex renormalization constantZ1 contains
besides the UV divergence also an IR divergence. The re
malized vertex of Eq.~A14! is determined by the vertex
correction functionF(Q2)2F(Q250) which is given to
first order inaem ~whereaem5e2/4p) by the expression

F~Q2!2F~Q250!5
aem

2p H F 1

« IR
2gE

1 lnS 4pm2

m2 D G•Fv211

2v
lnS v11

v21D21G
1

v211

4v
lnS v11

v21D lnS v221

4v2 D
1

2v211

2v
lnS v11

v21D22

1
v211

2v FSpS v11

2v D2SpS v21

2v D G J .

~A16!

The expression for the vertex correction functionF(Q2)
2F(Q250), which was calculated here using the dime
sional regularization method for both the UV and IR dive
gences, agrees with the ones derived in many textbooks@see,
e.g., Eq. ~47.52! of Ref. @46# where a full derivation is
given#. The correspondence with the calculations which u
a finite photon mass (l) as IR regulator is found to be

1

e IR
2gE1 lnS 4pm2

m2 D↔ ln
l2

m2 . ~A17!

In the ultrarelativistic limit (Q2@m2), the vertex correc-
tion Eq. ~A16! F(Q2)2F(Q250) becomes
1-28
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F~Q2!2F~Q250! →
Q2@m2

aem

2p H F 1

« IR
2gE1 lnS 4pm2

m2 D G•F lnS Q2

m2D21G
1X3

2
lnS Q2

m2D22C1X2 1

2
ln2S Q2

m2D1
p2

6
CJ . ~A18!
-

it

q

s

rgy
-
e-

for

the
It is seen from Eq.~A18! that the finite part of the vertex
correction at highQ2 is dominated by a quadratic logarith
mic term.

3. Lepton self-energy diagram

The free lepton propagator~for a lepton with four-
momentumk)

So~k!5
k”1m

k22m21 i e
, ~A19!

is modified through the lepton self-energyS(k), to the full
lepton propagator

S~k!5So~k!1So~k!S~k!S~k!. ~A20!

To first order, the lepton self-energy@Fig. 19~b!# is given by

2 iS~k!52e2m42DE dDl

~2p!D

ga~k”1 l”1m!ga

@ l 2#@~k1 l !22m2#
.

~A21!

By power counting, it is seen that the integral of Eq.~A21!
contains a linear UV divergence but is IR finite in the lim
D→4. The integral of Eq.~A21! yields

S~k!52
e2

~4p!2 H F 1

«UV
2gE1 lnS 4pm2

m2 D G~k”24m!

1k” F11
1

k̃2
1

11 k̃2

~ k̃2!2
~12 k̃2! ln~12 k̃2!G

12mF232
2

k̃2
~12 k̃2! ln~12 k̃2!G J , ~A22!

wherek̃25k2/m2.
To remove the UV divergence from the self-energy E

~A22!, one has to determine the renormalization constantsZ2
and Zm from Eq. ~A6!. This counterterm contribution lead
to the renormalized self-energy

S̃~k!5S~k!2~Z221!k”1~Z2Zm21!m. ~A23!

Inserting Eq.~A23! into Eq.~A20! and developingS(k) as a
Taylor series expansion aroundk”5m yields for inverse of
the total lepton propagator
02550
.

S215~k”2m!F12
dS

dk” U
k”5m

1~Z221!G1@~12Zm!Z2m

2S~k”5m!#1O„~k”2m!2
…. ~A24!

Requiring that the total propagatorShas a pole atk”5m with
residue 1, determines the renormalization constantsZ2 and
Zm as

Z2511
dS

dk” U
k”5m

, ~A25!

~12Zm!Z2m5S~k”5m!. ~A26!

Using the first order expression of Eq.~A22! for the lepton
self-energy yields

Z2512
e2

~4p!2 H F 1

«UV
2gE1 lnS 4pm2

m2 D G
12F 1

« IR
2gE1 lnS 4pm2

m2 D G14J 1O~e4!,

~A27!

Z2Zm512
e2

~4p!2 H 4F 1

«UV
2gE1 lnS 4pm2

m2 D G
12F 1

« IR
2gE1 lnS 4pm2

m2 D G18J 1O~e4!.

~A28!

Remark that although the unrenormalized lepton self-ene
S(k) of Eq. ~A21! is IR finite, the lepton field renormaliza
tion constantZ2 contains an infrared divergence for the d
rivative of S that appears in its definition@see Eq.~A26!#.
Furthermore, a comparison of the first order expressions
the lepton field renormalization constantZ2 @Eq. ~A27!# with
the vertex renormalization constantZ1 @Eq. ~A15!# shows
that they are the same~it is known as a Ward identity and
can be shown to hold to all orders as a consequence of
gauge invariance of QED!.

