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Small size boundary effects on two-pion interferometry
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Bose-Einstein correlations of two identically charged pions are derived when these particles, the most
abundantly produced in relativistic heavy-ion collisions, are confined in finite volumes. Boundary effects on a
single-pion spectrum are also studied. Numerical results emphasize that the conventional formulation usually
adopted to describe two-pion interferometry should not be used when the source size is small, since this is the
most sensitive case to boundary effects. Specific examples are considered for better illustration.

PACS numbdis): 25.75.Gz, 25.70.Pq

I. INTRODUCTION pion separation is smaller than their interaction range, the
pions in such a stage of the system evolution are still
It is generally expected that high-energy heavy-ion colli-strongly interacting with each other. The effects of interac-
sions may provide the tools to probe the existence of a newion among pions could then be modeled by considering that
phase of matter of strongly interaction particles, the quarkthey move in an attractive mean-field potential, which ex-
gluon plasmalQGP), at high temperature and high baryon tends over the whole pion system. This implies, for instance,
density[1]. The hope of discovering the QGP in high-energythat in the two-pion case, they would not suffer any effects
heavy-ion collisions is to some extent connected to the possther than mean-field attraction and an identical particle
sibility of measuring the geometrical sizes of the emissionrsymmetrization. Consequently, rather than being in a gas, the
region of secondary particles. An important tool for accom-pion system should be considered in a quasibound liquid
plishing such size measurements is the so-called Hanbumhase, with the surface tensi¢h2] acting as a reflecting
Brown—Twiss interferometnf2]. This method was origi- boundary. Although details on this reflection depend on the
nally proposed in the 1950s for measuring stellar radii butpion wavelength, the pion wave function could be considered
shortly afterwards, it was discover¢d] that a similar pro- as vanishing outside this boundary. The pions become free
cedure could also be applied to high-energy collisions fowhen their average separation is larger than their interaction
determining the dimensions of pion-emitting sources. Thigange. Due to the short range of the strong interaction, how-
method has been extensively developed, improved, and bedver, we would expect this liquid-gas transition to occur very
ter understood since the pioneering tinjé$ rapidly, in such a way that the momentum distribution of
Different from the stellar case, however, where the di-pions could be essentially governed by their momentum dis-
mensions are indeed immense, in the subatomic level theibution just before they freeze out. Under these circum-
effects associated with the small sizes of the particle emitterstances, we would also expect that the observed pion mo-
and their boundaries may have an important role. Indeednentum distribution would be modified by the presence of
already in the well-known paper by Gyulassy, Kauffmann,this boundary. This is, in fact, what is analyzed in this work,
and Wilson[5], and more recently, in Ref§6—11], effects as well as in Refd.7-11].
of source finiteness on particle spectra and correlation func- On the other hand, since pion interferometry is sensitive
tions were considered, although the conclusions of some db the geometrical size of the emission region as well as to
them were somewhat contradictory. For example, the lowthe underlying dynamics, we would expect that the boundary
transverse-momentum region of R€f8,11] is shown to be would also affect the correlation function, batpriori we
enhanced with respect to the Bose-Einstein distributionwould not know how. Would it affect single- and double-
However, this enhancement was not observed in other refemclusive distributions similarly? How would the intercept of
ences quoted above. As we shall see later, in agreement withe two-particle correlation function behave? How would the
the results of Refs.[7,9,10, a depletion in the low- general shape of this function be affected? For insight into
momentum region is observed instead. This apparent dighese questions, here we investigate the effects exerted by the
crepancy may be explained by both the form chosen for théoundary on the two-particle correlation function. We could
density matrix in Refs.[8,11], and by the full field- naively expect that the importance of quantum statistics
theoretical approach adopted there. However, the inherentould progressively increase as the dimension of the emis-
difficulties of that approach are enormous, and the simplesion region decreases. The results turned out to fulfill these
treatment discussed in the present paper already sheds ligktpectations exactly. Consequently, semiclassical ap-
on the relevant points of the problem. proaches would have their applicability limited by the size of
The approach suggested in Rdf8,9] seemed appealing the emission region in focus. In other words, small emission
for the following reasons. First, it considered that in ul- volumes would stress the need for quantum statistics and, as
trarelativistic nucleus-nucleus collisions pions are the mosa consequence, classical density matrices would lead to in-
abundantly produced particles, being emitted at freeze-owtonsistent results. This problem is clearly illustrated later in
temperatures around 0.1-0.2 GeV. Following RE¥s10], it  the present work.
was argued that right after these collisions, since the average The plan of this paper is the following: in Sec. Il, we
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derive the single-inclusive distribution, as well as the two- We write the density matrix operator for our bosonic sys-
pion correlation function, considering a density matrix suitedtem as
for describingm= 7~ Bose-Einstein effects. In Sec. lll, the
boundary effects on the two-pion correlation and single-
particle spectrum distribution are illustrated by means of two
specific examples. Section IV is devoted to illustrating the
results which would be expected when previous methods fowhere
deriving two-pion interferometry formula are employed, and

in addition f_|n|te volume effects are studied. Finally, conclu- A=> Exa;[ax , N=> aia)“ (9)
sions are discussed in Sec. V. A A

