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Relativistic eikonal approximation in high-energy A(e,e’p) reactions
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A fully relativistic model for the description of exclusives,@’p) reactions off nuclear targets at high
energies and momentum transfers is outlined. It is based on the eikonal approximation for the ejectile scattering
wave function and a relativistic mean-field approximation to the Walecka model. ResulCfere’ p) and
1%0(e,e’p) differential cross sections and separated structure functions are presented for four-momenta in the
range 0.8Q?<20 (GeVk)?2. The regions of applicability of the eikonal approximation are studied and
observed to be confined to proton knockout in a relatively small cone about the momentum transfer. A simple
criterion defining the boundaries of this cone is determined. QReevolution of the effect of off-shell
ambiguities on the differente(e’p) structure functions is addressed. At sufficiently high value®bttheir
impact on the cross sections is illustrated to become practically negligible. It is pointed out that for the whole
range ofQ? values studied here, the bulk of the relativistic effects arising from the coupling between the lower
components in the wave functions, is manifesting itself in the longitudinal-transverse interference term.

PACS numbd(s): 24.10.Jv, 25.30.Fj

[. INTRODUCTION successful in describing small-angle proton-nucleus scatter-
ing at higher energiel!] and is conceived as a baseline for
ExclusiveA(e,e’p)B reactions from nuclei constitute an calculating the effect of final-state interactions in high-
invaluable tool to probe a wide variety of nuclear phenom-e€nergy €,e’p) reactions. Glauber theory is a multiple-
ena. At low values of the virtual photon’s four-momentum Scattering extension of the standard eikonal approximation
transfer szaz_wz and, accordingly, larger distance that relates_ through a proflle function the e_zjectlle’s dlstorFed
scales, the quasielasti(e,e’p) reaction probes the mean- wave function to the elastic proton scattering wave function
. . e L 3,5—8. The Glauber method has frequently been shown to
field structure of nuclei. From systematic investigations for

large number of target nuclei a richness of precise informa- e reliable in describiné(p,p’) processes. Several nonrel-
arg . g . pre ativistic studied9-11] have formally investigated the appli-
tion about the independent-particle wave functions and spe

. . 5 (f:'ability of the Glauber model for describig(e,e’p) reac-
troscopic strengths was assemblddl At high Q e_md,de' tions at higher energies and momentum transfers. Recently,
creasing distance scales, the scope of exclus&i@'p)  the first high-quality data for exclusivé®O(e,e’p) cross
measurements shifts toward; studms(pxbssmle medium _sections at higher four-momentum  transfef Q2
dependences of the nucleonic properties, and, effects like 1 (GeV/c)?] became availablEL2]. Below, we will com-
color transparency and the short-range structure of nuclepare results of relativistic eikonal calculations with these
Within the context of exclusiveg,e’'p) reactions, “color  data. We believe that this comparison between model calcu-
transparency” stands for the suggestion that at sufficientlfations and data provides a stringent test of the applicability
high values ofQ? the struck proton may interact in an of the eikonal approximation in describing,€'p) reac-
anomalously weak manner with the “spectator” nucleons intions.
the target nucleul2]. Since relativistic effects are expected to become critical in
The extraction of physical information from measuredthe GeV energy domain, we explore the possibility of devel-
A(e,e’p)B cross sections usually involves some theoreticabping a fully relativistic model forA(e,e’p) processes,
modeling of which the major ingredients are the initial thereby using the eikonal limit to solve the equations for the
(bound and final(scattering proton wave functions and the final-state wave functions. We employ a relativistic mean-
electromagnetic electron-nucleus coupling. At lower valuedield approximation to the Walecka model to determine the
of Q?, most theoretical work one(e’p) reactions was per- bound state wave functions and binding energies, as well as
formed in the so-called distorted-wave impulse approximafucleon and meson potentials. The same mean-field poten-
tion (DWIA). The idea behind the DWIA approach is that tials are then also used to compute the scattering wave func-
the inital (bound and final (scattering state of the struck tion in the Dirac eikonal limit. The work presented here is a
nucleon can be computed in a potential model, whereas fasmall initial step towards the formulation of a fully micro-
the electron-nucleus coupling an “off-shell corrected” scopic relativistic model for the description &f,€’p) reac-
electron-proton form can be used. The wealth of high-qualitytions that could possibly bridge the gap between the low and
(e,e’'p) data that electron-scattering experiments have promntermediate-energy regime. The model developed in this
vided over the last 20 years, made sure that the DWIA modwork can be formally applied in a wid®? range. As a
els are well tested against experimental data. For higher vatnatter of fact, we employ the relativistic eikonal method to
ues of the energy and momentum transf¢Q?  estimate the sensitivity ofe(e’p) observables in the few
=1 (GeV/lc)?], most theoretical & e’p) work starts from  GeV regime to a number of physical effects, including off-
the nonrelativistic Glauber theoif]. This theory is highly  shell ambiguities and relativity. We adopt different prescrip-
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tions for the electron-nucleus coupling in our calculations. d5o MM s ks
By doing this, we estimate the sensitivity of the observables =
to the theoretical uncertainties that surround the choice of thé€' dQe:dQ, 8m°Ma
off-shell electron-proton vertex. It is often claimed that off-