Finally, using the expressions of Eqs.~A27! and ~A28!,
the renormalized lepton self-energy to first order inaem is
given by
1-29
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S̃~k!52
aem

4p H k” F22X 1

« IR
2gE1 lnS 4pm2

m2 D C231
1

k̃2

1
~12 k̃4!

k̃4
ln~12 k̃2!G2mF22X 1

« IR
2gE

1 lnS 4pm2

m2 D C221
4

k̃2
~12 k̃2! ln~12 k̃2!G J .

~A29!

It is seen from Eq.~A29! that for an on-shell lepton
(k”5m), the renormalized lepton self-energyS̃ is exactly
zero. Consequently, this correction has only to be applied
internal lepton lines.

4. Vacuum polarization diagram

Starting from the free propagator of a photon with fou
momentumq ~as stated before, we give all expressions in
Feynman gauge!

Do
mn~q!5

2gmn

q2 , ~A30!

the full photon propagator can be written as

Dmn~q!5Do
mn~q!1Dmk~q!Pkl~q!Do

ln~q!, ~A31!

where Pkl(q) represents the vacuum polarization corre
tion. To orderO(e2), the vacuum polarization@correspond-
ing with Fig. 19~c!# due to lepton loops~with lepton l
5e,m,t) is given by

2 iPmn~q!52e2m42DE dDl

~2p!D

3
Tr$gm~ l”1q”1m!gn~ l”1m!%

@~ l 1q!22m2#@ l 22m2#
1O~e4!.

~A32!

The gauge invariance of QED leads to the relat
qkqlPkl(q)50 ~Ward-Takahashi identity!. Consequently,
the vacuum polarization correction can be written as

Pkl~q!5~2gklq21qkql!P~q2!, ~A33!

where the functionP(q2) is IR convergent and contains on
a logarithmic UV divergence as can be seen from Eq.~A32!.

Using Eq.~A33!, the self-consistent relation for the fu
photon propagator@Eq. ~A31!# yields

Dmn~q!5
2gmn

q2
„12P~q2!…

1 term inqmqn, ~A34!

where we do not have to specify the term inqmqn, as the
photon propagator will be contracted with conserved c
rents. Evaluating the one-loop integral of Eq.~A32!, one
obtains
02550
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-

P~Q2!52
e2

~4p!2

4

3 F 1

«UV
2gE1 lnS 4pm2

m2 D2S v22
8

3D
1v

~v223!

2
lnS v11

v21D G , ~A35!

wherev is given by Eq.~11!.
The UV divergent term in Eq.~A35! is removed by add-

ing the counterterm inZ3 of Eq. ~A6!. This leads to the
renormalized photon propagator

D̃mn~q!5
2gmn

q2
„12P̃~q2!…

1 term in qmqn, ~A36!

where the renormalized photon polarizationP̃ is given by

P̃~Q2!5P~Q2!2~Z321!. ~A37!

Requiring that the renormalized photon propagator@Eq.
~A34!# has a pole atq250 with residue 1, determines th
renormalization constantZ3:

Z3511P~q250!. ~A38!

Consequently, the renormalized finite photon polarization
found from Eqs.~A35! and ~A37! to be given by

P̃~Q2!5
aem

p

1

3 F S v22
8

3D1v
~32v2!

2
lnS v11

v21D G ,
~A39!

which agrees with the result derived in Ref.@46#.

5. Soft photon emission contributions

The calculation of the one-loop vertex correction of E
~A9! was seen to be both UV and IR divergent. The ult
violet divergence was removed by renormalizing the fie
and parameters of the theory. The remaining infrared div
gences are cancelled at the cross section level by the
bremsstrahlung contributions@26,27#.

In this bremsstrahlung process@see Figs. 19~d! and 19~e!#,
an electron is accompanied by the emission of a soft pho
of maximal energyDEs ~which is related to the detecto
resolution and is therefore much smaller than the elect
energy which radiates this soft photon!. To first order inaem
~relative to the Born cross section! the bremsstrahlung cros
section amounts to calculating a phase space integral o
form

ds;
d3kWe

8

~2p!32Ee8

d3pW N
8

~2p!32EN8

d3 lW

~2p!32 l
~2p!4

3d4~k1p2k82p82 l !uMBORNu2~2e2!

3F km8

k8• l
2

km

k• l G•F k8m

k8• l
2

km

k• l G , ~A40!

where l[u lWu denotes the soft photon energy, and whe
MBORN denotes the Born amplitude for elastic lepto
1-30
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nucleon scattering. In Eq.~A40!, terms in the soft photon
momentum were neglected compared with the electron
mentak and k8, except in the denominators of the lepto
propagators where they matter.

If one performs an experiment where the outgoing el
tron is detected, and where the recoiling proton remains
detected~i.e., if one measures a single arm electron sp
trum!, one eliminates in Eq.~A40! the integral overpW N8 with
the momentum conservingd function, which gives

ds;
d3kWe

8

~2p!32Ee8

d3 lW

~2p!32 l

1

2EN8
~2p!

