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Small size boundary effects on two-pion interferometry

Q. H. Zhang and Sandra S. Padula
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Bose-Einstein correlations of two identically charged pions are derived when these particles, the most
abundantly produced in relativistic heavy-ion collisions, are confined in finite volumes. Boundary effects on a
single-pion spectrum are also studied. Numerical results emphasize that the conventional formulation usually
adopted to describe two-pion interferometry should not be used when the source size is small, since this is the
most sensitive case to boundary effects. Specific examples are considered for better illustration.

PACS number~s!: 25.75.Gz, 25.70.Pq
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I. INTRODUCTION

It is generally expected that high-energy heavy-ion co
sions may provide the tools to probe the existence of a n
phase of matter of strongly interaction particles, the qua
gluon plasma~QGP!, at high temperature and high baryo
density@1#. The hope of discovering the QGP in high-ener
heavy-ion collisions is to some extent connected to the p
sibility of measuring the geometrical sizes of the emiss
region of secondary particles. An important tool for acco
plishing such size measurements is the so-called Han
Brown–Twiss interferometry@2#. This method was origi-
nally proposed in the 1950s for measuring stellar radii b
shortly afterwards, it was discovered@3# that a similar pro-
cedure could also be applied to high-energy collisions
determining the dimensions of pion-emitting sources. T
method has been extensively developed, improved, and
ter understood since the pioneering times@4#.

Different from the stellar case, however, where the
mensions are indeed immense, in the subatomic level
effects associated with the small sizes of the particle emit
and their boundaries may have an important role. Inde
already in the well-known paper by Gyulassy, Kauffman
and Wilson@5#, and more recently, in Refs.@6–11#, effects
of source finiteness on particle spectra and correlation fu
tions were considered, although the conclusions of som
them were somewhat contradictory. For example, the lo
transverse-momentum region of Refs.@8,11# is shown to be
enhanced with respect to the Bose-Einstein distributi
However, this enhancement was not observed in other re
ences quoted above. As we shall see later, in agreement
the results of Refs.@7,9,10#, a depletion in the low-
momentum region is observed instead. This apparent
crepancy may be explained by both the form chosen for
density matrix in Refs.@8,11#, and by the full field-
theoretical approach adopted there. However, the inhe
difficulties of that approach are enormous, and the simp
treatment discussed in the present paper already sheds
on the relevant points of the problem.

The approach suggested in Refs.@7,9# seemed appealing
for the following reasons. First, it considered that in u
trarelativistic nucleus-nucleus collisions pions are the m
abundantly produced particles, being emitted at freeze
temperatures around 0.1–0.2 GeV. Following Refs.@9,10#, it
was argued that right after these collisions, since the ave
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pion separation is smaller than their interaction range,
pions in such a stage of the system evolution are s
strongly interacting with each other. The effects of intera
tion among pions could then be modeled by considering
they move in an attractive mean-field potential, which e
tends over the whole pion system. This implies, for instan
that in the two-pion case, they would not suffer any effe
other than mean-field attraction and an identical parti
symmetrization. Consequently, rather than being in a gas
pion system should be considered in a quasibound liq
phase, with the surface tension@12# acting as a reflecting
boundary. Although details on this reflection depend on
pion wavelength, the pion wave function could be conside
as vanishing outside this boundary. The pions become
when their average separation is larger than their interac
range. Due to the short range of the strong interaction, h
ever, we would expect this liquid-gas transition to occur ve
rapidly, in such a way that the momentum distribution
pions could be essentially governed by their momentum
tribution just before they freeze out. Under these circu
stances, we would also expect that the observed pion
mentum distribution would be modified by the presence
this boundary. This is, in fact, what is analyzed in this wo
as well as in Refs.@7–11#.

On the other hand, since pion interferometry is sensit
to the geometrical size of the emission region as well as
the underlying dynamics, we would expect that the bound
would also affect the correlation function, buta priori we
would not know how. Would it affect single- and double
inclusive distributions similarly? How would the intercept
the two-particle correlation function behave? How would t
general shape of this function be affected? For insight i
these questions, here we investigate the effects exerted b
boundary on the two-particle correlation function. We cou
naively expect that the importance of quantum statis
would progressively increase as the dimension of the em
sion region decreases. The results turned out to fulfill th
expectations exactly. Consequently, semiclassical
proaches would have their applicability limited by the size
the emission region in focus. In other words, small emiss
volumes would stress the need for quantum statistics and
a consequence, classical density matrices would lead to
consistent results. This problem is clearly illustrated later
the present work.

The plan of this paper is the following: in Sec. II, w
©2000 The American Physical Society02-1
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derive the single-inclusive distribution, as well as the tw
pion correlation function, considering a density matrix suit
for describingp6p6 Bose-Einstein effects. In Sec. III, th
boundary effects on the two-pion correlation and sing
particle spectrum distribution are illustrated by means of t
specific examples. Section IV is devoted to illustrating t
results which would be expected when previous methods
deriving two-pion interferometry formula are employed, a
in addition finite volume effects are studied. Finally, conc
sions are discussed in Sec. V.

