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What is the structure of the Roper resonance?
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We investigate the structure of the nucleon resonait€l440) (Rope) within a coupled-channel meson
exchange model for pion-nucleon scattering. The coupling#dN states is realized effectively by the cou-
pling to theaN, A, andpN channels. The interaction within and between these channels is derived from an
effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms
for the coupling of theA isobar, thew meson, and the &,” which is the name given here to the strong
correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by
meson-baryon dynamics alone; no genuliie(1440) (three quark resonance is needed in order to #ilN
phase shifts and inelasticities.

PACS numbs(s): 14.20.Gk, 13.75.Gx, 11.80.Gw, 24.10.Eq

[. INTRODUCTION positive parity resonances are systematically overestimated

by at least 100 MeV. A rather different interaction mecha-

The experimental and theoretical investigation of thenism was used by Glozman and Rigk&]. In their model,

baryon spectrum helps to improve our knowledge of QCD intwo quarks interact via pion exchange. This flavor-dependent
the nonperturbative regime—especially of the confiningforce is responsible for the low mass of the Roper resonance

mechanism, which is most important for binding a system of(N* (1440)). Confinement is achieved by an oscillator poten-
quarks into a hadron. Experimental information about thdial. Thus the interaction mechanisms of the Glozman-Riska
mass, width, and decay of baryon resonances serves asm@del and the Isgur-Karl-Capstick model are quite different
testing ground for several models of the internal structure ofiNd it is not clear whether the mass spectrum should be de-
the nucleon and its excited states. Most of this information i$CTiPed by either one of these interactions or a mixture of

extracted from partial wave analyses N scattering data botmls_ﬁ%' d elect itati f b
[1-3], sometimes in combination with transition amplitudes € photo- and €electroexcitation of baryon resonances

. : have been studied by several groups using several different
to inelastic channels such asN— yN [4-6] or =N . 5 i
—aawN [7,8,6. In addition there is information available models. Li and collaborator23,24) found the Q* depen

. d f theN* — N+ helicity amplitudes to be very sensi-
from photo- and electroproduction b resonancef9] and ence o Ny nelcty amp y

. ) ) , tive to the structure of the Roper resonance. While the non-
a—p scattering 10,11, hadronic two-pion productiofl2], e aivistic g2 model is not able to describe t@? behavior,

or, as recently proposed, from theN decay channel of the a hybrid qg model is in agreement with the available ex-
JIp [13]. perimental data. A similar conclusion was reached by Cap-
The mass spectrum of excited baryon states has been catick[25], who found large disagreement in the photoproduc-
culated within several quark modg€l®M). The nonrelativis- tion amplitude of the Roper between a theoretical calculation
tic QM of Isgur and Karl[14], for example, leads to a good in a nonrelativistic g°> model—including relativistic
qualitative understanding of the negative parity resonancesorrections—and the experimental data. However Capstick
by assuming a structure of three constituent quarks that amnd Keiste{26] pointed out that relativistic effects are very
confined by a harmonic oscillator potential and interactimportant in these amplitudes. They were able to describe
through a residual interaction inspired by one gluon exthe helicity amplitudes using a “relativized§® QM. Card-
change. In order to describe the positive parity states, howarelli et al. also investigated the electroproduction of the
ever they had to introduce an additional anharmonicity intoRoper resonance and concluded that this resonance can
the confining oscillator potential that lowers the mass of thehardly be interpreted as a simple radial excitation of the
first positive parity resonand@* (1440)) [15]. The relativ-  nucleon[27]. Recently the Thingen groud 28] found large
ized QM[16] gives a good qualitative picture of the baryonic contributions from meson-baryon intermediate states in the
spectrum by using an interaction which, in the nonrelativistictransition amplitudeN* (1440)—N+y. Thus even the study
limit, can be decomposed into a color Coulomb part, a conef its electromagnetic excitation does not clearly reveal the
fining interaction, a hyperfine interaction and a spin-orbitstructure of the Roper resonance.
interaction between quarks. The confinement is provided by The decay widths of baryons have been calculated using
a Y-type string interaction between all three quarks. @ofe  several approaches by combining a QM with a model for the
several difficulties with this model is that the low lying decay of the three quark system into a meson baryon state,
such as thé P, model[29,30, or the string breaking mecha-
nism of the flux tube mod¢B1-33. ThewN decay width of
*Present address: Software Design and Management, Herrnstragk® Roper resonance as calculated by Capstick and Roberts
57, D-63065 Offenbach, Germany. [29] is in agreement with the analysis of Cutkosky and Wang
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TABLE I. Some analyses of theN partial waveP,; as listed in the Review of Particle Phys{&. The
resonance parameters are denotedriyfor the mass and' for the width of the resonance. The residue is
parametrized bye'?. The numbers in brackets give the error in the last digit. For anal§ses)), and(h)
the abbreviations CMB7], VPI [40], and KA[1] indicate for which partial wave solution the speed plot is

calculated.
mg r Pole Residuer( ¢)

(MeV) (MeV) (MeV) rin MeV, ¢ in deg Ref.
(a) 1467 440 1346188 (42~101) [2]
(b) 1456 428 136%i86 (36~78) [3]
(©) 146210) 391(34) (8]
(d) 1471 545 1376114 (74 84) [34]
(e 1479 490 1383158 [6]
(f) 137530) 180(40 [52(5),—100(35)] [39] CMB
(9) 1360 252 (109;93) [39] VPI
(h) 13859) 164(35) (40,9 [39] KA
(i) 1371 167 (41,9 This work

[34] but, compared to the partial wave analysis of thepole has a well-defined meaning $matrix theory[41]. If
Karlsruhe[1] and the VPI[2,3] groups, the decay width of we do so, the QMs use the wrong values for the mass and
the Roper should be much smaller. In addition, none of thevidth of the Roper resonance. Compared to the pole position
decay models include any kind of meson-baryon final statealues ofmg andI” [calculated using Eq1)], the relativized
interaction or coupled-channel effedi®9], although there QM [16] overestimates the mass of the Roper by about 200
are indications that these could lead to large shifts of théleV and thewN decay width of the Roper resonance is
energy levels and mixing effects between std®2%35. A overpredicted too.

consistent investigation of higher Fock states, such’asis Another remarkable difference between the (1520)
missing[16], although there are investigations @*6 sys- and theN* (1440) is seen in examination of the partial wave
tems, whereQ=s [36] or Q=c,b [37,38. amplitudes(displayed as phase shiftand inelasticityz) in

At this stage a closer look at the different partial waveF9- 1. TheN*(1520) causes a Qice change in thf phase shift
analyses may help us to understand the problem in mor@f the partial waved,; up to 180° and crosses 90° at1520
detail. In Table | we have listed the mass, width and poIeM?V' This is alsp the position of the maximum in the mellas-
position of the Roper resonance as extracted from severdfty: After passing the resonant phase Qf 920 ,the amplitude
partial wave analyses ofN scattering data. The first five 90€S back to being almost elastic. The S|tuat|or_1 is completely
lines correspond to models that either get the mas,and  different for theN*(1440). Here the phase shift in thiy,
width, T', of the Roper resonance by fitting a Breit-Wigner- Increases slowly, which corresponds to a very broad reso-
like resonance to therN data or derive the position of the N@nce, but the inelasticity opens very rapi@most as fast
resonance pole in the complex energy plane. This pole posfS IN theD13) and remains inelastic over a very large energy
tion can be related to the mass and width of the resonance by

gzoo— R | 200
mr=RePole, TI'=—2Im(Pole), (1) g 150 | i 150

£ 100 | 1 100

which, in fact, is the origin of the denominator in a Breit- § 50 |

Wigner parametrization of a resonance. By comparing the &

mass and width parameters of the analy&s(e) to the & ? i

position of the pole as found ifa), (b), (d), and(e) one can 08 |

see large discrepancies. The mass, as extracted from the pole, <06 |

lies typically ~100 MeV belowmg. Something similar can < 04f Zﬁ%gf

be seen by comparing the widths: here a ratio 02| « SE-SM95 T

—TI'/Im(Pole)=5 is found instead of the expected value of 0 fmee | el |

2. For an undistorted resonance, such as\je(1520), the 1.0 12 14 16 18 1.0 12 14 1.6 1.8 20

13 E (GeV) E (GeV)

mass and width from the Breit-Wigner parametrization and
the pole position are essentially the same within a few MeV £ 1. phase shift and inelasticity in the partial wa¥as and
[9]. This observation shows already that the Roper resonangs, . Data are taken from Reff2] (SM95) and[42,1] (KA84). In

is substantially influenced by strong meson-baryon backaddition, the single-energy analysis frg@j (SE-SM985 is shown.
ground interactions and/or effects from nearby thresholdsthe vertical lines are drawn &= 1440 MeV (P,;) and E=1520