. 1. .
p=exp{—f(H—MN)}, 8

are the Hamiltonian and number operators, respectiviely;
the temperature.
The corresponding normalization is explicitly included in
In this section, we derive a generic formulation for boththe definition of the expectation value of observables as, for
the single- and two-particle inclusive distributions, which instance, for an operatdk:
would be suited for describing* 7" or 7~ 7~ bounded in

IIl. SPECTRUM AND TWO-PION CORRELATION
FUNCTION

a finite volume. We assume that the pion creation operator in A tr{f)A}
coordinate space can be expressed as (A)= triph (10
&T(X):; é;[zp;‘(x), (1) Then the single-pion distribution can be written as

7 9y _ ok O\ T ata
wherea! is the creation operator for creating a pion in a Pl(p)_<‘/ﬁ(p)"/’(p)>_§>\: %: YX (P (PN (@8 ).
guantum state characterized by a quantum numberhen 11
i (X) is one of the eigenfunctions belonging to a localized L
complete set, which satisfies the orthonormality condition The expectation valu(aalaw} is related to the occupation

probability of the single-particle state, N, , by

* — AgA
f Xm//)\ (X)l/l)\r(X)—é)\’)\r (2) <a{a)\r>:5)\')\rN)\; (12)
and the completeness relation for a bosonic system in equilibrium at a temperattirand
chemical potential, it is represented by the Bose-Einstein
distribution
2 RO =8x=Y). )
1
- . L _ . N, = (13
Similarly, the pion annihilation operator in coordinate 1
space can be written as ex T(Eh_“) -1
A A By inserting Egs(12) and(13) into Eqg. (11), we obtain
w(x)—; aY(X). 4) the single-particle spectrum for one pion species as
In onTmentum spacg,.th('a corresponqmg pion creation op- Pp)=> Ny 72 (D) T (P). (14)
erator '(p) and annihilation operatog(p) can be ex- A
pressed as The above formula coincides with the one employed in Ref.
R e [9] for expressing single-pion distribution.
t//T(p)ZE alwf(p) (5) Similarly, the two-pion distribution function can be writ-
A ten as
d - - - -
o P2(p1.P2) = (¥ (p1) ¥ (p2) I(p1) H(p2))
HP=2 ada(p), ®) = S B 0T PP T (P2)
N N A2 Az hg 1 2 3 4
where x(a),a5,aa,)
~ 1 ip- _ v Tk ~ 3
\(p)= (2T)3/2f Py (x)e'PXdx. (7) _)\1')\;3’)\4 l//)\l(pl)lr/f)\z(pZ)'r//)\3(pl) '/’M(pz)
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At 4 At 3 By means of this Wigner function, the two-pion interfer-
X[{a, a,_)(a, a
< M x3>< A M 2 ometry formula can be rewritten §$3—15
+<élléx4>+<é>tzéx3>xl¢>\2 ‘
N €7 g(x,K)g(y,K)dxdy
+<ak1a>\za’\3a’\4>>\1=)\2=>\3=>\4] Ca(p1,p2) =1+

. (20

f 9(x,p1)9(y,p,)dxdy
=Pi(pyP1P) + 2 2 Ny Ny,
v In the above equationK=(p;+p,)/2 is the two-pion
><~l/ffl(Pl)@xl(Pz)@fz(Pl)bez(pz) average momentum, arm:_pl—pz is their relative momen-
tum. Hereg(x,K) can be interpreted as the probability of

~ ~ 2 finding a pion at poink with momentumK.
=P1(P1IP1(P2) | 2 Ny (P)¥a(p2)

Ill. TWO-PION CORRELATION FROM A FINITE
VOLUME

Since we are considering the case of two indistinguish- A. Example 1
able, identically charged pions,

(19

In order to investigate the effect of the boundary on the
ataga A Ata \p single- and two-pion distribution functions, we assume that
(aaayay)=2(a)a, )" (18 pions produced in high-energy heavy-ion collisions are
bounded in a sphere, just before freezing out. In other words,
From the particular form proposed for the density matriXineijr distribution functions are essentially the ones they had
in Eq. (8), we can see thgaal)= (axax> 0, showing that  while confined. The pion wave function should be deter-
it would not be suited for describing®#° and#* 7~ cases. mined by the solution of the Klein-Gordon equation
For this purpose, the formalism proposed in R¢68,11] 5
may be more adequate. [A+kTy(r)=0, (22)
The two-particle correlation can be written as
wherek?=E?—m? is the momentum of the pion. On writing
P,(P1,P2) the above equation, we have assumed that the potential
W “felt” by the pion inside the sphere is zero, while outside it
1P (P2 is infinite. The boundary condition to be respected by the
- - 2 solution is
2 N (Py) ¥ (P2)
=1+ . $(r)];=r=0, (22)

; le”&upo@ NUXCHIE

Ca(p1,p2) =

whereR is the radius of the sphere at freeze-out time.
The normalized wave function corresponding to the solu-
tion of the above equation can easily be written as

17

We can see immediately from the above formula that if 1 5
g=p;1—p>=0 we haveC,(p,p)=2. We also notice that the (r)= —\/7Y (0,4)d (kr) (r<R)
result for the correlation function in Eq17) reflects the Yicm RJ 1 (3r)(kR) im0, 8) 1+ a2
symmetrization over different statégand thus, the uncer- ~0 (r=R) 23)
tainty in the determination of the pion state -