II. SPECTRUM AND TWO-PION CORRELATION
FUNCTION

In this section, we derive a generic formulation for bo
the single- and two-particle inclusive distributions, whi
would be suited for describingp1p1 or p2p2 bounded in
a finite volume. We assume that the pion creation operato
coordinate space can be expressed as

ĉ†~x!5(
l

âl
†cl* ~x!, ~1!

where al
† is the creation operator for creating a pion in

quantum state characterized by a quantum numberl. Then
cl(x) is one of the eigenfunctions belonging to a localiz
complete set, which satisfies the orthonormality condition

E dxcl* ~x!cl8~x!5dl,l8 ~2!

and the completeness relation

(
l

cl* ~x!cl~y!5d~x2y!. ~3!

Similarly, the pion annihilation operator in coordina
space can be written as

ĉ~x!5(
l

âlcl~x!. ~4!

In momentum space, the corresponding pion creation
erator ĉ†(p) and annihilation operatorĉ(p) can be ex-
pressed as

ĉ†~p!5(
l

âl
†c̃l* ~p! ~5!

and

ĉ~p!5(
l

âlc̃l~p!, ~6!

where

c̃l~p!5
1

~2p!3/2E cl~x!eip•xdx. ~7!
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We write the density matrix operator for our bosonic sy
tem as

r̂5expF2
1

T
~Ĥ2mN̂!G , ~8!

where

Ĥ5(
l

Elal
†al , N̂5(

l
al

†al , ~9!

are the Hamiltonian and number operators, respectively;T is
the temperature.

The corresponding normalization is explicitly included
the definition of the expectation value of observables as,
instance, for an operatorÂ:

^Â&5
tr $r̂Â%

tr $r̂%
. ~10!

Then the single-pion distribution can be written as

P1~p!5^ĉ†~p!ĉ~p!&5(
l

(
l8

c̃l* ~p!c̃l8
* ~p!^âl

†âl8&.

~11!

The expectation valuêâl
†âl8& is related to the occupation

probability of the single-particle statel, Nl , by

^âl
†âl8&5dl,l8Nl ; ~12!

for a bosonic system in equilibrium at a temperatureT and
chemical potentialm, it is represented by the Bose-Einste
distribution

Nl5
1

expF1

T
~El2m!G21

. ~13!

By inserting Eqs.~12! and ~13! into Eq. ~11!, we obtain
the single-particle spectrum for one pion species as

P1~p!5(
l

Nlc̃l* ~p!c̃l~p!. ~14!

The above formula coincides with the one employed in R
@9# for expressing single-pion distribution.

Similarly, the two-pion distribution function can be writ
ten as

P2~p1 ,p2!5^ĉ†~p1!ĉ†~p2!ĉ~p1!ĉ~p2!&

5 (
l1 ,l2 ,l3 ,l4

c̃l1
* ~p1!c̃l2

* ~p2!c̃l3
~p1!c̃l4

~p2!

3^âl1

† âl2

† âl3
âl4

&

5 (
l1 ,l2 ,l3 ,l4

c̃l1
* ~p1!c̃l2

* ~p2!c̃l3
~p1!c̃l4

~p2!
2-2
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3@^âl1

† âl3
&^âl2

† âl4
&l1Þl2

1^âl1

† âl4
&1^âl2

† âl3
&l1Þl2

1^âl1

† âl2

† âl3
âl4

&l15l25l35l4
#

5P1~p1!P1~p2!1(
l1

(
l2

Nl1
Nl2

3c̃l1
* ~p1!c̃l1

~p2!c̃l2
* ~p1!c̃l2

~p2!

5P1~p1!P1~p2!1U(
l

Nlc̃l* ~p1!c̃l~p2!U2

.

~15!

Since we are considering the case of two indistingui
able, identically charged pions,

^âl
†âl

†âlâl&52^âl
†âl&2. ~16!

From the particular form proposed for the density mat
in Eq. ~8!, we can see that^âl

†âl
†&5^âlâl&50, showing that

it would not be suited for describingp0p0 andp1p2 cases.
For this purpose, the formalism proposed in Refs.@6,8,11#
may be more adequate.

The two-particle correlation can be written as

C2~p1 ,p2!5
P2~p1 ,p2!

P1~p1!P1~p2!

511

U(
l

Nlc̃l* ~p1!c̃l~p2!U2

(
l

Nluc̃l~p1!u2(
l

Nluc̃l~p2!u2

.

~17!

We can see immediately from the above formula tha
q5p12p250 we haveC2(p,p)52. We also notice that the
result for the correlation function in Eq.~17! reflects the
symmetrization over different states~and thus, the uncer
tainty in the determination of the pion state!.

Within this formulation we can also define the corr
sponding Wigner function,g(x,K ), as

g~x,K !5
1

~2p!3 (
l

NlE cl* S x1
y

2DclS x2
y

2D
3exp~2 iK•y!dy. ~18!

Consequently, we can write

^ĉ†~p1!ĉ~p2!&5(
l

Nlc̃l* ~p1!c̃l~p2!

5E e2 i (p12p2)•xg~x,k!dx. ~19!
02490
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By means of this Wigner function, the two-pion interfe
ometry formula can be rewritten as@13–15#

C2~p1 ,p2!511

E eiq•(x2y)g~x,K !g~y,K !dxdy

E g~x,p1!g~y,p2!dxdy
. ~20!

In the above equation,K5(p11p2)/2 is the two-pion
average momentum, andq5p12p2 is their relative momen-
tum. Hereg(x,K ) can be interpreted as the probability
finding a pion at pointx with momentumK .