Hohler suggested the use of the pole position as source afieV (D;5) and correspond to the suggested values of the resonance
information on the mass and width of a resonance, since thmasses as given in R¢B].
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range. Furthermore, the suggested resonance positioni of els the potential V of a coupled-channel Lippmann-
=1440 MeV does not correspond t=90°. The shape of Schwinger equatiofLSE) is assumed to be of the separable
the P, partial wave amplitude in the region of the Roper form V(k’,k)=f(k’)Af(k), wherek (k') is the relative
resonance also looks very different from a typical Breit-momentum of the initialfinal) state. The form factof is
Wigner resonance. To summarize, the Roper appears not fmrametrized differently for each partial wave, and the
fit into our picture of Breit-Wigner-like resonances. strength factom, together with the parameters of the form

A series of different methods can be found in the litera-factor, is adjusted to fit data. Since the parameters of the
ture that try to extract information on the Roper resonancdorm factors do not have a clear physical meaning, the inter-
from 7N scattering. The ones displayed in Table | can bepretation of these parameters in terms of resonances and
summarized as follows. backgrounds is not possible. Nevertheless, one can still learn

Analyses(a) and (b) are combined analyses of all avail- about effects of opening thresholds of coupled channels.

able 7N scattering data. Two methods are used in order K-matrix approximationssuch as the models introduced

to extract parameters of resonances. First, a coupledn Refs.[5,45]. These use a microscopic potentd) as input

channelK-matrix approach, additionally constrained by to a LSE, which is solved in thK-matrix approximation. In

fixed t dispersion relations, allows a continuation of the general, a LSEwritten in a symbolic notation

partial wave amplitudes into the complex energy plane,

where the poles of the resonances can be found. Second,

fits to single-energy partial wave solutions using general- T=V+V_—-70—"oT 2

ized Breit-Wigner parametrizations are performed, which E-H+ie

lead to the values afhg andT.

Manley and Saleskilc) use a combination of Breit-

Wigner resonances and a phenomenological parametriza-

can be decomposed into a set of equations

tion of the background, which is unitarized inKamatrix K=V+V K 3)
approximation. They included experimental data of the E—H°
reactionmN— 7N into their fitting procedure.

The group of Cutkosky(d) used a separable coupled- T=K—i7KS(E—H9T, (4)

channels resonance model. The dressed propagator of the

intermediate resonances is a solution of the Dyson equaghere we have introduced tHe-matrix [46,47) and P de-

tion and the vertices are generalized Breit-Wigner verteXyotes the principal value. Thé-matrix approximation now
functions. Backgrounds are parametrized as resonancgmpiifies this set of equations by settikg= V. This reduces
contnb_uﬂon; with a resonance position below threshold. e integral equatiori2) to an algebraic equatiofd). The
Analysis (e) is an extended version of the model used inK_matrix approximation does not allow for virtual interme-
(d). Input data are the partial wave solutions of the VPlgjate states. One consequence of this is that the different
group[2] and the transition cross section®N— »N and  channels only contribute above their production threshold.
mN—m77N. . Of course this truncates the strength of the virtual states and,
In (f), (), and(h) Hohler and Schulte use the speed plot consequentially, the strength of the multiple scattering con-
method for determining resonance parameters. We deributions. This can also be found in a slightly more formal
scribe this method in more detail in Sec. IV. The speedyay: The Heitler equation, E¢4), introduces the unitary cut
plot analysis uses other partial wave solutions as inpufp the K-matrix so that thé-matrix contains this unitary cut
and therefore is not a partial wave analysismfl scat-  and the poles present K. The rescattering of virtual states
tering, but an alternative way of extracting resonance pajs described completely by tHé-matrix, Eq.(3). Since this

rameters. _ _ _ _is a Fredholm type of integral equation, it can be solved by
Line (i) represents our results, which will be discussed injteration

detail in Sec. IV.
P P

V+V—oV——
E—H° E-H® E—H°

All of these analyses agree in the need for a pole in the K=V+V V+.... (5
partial waveP, and all of them but our work assume a small

background interaction. However the aim of analyajs-(h) _ ) . N .
is not to determine the structure of a resonance. This wad NiS series may be divergehtyhich introducegbesides the

pointed out in a recent extension of the CMB model byPoles inV) additional poles due to rescattering. These poles
Vrana, Dytman, and Le]. Rather, these analyses seek to@'€ MOt present if th&-matrix equation is approximated by
discover whether there is a resonance or not. They do so HjHtting off the series5) at a finite order. Even if no pole is
providing the poles demanded by data as input. The numbéienerated by the infinite sum, there may still be much
of poles as well as their parameters are then obtained b§t"ength in higher order iterations, which are eliminated in
means of ay? fit. approximatingK =V. With this in mind, it is clear that the
In addition to these analyses there are many theoretical
models forN scattering up to the energies of the fitst
resonances. They can be divided into two classes. 1t is when there is a bound state at the energy at which this
Separable potential modetsich a§43,44). In these mod- equation is solved.
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K-matrix approximations discussed above do not find dy- The rules of time ordered perturbation theory were ap-
namical poles such as bound states. plied with care, which leads to additional contact interactions
It has long been known that the poles of the two-body(see the appendix for more detailsn [54] these contact
Smatrix (as a function of a complex energy variabége not  terms are found to be large corrections and we also find
only resonance poles, but can also be bound state poles sfrong contributions of these additional interactions, e.g., in

coupled-channel polg#8]. A bound state is generated by a the 7 exchange diagrams.

strongly attractive interaction between two particles, whereas N the next section our model is described in greater de-
a coupled-channel pole can be realized by a coupling be@il- In Sec. lil we shall discuss the results of this model as
tween two reaction channels. Prominent examples of boungPmpared to the amplitudes of partial wave analyses and

states of two hadrons are thg(980), which is found to be a some transition cross sections. Section IV will be dedicated
— . — to an investigation of the structure of the Roper resonance.
KK molecule in the w#/KK system [49,50 and the

- = The last section summarizes our results.
A(1405) asKN bound state in therX/KN system[51,52.
An example of a coupled-channel pole can be found in the

w7l KK system, where thay(980) can be generated by the !l. #N SCATTERING IN A MESON EXCHANGE MODEL
coupling between these two channd8]. Itis, however, not In the introduction we argued that a detailed investigation

always easy to distinguish between these two types of polegy the Roper resonance goes along with an understanding of
The situation we have presented so far can be summarizedy scattering over a rather large energy region—from
as follows: The QM calculations do not give us a clear pic-t,reshold E=/5=1077 MeV} up to energies well above
ture of the structure of the Roper resonance, even by studyne resonance under investigatiémg., 1.9 GeV. Further-
ing electromagnetic processes or decay widths. Yet we knownore, we have to use a realistic interaction between the me-
that in many analyses ofN scattering the need of a reso- son and the baryon. Such an interaction is provided by the
nance has been found. The aim of these analyses was notigeson exchange model, which has successfully been used in
determine the structure of the resonance, but to determing@any different reactions such as tR&\ interaction[47], the
resonance parameters, such as masses, widths, and branchéfgsticzN interaction [55—61], the KN interaction[62], the
ratios. The coupled-channel models7a scattering for en- KN interaction[52] and thew interaction[50], to name
ergies under consideration work in thematrix approxima-  just a few. Before we go into the details of the interaction,
tion, in which part of the strength due to virtual intermediatewe wish to specify the reaction channels we will need in our
states is truncated. Furthermore therN states in these description.
models are not treated consistently; rather, the mass of some From Fig. 1 it is clear that therN interaction above en-
effective mmwN channel is adjusted differently in each partial ergies of 1.3 GeV is very inelastic. The decay modes of the
wave[45], or an unphysical scalar-isovectorr state is used nucleon resonances in the energy range under consideration
[5]. show that the dominant dec@ipesidesmN and N for the
A model for N partial wave amplitudes as solution of a N* (1535)] is the w#N channel[9]. Since a three-body cal-
full LSE up to energies of 1.9 GeV is missing. Our aim is culation is much too complicated for realistic potentials, we
therefore to construct such a model in order to investigaténust reduce thermN channel into effective two-body chan-
whether or not it is possible to describe the Roper resonanagels. In doing this we are guided by studying strong interac-
as a dynamically generated resonance. We use the model ibns between two-body clusters of the three-bomyN
Ref.[53] as a starting point. This model is able to describestate. The dominant clusters are thén the =N interaction,
the =N partial waves up to energies of 1.6 GeV by couplingthe p in the vector isovectorr# interaction and the strong
the channelsTN,oN, A, andyN and has proven its ability correlation in the scalar-isoscalars interaction, which
to analyze the structure of a resonance in the partial vd|aye we call o. Therefore—besides theN and »N channels,
andPy;. We have improved this model in several significantwhich are needed for a complete description of the
ways. N* (1535)(S;1)—our model includes the reaction channels
We have included thepN reaction channel into the =zA, oN, andpN.
coupled-channel calculation in order to complete the effec- We have then to solve the coupled-channel scattering
tive description ofrwN states. This channel improves the equation[52]
description in the partial waveB,53 and P5; and leads to
large contributions in the partial wa®s, in the region of the