Within this formulation we can also define the corre-

sponding Wigner functiong(x,K), as The momentum of the bounded particke,can be deter-

mined as the solution of the equation

g(x,K 2 )3 D N}\J o x+ 2 1#}\( X) Ji+arr)(kR)=0. (24
_ Inserting Eq.(23) into Eq.(7), we can determine the Fou-
xXexp —iK-y)dy. (18)  rier transform of the confined solution of a pion inside the

sphere, as a function of the momentpmas
Consequently, we can write

R
p2_ k2

- 2, . 1
~ ~ ~ ~ — _Y
B0 UP) =S NT (P2 T (o) Yiam(P) \[p' (PR o (KR

X[PJi+ @2 (PRI 4 (1/2)(KR)

= —i(p1—p2) X
f © g(xk)dx. (19 —kJ 1 12)(PRJ 32 (KR) ] (p#k)
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/1 -
= ﬁi|Y|m(p)R\]l+(3/2)(kR) (p=Kk). (25)
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Up to this point we have considered the pions confined in
a sphere, which required the wave function to have a sharp
change at = R. However, as discussed in REL6], it could

On deriving the above equation, we have made use thee more appropriate to consider a smoother boundary, by

following integral equations:

R
jo rdrdis 12 (PrJdi+ (uz)(Kr)

R
- 2 K2 [P+ (a2 (PRI 4 112)(KR)
_le+(1/2)(pR)JI+(3/2)(kR)], (26)
and

2

Jrer,+(l,2)(kr)J|+(1,2)(kr) J|+(3/2)(kR) (27

In addition, by imposing that the solution should vanish at

the boundary, expressed by Eg&4), it can be shown that

PJi+ 32 (PRI 4 (12 (KR) —KJ 4 (12(PR) Iy 4 (312)(KR)

lim -

p—k pT=
_ R¥, (a(kR)
- e

(28)

i.e., Ym(p) is a continuous function g at p=k.
Using the condition expressed by EQ4), Eqg. (25) can
be further simplified as

- 2
Dam(p) = \/7| Yim(P)
p p*—

In terms of Eq.(27), the single-inclusive distribution
function is given by

T lJ| +(PR). (29

Pi(p)= ;ﬂ Nim#im(P) Pam(P)

=2 p(Ek. ) \[(—UY.m(p)\[

L —kJ (pR)
><Y|m(p>{ '*2(_”22

—kJi 4 2(PR)
p2_ k2

2
kJ+(12(PR)
p2_ k2 !

2l+1
2mp

1

=> —
oS

where we have used that

(30

m=1

21
E Y0 (P1) Yim(Pa) = ( (31)

+1
) |(p1 pz)

softening the potential felt by the pion at=R. Unfortu-
nately, this procedure would turn the problem into a very
complex one[16], and is beyond the scope of this paper.
Nevertheless, as a diffuse boundary would cause a gradual
decrease to zero of the pion wave function, it could be simu-
lated by taking the limiR—o [16] in Eq. (26), i.e.,

® 1
fo J|+(1,2)(pr)J|+(1,2)(kr)rdrZEb‘(p—k) (32

and
2
Ji+@2)(kKR)— V&R (33
Dam=1"Yim(P) \/ ~8(p— ) (39)
klm Im ka .

Then, by imposing the completeness relafigg. (3)], we
can show that

; V(P Ph(p)= (35)

(2m)®

With the § function in Eqgs.(32) and (34), the single-
particle spectrum, in the limiR—oe, is then written as

P1(p) !
1(P)= —
exr{EpT'u)—l

where V= (47/3)R® is the volume of the sphere. We see
from Eg. (36) that the ordinary Bose-Einstein distribution is
recovered in the limit of a very large volume.

For p=0 andV=(47/3)R®, Eq.(30) becomes

Y
(2m)®

, (36)

- 1 3
Pl(p)Ip:o—VnZl ex;{En;M) 1(4775 2)’ 87

where
nw )
En=\| g tm= (38
In the limit R—«, we have
Pi(p)= v ! (39
1(p (2m)?

mz—u ’
ex;{ T) 1

which is consistent with Eq.36).
From Eq.(37), we see that the intercept of the spectrum
depends on the value of the radius: RsncreasesE,, be-
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0.06 . T T 0.06 . T T
T=0.12GeV —— T-0.14GeV, R=Infinity
—_ _ —— T=0.14GeV, R=3fm
9‘;_ 0.04 . 9‘;_ 0.04 - .
o o —— T =0.11 GeV, R=Infinity
--------------- T=0.11 GeV, R=3fm
0.02 . 0.02
0.00 0.00 ——
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
p (GeV/c) p (GeV/c)
FIG. 1. Normalized spectrurin arbitrary unit$ vs momentum FIG. 2. Normalized single-particle distributiofin arbitrary

Ip| (in GeVic). The input temperature i$=0.12 GeV, and the unity vs momentump|. The input parameters aye=0, and the

chemical potential ig«=0. The solid line corresponds to the Bose- radius in the finite cas®=3 fm. The curves are shown for two