III. TWO-PION CORRELATION FROM A FINITE
VOLUME

A. Example 1

In order to investigate the effect of the boundary on t
single- and two-pion distribution functions, we assume t
pions produced in high-energy heavy-ion collisions a
bounded in a sphere, just before freezing out. In other wo
their distribution functions are essentially the ones they h
while confined. The pion wave function should be det
mined by the solution of the Klein-Gordon equation

@D1k2#c~r !50, ~21!

wherek25E22m2 is the momentum of the pion. On writing
the above equation, we have assumed that the pote
‘‘felt’’ by the pion inside the sphere is zero, while outside
is infinite. The boundary condition to be respected by
solution is

c~r !ur 5R50, ~22!

whereR is the radius of the sphere at freeze-out time.
The normalized wave function corresponding to the so

tion of the above equation can easily be written as

cklm~r !5
1

RJl 1(3/2)~kR!
A2

r
Ylm~u,f!Jl 1(1/2)~kr ! ~r ,R!

50 ~r>R!. ~23!

The momentum of the bounded particle,k, can be deter-
mined as the solution of the equation

Jl 1(1/2)~kR!50. ~24!

Inserting Eq.~23! into Eq.~7!, we can determine the Fou
rier transform of the confined solution of a pion inside t
sphere, as a function of the momentump, as

c̃klm~p!5A2

p
i lYlm~ p̂!

1

RJl 1(3/2)~kR! S R

p22k2D
3@pJl 1(3/2)~pR!Jl 1(1/2)~kR!

2kJl 1(1/2)~pR!Jl 1(3/2)~kR!# ~pÞk!
2-3
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5A 1

2p
i lYlm~ p̂!RJl 1(3/2)~kR! ~p5k!. ~25!

On deriving the above equation, we have made use
following integral equations:

E
0

R

rdrJl 1~1/2!~pr !Jl 1(1/2)~kr !

5
R

p22k2
@pJl 1(3/2)~pR!Jl 1(1/2)~kR!

2kJl 1(1/2)~pR!Jl 1(3/2)~kR!#, ~26!

and

E
0

R

rdrJl 1(1/2)~kr !Jl 1(1/2)~kr !5
R2

2
Jl 1(3/2)

2 ~kR!. ~27!

In addition, by imposing that the solution should vanish
the boundary, expressed by Eq.~24!, it can be shown that

lim
p→k

pJl 1~3/2!~pR!Jl 1~1/2!~kR!2kJl 1(1/2)~pR!Jl 1(3/2)~kR!

p22k2

5
RJl 1(3/2)

2 ~kR!

2
, ~28!

i.e., c̃klm(p) is a continuous function ofp at p5k.
Using the condition expressed by Eq.~24!, Eq. ~25! can

be further simplified as

c̃klm~p!5A2

p
i lYlm~ p̂!F 2k

p22k2GJl 1(1/2)~pR!. ~29!

In terms of Eq. ~27!, the single-inclusive distribution
function is given by

P1~p!5(
klm

Nklmc̃klm* ~p!c̃klm~p!

5(
klm

1

expS Ekl2m

T D21

A2

p
~2 i ! lYlm* ~ p̂!A2

p
i l

3Ylm~ p̂!F2kJl 1(1/2)~pR!

p22k2 GF2kJl 1(1/2)~pR!

p22k2 G
5(

k,l

1

expS Ekl2m

T D21
S 2l 11

2pp D S kJl 1(1/2)~pR!

p22k2 D 2

,

~30!

where we have used that

(
m52 l

m5 l

Ylm* ~ p̂1!Ylm~ p̂2!5S 2l 11

4p D Pl~ p̂1• p̂2!. ~31!
02490
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Up to this point we have considered the pions confined
a sphere, which required the wave function to have a sh
change atr 5R. However, as discussed in Ref.@16#, it could
be more appropriate to consider a smoother boundary
softening the potential felt by the pion atr 5R. Unfortu-
nately, this procedure would turn the problem into a ve
complex one@16#, and is beyond the scope of this pape
Nevertheless, as a diffuse boundary would cause a gra
decrease to zero of the pion wave function, it could be sim
lated by taking the limitR→` @16# in Eq. ~26!, i.e.,

E
0

`

Jl 1(1/2)~pr !Jl 1(1/2)~kr !rdr 5
1

k
d~p2k! ~32!

and

Jl 1(3/2)~kR!→A 2

pkR
~33!

c̃klm5 i lYlm~ p̂!A p

pkR
d~p2k!. ~34!

Then, by imposing the completeness relation@Eq. ~3!#, we
can show that

(
l

c̃l* ~p!c̃l~p!5
V

~2p!3
. ~35!

With the d function in Eqs.~32! and ~34!, the single-
particle spectrum, in the limitR→`, is then written as

P1~p!5
1

expS Ep2m

T D21
F V

~2p!3G , ~36!

where V5(4p/3)R3 is the volume of the sphere. We se
from Eq. ~36! that the ordinary Bose-Einstein distribution
recovered in the limit of a very large volume.

For p50 andV5(4p/3)R3, Eq. ~30! becomes

P1~p!up505V(
n51

`
1

expS En2m

T D21
S 3

4p5n2D , ~37!

where

En5AS np

R D 2

1mp
2 . ~38!