N*(1650). T (K Ag A g;K N1 Np)
In Ref.[2] t channelr exchange diagrams were omitted R _
in order to avoid double counting. By dropping these terms =V'MV(k’,)\3,)\4;k,)\1,)\2)
also the coupling strength between thl and theoN chan-
nel is weakened. We have included these diagidigs. 4j) 4 d3aV' (K Aaha G N! NL
and Fa)] explicitly and avoid the double counting problem Ey x%é AVir(K A3 RaiGA1d )
by modifying theNN— 77 amplitudes(see Sec. Il for more
detailg. This results in a large coupling between th and N AN
oN(pN) channels, which was not present[B8]. ><E—Wy(q)+ie-r7”(q’)\1 A2k A), ©
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where;,\i2,\{ ,(i=1,2) are the helicities of the baryon

PHYSICAL REVIEW6Z 025207

TABLE II. The effective Lagrangian.

and meson in the initial, final, and intermediate sthis,the
total isospin of the two body system, apgv,y are indices ~ Vertex

ﬁint

that label different reaction channelsV (q)=\g*+M,
+vg°+m, where m,(M,) is the mass of the meson NN=
(baryon in the channely, respectively. We work in the
center-of-momentunic.m,) frame andk(k’) are the mo- .,
menta of the initialfinal) baryon, respectively.

The pseudopotentiaV (i.e., the interaction between 7
baryon and mesgnthat is iterated in Eq(6) can be con-
structed from an effective Lagrangian. Our interaction La-NNp
grangian(see Table Il is based on that of Wess and Zumino
[63], which we have supplemented with additional terms forNNo
including theA isobar, thew, 7, ay, fg meson, and the-.

We also have included terms that characterize the coupling™ "
of the resonancebl* (1535), N*(1520), andN*(1650) t0  ,4¢
various reaction channels. The full interaction is built up by

the diagrams shown in Figs. 2—5, where we also introduc®& Np
our notation. Expressions for the matrix elements

(K" N3\ 4| V'[KX 1\ ,) can be found in the Appendix. NNa,

In our approach the correlategl exchange replaces the
exchange of fixed-magsando mesons. The construction of
these potentials is explained in detail in Ref4]. However
double counting will arise when correlatedr exchange and
the = exchange diagrams in theN— o(p)N transition po-
tential are taken into accouf®3]. For this reason Sch
et al. [53] left out the # exchange contributions. But these NNw
diagrams are important contributions to thbsl— o(p)N po-
tential and therefore have to be included in our model. Wewﬂp
avoid the double counting, which arises by iterating the
exchange diagramsee Fig. 6 by modifying theNN— 77
amplitudes. Since we have a microscopical model for thdVAr
NN— a7 T-matrix [65], we are able to subtract the box
diagram displayed in Fig.(6) from these amplitudes. When ppp
using the subtracted amplitudds,,,, double counting is
avoided. The subtraction of the box diagram hardly influ-nNp,

ences thep partial waves in theNN—s 77 amplitudes,
whereas it reduces the channel by~=20%. By solving the
. . . . AAT
double counting problem in this way we can keep the impor-
tant7 exchange diagrams in theN— o (p)N transition am-
plitudes. AAp
After a standard partial wave decompositipb6], the

a|Tp

scattering equatiof6) can be reduced to a one-dimensional N* (Si)Nw
integral equation that can be solved by standard methods*(S;)N7

[67—69. A unitary transformation relates the helicity states

we have used in Eq6) to the so called LS stateg70,71.  N*(S;9Np
In the JLS basis thel-matrix is directly related to the partial
wave amplitude$71,72 NN
T R D a
where the densitieg,, are given by NNfo
’7T7]a0
Pyz(an/E)Ey(an)wy(an)a 7]7]f0
. _ 27 — 24
with E,(k) = vk M2, w,= Kk mZ, and N* (D )N

7. =V[E?=(M +m,)?][E*~(M,—m,)?]/2E.

N — - -
il 5
- Wy>ytrd, mV

f S
OTNRT g, mW +H.c.
m

_gpﬁﬂ(ﬂxauﬂ)pﬂ

K,
_ b P uv
O | Y 2my, d,

*QNNU‘?‘PU

0,V

g(T7T7T

2m,

d,mmo
- g(r(r(rm(ra-o-o-

fNNTr

m,

fNN’)T
m;

g, WySy RV (p, X )

maﬁyf’y " ;"I’c’:l“

_ 9%

= [0,mxa,—d,mxa,][d"p"—d"p"]
a.

1

gp - > a7 SV__ VA
+2mal[77><(%m dpu)[0*a"—d"a"]

o,V

Ko .
QNNwﬁYMEU# dy

gwﬂ'p

Ey,a)w
'w

Pt

fNAp— =4 =
—i—FA*ySy" T, W+H.c.
m, YT P c

g, - - -
5 (P Xp )"

Kpgi@w‘w 0, Xp
Bmy ™W(p,Xp,)

fAA‘n'—

m APy TA 9,

- KAAp e e
_gAApAT(‘y#_I ZmA at av)p,uTA
igns NP s TP 7+ H.C.
gN*Nn\I’N*q,n+H'C'

. KN*Np
Y
2

a*d,

gN*NpaN* ’)/5 ;ﬁﬂqf+ H.c.

M+
- E‘I’ysy“f&ﬂﬁl’

Inng, MY ¥ ag
g, M- ¥ 7Wag
g‘n’r]aom‘n' 777;50
9yt,Mzn7fo

fae N — - -
i%\lfysy”r\l’ﬁ* 3,0, m+H.c.

T
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TABLE Il. (Continued.

Vertex Lint
N*(D1IN7 .
i - \Iffy”\lfﬁ*ﬁ,ﬂﬂn-i-H.c.
N*(D13)A7T fN*Arr_ > >
W VT‘y”A”ﬁﬂw-i- H.c.
N*(D13)Np .fN*N

- Pyt 70, W HH.C.

p

HereJLS are the usual total angular momentum, orbital an
gular momentum, and total spin quantum numbers and

PHYSICAL REVIEW @2 025207

2
AZ+m2 A%+m3

A24p,2 A%+ py?

F(p2,ps)= (12

All of our effective w7 N states(i.e., wA, oN, andpN)
are composed of a stable and an unstable particle. In order to
include effects of the width of these unstable intermediate
states we have modified the two-body propagator, which will
be motivated in the following. Since in the ScHioger
equation,

H|W)=E|¥), (13

the Hamilton operator acts on Hilbert states describing a par-

rﬁcle R as well as two particles 12 into whicR— 12 can

Jecay, we introduce Feshbach projectors

prime denotes final state quantities. For the partial wave a
plitudes in which we are mostly interested in this work,
namely thewN amplitudes, the total spi® and orbital an-
gular momentunL are conservedl( =L, andS'=S=1/2
for u=v=aN) in Eq. (7). The phase shift and inelasticity
are then calculated from the partial wave amplitude in the
standard way72]. !
Mesons and baryons are not pointlike particles, but have
finite size. Therefore the interaction verticesnmandmBB
(m=meson,B=baryon) also have finite sizes which, in our
model, are parametrized by the following form factors, in

which q is the three momentum transfer carried by the ex-

P=|R\R],

Q=[12(12, with P+Q=1,

P2=P, Q%=0Q (14)

n order to split these two spacEg3,74. By applying these
gperators to the eigenvalue equatid3), one can derive an
equation for the particles iR space

1
E_HPP_HPQE_—HQQHQP |Wp)=0, (15

changed particle.
For meson and baryon exchange
n

2_m2
Ac—mg

A2+q?