shell ambiguitiesp decrease in importance as the four- FonRe) Fh(rRetoroRoo)) (1)
momentum transfer increases. Here, we make an attempt to ) ) )
quantify the relative importance of the off-shell effects for Wheref e is the hadronic recoil factor
the (e,e’p) structure functions by comparing results ob-

tained with different off-shell electron-proton couplings.

Hereby we are primarily concerned with the question how Ea-1
big the uncertainties remain when higher and higher four-
momentum transfers are probed.

In Sec. Il we introduce a relativistic eikonal formalism for
calculatingA(e,e’ p) observables. This includes a discussion
of the method employed to determine the bou8dc. Il B)
and scattenng(Sec. Il Q states. Varlous forms for the with 6; being the angle betweelﬁf and a and oy, is the
photon-nucleus interaction vertex are introduced in Sec. Il DMott cross section
where special attention is paid to the issue of current conser-
vation. In Sec. Ill we present the results of otfC(e,e’p)
and '0(e,e’p) numerical calculations. In Sec. Ill B we fo- 2

_( acosaelz)

-1
frecoml (VL RLH TR+ v RyT

: 2

cus on the issue of th®? evolution of the off-shell ambigu-
ities. In Sec. IIl C we compare the results of a fully relativ-
istic calculation with a calculation in which the explicit

coupling between the lower components in the inital andith g, peing the angle between the incident and the scat-
final state are neglected. Finally, our concluding remarks argsred electron. The electron kinematics is contained in the

— 3
2€Sint /2 3

summarized in Sec. IV. kinematical factors
Q?\?
IIl. FORMALISM _
v = _2 ’ (4)
A. Reaction observables and kinematics a
In this work we follow the conventions for thé,(e’ﬁ) 1/ Q2 0,

kinematics and observables introduced by Donnelly and vT= 5| 3 tar?i, (5)
Raskin in Ref[13]. The four-momenta of the incident and aq

scattered electrons are labeled K¥(e,k) and K /€’ ,k’).
The electron momentk andk’ define the scattering plane. UTT:E(Q_) (6)
2\ g2/’

The four-momentum transfer is given by*=K#“—K'# q
=P4i_,+P{—=PL, where P and P4_, are the four-

N

momenta of the target and residual nucleus, whifeis the 1/(Q% | [@? O,
four-momentum of the ejected nucleon. Alsg;= (w,ﬁz, Rl Vg +tan2§, ™
where the three-momentum transfge=k—k’'=k,_;+Kk;

—Ka and the energy transfesr=e— e’ =E,_,+E;—E, are 0, | [ Q2 0o

defined in the standard manner. Thez coordinate system is vt/ =tan§ - ? +tar? > (8)

chosen such that theaxis lies along the momentum transfer
q, the y axis lies alongkxk’ and thex axis lies in the 1(0? p
scattering plane; the reaction plane is then defineﬁfbynd UTL,:E<—2> tan?e, (9)

g. The Bjorken-Drell conventiofil4] for the gamma matri- q

ces and Dirac spinors is followed, so that the normalization . . .
condition for Dirac plane waves, characterized by a fourWhereas the structure functions are defined in a standard

. . — fashion as
momentumK#* and spin-stateS*, is u(K*,S*)u(K*,s*)

=1. _ >N 2
In the one-photon-exchange approximation, the process in Ri=lp(@)l® (10

which a longitudinally polarized electron with helicity im-

pinges on a nucleus and induces the knockout of a single Rr=[3(q; + )l *+13(q: = )i, (11
nucleon, leaving the residual nucleus in a certain discrete R .
state, can be written in the following forfd3]: Rrr=2Re{J*(g; +1)4J(q; — 1)f}, (12