In the limit R→`, we have

P1~p!5F V

~2p!3G 1

expS mp2m

T D21

, ~39!

which is consistent with Eq.~36!.
From Eq.~37!, we see that the intercept of the spectru

depends on the value of the radius: asR increases,En be-
2-4
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SMALL SIZE BOUNDARY EFFECTS ON TWO-PION . . . PHYSICAL REVIEW C62 024902
comes smaller, and the maximum value of this distributi
corresponding toupu50, becomes higher. In all numerica
estimates considered in the present work we have fixem
50. In Fig. 1, the normalized single-particle distribution
plotted as a function ofupu. We have chosen a discrete no
malization, obtained by imposingN5( i 51

N P1(pi), whereN
refers to the total number of bins in which the distribution
subdivided.

We clearly see from Fig. 1 that, due to the boundary
fects, the maximum value ofupu in the spectrum decrease
for decreasing volumes, being always smaller than the c
corresponding to theR→` limit. The explanation for this
behavior can be understood in terms of the uncertainty p
ciple, i.e., as the volume of the system decreases, the un
tainty in the pion coordinate decreases accordingly, causi
large fluctuation in the pion momentum distribution. W
should note that this result coincides with the one obtaine
Refs.@7,9#, and is opposite to the results of Refs.@8,11#.

Regarding the spectrum, we could also inquire how
freeze-out temperature would affect it, and how the fini
size effect would compare with theR→` limit for different
temperatures. This is illustrated in Fig. 2. The curves th
should be compared in groups of two: solid (T
50.14 GeV) and dotted (T50.11 GeV). For emphasizing
the differences and similarities asupu increases, we plot the
difference between the two curves in each group,DP1(p)
5P1(p)uR53 fm2P1(p)uR5` , in Fig. 3. We see that, the
lower the temperature, the larger the difference between
curves of each group in the small momentum region. D
creasing the temperature has a similar effect on the spec
to that of decreasing the radius: in both cases the fluctuat
in the small region of the pion spectrum increases and
corresponding maximum is reduced. In other words,
boundary effects are more significant when we deal w
systems whose dimensions and temperatures are small.

We should observe that, except in Figs. 2 and 3 where

FIG. 1. Normalized spectrum~in arbitrary units! vs momentum
upu ~in GeV/c). The input temperature isT50.12 GeV, and the
chemical potential ism50. The solid line corresponds to the Bos
Einstein distribution, i.e., to the limitR→`. The dotted and dashe
lines correspond, respectively, to theR56 fm andR53 fm cases.
02490
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temperature dependence is studied, we have fixedT
50.12 GeV. The reason for this relies on Shuryak’s arg
ments@12#, according to which, for temperatures in the ran
0.1<T<0.2 GeV, the excited pionic matter would be bett
described as in a liquid phase inside a surface created
their mutual interaction. He added that, forT>0.15 GeV, the
influence of resonances become important, but these are
included in the present study. Therefore, we choseT
50.12 GeV, which is also of the order of the recent expe
mental freeze-out temperature estimated from both inter
ometry and spectra.

Similarly, for the expectation value of the product of tw
pion creation operators in momentum space, we can wri

FIG. 2. Normalized single-particle distribution~in arbitrary
units! vs momentumupu. The input parameters arem50, and the
radius in the finite caseR53 fm. The curves are shown for two
values of the freeze-out temperature:T50.14 GeV~solid line! and
T50.11 GeV~dotted line!, and compared with the correspondin
ones in theR→` limit.

FIG. 3. Difference in the momentum distribution~in arbitrary
units!, DP1(p)5P1(p)uR53 fm2P1(p)uR5` , vs upu, of curves with
R53 fm and the corresponding ones in theR→` limit, for two
values of the freeze-out temperatureT, as indicated in the plot, with
m50.
2-5
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^ĉ†~p1!ĉ~p2!&5(
klm

c̃klm* ~p1!c̃klm~p2!

expS Ekl2m

T D21

5(
klm

1

expS Ekl2m

T D21

3A 2

p1
~2 i ! lYlm* ~ p̂1!

3F 2k

p1
22k2GJl 1(1/2)~p1R!

3A 2

p2
~ i ! lYlm* ~ p̂2!F 2k

p2
22k2GJl 1(1/2)~p2R!

5(
kl

1

expS Ekl2m

T D21

A 4

p1p2

3
k2

~p1
22k2!~p2

22k2!
Jl 1(1/2)~p1R!

3Jl 1(1/2)~p2R!S 2l 11

4p D Pl~ p̂1• p̂2!. ~40!

The two-pion interferometry correlation function can th
be estimated by inserting the above expression into Eq.~17!.
In general, this function will depend on the angle betweenp1
andp2. For the sake of simplicity, we will considerp1 par-
allel to p2, implying that Pl(p̂1•p̂2561)5(61)l . The re-
sults for two-pion interferometry corresponding to differe
values of the pair average momentumK5(p11p2)/2, but
fixed temperature, are shown in Fig. 4. We can see tha
the pair average momentum increases, the apparent so
radius becomes larger, which is an interesting behavior, if
compare to results corresponding to expanding systems
this last case, the probed part of the system decreases
increasing average momentum. Naturally, our present
proach does not consider the effects of expansion, and
enlargement of the system’s apparent dimensions with
creasingK, seen in Fig. 4, has its origin in the strong sen
tivity to the dynamical matrix. This can be better understo
by observing the presence of the weight factorNl in Eq.
~17!, with Nl expressed in Eq.~13!. The increase of the
average momentum reflects the increase in the individ
momentap1 andp2, which comes from larger values of th
sum coefficientk in Eq. ~17!. This has two opposite effects
the factors 1/(pi