F(a)= (8)

We use monopole form factora€ 1) except for theA ex-

change, for which the convergence of the integral in @6g.

requires a dipole form factomE 2).
For the nucleon exchange at thdN vertex

2_m2
Ac—my

A= ((mR—mZ)/my)?+q?’

F(a)= ©)

where |Wp)=P|¥) and Hyy=XHY. By introducing the
self-energy

E:HPQE_—HQQHQP (16)

Eq. (15) can be rewritten as
(E-H°-3)|Wp)=0. (17)

The self-energy term takes the decay of the unstable particle
into account. As such it introduces an energy-dependent
width and a mass shift. Our two-particle intermediate state

propagator forrA, oN, andpN must therefore be replaced

This choice ensures that the nucleon pole and nucleon eby
change contribution cancel each other at the Cheng-Dashen

point, which is needed for a calculation of theterm[1]. v = N7, N oo
ForN, N*, andA Pole diagrams Pha N P B\ M B
/ Gp !
N+’ ==
A4+mé an q,“\‘ -_q_@
F(a)= : (10 . | ;
4 4 PiAy B ho Py ) P i
A+ (E(q) +w,()) <y ) o )ljg-
. @ () (c
The correlatedr 7 exchange is supplemented by the form
factor Non N, N
AZ—t'\? \/'I (1535)
" _ A Al» N" (1650)
Ftt)=| 5| - (11) (160
which appears inside the integration[71]. N " N © T N

For the contact interaction in the Wess-Zumino Lagrang-
ian [63]
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MmN N oo N
: a,
N ! == N*(1535)
n T N ;;‘
(a) (b) (©)
m N Noon
— . N*(1535)
N N T
() (e)

FIG. 3. Additional contribution in coupling to theN channel.

1 1
E-W,(q)  E-W,(a)—2,(Equ)’

(18

where

Esup=E—0,(q)— (V(MR)?+g?>—MY) fortheA,

PHYSICAL REVIEW6E 025207

N N n
(a) (b)
N p N P
E N* (1520)
. (1650)
N 3 \‘
e) ™ ® "

N p N p
*(1520)
ﬁ IIGSO)
P [
Y@ Y o' N *

FIG. 5. The potential for the coupling to theN channel.

andm? (as free parameters within these mogelee deter-

mined by fitting the models to experimental data. For sim-
plicity we use separable interactions for calculating the self-
energy. For thel and theo this has already been done in
Ref. [2], from which we take the self-energieX (y
=A,0). For thep we use the vertex function

Esup=E— EN(Q) - (\/(m?)TpZ* m?) forr =p,0
(19

is the energy of the decaying cluster at rggt After con-
structing models for the self-energiBs the bare massed §

2 2
Oprr q Ap+m;
A A A & m V()=
i i i N ‘ 273 @ (0) \Jorg(a) A§+4(%(q))2<zo>
— =t g N*(1520)
with the parameters
@" N N
A\, 5, T Iteration N o,
. : -
N 7 !
N*(1520)
(a) (b)
7 TF % 7 r o
h \ / \ /
) (%) %
= - T M
N o N i_N_i
i} N N N N N N
----- ©)

FIG. 6. Double counting in the correlatethr exchange arises

N 0" N (k)c from iteration of thew exchange diagrarts), because that gener-
ates the box diagraiti), which is already included in the correlated
FIG. 4. Additional diagrams for coupling to theA andoN 77 exchange[Fig. 2(c)]. In order to avoid double counting we

channels. remove the diagran) from the NN— 7 amplitudes.
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200.0 nances. The details of this calculation will be presented else-
where[88].
= 150.0 Our model is able to describeN data very well up to
2 energies of about 1.9 GeV. Only in the partial wésg does
> 1000 f our model deviate from the data, and that is because we have
P; not yet included the resonanag1620). Our model does not
« 500 give significant contributions to the inelasticity in this partial
wave. The description of th&,; needs the coupling to the
00,55 500 200 900 1100 1300 7N channels via théN* (1535) resonance and nonresonant

E (MeV) a,(980) exchang¢?2,45]. The resonanchl* (1650) is taken

into account in addition and leads to the rapid variation of
FIG. 7. Phase shift in the partial wavé=11 of thew inter-  the partial wave amplitude around 1.65 GeV. The inclusion
action. The solid line is the result of the self-energy calculation forof the pN channel improves the description of the partial
the p meson. Data are taken from Refg5-77. wavesP;; and P5; as compared to the model used in Ref.

[2], which results in a perfect description of thes,
giw 0 whereas in theP,5; a large background to the resonance
ag 29 A,=18 Gev, m,=911 MeV. (21)  N*(1720) is produced. These results will be discussed in

more detail elsewherg38].

The model is then a good starting point for an investiga-

With this vertex function the self-energy, can be calcu- tion of the Roper resonance.

lated in the same way as outlined for thein Ref.[2] [see
also Eq.(30) below]. Figure 7 shows our separable interac-
tion for the p decay compared withr7 scattering data.

This completes our model. TheN partial wave ampli- V. THE STRUCTURE OF THE ROPER RESONANCE

tudes are calculated by solving the L$& with the propa- Let us begin this section with a description of our proce-
gator(18) for unstable intermediate states. The pseudopotendure for investigating the structure of a resonance. We start
tial V is derived from the Lagrangian of Table II. Its by using nonresonant interactions only; i.e., we do not in-
parameters are the coupling constants and cutoffs for eachlude a pole diagram into our interaction. If we are able to fit
vertex that we have listed in Table II. data in all partial waves without pole diagram, the resonance
under consideration doesot have a three-valence-quark
IIl. DESCRIPTION OF mN DATA structure. Rather, it is created dynamically by the nonreso-

nant meson-baryon interaction. If we need to include a pole

Having described our model, we turn now to comparingdiagram, we conclude that the resonance is dominated by
its results to the experimental data. In fitting the partial wavequark gluon dynamics, which are not included in our model.
amplitudes forJ<3 we have varied only the boldface  As can be seen in Figs. 1 and 8, our model results in a
printed values in Table Ill. Most of the coupling constantsvery good description of thB,;, withoutincluding a Roper
have been taken from other sources. The coupling constangmle diagram. The rise of the phase shift and the opening of
of the pole diagrams are constrained by values determinetthe inelasticity is generated by the coupling to the inelastic
from their decay widths, for which we take the estimates ofchannels. In Fig. 11 we show how the different reaction
Ref.[9]. The free values are then strongly constrained by thehannels contribute to the,;. The potential of the elastic
data—especially for the nonresonargndu channel contri-  model(i.e., wherewN is the only reaction channek attrac-
butions, which act simultaneously in many partial waves. Fotive due to thep exchange, and leads to a rising phase shift
completeness, Table IV contains the masses of the particlegithout generating a resonant behavior. Including th&
used in this model. Our description of the partial waves withchannel hardly improves the situation for the phase shift but
| =3 is shown in Fig. 8; the partial wave amplitudes for |eads to some inelasticity, which starts at about 1.4 GeV. As
=2 are shown in Fig. 9. soon as we couple to theN channel, a resonant shape of the

In order to constrain the parameters of thl— pN tran-  phase shift is generated. The inelasticity opens at 1.3 GeV
sition potential, we have also considered ¥ — pN tran-  and reproduces the rapid rise of the experimental data. Since
sition cross sectiofiFig. 10. These data severely constrain the reaction channelgN and »N scarcely contribute to the
the m exchangdFig. 5@)], which dominates this cross sec- P,,, decoupling therA channel from the full model leaves
tion and produces a large background to the resonant part s basically with amN/oN model, which does not differ
the D13. Without constraining ther exchange contribution, much from the full result. Only at higher energies does the
a dynamical pole can be generated in the;. This result  7A channel contribute to the inelasticity.
was also obtained by Aaraet al.[86,87]. With this dynami- As we have not included a Roper pole diagram into our
cal pole our model overestimates th&l— pN cross section model, we cannot determine any Breit-Wigner parameters
by almost an order of magnitude, and a good description ofrom the parameters in our model. ker and Schult¢39],
other #N partial waves is not possible. This demonstrateshowever, were able to determine resonance parameters from
that only a combined analysis of many partial waves andseveral partial wave solutions by calculating the speed,
cross sections can give reliable information about resowhich is defined by
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TABLE lll. The parameters of our model. Only the boldface printed values are varied in fitting the data.
The coupling constants are taken from the cited references. All masses and cutoffs are given in MeV.