3d„Ee1EN2Ee82A~qW 1pW N2 lW !21MN
2 2 l…

3uMBORNu2~2e2!F km8

k8• l
2

km

k• l G•F k8m

k8• l
2

km

k• l G .
~A41!

Due to the energy conservingd-function in Eq.~A41!, the
integration volume for the soft photon has a complica
ellipsoidal shape in thelab system. In order for the soft
photon phase space integration volume to be spherical,
has to perform the calculation in the c.m. systemS of the
~recoiling nucleon1 soft photon!, as discussed in@21#. The
systemS is thus defined bypW N

8 1 lW5qW 1pW N50. In the system
S, the energy conserving delta function is independent of
soft-photon angles, and the maximal soft photon energ
isotropic. The integral over the soft-photon momentum~up
to some maximum valueDEs) can then be performed inde
pendently from the integration over the soft photon emiss
angles. IfDEs is sufficiently small, one can furthermore n
glect the soft photon energy with respect to the other en
gies in thed function, and perform the integral over th
electron momentumukWe

8u in Eq. ~A41!. The integration over
the outgoing electron momentum eliminates thed-function,
which implies the elastic scattering constraint. This yie
then for the differential cross section with respect to the o
going electron angles, the following correction due to s
bremsstrahlung:

S ds

dVe8
D

REAL SOFTg

5S ds

dVe8
D

BORN

~2e2!E d3 lW

~2p!32 l

3F km8

k8• l
2

km

k• l G•F k8m

k8• l
2

km

k• l G ,
~A42!

where the soft-photon phase space integral is performe
the systemS, in which the integration volume is spherica
We will denote in the following the external kinematics
the systemS by tilded quantities (Ẽe ,Ẽe8 ,ẼN ,ẼN8 ) to distin-
guish them from thelab quantities, which we denote by un
tilded quantities (Ee ,Ee8 ,EN[MN ,EN8 ). To make the trans-
formation between the systemS and thelab system, we first
introduce the missing four-momentumpm[pN8 1 l . The sys-
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temS is defined bypW m50W , and the soft photon limit implies
pm

0 'MN . We can then easily express in the systemS, the
energies for the external particles in the elastic scatte
process, in terms oflab quantities:

Ẽe'
k•pm

MN
5

1

MN
k•~p1q!5

1

MN
~MNEe2Q2/2!5Ee8,

~A43!

Ẽe8'
k8•pm

MN
5

1

MN
k8•~p1q!5

1

MN
~MNEe81Q2/2!5Ee ,

~A44!

ẼN'
p•pm

MN
5

1

MN
p•~p1q!5MN1Ee2Ee85EN8 ,

~A45!

where the elastic scattering condition@Q252MN(Ee2Ee8)#
has been used in the last step in Eqs.~A43! and ~A44!. The
angle ũe in the frameS is obtained fromk•k85ẼeẼe8(1

2cosũe)5EeEe8(12cosue), which shows@using Eqs.~A43!
and ~A44!# that in the soft-photon limit, this angle is th
same as in thelab system, i.e., cosũe5cosue.

The integral of Eq.~A42! extends up to a maximal soft
photon energyDEs in the systemS, which is expressed in
terms of thelab quantitiesEe andEe8 , by using

~p81 l !22MN
2 5~p1k2k8!22MN

2

52p•~k2k8!1~k2k8!2, ~A46!

which leads ~for soft-photon energies, i.e., keeping on
terms of first order inDEs) to

2MNDEs'2MN~Ee2Ee8!24EeEe8sin2ue/2,

52MN~Ee2Ee8!22MN~Ee2Ee8
el!Ee8/Ee8

el.

~A47!

All quantities on the right-hand side~rhs! of Eq. ~A47! are in
the lab, and the elastic scattering condition has been use
the last line (Ee8

el denotes the elastic scattered electronlab
energy, to distinguish it fromEe8). From Eq.~A47!, one de-
termines thenDEs in terms of lab quantities from the scat
tered electron spectrum through

DEs5h~Ee8
el2Ee8!, ~A48!

where the recoil factorh is given byh5Ee /Ee8
el.

Deviations from the soft-photon emission formula E
~A42! will show up whenDEs is not very small compared
with the lepton momenta in the process. The emission
such a semihard photon is what is usually referred to as
radiative tail. Although the distinction is somewhat arbitra
one can always split the integral for photon emission in
two parts, one by integrating up to a small valueDEs , where
the soft-photon approximation in writing down Eq.~A42!
holds, and a second integral, starting from this small~but
nonzero! value ofDEs up to the energy where one perform
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the cut in the spectrum. This second integral is finite and
be performed numerically. Such a numerical calculation
the radiative tail without approximations is presented in S
IV. In the present section, we give an analytical result for
soft-photon~i.e., smallDEs) integral of Eq.~A42!, without
any further approximations@remark that in@22# only an ap-
proximate evaluation of Eq.~A42! has been given#.