22k2) give larger contribution fork;pi .
However, larger values ofk would also make the exponentia
factor~with m50! drop faster. Thus, by increasingK, we are
effectively including a larger number ofk coefficients that
contributes to the sum in Eq.~17!, with decreasing weigh
;exp(2Ekl /T). The interference of these extra terms cor
sponding to largerk with the terms already considered in th
02490
t

as
rce
e
In
ith
p-
he
-

-
d

al

-

sum would make the correlation function drop faster, con
quently becoming narrower. Alternatively, we could unde
stand these results by noting that pions with larger mom
tum come from larger quantuml states which, in turn,
correspond to a smaller spread in coordinate space. As
weight factor in Eq.~17! is of Bose-Einstein form, large
quantum states will give a smaller contribution to the sou
distribution, causing the effective source radius to app
larger. In order to confirm that the weight factor in Eq.~17!
is the responsible for the behavior observed in Fig. 4, let
consider the case in which we choose it to be a cons
factor, for instanceNl51. This situation could be derived
from the Bose-Einstein distribution form by consideringT
@1, so that the two-pion interferometry results would b
come insensitive to the average momentum, due to the v
large values of the temperature. The numerical result co
sponding to this case is also shown in Fig. 4~narrower
curve!. On the other hand, with the help of the completen
relation @Eq. ~3!# and of Eq.~7!, by also assuming that th
pions are confined in a sphere, it is straightforward to der
the following K independent two-pion correlation function

C2~q!511
9

q4R6 FR cos~qR!2
sin~qR!

q G2

. ~41!

For completeness, in Fig. 4 we also include the curve ba
on Eq.~41!, which coincides with our numerically generate
curve, cross checking the correctness of our numerical
culation.

Figure 5 shows the two-pion correlation function for i
creasing values of the spherical radius, i.e., for enlarg
volumes. From it, we can clearly see that, as the confin

FIG. 4. The two-pion correlation functionC2(q) is shown vs the
momentum differenceuqu5up12p2u. The input parameters areT
50.12 GeV, R53 fm, and m50. The solid, dotted, and dashe
lines correspond to the average pair momentum valuesK
50.1 GeV/c, 0.2 GeV/c, and 0.3 GeV/c, respectively. The circles
refer to numerical results similar to the previous ones but with
unity weight factorNl51 from Eq.~17!. The dot-dashed line cor
responds to the analytical result in Eq.~41!.
2-6
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volume increases, the source radius derived from two-p
correlation also increases, as would be expected.

Again, as discussed previously for the spectrum, we co
estimate the effect of a diffuse boundary on the two-p
correlation function by considering the limitR→`. By in-
serting Eq.~34! into Eq. ~40!, remembering that in this limit
we can take(k→*dk, and using the previous result for th
spectrum in this limit@Eq. ~36!# we finally obtain that

C2~p1 ,p2!5H 1 ~p1Þp2!

2 ~p15p2!,
~42!

as would be expected.
To conclude this section we should keep in mind that

the system size is very small, it would be sensitive to
boundary effects even if we considered a diffuse bound
Conversely, if the system size is very large, we would
expect a significant effect in neither the sharp nor the diff
boundary case@16#.

B. Example 2

In this subsection, we will study the sensitivity of spe
trum and of the two-pion correlation function to the syste
boundaries, by considering the pion system inside a bo
dimensionsL3L3L. We first choose periodic boundar
conditions. In this case, the eigenfunction can be written

ck~r !5
1

AV
exp~2 ik•r !. ~43!

Herek is the quantum number which satisfies the follo
ing constraint:

ki•L52nip→H i 51,2,3

ni50,61,62, . . . .
~44!

FIG. 5. The correlation functionC2(q) is plotted as a function
of the momentum difference,uqu5up12p2u. The input parameters
are the temperatureT50.12 GeV, the average pair momentumK
50.4 GeV/c, andm50. The solid, dotted, and dashed lines cor
spond, respectively, to the sphere radiiR52, 3, and 7 fm.
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The corresponding Fourier transformc̃k(p) can be ex-
pressed as

c̃k~p!5
1

~2p!3/2

8

AV
Fsin@~p12k1!L/2#

p12k1
GFsin@~p22k2!L/2#

p22k2
G

3Fsin@~p32k3!L/2#

p32k3
G . ~45!

The single- and two-particle distributions follow from
Eqs. ~14! and ~15!. We should note that, in the limitL→0,
and using condition~44!, we find the contribution of only
one state (k50) to the two-pion correlation function, result
ing in

C~p1 ,p2!52. ~46!

On the other hand, if we take the limit ofV→`, Eq. ~45!
becomes

ck~p!5
1

AV
~2p!3/2d~p2k!. ~47!

With the above form forck(p) in the limit of very large
volumes, for the correlation function we obtain

C2~p1 ,p2!5H 1 ~p1Þp2!

2 ~p15p2!.
~48!

If, instead of the periodic boundary conditions, we co
sider that the pions are confined in the box, i.e., we assu
the potential outside it is infinite, then two classes of so
tions are possible:

c I~x!5A8

V
sin~k1x!sin~k2y!sin~k3z!, ~49!

with

kiL52nip→H i 51,2,3

ni51,2, . . .
~50!

and

c II ~x!5A8

V
cos~k1x!cos~k2y!cos~k3z!, ~51!

with

kiL5~2ni21!p→H i 51,2,3

ni51,2, . . . .
~52!