Vertex Process Coupling const. Ref. Cutaff
Correlated 2r- p-channel 1200
exchange o-channel 1100
2
NN N exchange fzfﬂ —0.0778 [78] 1300
T
0)2
NN N pole, m$,=1032.33 27“: —0.0633 1200
2
NA 7 N exchange fZﬁf —0.36 (78] 1300
T
2
NAm A exchange fZiT —0.36 [78] 1800
T
A pole, £(0) 2
NA 7 0 NAw _ 1650
mi=1405 2, 021
f2
AAm A exchange 2“:0_252 (79,80 1800
T
f2
NAp p exchange Q‘_AP —20.45 [78] 1300
T
V2
AAp p exchange %’ =4.69, [79,80 1300
T
gT
Sr=61 [79.80
gAAp
2
TP p exchange g4fﬂ —=2.90 [50] 1300
T
2
NNo& N exchange INno _ o [81] 1500
4
NN 7 exchange ~fane 600
2
TTO 7 exchange g:’"’ =0.25 [82] 600
ar
NNo o exchange ~ONNe 2300
2
000 o exchange Yooo =0.625 2300
A
f2
NN# N exchange %’ =0.00934 [53] 2500
INNg O,
NNag, ay exchange ™ _gp 2500
A '
Tnay ay exchange 2500
2
NNp N exchange 9"1“_“9 —0.84 [78] 1200
T
k=6.1 [78]
NNp contact term ~funaOnng 1100
2
TP 7 exchange % 600
s
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TABLE lll. (Continued.

Vertex Process Coupling const. Ref. Cutaff
g2
NNe o exchange Z‘N“’ =11.0 [78] 1100
T
g2
wmTp » exchange %’ =10.0 [83,84 700
ar
NNg a, exchange ~fung 1500
a,mp a, exchange ~ONNp 1500
NNp p exchange INNp 1 K 1400
ppp p exchange ~ NNy 1400
NNpp contact term ~gRnpK 1200
2
NN S N* pole, mC,, = 1660 92'%7 ~0.0015 3000
gZ
NN ot N* pole 2NN .30 3000
4ar
gZ
NN goxar N* pole, mg, = 1852 T —0.08 3000
g2
V] Ve N* pole NN .05 3000
4ar
f2
NN 337 N* pole, m\, =2100 1“;” ~0.0006 2000
f2
NN o0 N* pole NN 620 2000
4ar
b i
A NISZ()13W N* pole AN'T 0017 2000
4
b i}
NNI5z0°7 N* pole —-"=0.0008 2000

1JLS]

dE

The speed plot calculated with our model is displayed in
, (220 Fig. 12. It agrees very well with the speed plot from the
partial wave solutions KA8442,1] and SM9((40]. From the

. . . . . height and width we determine the following resonance pa-
and gives some information about the time delay in the re'ameters[see also Table(h)]:

action[89,90. A resonance causes a large time delay ancf

SpPLS(E)=

will, therefore, form a peak in a diagram in which the speed mg=1371 MeV (23)
is plotted against the enerdy(the so-called speed plofThe ’
height and width of this peak can be related to the mass, =167 MeV (24)

width, and residue of the resonar@9].

) r=41 MeV. (25
TABLE IV. Masses of the mesons and barydimcsMeV). Theo

intheoN t-channel exchange is a parametrization of correlated  The phase of the residue is lost in taking the absolute value

exchangg81]. This is the reason for the different masses. in Eq. (22) and cannot be determined without making further

assumptions. In Table | our resuit) is compared to the

Mesons Baryons Exchanged mesons  5rameters from the speed plot analyses Shleio and
m,. 13803 m,  938.926 m, 650.02 Schulte[(f)—(h)]. The agreement in mass is very good. Be-
m 547.45 m, 1232.0 m, 7826 sides the width and residue of the VPI speed plot analykis
m" 850.0° 1520.0 my 974.1 our values agree with the other speed plot analyses. The
m” 769.0 m 082.7 agreement with the pole position of the two recent VPI so-
? e 1260.0 lutions[3,2] is also very good.
A ' The pole of theP,; amplitude coincides withrA thresh-

@The o mass in thes-channelr« interaction corresponds to the old (=~1371 MeV=1232 MeV+139 MeV), neglecting
energy at which the phase shift reaches 90°. the width of theA. The question arises whether this is a pure

025207-10



WHAT IS THE STRUCTURE OF THE ROPER RESONANCE? PHYSICAL REVIEW6E 025207

Im(x) Re(t) Im(x)
1-0 T T T T T T T T T T T T T T T T 1-0 T T T T T T T T
0.4 0.4 R
0.8 . 0.8 .
0.2 8 0.2
0.6 0.6
0.0 2 0.0
04 A 04
-0.2 -0.2
0.2 - A 8 0.2
-04 B -0.4
1t 0.0 —t—+—+—+—+— 0.0
0.4
0.8 . 0.8 & .
0.6 0.6 .
0.0 - SE-SM95
S 04 04 2
-0.2 r P . -0.2
11 0.2 0.2 -]
-04 - -0.4
1+t 0.0 |shmsfet” 0.0 1
0.4 R 0.4
- 08 - s KA84 g - 08 - .
21 Py 0.6 - = Shioh . ' 0.6 - .
e i) Pl 04 4
-0.2 - R -0.2
0.2
-0.4 - E -0.4
1 L . 0.0 W&E—4+—"F+—+—+—"+—+—
04 X . 04 .
0.8 r . 0.8 r .
0.2 0.2 - B
0.6 8 0.6 8
0.0 0.0 :
04 8 D E 04 8
-0.2 A 02}
02 B 02 .
04 + - j P | -0.4 b
[l 1 [l 1 [l 1 [l 1 00 - < _1 ‘ii 1 1 1 1 1 1 1 1 00
1.1121.31.415161.71.81.9 1.1121.31.415161.71.81.9 1.1121.31.415161.71.81.9 1.1121.31.415161.71.81.9
E (GeV) E (GeV) E (GeV) E (GeV)
FIG. 8. The real parfleft pane) and the imaginary paitright FIG. 9. The partial wave amplitudes fd)it%. The notation is

pane) of the #N partial wave amplitudes for the isosplir % In the same as in Fig. 8.
addition, the analyses KA8#2,1] and SM95[2], as well as the
single-energy analysis SE-SM93] are shown. data. By switching off several contributions in the potential,
we have found ther exchange in the transitiomrN— o N
coincidence or whether a branch point due to#tdechannel  [Fig. 4(j)] to be very important for the energy dependence of
is the reason for the resonant behavior seen in the speed plthe P, phase shift. This is demonstrated in Fig. 13, where
The simplest way to answer this question is to remove theve show the model without exchange in comparison to the
A channel from the calculation and repeat the speed analyfull solution. This contribution is responsible for a large
sis. The result of this investigation is shown by the dasheé&mount of attraction, especially at higher energies. In con-
line shown in Fig. 12. The resonance position is pushed up ttrast, the inelasticity stays large at higher energies even with-
1.39 GeV, and the width is increased to 0.18 GeV. Thisout = exchange, but reaches its maximum at 1.6 G\
finding shows that therA channel does not play a dominant maximum of the full model is located at 1.45 Ge\n an
role in theP, partial wave. earlier version of this modgR] this contribution was miss-

In the present model, there is an attraction between th&g. The attraction that is needed for a good description of
nucleon and the interacting two-pion pair with scalar-the Py; was generated by a strong coupling to te chan-
isoscalar quantum numbers which leads to a resonant behawel via the nucleon exchange and a stronger coupling to the
ior. Indeed, a recent Breit-Wigner fit to the Saturne reso-wA reaction channel. However, the energy dependence of
nance seen inx—p scattering by Morsch and Zupranski the wA channel leads to a maximum in tig; phase shift
finds the resonance parametdfis=1.39 GeV andl'=0.19 near 1.6 GeV and the phase shift decreases again at higher
GeV and suggests a strong partial cross section to two piorgnergies. Therefore the model] was restricted to energies
in a relative s-channel(see Fig. 8 of Ref[11]) which is  below 1.6 GeV.
compatible with the structure suggested in our model. So far we have demonstrated that our model generates a

We now turn to a discussion of how the new features ofdynamical pole in theP,;, which is associated with the
our model improve the theoretical understanding of ¢  Roper resonance. The phase shift and inelasticity can be de-
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5.0 : .
40 | smp—pp 7
eTp—pn
=30 F
E
© 20t
1.0 b
’
0.0 s . -
25 3.0 35
s [GeV]]
1.58 1.73 1.87
E [GeV]

FIG. 10. The transition cross sectiarN— pN. The solid line
shows the reactionr p— p°n, the dashed line the reaction p
—p_p, and the dot-dashed line the reactisiip—p*p. The ex-
perimental data are taken from REB5].