As is immediately seen by power counting, the integra
Eq. ~A42! has a logarithmic IR divergence, corresponding
the emission of photons with zero energy. To demonst
the cancellation with the IR divergence of the vertex diagr
as stated above, one has to regularize the integral of
~A42!. In this work this is performed by also using dime
sional regularization. The soft photon integral is then eva
ated inD21 dimensions (D→4 corresponds to the physica
limit !. One now sees that it is extremely advantageous
have a spherical integration volume, in order to evaluate
02550
n
f

c.
e

te

q.

-

to
e

integral for dimensionsDÞ4. Before continuing the integra
of Eq. ~A42! into D21 dimensions, the integration limits fo
l have to be made dimensionless, which leads in the dim
sional regularization scheme to the introduction of the sa
scalem in Eq. ~A49! as was introduced when changing th
dimension of the virtual photon loop integral of Eq.~A9!.
This leads then inD21 dimensions, to the bremsstrahlun
integral:

I 52e2E l,DEs /m dD21l

~2p!D212lF ka8

k8• l
2

ka

k• l G • F k8a

k8• l
2

ka

k• l G .
~A49!

The integral in Eq.~A49! is worked out by introducing
polar coordinates inD21 dimensions. To define the pola
angle in the interference term of Eq.~A49!, a Feynman pa-
rametrization is performed. This leads forI to the expression
es

s

I 5e2 E
0

l,DEs /m d l

~2p!D21

lD22

2 l3

3E
D22

dV lH k•k8

ẼeẼe8
E

21

11

dy
1

~12bW̃ y• l̂ !2

2
~12b̃e

2!

~12bW̃ e• l̂ !2
2

~12b̃e8
2!

~12bW̃ e
8
• l̂ !2

J , ~A50!

wherel̂ is the unit vector along the soft photon direction,b̃e[ubW̃ eu, b̃e8[ubW̃ e
8u are the incoming and outgoing electron velociti

~in the systemS), respectively, and whereb̃y[ubW̃ yu with

bW̃ e[
kW̃e

Ẽe

, bW̃ e
8[

kWe
8

Ẽe8
, bW̃ y[bW̃ e

1

2
~11y!1bW̃ e

8
1

2
~12y!. ~A51!

The integrals over l and the azimuthal angular integral~over D22 dimensions! can be performed immediately which yield

I 5e2F ~2p!2e IR

~2p!3 S DEs

m D 22e IR 1

24e IR
G•F 2p

pe IR

1

G~12e IR!G
3H k•k8

ẼeẼe8
E

21

11

dyE
21

11

dx
~12x2!2e IR

~12b̃yx!2
2~12b̃e

2!E
21

11

dx
~12x2!2e IR

~12b̃ex!2
2~12b̃e8

2!E
21

11

dx
~12x2!2e IR

~12b̃e8x!2 J . ~A52!

The IR divergent term and the finite term are obtained by developing the polar angular integral in Eq.~A52! as

E
21

11

dx
~12x2!2e IR

~12bx!2 5E
21

11

dx
1

~12bx!2 2e IRE
21

11

dx
ln~12x2!

~12bx!2 1O~e IR
2 !. ~A53!

Performing the integrations in Eq.~A53! @the second integral in Eq.~A53! is simplified by making the substitutionx→u
5b/(12bx) # yields

E
21

11

dx
~12x2!2e IR

~12bx!2 5
2

12b2 2e IR

2

12b2 F ln 41
1

b
ln

12b

11bG1O~e IR
2 !. ~A54!

Consequently, the IR divergent term and the finite term of the integralI are obtained by using Eq.~A54! in Eq. ~A52! and by
developing all other factors also to ordere IR :
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I 52
e2

4p2H F2
1

e IR
1gE2 ln

4pm2

m2 1 ln
4~DEs!

2

m2 GF12
1

2
~12b̃eb̃e8cosũe!I y

(1)G
1F 1

2b̃e

ln
12b̃e

11b̃e

1
1

2b̃e8
ln

12b̃e8

11b̃e8
2

1

2
~12b̃eb̃e8cosũe!I y

(2)G J , ~A55!

where the remaining Feynman parameter integralsI y
(1) and I y

(2) are given by

I y
(1)[E

21

11

dy
1

12b̃y
2

, I y
(2)[E

21

11

dy
1

b̃y~12b̃y
2!

ln
12b̃y

11b̃y

, ~A56!

and whereb̃y is given by Eq.~A51!. The integralI y
(1) in Eq. ~A56! can be performed easily and yields

I y
(1)5

2ẼeẼe8

m2

v221

2v
lnS v11

v21D , ~A57!

with v as defined in Eq.~11!. To obtain an analytical formula for the integralI y
(2) is much harder but was performed in Re