Einstein distribution, i.e., to the limR—co. The dotted and dashed values of the freeze-out temperatufes 0.14 GeV(solid line) and

lines correspond, respectively, to tRe=6 fm andR=3 fm cases. T=0.11 GeV(dotted ling, and compared with the corresponding
ones in theR— limit.

comes smaller, and the maximum value of this distribution,

corresponding tdp|=0, becomes higher. In all numerical temperature dependence is studied, we have fiXed

estimates considered in the present work we have fixed =0.12 GeV. The reason for this relies on Shuryak’s argu-

=0. In Fig. 1, the normalized single-particle distribution is ments{12], according to which, for temperatures in the range

plotted as a function dfp|. We have chosen a discrete nor- 0.1=T=<0.2 GeV, the excited pionic matter would be better

malization, obtained by imposingfzgz\ilpl(pi), whereN  described as in a liquid phase inside a surface created by
refers to the total number of bins in which the distribution is their mutual interaction. He added that, for0.15 GeV, the
subdivided. influence of resonances become important, but these are not

We clearly see from Fig. 1 that, due to the boundary efincluded in the present study. Therefore, we chdse
fectS, the maximum value db| in the Spectrum decreases =0.12 GeV, which is also of the order of the recent eXperi'
for decreasing V0|umesy being a|Ways smaller than the Cag'@ental freeze-out temperature estimated from both interfer-
corresponding to th&®—oo limit. The explanation for this Ometry and spectra. .
behavior can be understood in terms of the uncertainty prin- Similarly, for the expectation value of the product of two
ciple, i.e., as the volume of the system decreases, the uncdlOn creation operators in momentum space, we can write
tainty in the pion coordinate decreases accordingly, causing a
large fluctuation in the pion momentum distribution. We
should note that this result coincides with the one obtained in
Refs.[7,9], and is opposite to the results of Ref8,11].

Regarding the spectrum, we could also inquire how the =
freeze-out temperature would affect it, and how the finite- ~ o0 |
size effect would compare with tie— o< limit for different
temperatures. This is illustrated in Fig. 2. The curves there
should be compared in groups of two: solidT ( — T=0.11GeV
=0.14 GeV) and dottedT(=0.11 GeV). For emphasizing
the differences and similarities &g| increases, we plot the 00ty — T=014GeV 1
difference between the two curves in each grodR,(p)
=P1(p)|r=3 tm— P1(P)|r==, in Fig. 3. We see that, the
lower the temperature, the larger the difference between the
curves of each group in the small momentum region. De- _0.02 s . .
creasing the temperature has a similar effect on the spectrur 0.0 02 0.4 GeV/ 0.6 0.8
to that of decreasing the radius: in both cases the fluctuations P(GeVic)
in the small region of the pion spectrum increases and the g, 3. Difference in the momentum distributigin arbitrary
corresponding maximum is reduced. In other words, thenits), AP;(p)="P1(p)|r3 m— P1(P)|re=, VS |p|, of curves with
boundary effects are more significant when we deal withR=3 fm and the corresponding ones in tRe>c limit, for two
systems whose dimensions and temperatures are small.  values of the freeze-out temperatiTteas indicated in the plot, with

We should observe that, except in Figs. 2 and 3 where tha=0.

0.01 T T T
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~ 5 Diam(P) Yram(P2) 4 ]
(¥ (p1)¥(p2)) = et 2.0 foany
o XD( : M)—l —— K=0.1GeV/c
T 18 N\ |
— Q%D‘ - K = 0.2 GeV/c
1 O
- “Sie AN - K =0.3 GeV/c |
% Exi—n o't %
. N ——- Eq.41)

numerical results

\f(—l)Y (p1) 12+

—k 10 |
X{—]Ju(m)(le)
ps—k?
0.8 L L L
0.0 0.2 0.4 0.6
\f(') Ylm(pZ){ T2 ]J|+(1/2)(92R) q (GeVic)
FIG. 4. The two-pion correlation functidd,(q) is shown vs the
1 4 momentum differencéq|=|p,—p,|. The input parameters ark
E =0.12 GeV,R=3 fm, and u=0. The solid, dotted, and dashed
. F{ Kl )_ P1P2 lines correspond to the average pair momentum valkes
T =0.1 GeVk, 0.2 GeVk, and 0.3 GeWe, respectively. The circles
5 refer to numerical results similar to the previous ones but with the
K unity weight factorN, =1 from Eq.(17). The dot-dashed line cor-