PHYSICAL REVIEW ®2 025207

phase shift (degree)

E (GeV)

FIG. 11. Phase shift and inelasticity in the partial weRg .
The curves are calculated using the full mo@sdlid line), the chan-
nels wN/oN/7A (dotted ling, #N/7wA (long-dashed ling
7N/oN (short-dashed lineand the elastic modétlot-dashed ling
The common parameters are the same in all five cases.

scribed as well as in other models that include a bare ressiUpplemented by a common form factor of the typ@ with-

nance explicitly, and the resonance parameters from a speédcutoffA=2.0 GeV. TherN T-matrix can be calculated in

plot analysis are in good agreement with the speed plothe following way[94]:

analyses of other partial wave solutions. We also found that First we calculate the self-energy

the oN and themA channels are important in the;. In ()2

order to investigate the role of these channels in more detalil, E(E)ZE f g’dq Y ,

we construct a simplified model that contains the basic fea- Y E-W,—2,(Esup)

tures of the full model used so far. We restrict the Slmp“fledwhere the modified propagatét8) is used for therA and
oN channel. With this self-energy, theN T-matrix can be

calculated:

(30

version to the reaction channetdN, oN, and7A. A major
simplification is achieved by replacing the microscopic po-
tential V,,,(k,k") by a separable potential of the fotm

1
V(K k) =1, (k) —— f,(k'),

(26)
— 0 | o o NL7 KA84 il
E-m 6 * NL9 KA84
o NL9 SM90
wherem® is a free parameter whid(if positive) allows for a
pole in the energy dependen@?,93. The vertex functions
f (k) are given by
—~4t
31 fy, (k) S
= \/%; m—wk<1+m Nan(k), (27 ]
Q
w»
gNo’
fne=—="Ngn(K), (289
N \/§7T N( 5|
far Kk Ex(K)og(k) L
fap=—"m N a(k), 29 s
S m, Jon ma a(k) (29
where N (k) = \[E,(k) + M, J/E(K),(K). The coupling %2 14 16 18

constantsfy,,gn,, @andf, . are also free parameters in the
fit to the P44 partial wave amplitude. All vertex functions are

Z (GeV)

FIG. 12. Speed plot in the partial wawy,. The symbols are
showing speed plots from Reff39] (open circles and Ref.[91]
[full circles (KA84 [42,1]) and diamond$SM90[40])]. The calcu-
2Although the microscopic character of the interaction is lost, welation performed with the full model is given by the solid line. The
can still draw conclusions concerning the role of different reactionresult obtained after the removal of the\ channel is represented
channels. by the dashed line.
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200 | ' ' ' ' ] TABLE V. Parameters of the separable coupled-channel model.

Swof o, fe e B
% 100 | /,f’ 1 Set 4—; 4—7: 4—; mP (in MeV)
% 50 [ //' 1 | 0.024 20.21 0 2840
£ ol < ] I 0.024 0 0.17 3950
U RS [ 0.018 0 0.20 4100
0.8 1
~_ 0.6 ; : ;
T o4 ] 7A andoN states, as introduced in Sec. Il. This allows us to
02 [ ] conclude that a proper treatment of the decay widths of the
ol ] intermediate states in the form presented here is very impor-
10 12 14 16 18 20 tant for the description of the Roper partial wave. The self-

E (GeV) energy term in the modified propagatd®) smears out the

threshold of therN state over a rather broad energy region.

FIG. 13. The partial wav®, calculated with(dashed linand  Furthermore it introduces an additional imaginary part into
without (solid ling) 7 exchange in therN— oN transition poten-  the amplitude, which originates from tlienergy dependent

tial, using the same parameters. decay width of ther. This results in an onset of inelasticity
at the correct position. The strong coupling betweensthe
frn(K) g (K) and theoN channel, as mediated by thechannelw ex-
T(k' k)= 5 . (31)  change, generates large contributions from the rescattering of
E-m"-X(E) virtual oN states and produces the attraction seen irPthe

The present model does not consider the s-channel pole
We have fitted theP; phase shift and inelasticity with the diagram in therN— o N transition explicitly. The following
three different sets of parameters shown in Table V. Set talculations show that the effect of this diagram is indirectly
only couples the reaction channet®N andoN whereas sets included in the renormalization of the nucleon mass and cou-
Il and 1l only couplewN and wA. The results for the dif- pling constants. The iteration of a nucleon pole diagram scat-
ferent parameter sets are shown in Fig. 14. THé¢/oN  tering equation—together with nonpole background
model describes thB,; almost as well as the full model. In contributions—Ileads to a dressing of the nucleon. Therefore
particular, the inelasticity opens at the right energy and théhe pole part of the bare potential has to be evaluated with
model results in a continuous rise of the phase shift. In conbare constants. For the single channel case, this is well un-
trast, thewN/7A model (sets Il and 1l) is not able to de- derstood and applied in many models of, esg scattering
scribe the inelasticity. The inelastic contributions from the[1,61].
wA channel start to open at higher energies as compared to We now generalize the renormalization procedure to the
set | and do not lead to (27?)~1. By increasing the cou- Mmultichannel case. We abbreviate the individual channels,
pling to thewA channel(in going from set Il to set Il the ~ such asmN,oN, ..., bysmall greek letters, 3, . .. .
maximum in the inelasticity can be increased, but it still The pole part\/Eﬁ of the bare potential is a product of the
opens at=1.37 GeV? So even by increasing the coupling to bare vertex functionsg ,f% and the bare propagatdg, with
the wA channel, the onset of inelasticity is not shifted downd, *=E—m:
in energy. Furthermore the larger couplitegt 1) leads to

an overestimation of the phase shift in the energy region of = ;gg
1.4-1.6 GeV. A good description of the;; partial wave i?"’ 160
amplitude with this coupled-channeiN/7wA model is not = 120 [
possible. % g0l
We have also performed a least-squares fit, letting all 2 40
three coupling constants and the mas’vary freely. The 5 ol
minimizing procedure always resulted in a negligible cou- 1
pling to thewrA channel. The resulting parameters only differ 08
slightly from the parameter set | and the curve is almost the = 06
same as the solid one in Fig. 14. = 04
The common feature of the full model discussed at the 0.2 |
beginning of this section and the simplified version intro- 0 —— . i ]
duced here is the use of the modified propagét8y for the 1.0 12 14 16 18 20

E (GeV)

FIG. 14. Results of the simplified model. The solid line was
3This problem is also present in the separahl/7A model of  calculated using parameter set | of Table V, the dashed and dot-
Blankleider and Walkef43], whereas in the separable model of dashed curves are obtained using sets Il and Ill, respectively. For
Fuda[44] the mass of the\ is adjusted in each partial wave sepa- the solid line onlywN andoN are coupled, whereas for the dashed
rately in order to describe the inelasticities correctly. and dot-dashed lines the only channels ai and 7A.
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V= 12dof%". (32 g % I
(2]
An explicit expression fof® can be found in Ref.71]. The $60r =
nonpole part of the bare potentia}’s;, combines all the = " §
. . .o . < 30 + 4
other diagrams so that the bare potential can be divided into 2
two parts: a
= 0F &
P NP e ’ ’ ’
Vo=Vt VL. (33 1T osmes
0.8 | s KA84
The nonpole part of th@-matrix is defined by iterating the <= 06 | * SE-SM95
nonpole part of the bare potential: Loal
0.2
NP _\/NP NP NP B
Thp=Vapt+ 2 VayG, T . (34) i | m———
Y 10 11 12 13 14

The pole part of thél-matrix is given by the product of Z (GeV)

the dressed vertex functiofiend the dressed propagatbr FIG. 15. The partial wave amplitude,; including the coupled
o ; channel dressing of the nucleon.
Top=Tfadfpg,
with = (99) RGP FY G (TR FO)]
L +(95)2[F5'GF o+ Fy'Gy(Ty GuF )]
d*=d, -3,
+0705[F5 G (T G, Fo) +FoIG(To GO,

_ ot
22 fCufe, =GP+ T TGO+ G TG, 2,

f= 10+ TNEG,1, fl=giF o +05F G, The+giFo'G,The . (39)

B
Inserting these expressions into E§6) results in a system
of equations for the bare couplings. Solving this system de-
termines the bare couplings. The bare mass is calculated us-
ing Eq. (37) and the self-energy from Eq38). These are

wherey, is the self-energy. then used in a calculation afN scattering observables.