It can be shown that, forV→0, we have

C2
I ,II ~p1 ,p2!52, ~53!

while, for V→`, we obtain

-

2-7
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C2
I ,II ~p1 ,p2!5H 1 ~p1Þ6p2!

2 ~p156p2!.
~54!

The reason for including the6 signs in Eq.~54! comes
from the parity property of Eqs.~49! and~51!. From them, it
is immediate to see that solutionI has negative parity, while
solution II has positive parity. The corresponding Four
transforms then show the same parity property, i.e.,

c̃k
I ~p!52c̃k

I ~2p!, c̃k
II ~2p!5c̃k

II ~p!. ~55!

From the above results, we can show that the sing
particle spectrum and two-pion correlation function cor
spondingly have the properties

P1
I ,II ~p!5P1

I ,II ~2p! ~56!

and

C2
I ,II ~p1 ,2p2!5C2

I ,II ~p1 ,p2!. ~57!

In particular, we see from Eqs.~53!, ~54!, and~57! that, if
we choosep152p25p, we immediately obtainC2

I ,II (p1

52p25p)52 for the confined boundary condition in bo
volume limits. That is the reason why, as a consequenc
the parity property of the wave function, Eq.~54! could be
extended toC2

I ,II (p156p25p)52.
For periodical boundary condition, however, we have

c̃k~p!5c̃2k~2p!. ~58!

Then, for the single-particle distribution, we will have th
following relation:

P1~p!5P1~2p!. ~59!

Nevertheless, the two-pion correlation function, whi
can be written as

C2~p1 ,2p2!511

U(
k

Nkc̃k~p1!c̃k~2p2!U2

(
k

Nkuc̃k~p1!u2(
k

Nkuc̃k~p2!u2

~60!

in the case of the periodical boundary condition, will sho
no well-defined property under momentum reflection like
one expressed by Eq.~57!.

IV. CONVENTIONAL HANBURY BROWN –TWISS
FORMULATION

We now discuss the case of the conventional formulati
usually adopted in Hanbury Brown–Twiss interferometry
terms of classical currentsj (x) @5# representing the pion
sources. For simplicity, we consider the momentum as
only quantum number involved in the problem, i.e., we d
note $l% as $p%. In addition, we also assume that the pi
state could be characterized by the measured momentum
instance,c(p1) represents a pion in a quantum state deno
02490
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by p1. Then the single- and two-particle distributions can
written as

P1~p!5N~p!c* ~p!c~p! ~61!

and

P2~p1 ,p2!5N~p1!N~p2!c* ~p1!c* ~p2!c~p1!c~p2!.
~62!

In the above relations we dropped the subscript$l% of the
state.N(p) is the Bose-Einstein distribution. In order to co
nect to the Hanbury Brown–Twiss effect, we need to ma
one further assumption: we assume that the sourcej (x) is
chaotic and a function of the coordinates only.c(x) is de-
termined as a solution of the equation

~D1p2!c j~x!5 j ~x!. ~63!

The superscriptj is introduced as a reminder thatc j is the
solution of Eq.~63!, in the presence of the sourcej (x). Then
c j (x) can be written by

c j~x!5E G~x,x8! j ~x8!dx8

5
1

~2p!3/2E e2 ip•(x2x8) j ~x8!dx8. ~64!

In the above expression we used the fact thatj (x8) is
localized in a small volume. The corresponding function
momentum space is then

c j~p!5E j ~x!eipxdx. ~65!

The currentj (x) can be expressed as

j ~x!5(
i 51

N

Ai j i~x!, ~66!

where i denotes the number of the collision center;Ai is a
weight factor which represents the amplitude of the emit
Assuming they are chaotic and a function of the coordina
only, then

$ j i* ~x! j j~y!%5d i j j i* ~x! j i~y!. ~67!

Here $•••% denotes an average over phases. The sin
particle spectrum and two-pion distribution function are th
written as

P1~p!5N~p!(
i

uAi u2u j i~p!u2 ~68!

and
2-8
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P2~p1 ,p2!5N~p1!N~p2!

3F(
i

uAi u2u j i~p1!u2(
k

uAku2u j k~p2!u2

1U(
i 51

N

uAi u2 j i* ~p1! j i~p2!U2

2(
i 51

N

uAi u4 j i* ~p1! j i* ~p2! j i~p1! j i~p2!G ,

~69!

with

j i~p!5
1

~2p!3/2E j i~x!eipxdx. ~70!

Inserting Eqs.~68! and ~69! into Eq. ~17!, we obtain the
two-pion interferometry formula expressed as

C2~p1 ,p2!511

U(
i

uAi u2 j i* ~p1! j i~p2!U2

(
i

uAi u2u j i~p1!u2(
k

uAku2u j k~p2!u2

2

(
i

uAi u4u j i* ~p1! j i~p2!u2

(
i

uAi u2u j i~p1!u2(
k

uAku2u j k~p2!u2
.

~71!

According to Ref.@5#, the strength of each current cou
be localized around some inelastic scattering centerxi , such
that

j i~x!5 j ~x2xi !, uAi u25r~xi !. ~72!