x (pi_ k2)(p§_ k2) J|+(1,2)(p1R) responds to the analytical result in E4l).
| Aa sum would make the correlation function drop faster, conse-
><J|+(1,2)(p2R)( 4 )P|(p1~p2). (40 quently becoming narrower. Alternatively, we could under-
stand these results by noting that pions with larger momen-
S ) , tum come from larger quantum states which, in turn,
The two-pion interferometry correlation function can then correspond to a smaller spread in coordinate space. As the
be estimated_by inse_rting _the above expression intd Eq. weight factor in Eq.(17) is of Bose-Einstein form, larger
In general, this function will depend on the angle betwpen g antum states will give a smaller contribution to the source
andp,. For the sake of simplicity, we will considen par- gjistripution, causing the effective source radius to appear
allel to p,, implying thatP,(p;-p,==1)=(=1)". The re- |arger. In order to confirm that the weight factor in Eq7)
sults for two-pion interferometry corresponding to differentjs the responsible for the behavior observed in Fig. 4, let us
values of the pair average momentln=(p,+p,)/2, but  consider the case in which we choose it to be a constant
fixed temperature, are shown in Fig. 4. We can see that, &actor, for instanceN, =1. This situation could be derived
the pair average momentum increases, the apparent sourggm the Bose-Einstein distribution form by considerifig
radius becomes larger, which is an interesting behavior, if we-1, so that the two-pion interferometry results would be-
compare to results corresponding to expanding systems. lgbme insensitive to the average momentum, due to the very
this last case, the probed part of the system decreases Wiffrge values of the temperature. The numerical result corre-
increasing average momentum. Naturally, our present apsponding to this case is also shown in Fig.(arrower
proach does not consider the effects of expansion, and th&urve. On the other hand, with the help of the completeness
enlargement of the system’s apparent dimensions with inrelation[Eq. (3)] and of Eq.(7), by also assuming that the
creasingK, seen in Fig. 4, has its origin in the strong sensi-pjons are confined in a sphere, it is straightforward to derive
tivity to the dynamical matrix. This can be better understoodhe following K independent two-pion correlation function:
by observing the presence of the weight fackty in Eq.
(17), with N, expressed in Eq(13). The increase of the 9 sin(gR) ]2
average momentum reflects the increase in the individual C,(q)=1+ ——|RcogqR)—
momentap; andp,, which comes from larger values of the “R®
sum coefficienk in Eq. (17). This has two opposite effects:
the factors 1/?—k?) give larger contribution fok~p; . For completeness, in Fig. 4 we also include the curve based
However, larger values ¢&fwould also make the exponential on Eq.(41), which coincides with our numerically generated
factor (with «=0) drop faster. Thus, by increasilkg we are  curve, cross checking the correctness of our numerical cal-
effectively including a larger number d&f coefficients that culation.
contributes to the sum in Eq17), with decreasing weight Figure 5 shows the two-pion correlation function for in-
~exp(—Ey/T). The interference of these extra terms corre-creasing values of the spherical radius, i.e., for enlarging
sponding to largek with the terms already considered in the volumes. From it, we can clearly see that, as the confining

(41)
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The corresponding Fourier transformi(p) can be ex-

pressed as
1 7 (0)= 1 8 |sin(pi—kyL/2] Sif[(Pz_kz)L/Z]}
| “idp)= (2m)32 v P1—ky p2—ks
sin (p3—k3)L/2]
— ¥ . 4
] . Ps—ks 49

The single- and two-particle distributions follow from
Egs.(14) and (15). We should note that, in the limit—0,
and using conditior(44), we find the contribution of only
one state K=0) to the two-pion correlation function, result-
ing in

0.8 L L 1
' qGeviey " C(py.py)=2. (46)

FIG. 5. The correlation functio€,(q) is plotted as a function On the other hand, if we take the limit ¥— o, Eq. (45)
of the momentum differenceq|=|p;—p,|. The input parameters becomes
are the temperatur€=0.12 GeV, the average pair momentu
=0.4 GeVk, andw=0. The solid, dotted, and dashed lines corre- 1
spond, respectively, to the sphere rai 2, 3, and 7 fm. U(p)= W(Zﬂ-)glzé(p— k). (47)

volume increases, the source radius derived from two-pion ) o
correlation also increases, as would be expected. With the above form forj(p) in the limit of very large
Again, as discussed previously for the spectrum, we couldyolumes, for the correlation function we obtain
estimate the effect of a diffuse boundary on the two-pion
correlation function by considering the limR—«. By in- Cy )= 1 (P17 pP2) (48)
serting Eq.(34) into Eq. (40), remembering that in this limit 2P0 P2) =15 (P1=P2).
we can takeX,— [dk, and using the previous result for the
spectrum in this limif Eq. (36)] we finally obtain that If, instead of the periodic boundary conditions, we con-
sider that the pions are confined in the box, i.e., we assume
1 (p1#p2) the potential outside it is infinite, then two classes of solu-
Ca(p1,p2)= 5 _ 42 ible:
(P1=P2), ions are possible:

as would be expected. | 8 . ) _
To conclude this section we should keep in mind that, if b (x)= v sin(kyx)sin(kyy)sin(ksz), (49)
the system size is very small, it would be sensitive to the
boundary effects even if we considered a diffuse boundaryith
Conversely, if the system size is very large, we would not
expect a significant effect in neither the sharp nor the diffuse i=1,2,3
boundary casg16]. kiL=2ni7r—>[ (50
ni: 1,2, P
B. Example 2 and
In this subsection, we will study the sensitivity of spec-
trum and of the two-pion correlation function to the system | \F
boundaries, by considering the pion system inside a box of ¥ (X) =\ coskax)cog kpy) codksz), (51)
dimensionsL XL XL. We first choose periodic boundary
conditions. In this case, the eigenfunction can be written asyith

h (f):iexq—ikr) (43) i=1,2,3
W | kiL:(Zni_l)WH[nizl,z,... . (52

Herek is the quantum number which satisfies the follow- |t can be shown that, fov—0, we have
ing constraint:
1,1 _
y ) i=1,2,3 Cz (p1.P2)=2, (53)
I i n=0=x1x2.... ( ) while, for V— o, we obtain
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oL ) 1 (p1#£p2) 54 by p;. Then the single- and two-particle distributions can be
' P2)= 54 i