The pole part of theT-matrix must have a pole at the _ The dressed values are fixed to g, /47=0.0778 and
physical nucleon mass and the residue at the pole detergf,NN/47-r=13.0 at the nucleon poleE(=my) [81]. The re-

f2=f?j+% f9TG, Ty, (35

mines the physical coupling constants, see, €9, sulting bare parameters are
a B T 0 2
9ar9ar  fafaK fOun)
= (36) o) _ 5 0777 (0.0633,
99 fsfe 4
whereK=(1—21)’1;21=(&/&E)E(E)|E:mN. (g%
The bare masm® is obtained from the relation Zw =19.25,
mO:mN_E(E:mN). (37)

m°=1010.1 MeV (1032.3 Me\.
In solving Eq.(36) for the bare couplings attention has to be
paid to the vertex functionsand the self-energ¥, which  The bare values from the single channel dressing scheme are
still contain bare couplings in a nonlinear way. So we intro-given in brackets.
duce vertex functions which do not contain any coupling Next, we compute the phase shifts and inelasticities of the
constantsF%:=f%/g®. We now simplify our considerations partial waveP; in the coupled channel model, including the
by observing that channels such abl,7A, and »N are  pole diagram in thewN—oN transition. The results are
found to have small contributions to the dressing and can bshown in Fig. 15. One finds that the early onset of the in-
neglected. So we include only theN and oN channels in  elasticity is reproduced. The omission of thehannel tran-
our dressing scheme. The coupletN,oN self-energy and sition pole diagram leads to a simplification of the renormal-
vertex functions read explicitly: ization and is found to be justified.
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V. SUMMARY while carefully reading the manuscript. O.K. thanks the
Deutsche Forschungsgemeinschaft for financial support un-
We have presented a coupled-channel modeffdrscat-  der Grant No. 447 AUS-113/310. C.H. acknowledges sup-
tering in the energy region from threshold up to 1.9 GeV.port from the Alexander-von-Humboldt foundation. This
The model is based on an effective Lagrangian and leads towork was supported in part by the U.S. Department of En-
good description ofrN partial wave amplitudes. We have ergy under Grant No. DE-FG03-97ER41014.
used this model for an investigation of the Roper resonance.
We found that our full solution of the relativistic Lippmann- APPENDIX A: THE PSEUDOPOTENTIAL
Schwinger equation generate; the Roper resonance dynami-
(r::s”gh;fééVg;?gfnte?eeridlbr;guﬂméﬂfé z\éze%a\éleof ?::elilha;gd R tential, which we use in our coupled-channel model for
. X N scattering. Let us start with defining some shorthand
these are consistent with other analyses. As source of the . =~~~ .
. . i . notation: The on-mass-shell energies for meson and baryon
dynamical pole we have identified the\ channel, which we are
have used together with theA andpN channel as effective
description ofr N states. Furthermore, we have shown that _[z2 2
t channelw exchange in therN— &N transition potential O RUE
and a proper treatment of the decay width of unstable par- E— 52+ m? (A1)
ticles in the quasi-two-bodyr7N states are important to : Pi h

explain the early onset of the inelasticity in thé\ channel.  jith the notation as given in Fig. 2. A common factor
These results call for a reinvestigation of the Roper reso-

In this appendix we give all expressions for the pseudo-

nance in the quark model, where attention to the role of 1 fmymg 1
meson-baryon states, gfq configurations, has to be paid. “~ 2732 VEiEs w20, (A2)
is present in all potentials, which originates from the normal-
ACKNOWLEDGMENTS ization of fields and the relation
Two of us(O.K. and J.S.would like to thank A.W. Tho- Sti= 8¢ — 27 84 (pi— pi) T (A3)

mas for the hospitality we enjoyed during our stay at the

Special Research Center for the Structure of Subatomic Mabetween the standaimatrix and theT-matrix [46]. We use

ter in Adelaide/Australia, where part of the work was done.time-ordered perturbation theoffOPT) in this work [97];

We are grateful to I.R. Afnan, T. Barnes, H. P. Morsch, K.therefore all intermediate particles are on their mass shell
Nakayama, and G. Huder for stimulating discussions. We (i.e., pi2=mi2 fori=1,...,4). As aconsequence the energy
would also like to thank J.W. Durso for valuable commentsis, in general, not conserved at a vertex, but the total energy

TABLE VI. Additional isospin factors.

Reaction channel Process IF(1=1/2) IF(1=3/2)
mN— 7N o exchange 1 1
p exchange 2 -1
NBB pole graph 3 0
7mN—pN N exchange -1 2
NNp contact graph —2i i
7 exchange —2i i
o exchange 1 1
a, exchange —2i i
A exchange 3 i
Ng,,.Np . pole diagrams 3 0
pN—pN N exchange -1 2
NNpp contact graph —2i i
p exchange p =i
A exchange 3 z
Ng ,Nj__pole diagrams 3 0
11 13
mN—oN m exchange V3 0
mN— A Ng_, pole diagram -6 0
TA— A NZ _ pole diagram 2 0
Dy3
mN— 7N N5, pole graph J3 0
7N— zN N’E‘,l3 pole graph 1 0
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in the reaction, and the three momentum at each vertex, aia Refs.[1,2]. Since theA exchange contributions play only
conserved, as they must be. In TOPT, a Feynman diagram & minor role in the investigations of this paper, this prag-
represented by two time orderingand a possible contact matic approach is justified.
term, which we shall discuss lajefThe second time ordering In the following expressions for the pseudopotential, the
can be constructed out of the first by replacing the fourdsospin is separated. The potentials have to be multiplied by
momentumgq of the intermediate particle with the momen- the isospin factordF, as given in Ref[2]. Since some
tum g, which differs only in its Oth component fromx q° contributions—_and theN .c_hannel—were.not i.ncluded in_
— — wq for meson exchange amp°=—Eq for baryon ex- Ref. [2], we give thg addmonal relevant isospin factors in
change. The pseudopotential is then a sum of both time Or'_l'able VI. The c*ontn*bqu[]s can tle evaJuated in the c.m.
ders. frame by settingp;=k=—p,, p3=k’'=—p4.

The inclusion of theA isobar as an exchanged particle The  contributions ~ to  the  pseudopotential
leads to fundamental difficulties in TOPT. We have thereforé\/'ﬂy(k’,k,)\l,)\z,)\3,)\4) are given by the following expres-
chosen the same pragmatic way of including thas taken  sions.

1. aN—aN
Nucleon pole diagramFig. 2(a)]
2
NN7— = 1
K u A
m2 (p3 3) 75p42m('3‘

ko

g+ my g+ my

u(py ADIFE (D). (A4)
E—md E—m%—El—E3—w2—w4)ysp2 (P2, A IF N

Nucleon exchanggFig. 2(b)]

N - 1 g+ my g+my R
K?U(psiks)Vspzz_Eq E—Eq—wz—w4+ E-E, E, E, YsPaU(P1 A ) IF (1) (A5)

Correlateds7 exchange in ther channel[Fig. 2(c)]

Im(fo.(t"))

U 2ml)(U—amd) P(t")u(ps, A a)u(ps A)IF (1), (AB)

16x(2p2upff)f dt’(

whereP(t') = (12w ) (U(E— w,— Ez— wy) ] +[U(E— 04— E;— 0p)]), oy =+g?+t’, andf is a Frazer-Fulco amplitude
[95,64.
Correlateds 7 exchange in the channel[Fig. 2(c)]

HMP,+P — - -
12 %NW f At IM(To(t"))P(E )U(Bs:\s)U(Br Ay)
—f dt’ Im(T5(t") +T1(t")P(t")u(ps,Aa)Qu(py, Ay |IF (1), (A7)

whereI";(t) = — (my/p)[ 3 (t) = (t/4V2my) F1. (1) ], To(t) = (my/p)[ 1 (1) — (my/V2)FE (1)1, and Q=3 (p,+ pa).
A pole diagran{Fig. 2(d)]

I P“"(q)

NA7—, => -
K—mi u(ps,xs)m#(E_mA)(EerA) P2,u(P1, A1) IFas(1). (A8)
A exchangdFig. 2(f)]
faam— - 1 1 -
2%
K 2 u(ps,h3)pz, P*(a) 2Eq(E—Eq—w2—w4)+2Eq(E—Eq—E1—E3) P4 U(P1 A )IF (). (A9)

N*(S;1) pole diagraniFig. 2(g)]
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0

, —. 1 g+md
KQN*N,TU(paJ\s)Wmu(pl,MNFN*s(')- (A10)
N* N*

N* (D3 pole diagraniFig. 2g)]