The currentj (x2xi) is considered to be peaked arou
xi , and could be characterized by the size scale of the w
packet;r(xi) is the source distribution function of the emi
ter. Naturally, we are now considering a simplified pictu
in which phase-space correlations are absent. Then Eq.~71!
can be further simplified as

C2~p1 ,p2!511

(
i , j

r~xi !r~xj !cos@~p12p2!~xi2xj !#

(
i

r~xi !(
k

r~xk!

2

(
i

r~xi !r~xi !

(
i

r~xi !(
k

r~xk!

. ~73!

The last terms in Eqs.~69!, ~71!, and ~73! discount the
contribution corresponding to emitting two pions from t
samesource. In the case of very large volumes this type
02490
ve
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contribution is usually considered to be small when co
pared to the emission from separate sources. Conseque
in cases where this termO(1/V) can be neglected@5,15#, we
recover the well-known two-pion interferometry formula

C2~p1 ,p2!511E r~x!r~y!cos@~p12p2!~x2y!#dxdy.

~74!

In Ref. @14#, a general semiclassical approach to two-pi
interferometry was used, in which a Gaussian wave pac
spread was allowed for incorporating minimal effects due
the uncertainty principle. As pointed out in the above ref
ence, Eq.~74! corresponds to approaching the classical
gime, i.e., it would be valid only when the wave-packet s
is negligible, which would also be equivalent to consid
system sizes much larger than the wave-packet size. B
so, the above derivation would be considered as a good
proximation only in cases where the source size is large
in heavy-ion collisions. However, we should be cautio
when using it ine1e2 collisions as, in this case, the sourc
radius is small and the third term in Eq.~73! may not be
negligible. In addition, the chaotic source ansatz is also qu
tionable there. Just to emphasize this point, let us naiv
consider a fictitious source of 0 fm size, i.e.,r(x)5d(x).
Then, from Eq.~74!, we would obtain

C2~p1 ,p2!52, ~75!

and, for the chaoticity parameter,

l5C2~p,p!2151. ~76!

Naturally, we cannot think of a ‘‘zero size’’ source a
being chaotic. Actually, as stated in Ref.@5#, and illustrated
above, the chaotic ansatz is only correct when the source
V is much larger than the size of the wave packet. In
fictitious source case above, if we do not neglect the th
term in Eq.~71!, we would obtain

C2~p1 ,p2!51, ~77!

which is the correct two-pion interferometry result for th
above model@17#.

For confronting the role of the correction term in Eq
~71! and ~73! with the correlation function estimated by u
ing Eq. ~74!, we choose, for simplicity,Ai51/AV and
j i(x)51/AVs, whereV is the total volume of the source an
Vs is the volume of the emitter, which is of the order of th
wave packet size. In Fig. 6 we show the corresponding
sults. We see that, forV5(5 fm)3 and Vs5(1 fm)3, the
third term is much smaller then the second, and could
neglected, while forV5(2 fm)3 and Vs5(1 fm)3, its cor-
rection is substantial. Clearly then, these results dep
strongly on the wave-packet size: the smaller it is with
spect to the system size, the better is the approximation
resented by Eq.~74!. From the results in Fig. 6, it seems tha
if the wave packet size is about 1 fm, we could use
conventional pion interferometry formula in Eq.~74! for ana-
lyzing pion interferometry in heavy-ion collisions. Howeve
we could not use it to analyzee1e2 collisions, since in that
case the source radius is of the same order as the w
2-9
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Q. H. ZHANG AND SANDRA S. PADULA PHYSICAL REVIEW C62 024902
packet size, and the contribution the third term is no
negligible. It is interesting to note that the above derivation
equivalent to the one in Refs.@5,15# where a density-matrix
formulation was also used. Appendixes A and B conta
respectively, further discussion regarding a density ma
formulation leading to an equivalent of Eq.~71!, and a
simple unified form for the two formulations.

V. CONCLUSIONS

In this paper, we derived a two-pion correlation functi
by adopting a different density matrix, as given in Eq.~8!.
The finite volume effects on the pion spectrum were th
studied in Figs. 1, 2, and 3, leading to similar results as
Refs.@7,9,10#. We found that the small momentum region
depleted with respect to the Bose-Einstein distribution. T
effects on two equally charged pion correlation functi
were also analyzed. The results in Figs. 4 and 5 show tha
correlation function shrinks for an increasing average p
momentum and for increasing size of the emitting sour
respectively, corresponding to an increase of its inve
width. The first result reflects a strong sensitivity to the d
namical matrix, through the Bose-Einstein weight factor,
discussed in Sec. III A. We also discussed the effects o
diffuse boundary on the spectrum and correlation function
considering a smooth decrease to zero of the wave func
asR goes to infinity.