@47#, which we checked2 and which yields the result

I y
(2)5

1

ubW̃ e2bW̃ e8utanha
H F22 ln ~2!1

1

2
ln~sinh2a2sinh2f1!G ln sinha1sinhf1

sinha2sinhf1
2 ln~sinha1sinhf1!ln

sinha2sinhf1

4 sinh2a

12 lnFe2a
ea1ef1

e2a1ef1G ln cosha1coshf1

cosha2coshf1
22FFsinha1sinhf1

2 sinha G1FF S ea2ef1

ea1ef1D 2G2FF S ef12e2a

ef11e2aD 2G2@f1→f2#J ,

~A58!

wherea, f1 , andf2 are given by

cosha5
ubW̃ e2bW̃ e8u

b̃eb̃e8sinũe

~a.0!,

coshf15b̃e cosha, sinhf15
2b̃eb̃e8cosũe1b̃e

2

b̃eb̃e8sinũe

, coshf25b̃e8cosha, sinhf25
b̃eb̃e8cosũe2b̃e8

2

b̃eb̃e8sinũe

. ~A59!

The functionF in Eq. ~A58! is given by

F~x![2E
0

x

dt
lnu12tu

t
, ~A60!

which agrees with the Spence function@Eq. ~A12!# whenx,1. Compared with previous calculations in the literature, it w
shown in Ref.@47# that this integralI y

(2) was approximated in Ref.@48# and that the calculation of this integral in Ref.@49#
contains a factor 2 error. We also checked the analytical formula of Eq.~A58! by performing the integral of Eq.~A56!
numerically.

In the ultrarelativistic limit (b̃e ,b̃e8→1), the integralI y
(2) of Eq. ~A58! reduces to

2Note that the relevant formula quoted in Ref.@47# contains some typing errors.
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I y
(2) →

b̃e'1,b̃e8'1
1

2sin2
ũe

2

H 2
1

2
ln2~12b̃e

2!2
1

2
ln2~12b̃e8

2!1 ln 4 ln~12b̃e
2!1 ln 4 ln~12b̃e8

2!

14Xln2S sin
ũe

2
D 2 ln2 2C22 lnS cos2

ũe

2
D lnS sin2

ũe

2
D 2

p2

3
22SpS sin2

ũe

2
D J . ~A61!

Putting all pieces together, the result for the bremsstrahlung cross section accompanying elastic electron sca
obtained as

S ds

dVe8
D

REAL SOFTg

5S ds

dVe8
D

BORN

H aem

p F2
1

« IR
1gE2 lnS 4pm2

m2 D GFv211

2v
lnS v11

v21D21G1dRJ , ~A62!

where the finite partdR of the real radiative corrections is given by

dR5
aem

p H lnS 4~DEs!
2

m2 D Fv211

2v
lnS v11

v21D21G2
1

2b̃e

lnS 12b̃e

11b̃e
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1

2b̃e8
lnS 12b̃e8

11b̃e8
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2
~12b̃eb̃e8cosũe!I y

(2)J , ~A63!
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Q2@m2

aem

p
H lnS 4~DEs!

2

m2 D F lnS Q2

m2D21G2
1

2
lnS 12b̃e

2

4
D 2

1

2
lnS 12b̃e8

2

4
D 2

1

4
ln2~12b̃e

2!2
1

4
ln2~12b̃e8

2!1 ln 2 ln~12b̃e
2!

1 ln 2 ln~12b̃e8
2!12Xln2S sin

ũe

2
D 2 ln2 2C2 p2

3
1SpS cos2

ũe

2
D J , ~A64!

5
aem

p H lnS ~DEs!
2

ẼeẼe8
D F lnS Q2

m2D21G2
1

2
ln2S Ẽe

Ẽe8
D 1

1

2
ln2S Q2

m2D2
p2

3
1SpS cos2

ũe

2
D J , ~A65!

where the expression of Eq.~A64! in the Q2@m2 limit has been rewritten in Eq.~A65! to allow comparison with other
expressions found in the literature.

Finally to evaluatedR , we have to express the quantities in the systemS in terms oflab quantities. The relations given in
Eqs. ~A43! and ~A44! yield for elastic scatteringẼe5Ee8 , Ẽe85Ee , and cosũe5cosue. From the formula fordR @e.g., Eq.
~A65!#, one then sees that one formally obtains exactly the same expression in terms of thelab quantitiesEe ,Ee8 ,ue . The
quantityDEs is calculated from the cut in the electron spectrum, using the expression of Eq.~A48!.

A comparison of expressions Eqs.~A62! and~A63! with the literature, shows that the same result is obtained as in Ref.@47#.
A comparison with the expression used by Mo and Tsai@22# will be given in the next section when we add the vert
correction and soft photon emission contribution, because only their sum is IR finite~and thus independent of the IR
regularization procedure used!.

6. Elastic lepton-nucleon scattering

In this section, we bring together the first order radiative corrections at the lepton side~lepton vertex and soft bremsstrah
lung from the lepton! and the photon polarization correction to correct the elastic lepton-nucleon scattering cross sect
was shown in the previous sections, these corrections can be calculated model-independently. In the next section, w
the additional radiative corrections to the lepton-proton cross section, which originate from the proton side~proton vertex
correction, soft bremsstrahlung from proton and two-photon exchange corrections!. To calculate these corrections at the prot
side, a model for the off-shell~or half off-shell! gNN vertex is needed however, and which is therefore to some ex
model-dependent. For this latter part, we will refer to the recent work of Ref.@24#.