FR N - 1 P“Y(q) N
U p3,>\3)75l94p4um ol YP2P2, U(P1 A1) IF (). (A11)
™ N* N*

K

The tensoP*” is given by

1
— g;UvV_l_ § '}/M')’V_l_

P (p)=(p+M) 3M2D“p”—%(p”7”— P Y*) | (A12)
whereM is the mass of the exchanged baryon.
2. iN—pN
7 exchangdFig. 5a)]
q.(P2—q), q.(P2—Q),

f - - -
—Kgm,ﬁ]—””i(ps,xa)f’y“u(pml)( )e*~”<p4,x4>lm<l>, (A13)

20(E-wq—E3—wy) 2w4(E-—wq—E;—w,)

wheree”(p,,\4) is the polarization vector of a massive spin 1 particle with momenyrand helicity\ , [96].
a; exchanggFig. 5b)]

-
fNN

2kg, m 7111—(53 \3) 757ﬂu(51 N1)

q q -
pz"‘z pz"‘z e:(p4,)\4)p4u}

pZe,’j(54,)\4) -

1

—wy)

+1(P2+0/12):P3€] (Pasha) ~ (Po+012)7€; (Pa Na)Pa I3 om0 — IFa, (). (A14)
q q

w exchangdFig. 5(c)]

1
2w¢(E-—wq—Ez—wy)

gw‘rrp_* s Koo
KgNNwm_U(pS:)\s)([V L 2mNU d.

1
qu(E—wq—El—w4)

K

+|yT—i
Y-ig

° o™, )u(ﬁl,M)empze*'“<r34,x4)péle(l), (A15)

My

W|th €0123— — 1.
Nucleon exchanggFig. 5(d)]

g+ my g+ my )

. fNqu— - (
_|KgNNpm_wu(p3a)\3)75p2 E—Eq—wz—w4+E—Eq—E1—E3

u(py A ) F (). (A16)

Ko 6 (B k)~ o 07Dy € (B
2E, (Pa,N\a) IszU p4veﬂ(p4, 4)
NNp contact graphFig. 5()]
f - - -
— K, U(P3 N3) Vo€ (B A)U(Pr A IF (1) (A17)

N*(S;,) pole diagran{Fig. 5f)]
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0

T~ 5 K Np v * [ 1 Q+mN* g
KON*NpIN* N7U(P3, N 3) V7| ¥~ 0""pyg | €,(PaNa) 5 =5 U(P1, M) IF N« s(1). (A18)
N* 2my, E—mg,
N* (D3 pole diagran{Fig. 5f)]
o Fnenafneng— - - - P#¥(q) -
R N2 - Npu(p3v)\3)(p4€*(p4:7\4)_p4 € (Pa,Na))— P2 ¥°Pau(p1, A ) IF yss(l). (A19)
mzm, w 2my (E—mg.) 7

Since we are using time ordered perturbation thg8i#}, which is a formalism based on the Hamiltonian instead of the
Lagrangian, we must transform the Lagrangian to the Hamiltonian via the Legendre transformation

oL .
H=D> —® —L, A20
; 50, (A20)

Whered)j are the fields inC. This transformation introduces additional terms into the interaction, which, in our case, are of the
form of contact interactiong54]. In TOPT all particles are on the mass shell, so that the Oth component of the exchanged

particle, @°= \/52+ mi), is quite different from the one in covariant perturbation the@ry., q°= p(l’— pg for a t-channel
exchangg Therefore the potential is different in the two approaches as soon as a time derivative acts on the field of the
exchanged particle. Since both approaches ultimately must lead to the same on-shell potential, the role of the additional
interactions is to restore the equivalence between TOPT and covariant perturbation| 8gory

Since both therNN and thewpa,; Lagrangians contain a time derivative on theand thea,, there are additional terms
for the = and thea; exchange contributions, which have to be added to Bk3) and (A14), respectively. Forr exchange
this term is

fﬂ'NN_

kg, —U(Pa,A3) Y YOU(P1.N1) € (Pa ) IF (1), (A21)
and fora; exchange it is
fonn 1 — > > >
2KG, m—ZU(ps,As)f’youml,M)[pzﬁp%e’é(m,m—p’z‘e,t(p4,x4)p4o]lFal(l)- (A22)
o a]_
3. pN—pN
p exchanggFig. 5g)]
2
ik 22 UBa )| 7 =i o7, [U(Py A -
2 8.3 2my YR 20(E— wq— Ez— w))

X[ € (P2, N2) € (Pa,hg)(—Pa—P2) ,+(A+Pa) €-(Pa N 2) €5 (Pakg) + (P2— ) €X (Pa.Na) €, (P2 N2)]

+[€(P2.02) €5 (PaNa)(—Pa—P2)+ (A+Pa)€(P2,N2) €5 (Pa o)+ (P2— Q) "€X (Pa N a) €, (P2 N2) ]

—_ K - >
i P uv
Xu(p31)\3) Y IZmNO- qv u(pl’)\l)qu(E—wq—El—a)4))IFP(I)' (A23)
Nucleon exchanggFig. 5h)]
. . 1 g+m g+m
2 wo Kp w N N
K - -
X yf—lz—n‘]’No”mV €5 (P4 N)U(PL. A )IF (D). (A24)

NNpp contact graphiFig. 5(i)]
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fn - - -
KgNNp2 U(P3 N3)0H €, (P2,N2) €, (P4, Na)U(Py, N ) IF i(1). (A25)

N*(S;1) pole diagraniFig. 5(j)]

2 e 5 ;L_'K Np wv * 1 Q+mN* o . KN*Np wv - -
KQN*NPU(p&)\s)Y Yl 07 Pg, fﬂ(p4v)\4) 0 - o 7 vl 07 P2, €,(P2,A)u(py A IFNxg(1).
My* 2my: E—mg, N
(A26)
N* (D3 pole diagram
2
N - .- - P#¥(q) ] 3
2 U(P3,A3) (P4, (PasNa) —Ps & (Pa, 4))—(pzfv(P2 A2) = P2, €(P2, A2))U(P1, M) IF nes(1).
’ v (B M) (A27)

The pNN coupling from Table Il contains a time derivative of tipefield, which causes an additional term in the
Hamiltonian. On-shell, this term cancels théqg” term of the spin-1 propagator, which is also approximately true off-shell.
Therefore we can mimic the additional contact term in TOPT by using the reduced spin-1 propagator,

—gHv —g
E-wq—Es—w, * E-wq—E1— w4’

(A28)

We have checked numerically that the exact procedure leads only to tiny differences in the off-shell potential. We have applied
this reduced spin-1 propagator to theexchange contributiofA23) above.

4. aN—>wA

Due to relative signs in our Lagrangidmable Il), the nucleonA, andp exchange contributions from Rg2] must be
multiplied by a minus sign. In addition, we have included N&(D,3) pole diagranFig. 4(d)]:

frnenafnea P“"(q) 1 ) -
— Kk ———0,,(P3, N 3) Pa—g— =5~ P57 PaU(Pr A ) IF (). (A29)
m>, 2mN* E—mg.
5 wmA—-mwA

The nucleon and exchange can be taken from RE2]. Here we do not use a Gordon decomposition forghexchange
[Fig. 4g)], which therefore has the form

1 1
E— wq Wy — E3 E—wq—w4—E1

r(pla 1) (

(P2t pa)“IF (1),
(A30)

[ KgAApgpﬂ'ﬂUT( 53¥)\3) /J,Vq

2m

and we have used the reduced spin-1 propagator fron(®28). We have also included thé* (D ;3) pole diagranjFig. 4(h)]

fream - PE(q) 1 .
K ——U,,(P3.N3)Pa——g— ——5—P2U,(P1, A1) I Fyes(1). (A31)
mz. 2my, E—my,

6. sN—oN and oN—oN
We take over the contributions from R¢£], but additionally use ar exchange contribution for theN— oN transition

[Fig. 4()]

fNN’n’ Yommr— 1 ,ySqu 75&(3“ ol
m m U( P3, )\3) E— E E3+E_Eq_w4_E1 p2u(p1!)\l)”:77(|)1 (A32)

ik

ks ko

which again must be supplemented by the additional term
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f7T g(T7T - -
=B A g) Y Y PIU(BL A F (1) (A33)

I K
T

resulting from the Legendre transformatioh20).

7. The »N reaction channel

The coupling to theyN channel(Fig. 3) can be taken from Ref2]. The additional coupling of thNBlS(lSZO) can be

constructed from th® ;5 pole diagram of the direc&#N interaction by replacing ones(N— #N) or two (direct sN) N* N
coupling constants by the* N coupling, respectively.
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