2 (PL.P2) =), (P1=*py). written as

The reason for including the: signs in Eq.(54) comes P1(p)=N(p)&* (p)¥(p) (61)

from the parity property of Eq$49) and(51). From them, it

is immediate to see that solutidrhas negative parity, while and

solution Il has positive parity. The corresponding Fourier

transforms then show the same parity property, i.e., P5(P1,p2) =N(p1)N(p2) * (p1) &* (p2) h(Pp1) (p2).
(62)

WP ==U(=p), W(-—P=W (). (59
_ In the above relations we dropped the subsdiigtof the
From the above results, we can show that the singlestate.N(p) is the Bose-Einstein distribution. In order to con-
particle spectrum and two-pion correlation function corre-nect to the Hanbury Brown—Twiss effect, we need to make

spondingly have the properties one further assumption: we assume that the sojfkp is
L ol chaotic and a function of the coordinates onf(x) is de-
Py (P)=Py (=p) (56) termined as a solution of the equation
and ; .
(A+pH) () =](x). (63)
C3"(P1,—P2)=C3" (P1,P2). (57)

The superscripitis introduced as a reminder thit is the
In particular, we see from Eq¢53), (54), and(57) that, if  solution of Eq.(63), in the presence of the sourpex). Then
we choosep;=—p,=p, we immediately obtainC5"(p;  ¢(x) can be written by

=—p,=p)=2 for the confined boundary condition in both

volume limits. That is the reason why, as a consequence of _ R
the parity property of the wave function, E4) could be lﬂ'(X):f G(x,x")j(x")dx
extended taC}" (p;=*p,=p)=2.
For periodical boundary condition, however, we have 1 .
- > )3/2f e P UTXj(x)dx’. (64
() =P~ D). (59 (7
Then, for the single-particle distribution, we will have the In the above expression we used the fact ff{at') is
following relation: localized in a small volume. The corresponding function in
momentum space is then
P1(p)=P1i(—p). (59
Nevertheless, the two-pion correlation function, which l//j(p):f j(x)e'PXdx. (65)
can be written as
_ ~ 2 The currentj(x) can be expressed as
; Ny i(P1) (= P2)
N
Co(p1,—p2)=1+ . .
~ ~ X)= Aiji(x), 66
; Nk|‘//k(pl)|2; Nl (p2) |2 10 ;1 i) (66

60
(60 wherei denotes the number of the collision centAy;is a

in the case of the periodical boundary condition, will showweight factor which represents the amplitude of the emitter.
no well-defined property under momentum reflection like theAssuming they are chaotic and a function of the coordinates
one expressed by E¢7). only, then

IV. CONVENTIONAL HANBURY BROWN —TWISS {F00d5 ()= 81T (X)ji(y). (67)
FORMULATION
Here{---} denotes an average over phases. The single-
particle spectrum and two-pion distribution function are then
written as

We now discuss the case of the conventional formulation
usually adopted in Hanbury Brown—Twiss interferometry in
terms of classical currentg(x) [5] representing the pion
sources. For simplicity, we consider the momentum as the
only quantum number involved in the problem, i.e., we de- P.(p)=N(p)>, |A2]]i(p)|? (68)
note{\} as{p}. In addition, we also assume that the pion i
state could be characterized by the measured momentum. For
instance/(p;) represents a pion in a quantum state denoteénd
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P2(p1,p2) =N(p1)N(p,)

X

Ei |Ai|2|ji<|ol>|"’2k |A2]i(p2)

2
+

N
21 A2 (PD)ii(p2)

N
—; |Ai|4ji*(pﬁj;*(pz)ji(pl)ji(pz)},

(69
with

| ror
Ji<p>=(zT)3,2fh<x>e'dex. (70

Inserting Eqs(68) and (69) into Eq. (17), we obtain the
two-pion interferometry formula expressed as

2

Ei A2 (PD)i(p2)

Ca(py,p2)=1+
Ei |Ai|2|ji<p1>|2§ |A2]j(p2)|?

Ei IAL4E (P)ii(p2) |2

2 |Ai|2|ji(p1)|2; |Ak|2|jk(p2)|2

(71)

According to Ref[5], the strength of each current could

be localized around some inelastic scattering cextesuch
that

JiOO=i(x=x), |A]?=p(x)). (72

The currentj(x—X;) is considered to be peaked around

PHYSICAL REVIEW ©2 024902

contribution is usually considered to be small when com-
pared to the emission from separate sources. Consequently,
in cases where this ter@(1/V) can be neglectelb,15], we
recover the well-known two-pion interferometry formula

Ca(p1,p2) =1+ f p(X)p(y)cod (p1—p2)(x—y)]dxdy.
(74)