We also compared the results obtained by means of
~17! with those estimated by using Eqs.~71! or ~73!, show-
ing that they may differ significantly when small volumes a
considered. For instance, from Figs. 4 and 5, and as a re
of Eq. ~17!, we see that the boundary affects the single- a
the double-inclusive distributions in a consistent way, as
intercept of the correlation function remain unchanged wh

FIG. 6. The two-pion correlation functionC2(q) is shown vs
uqu5up12p2u. To help with visualization, the curves are separa
by brackets into two groups. In the first, denoted by (!), the curves
were obtained with the help of Eq.~71!. The other group, denote
by (#), corresponds to curves obtained by means of Eq.~74!. The
values adopted for the finite system sizes, i.e.,L52, 3, and 5 fm,
are shown in the plot.
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altering the system size. Nevertheless, when looking at
curves generated by using Eq.~71! in Fig. 6, we see that the
intercept ofC(q) drops as the size of the system is reduc
leading to unphysical results. The relation of the system s
to the wave packet size is the key to understand this beh
ior: when this last one cannot be considered much sma
than the first one, the additional term in Eqs.~71! or ~73!
would give a non-negligible contribution. Otherwise, Eq
~71! or ~73! would approximate the conventional Hanbu
Brown–Twiss formulation, represented by Eq.~74!, which
was derived under the condition that the system size is m
larger than the wave-packet size. Nevertheless, we sh
note that this assumption wasnot necessary for obtaining Eq
~17!, since this was derived strictly within the quantal real
It is interesting to remark that, in the simplistic case of
Gaussian breakup distribution, considering wave pack
with non-negligible widths, Eq.~61! of Ref. @14# showed that
the inverse width is enlarged in direct proportion to the wa
packet size,

RD
2 5R21Dx22

1

4~P21Dp2!
.

In this expression,R is the Gaussian width in space-time,P
is the width of the Gaussian distribution in momentum spa
and Dx and Dp are the corresponding wave-packet spre
For R;2 fm, P;0.14 GeV/c, and minimum packets with
Dx51 fm, the corresponding inverse width would beRD

'2.16 fm, an increase of about 8%. This very rough e
mate seems to be of the same order of the decrease in w
~i.e., the increase in the apparent radius! seen in Fig. 6. Fi-
nally, in Appendix A we show that, by adopting anoth
density matrix instead of the one proposed in Eq.~8!, we can
derive an interferometry result which is similar to Eq.~71!.
In Appendix B, we suggest a simplified way of unifyin
these two formulations, i.e., of recovering each of them
means of a parameter choice.
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APPENDIX A

In what follows, we show that, by considering the dens
matrix

r5)
l

rl ~A1!

instead of the one proposed in Eq.~8!, we can also derive an
interferometry result which is similar to Eq.~71!, where

rl5 (
nl50

`
~al

†!nl

Anl!
u0&

exp@2nl~El2ml!/T#

nl!
^0u

~al!nl

Anl!
.

~A2!

d
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The corresponding pion multiplicity distribution is give
by

Pnl
5

^nl&nl

nl!
exp~2^nl&!,

^nl&5Nl5exp~2~El2m!/T!,

and the single-particle spectrum is then

P1~p!5(
l

Nluc̃l~p!u2. ~A3!

In the limit V→`, we obtain theBoltzmann distributionin-
stead of theBose-Einstein distributionderived previously in
Sec. III.

Similarly, we can derive the two-pion correlation functio
as

C2~p1 ,p2!511

U(
l

Nlcl* ~p1!cl~p2!U2

(
l

Nlucl~p1!u2(
l

Nlucl~p2!u2

2

(
l

Nl
2ucl~p1!cl~p2!u2

(
l

Nlucl~p1!u2(
l

Nlucl~p2!u2
.

~A4!

The major difference between this equation and Eq.~17!
has its origin in the fact that now we have

^al
†al

†alal&5^al
†al&2 ~A5!

instead of Eq.~16! in Sec. II. This comes from the fact tha
in Eq. ~A5!, we are dealing with classical~i.e., distinguish-
able! particles. In Appendix B, we show a way to unify th
formulation leading to Eqs.~17! and ~A4!.

APPENDIX B

If we assume that a single-pion state could be descri
by the quantum numberl, then the single-particle spectrum
could be expressed as

P1~p!5(
l

vluc̃l~p!u2. ~B1!
e

02490
d

Here vl is the occupation probability of the single
particle statel. In the two-particle distribution case, th
pions could be described by two different quantum numb
l1 andl2. By imposing the symmetrization required by th
Bose-Einstein statistics, the two-pion wave function could
written as

cl1 ,l2
~p1 ,p2!5

1

A2
@c̃l1

~p1!c̃l2
~p2!1c̃l1

~p2!c̃l2
~p1!#.

~B2!

If the two pions are in the same state, then we would h

cl,l~p1 ,p2!5A•c̃l~p1!c̃l~p2!. ~B3!

If the multiplicity distribution follows the geometry dis
tribution, thenA5A2. If, however, the multiplicity distribu-
tion has a Poisson form, thenA51. Being so, the two-pion
distribution could be expressed in terms ofA as

P2~p1 ,p2!5 (
l1 ,l2 ,l1Þl2

vl1
vl2

3
1

2
@ uc̃l1

~p1!u2uc̃l2
~p2!u2

1uc̃l2
~p1!u2uc̃l1

~p2!u2

1c̃l1
* ~p1!c̃l1

~p2!c̃l2
* ~p2!c̃l2

~p1!

1c̃l1
* ~p2!c̃l1

~p1!c̃l2
* ~p1!c̃l2

~p2!#

1uAu2(
l

vl
2uc̃l~p1!c̃l~p2!u2

5P1~p1!P1~p2!

1U(
l

vlc̃l* ~p1!c̃l~p2!U2

22(
l

vl
2uc̃l~p1!c̃l~p2!u2

1uAu2(
l

vl
2uc̃l~p1!c̃l~p2!u2. ~B4!

Consequently, for different choices ofA, i.e., A5A2 or
A51 discussed above, we could recover the results in
~17! or Eq. ~A4!, respectively.
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