The elastic lepton scattering cross section, corrected to first order inaem for the lepton vertex contribution and for th
photon polarization contribution, is given by
025501-34
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S ds

dVe8
D

VIRTUALg

'S ds

dVe8
D

BORN

1

„12P̃~Q2!…2
„112$F~Q2!2F~Q250!%…
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BORN
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X11

aem

p F 1

« IR
2gE1 lnS 4pm2

m2 D G .Fv211

2v
lnS v11

v21D21G1dvertexC,
~A66!

where the finite partdvertex of the lepton vertex correction is found from Eq.~A16! to be given by

dvertex5
aem

p H v211

4v
lnS v11

v21D lnS v221

4v2 D1
2v211

2v
lnS v11

v21D221
v211

2v FSpS v11

2v D2SpS v21
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In writing down Eq.~A66! to first order inaem, the con-
tribution of the anomalous magnetic moment termG(Q2) in
the vertex correction Eq.~A8! has been dropped. This con
tribution vanishes in the ultrarelativistic limit (Q2@m2) as
can be seen from Eq.~A11!. The first term in the last line o
Eq. ~A67! corresponds to the vertex correction term quo
by Mo and Tsai@Eq. ~II.5! of Ref. @22##.

The finite part of the photon polarization correctio
dvac[2P̃(Q2), follows from Eq.~A39! as

dvac5
aem

p

2

3 H S v22
8

3D1v
~32v2!

2
lnS v11

v21D J ,

~A68!

→
Q2@m2

aem

p

2

3 H 2
5

3
1 lnS Q2

m2D J , ~A69!

which agrees with the expression quoted by Mo and T
@Eq. ~II.4! of Ref. @22##. To evaluate the vacuum polarizatio
due tom1m2 andt1t2 pairs at intermediateQ2, one has to
use Eq.~A68! instead of the limit of Eq.~A69!.3

When adding the real@Eq. ~A62!# and virtual@Eq. ~A66!#
radiative corrections at the lepton side, one verifies that
IR divergent parts exactly cancel. The remaining finite co
tribution is given to first order inaem by

S ds

dVe8
D

VIRTUALg

1S ds

dVe8
D

REAL SOFTg

5S ds

dVe8
D

BORN

~11dvac1dvertex1dR!, ~A70!

3Note that an incorrect expression is used in@50# for the vacuum
polarization contribution due tom1m2 pairs @Eq. ~A5! in their pa-
per#.
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wheredvac , dvertex, anddR are given by Eqs.~A68!, ~A67!,
and ~A63!–~A65!, respectively. Bringing the three contribu
tions together, leads to the expression~in the Q2@m2 limit !

dvac1dvertex1dR5
aem

p H lnS ~DEs!
2

EeEe8
D F lnS Q2

m2D21G
1

13

6
lnS Q2

m2D2
28

9
2

1

2
ln2S Ee

Ee8
D 2

p2

6

1SpS cos2
ue

2 D J , ~A71!

whereDEs , which is the maximum soft photon energy in th
c.m. system of~recoiling proton1 soft photon!, is deter-
mined as in Eq.~A48!, when applying this formula to the
scattered electron spectrum.

We can compare Eq.~A71! with the recent calculation o
Maximon and Tjon@24#, where this calculation was also pe
formed ~using a finite photon mass to regularize the IR
vergences! without doing any approximations. Comparin
Eq. ~A71! with their Z-independent term (Z being the hadron
charge!—i.e., when not considering radiative corrections
the proton side or two-photon exchange contributions at
point—we find exactly the same result. As was noted in R
@24#, the last two terms of Eq.~A71! were omitted by Mo
and Tsai@22#.

We can approximately take into account the higher or
radiative corrections by exponentiating the first order ver
and real radiative corrections. This is strictly true only for t
IR divergent part of the vertex correction and soft phot
emission contribution, and was demonstrated in Re
@26,48# ~see, e.g., Refs.@51,52# for pedagogical derivations!.
The application of this exponentiation procedure also to
finite part consists of an approximation which can
checked by comparing the result with the first order form
of Eq. ~A70!. For the photon polarization contribution, w
iterate the first order vacuum polarization contribution of E
~A68! to all orders@resumming all vacuum bubbles of th
type of Fig. 19~c!# by keeping the photon self-energy in th
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denominator as in Eq.~A66!. Remark that a resummation o
the first order vacuum polarization contribution doesnot lead
to an exponentiated form. Assuming exponentiation for
finite parts of the vertex and soft photon emissi
contributions—as occurs for their IR divergent pieces—le
then to the radiative correction formula

S ds

dVe8
D

VIRTUALg

1S ds

dVe8
D

REAL SOFTg

5S ds

dVe8
D

BORN

edvertex1dR

~12dvac /2!2 . ~A72!