In Ref.[14], a general semiclassical approach to two-pion
interferometry was used, in which a Gaussian wave packet
spread was allowed for incorporating minimal effects due to
the uncertainty principle. As pointed out in the above refer-
ence, Eq.74) corresponds to approaching the classical re-
gime, i.e., it would be valid only when the wave-packet size
is negligible, which would also be equivalent to consider
system sizes much larger than the wave-packet size. Being
so, the above derivation would be considered as a good ap-
proximation only in cases where the source size is large, as
in heavy-ion collisions. However, we should be cautious
when using it ine* e~ collisions as, in this case, the source
radius is small and the third term in EG/3) may not be
negligible. In addition, the chaotic source ansatz is also ques-
tionable there. Just to emphasize this point, let us naively
consider a fictitious source of 0 fm size, i.e(X)=4(X).
Then, from Eq.(74), we would obtain

Ca(p1,p2) =2, (75)
and, for the chaoticity parameter,
A=Cy(p,p)—1=1. (76)

Naturally, we cannot think of a “zero size” source as
being chaotic. Actually, as stated in Rg5], and illustrated
above, the chaotic ansatz is only correct when the source size
V is much larger than the size of the wave packet. In the
fictitious source case above, if we do not neglect the third
term in Eq.(71), we would obtain

Ca(p1,p2) =1, (77)

x;, and could be characterized by the size scale of the wav#hich is the correct two-pion interferometry result for the
packet;p(x;) is the source distribution function of the emit- above mode[17].

ter. Naturally, we are now considering a simplified picture,

in which phase-space correlations are absent. Ther{7&y.
can be further simplified as

EJ p(xi) p(x;)cog (p1—P2) (X —X))]

Zi p(xn; (%)

Cu(p1,p2)=1+

Ei p(X)p(X;)
- (73

> P(Xi)Ek: p(X)

The last terms in Eq969), (71), and (73) discount the

For confronting the role of the correction term in Egs.
(71) and(73) with the correlation function estimated by us-
ing Eq. (74), we choose, for simplicity,A;=1/\V and
ji(x)=1/\V,, whereV is the total volume of the source and
V, is the volume of the emitter, which is of the order of the
wave packet size. In Fig. 6 we show the corresponding re-
sults. We see that, fow=(5 fm)® and V,=(1 fm)3, the
third term is much smaller then the second, and could be
neglected, while foV=(2 fm)® andV,=(1 fm)3, its cor-
rection is substantial. Clearly then, these results depend
strongly on the wave-packet size: the smaller it is with re-
spect to the system size, the better is the approximation rep-
resented by Eq.74). From the results in Fig. 6, it seems that,
if the wave packet size is about 1 fm, we could use the
conventional pion interferometry formula in Eq4) for ana-
lyzing pion interferometry in heavy-ion collisions. However,

contribution corresponding to emitting two pions from the we could not use it to analyz"e™ collisions, since in that
samesource. In the case of very large volumes this type ofcase the source radius is of the same order as the wave-

024902-9



Q. H. ZHANG AND SANDRA S. PADULA PHYSICAL REVIEW C62 024902

2.1 - - . - altering the system size. Nevertheless, when looking at the

curves generated by using E@J) in Fig. 6, we see that the
N t:g;m } * intercept ofC(q) drops as the size of the system is reduced,
18 N al=2fm | leading to unphysical results. The relation of the system size
— L=5fm to the wave packet size is the key to understand this behav-
= —— L=3fm } # ior: when this last one cannot be considered much smaller
o ----L=2fm ' , o .
N than the first one, the additional term in E¢g1) or (73
15 would give a non-negligible contribution. Otherwise, Egs.
(71) or (73) would approximate the conventional Hanbury
Brown—Twiss formulation, represented by E@4), which
was derived under the condition that the system size is much
12 larger than the wave-packet size. Nevertheless, we should
note that this assumption wast necessary for obtaining Eq.
(17), since this was derived strictly within the quantal realm.
0.9 , , , , It is interesting to remark that, in the simplistic case of a
0.0 0.1 0.2 0.3 0.4 0.5 Gaussian breakup distribution, considering wave packets

q (GeVic) with non-negligible widths, Eq61) of Ref.[14] showed that
FIG. 6. The two-pion correlation functio€,(q) is shown vs  the inverse width is enlarged in direct proportion to the wave
lal=|p1—p2l. To help with visualization, the curves are separatedpacket size,
by brackets into two groups. In the first, denoted BY,(the curves
were obtained with the help of E¢71). The other group, denoted
by (#), corresponds to curves obtained by means of (Z4).. The 4( P2+Ap2)'
values adopted for the finite system sizes, Les2, 3, and 5 fm,
are shown in the plot. In this expressionR is the Gaussian width in space-tinte,
is the width of the Gaussian distribution in momentum space,
packet size, and the contribution the third term is non-2ndAx andAp are the corresponding wave-packet spread.
negligible. It is interesting to note that the above derivation i 0" R~2 fm, P~0.14 GeVE, and minimum packets with
equivalent to the one in RefE5,15] where a density-matrix AX=1 fm, the corresponding inverse width would B
formulation was also used. Appendixes A and B contain,~2-16 fm, an increase of about 8%. This very rough esti-
respectively, further discussion regarding a density matriXnate seems to be of the same order of the decrease in width
formulation leading to an equivalent of Eq71), and a (i.e., the increase in the apparent raglissen in Fig. 6. Fi-

simple unified form for the two formulations. nally, in Appendix A we show that, by adopting another
density matrix instead of the one proposed in &), we can

derive an interferometry result which is similar to E@1).
V. CONCLUSIONS In Appendix B, we suggest a simplified way of unifying
these two formulations, i.e., of recovering each of them by
means of a parameter choice.