7. Radiative corrections at the proton side and two-photon
exchange contributions

In the previous sections, we considered radiative corr
tions to elastic electron scattering originating solely from
electron side~vertex correction and bremsstrahlung! and
from the vacuum polarization. These corrections, which
the dominant ones, can be calculated model independe
and follow from QED. To calculate the first order radiativ
corrections originating from the proton side~proton vertex
correction, bremsstrahlung from proton and direct a
crossed two-photon exchange contributions!, one needs a
model for the internal structure of the nucleon because
requires knowledge of off-shell~or half off-shell! gNN ver-
tices. This model dependence will become important if o
aims at a precision of electron scattering experiments at
1% level. To quantify the magnitude of those effects,
refer to the recent work of Maximon and Tjon@24#, where an
initial study was performed of the size of internal structu
effects.

In Ref. @24#, the proton current was taken to have t
usual on-shell form and form factors were included in t
calculation. The calculation of Ref.@24# goes beyond previ-
ous works@21,22#, as the proton vertex correction and th
bremsstrahlung from the proton were calculated without
proximations within the given model for the proton curre
In the calculation of the direct and crossed box diagra
~two-photon exchange contributions!, a less drastic approxi
mation was made in@24# than in@21# ~where those box dia
grams were only calculated in the soft-photon approxim
tion!.

The calculation of Ref.@24# yields then the correction
formula for elastic electron scattering

S ds

dVe8
D

TOTAL

5S ds

dVe8
D

BORN

~11dvac1dvertex1dR1Zd1

1Z2~d2
(0)1d2

(1)!, ~A73!
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wheredvac , dvertex anddR are given as above@Eq. ~A71!#.
The terms in Eq.~A73! proportional toZ ~hadron charge!
and Z2 contain the corrections from the proton side. T
correctiond1, proportional toZ, was calculated in Ref.@24#
as

d15
2aem

p H lnS 4~DEs!
2

Q2x D lnh1SpS 12
h

x D2SpS 12
1

hxD J ,

~A74!

whereDEs andh are given as in Eq.~A48! and where the
variablex is defined by

x5
~Q1r!2

4MN
2 , r25Q214MN

2 . ~A75!

The correction proportional toZ2 was split into two parts in
Ref. @24#. The contributiond2

(0) , independent of the nucleo
form factors was calculated in Ref.@24# as

d2
(0)5

aem

p H lnS 4~DEs!
2

MN
2 D S EN8

upW N
8 u

ln x21D 11

1
EN8

upW N
8 u

X2 1

2
ln2x2 ln x lnS r2

MN
2 D 1 ln x

2SpS 12
1

x2D12SpS 2
1

xD1
p2

6
CJ , ~A76!

wherer is defined as in Eq.~A75!, and whereEN8 (upW N
8 u) are

the lab energy~momentum! of the recoiling nucleon. For the
lengthier expression ofd2

(1) , which depends on the nucleo
form factors, we refer to Ref.@24#.

APPENDIX B: TREATMENT OF SINGULARITIES

In the numerical calculation of the amplitudes for the v
tual photon radiative corrections to theep→epg reaction,
we need to calculate two or three dimensional Feynman
rameter integrals, as discussed in Sec. III C. In the integ
tion over the first variable, the numerator consists of polyn
mials and the denominators may have structures of the f
(a8x1b86 i«8)n, or (a8x21b8x1g86 i«8)n with n51,2.
Therefore, in the calculations, the following integrals appe
lim
«8→01

E
a

b xm dx

~a8x1b86 i«8!n
or lim

«8→01

E
a

b xm dx

~a8x21b8x1g86 i«8!n
. ~B1!
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When the denominator has no singularities in the integra
range, it is, in principle, easy to calculate these integr
which have the form

E
a

b xm dx

~a8x1b8!n
or E

a

b xm dx

~a8x21b8x1g8!n
. ~B2!

Some recurrence relations for these integrals are kn
@53,54#, but for small values ofa8 as compared tob8 or to
g8, these relations are unstable numerically. In these ca
we have used either a Taylor expansion or the usual Ga
Legendre integration method to get very accurate results

In the following part of this Appendix, we give the rela
tions used when the denominators in Eq.~B1! have singu-
larities in the integration range except ina or b. The details
are given elsewhere@28#. The principle of the method is
based on the following relation:

lim
«→01

E
a

b xm dx

~x2x06 i«!n
5 lim

«→01

lim
h→01

F E
a

x02h xm dx

~x2x06 i«!n

1E
x02h

x01h xm dx

~x2x06 i«!n

1E
x01h

b xm dx

~x2x06 i«!nG . ~B3!

Each integral can be separated in a real part and an im
nary part and we can use for them the analytical express
given in @53#.

Let us start with the case where the denominator i
polynomial of degree 1 in the integration variable. In th
case, there is only one singularity forx052b8/a8 and the
sign of the imaginary part will depend on the sign ofa8. For
n51 anda8.0, we have

lim
«8→01

E
a

b xm dx

a8x1b86 i«8
5

1

a8
lim

«→01

E
a

b xm dx

x2x06 i«
, «5

«8

a8
.

~B4!

When a8,0, we have only to replace6 i« by 7 i« in the
right-hand side of Eq.~B4!. We now define the following
quantities:

J15
1

2
log

~b2x0!2

~a2x0!2
,

Jn5
1

n21
@~b2x0!n212~a2x0!n21#, n>2 ~B5!

to obtain the relations
02550
n
ls

n

es,
s-

gi-
ns

a
t

lim
«→01

E
a

b dx

x2x06 i«
5J17 ip, ~B6!

lim
«→01

E
a

b x dx

x2x06 i«
5J21x0J17 ipx0 , ~B7!

lim
«→01

E
a

b x2 dx

x2x06 i«
5J312x0J21x0

2J17 ipx0
2 , ~B8!

lim
«→01

E
a

b x3 dx

x2x06 i«
5J413x0J313x0

2J21x0
3J17 ipx0

3,

~B9!

lim
«→01

E
a

b x4 dx

x2x06 i«
5J514x0J416x0

2J314x0
3J21x0

4J1

7 ipx0
4 , ~B10!

•••

For n52 anda8.0, we have

lim
«8→01

E
a

b xm dx

~a8x1b86 i«8!2
5

1

a82
lim

«→01

E
a

b xm dx

~x2x06 i«!2
.

~B11!

When a8,0, we have only to replace6 i« by 7 i« in the
right-hand side of Eq.~B11!. We next define the following
quantities:

I 05
1

a2x0
2

1

b2x0
, ~B12!

I 15
1

2
log

~b2x0!2

~a2x0!2
, ~B13!

I n5
1

n21
@~b2x0!n212~a2x0!n21#, n>2.

~B14!

In terms of these quantities, the integrals of Eq.~B1! with
n52 are given by

lim
«→01

E
a

b dx

~x2x06 i«!2
5I 0 , ~B15!

lim
«→01

E
a

b x dx

~x2x06 i«!2
5I 11x0I 07 ip, ~B16!

lim
«→01

E
a

b x2 dx

~x2x06 i«!2
5I 212x0I 11x0

2I 07 i2px0 ,

~B17!
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lim
«→01

E
a

b x3 dx

~x2x06 i«!2
5I 313x0I 213x0

2I 11x0
3I 07 i3px0

2 ,

~B18!

•••

We can notice that the real part of these integrals fon
51 as well as forn52 can be derived from the binomia
expansion (x01X)m. In the case ofn51, the imaginary part
is proportional top f (x0) wheref (x) is the numerator of the
integrand. Forn52, it is straightforward to show@28# that
the imaginary part is proportional top f 8(x0).

When the form of the denominator is (a8x21b8x1g8
6 i«8)n, i.e., a polynomial of degree 2 in the integratio
variable, it is always possible to come back to the preced
cases. Whena8.0, we have

lim
«8→01

E
a

b xm dx

~a8x21b8x1g86 i«8!n

5
1

a8n
lim

«→01

E
a

b xm dx

~x21bx1g6 i«!n
, ~B19!

with the following definitions:

b5
b8

a8
, g5

g8

a8
, «5

«8

a8
. ~B20!

The integrand in Eq.~B19! has some singularities whend
5b224g is positive. Whena8,0, we have only to replace
6 i« by 7 i« on the right-hand side of Eq.~B19!.

It can be shown@28# that
nd

c

s.

,

02550
g

lim
«→01

E
a

b xm dx

~x21bx1g6 i«!n

5 lim
«̃→01

E
a

b xm dx

~x2x1
R 1 i «̃ !n~x2x2

R 2 i «̃ !n
,

~B21!

with the definitions

x1
R 5

2b1Ad

2
, x2

R 5
2b2Ad

2
, «̃5

2«

d
. ~B22!

These integrals can be easily calculated using the decom
sition of the fraction into elementary fractions. Forn51, we
obtain

lim
«→01

E
a

b xm dx

x21bx1g6 i«
5

1

Ad
lim

«̃→01

E
a

b xm dx

x2x1
R 6 i «̃

2
1

Ad
lim

«̃→01

E
a

b xm dx

x2x2
R 7 i «̃

,

~B23!

and forn52

lim
«→01

E
a

b xm dx

~x21bx1g6 i«!2

5
1

d
lim

«̃→01

E
a

b xm dx

~x2x1
R 6 i «̃ !2

2
2

d3/2
lim

«̃→01

E
a

b xm dx

x2x1
R 6 i «̃

1
1

d
lim

«̃→01

E
a

b xm dx

~x2x2
R 7 i «̃ !2

1
2

d3/2
lim

«̃→01

E
a

b xm dx

x2x2
R 7 i «̃

.
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