Ri=R?+Ax?-

In this paper, we derived a two-pion correlation function
by adopting a different density matrix, as given in E§).
The_fini;e vglume effects on the.pion spectrum were then ACKNOWLEDGMENTS
studied in Figs. 1, 2, and 3, leading to similar results as in
Refs.[7,9,10. We found that the small momentum region is ~ We thank C.Y. Wong for elucidating discussions. We
depleted with respect to the Bose-Einstein distribution. Thevould also like to express our gratitude to M. Gyulassy and
effects on two equally charged pion correlation functionYu. Sinyukov for several helpful discussions. This work was
were also analyzed. The results in Figs. 4 and 5 show that theartially supported by the Fundiax de Amparo aPesquisa
correlation function shrinks for an increasing average paitdo Estado de "%mPaulo (FAPESB, Brazil (Project Nos.
momentum and for increasing size of the emitting source1998/05340-2 and 1998/2249-4
respectively, corresponding to an increase of its inverse
width. The first result reflects a strong sensitivity to the dy- APPENDIX A
namical matrix, through the Bose-Einstein weight factor, as
discussed in Sec. Il A. We also discussed the effects of a
diffuse boundary on the spectrum and correlation function by
considering a smooth decrease to zero of the wave function
asR goes to infinity. p= 1;[ Px (A1)

We also compared the results obtained by means of Eq.

(17) with those estimated by using Eq§1) or (73), show- instead of the one proposed in E§), we can also derive an
ing that they may differ significantly when small volumes areinterferometry result which is similar to Eq71), where
considered. For instance, from Figs. 4 and 5, and as a result

In what follows, we show that, by considering the density
atrix

oc T

of Eq. (17), we see that the boundary affects the single- and )= 2 ()™ |O>ex;{—n)\(EA—,u.)\)/T] (0 (a)™
the double-inclusive distributions in a consistent way, as the " <=0 Vny! ny! Jn !
intercept of the correlation function remain unchanged when (A2)
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The corresponding pion multiplicity distribution is given  Here w, is the occupation probability of the single-

by particle state\. In the two-particle distribution case, the
N pions could be described by two different quantum numbers
_ () Aexp(—(n ) N1 and\,. By imposing the symmetrization required by the
ony! N Bose-Einstein statistics, the two-pion wave function could be
written as
(M) =Ny=exp(—(Ex—u)/T),
) . . 1 - ~ ~ ~
and the single-particle spectrum is then i, n,(P1,P2) = E[’pxl(pl) i, (P2) + by (P2) ¥, (P1) ]
~ (B2)
P1(p)=2 Ny[n(p)I2. (A3) , ,
A If the two pions are in the same state, then we would have
In the limit V— oo, we obtain theBoltzmann distributionn- AT ~
stead of theBose-Einstein distributioderived previously in ¥ra(P1.P2) =A- i (P1) ¥ (P2)- B3
Sec. lll. . . _ . If the multiplicity distribution follows the geometry dis-
Similarly, we can derive the two-pion correlation function tripytion, thenA= V2. If, however, the multiplicity distribu-
as tion has a Poisson form, thek=1. Being so, the two-pion
2 distribution could be expressed in termsfohs
20 Ny (P ¥ (p2)
Ca(p1.p2) =1+ P2(p1.p2) :)\1 )\g}lﬂz W) @y,

; Nx|'l’x(p1)|2; Nyl ¢ (p2)|? L
X§[|~1Z)\1(p1)|2|1~ﬂ)\2(p2)|2

> N2y (py) dn(p2)|2 _ -
_ » +4, (PO, (P2)I?

2 2. _ ~ ~ ~
2 NP P22 Nalon(po) FUE (PP (P2 (P1)

(Ad) + 5 (P2) ¥ (PO} (P ¥, (P2)]

The major difference between this equation and @4)

has it igin in the fact that h ~ ~
as its origin in the fact that now we have +|A|2; 02T (P1) T (P2) |2
(ajala,a,)=(aja,)? (A5)
. ) ) =P1(p1)P1(p2)
instead of Eq(16) in Sec. Il. This comes from the fact that, )
in Eq. (A5), we are dealing with classicél.e., distinguish- n ~ % ~
able particles. In Appendix B, we show a way to unify the ; OrYx (P1) ¥ (P2)

formulation leading to Eq917) and (A4).

-2, w?|y I 2
APPENDIX B 2}\: M (p) ¥ (p2)|
If we assume that a single-pion state could be described ) 21~ ~ )

by the quantum numbex, then the single-particle spectrum +A] 2}\: @} (1) ¥ (p2)|*. (B4)
could be expressed as

Consequently, for different choices &f i.e., A=2 or

Pip)=> |9 (p)|2 B1) A=1 discussed above,_we could recover the results in Eq.
x (17) or Eq. (A4), respectively.
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