024611-2



RELATIVISTIC EIKONAL APPROXIMATION IN HIGH-. .. PHYSICAL REVIEW C 62 024611

Ro=—2Re{p*(Q)u[I(q;+1)si—I(q;—1)]s;}, (13)  conserved baryon curreﬁyﬂw, can be described through a
Lagrangian density of the tydd5,16|

Ry =[3(q;+ 1) *—[3(q; — 1)5i]?, (14) B 1 1
o ) Lo=i(id=M)J+ 5 (9, hd" b= mid?) = 7G,, G"”
Rrur=—2Re{p*()[I(d; + 1)+ I(d; — D) 1},
(15 1, _ _
+ — M N

where p(q);; is the transition charge density, whiléq;m 2 MYV oYy VEH O, 10
==*1)y Is the transition three current expanded in terms of .
the standard spherical components. with M, mg, andm, begin the nucleon, scalar meson, and

vector meson masses, respectively, &ttl'=o*V"—g"V*

B. Bound state wave functions is the vector meson field strength. The scalar and vector

fields may be associated with the and @ mesons. The
A relativistic quantum field theory for nucleong)inter-  model can be extended to include alsoand p mesons, as
acting with scalar mesonsp through a Yukawa coupling well as the coupling to the photon field. The corresponding
¢ and with neutral vector meson¥ f) that couple to the  Lagrangian has the form

T . . . . - L. 1., L 1 .. . 1 - .. 1
£:£0+E(é’#ﬂ-ﬂﬂﬂ—mi’ﬂ-7T)—Ig,,TI//‘y5T-7Tl,0—ZB’LV-B’“V-FEmib#-b’“—zgplﬁy#rb“lﬂ—ZFMVF’“V

1 R . R R L.
—eA, 1//)/’“5(1-!— 73) P+ (b, XB ")+ [ mX (9" m+g,(mxXb*))];

. (17)

Herew, BM, A,, F,, are the pion, rho, Maxwell, and elec-
tromagnetic fields. Further, B#*=g*b"— 3"b*—g,(b*
xb") is the p-meson field. )
At sufficiently high densities, the meson field operators +73)A%(r)+ [ M —gsq’)o(r)]}:E\P(x).

can be approximated by their expectation values. Within the

context of the relativistic Hartree approximation, it can be (20
shown that when starting from the Langrangia) the fol-
lowing Dirac equation for the baryon fieMt results[16]:

HW (x)=

R v 0 1 Oa 1
—ia-V+g,V (r)+§gp7-ab (r)+§e(1

The general solutions to a Dirac equation with spherically
symmetric potentials have the form

[l’ylL&M_M_EH]\P:O! (18) iGnKt(r)/rment

lﬂa(x)z lﬂnxmt(x) = — FnKt(r)/I’yfkm"/t

. (2D)

where the self-energy is defined as

wheren denotes the principak and m the generalized an-
gular momentum, antis the isospin quantum numbers. The
Y- .m are the well-known spin spherical harmonics and de-

1
— _ i @y na i X X
2H= =050+ 9,7,V O ysTa T F 59pYuTab termine the angular and spin parts of the wave function,

1
+ =y (14 m5) A%, (19 1 1
2’)/# 8 YVim= 2 <|mI§ms||§]m>Yl,m|X%mSa

mmg

Assuming that the nuclear ground state is spherically sym- 1
metric and a parity eigenstate, it can be shown that the pion j=|x|— X | =
field does not enter in the Hartree approximation. Further-

more, the meson fields only depend on the radius, and only

the time component of the vector fields contribute. The timeThe Hartree approximation leads to the following set of
independent Dirac equation can then be written as coupled equations for the different fielfs6]:

k, k>0

—(k+1), «<O. (22
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d L olr) - MEo(1) =~ Gepilr) =~ 0 3

%occ

2j.+1
(i z)nea(r)l?—la(rﬂz],

ull

v 2
ar? o(r)‘l'r

d 2j,+
37 Vo(r) = miVo(r)=—g,pe(r)=—g, > ( J

Qocc 4'77

[IG (D2+[Fo(0)]?1(

d? 2 d 5 1 1 2j .+
2P0l grbo(n) ~mido(r) = —50,p3(1) =50, %

Qocc 477

d? 2d » 5 )
ﬁAo(r) Tar —A(r)=—epp(r)=—e [|G (O]2+[F o (r)]7]

@occ

Ga(r)+ ;Ga(r)_ Ea_gUVO(r)_tagpbO(r)_(ta+

Fa(r)_ ;Fa(r)-'_ ea_gUVO(r)_tagpbO(r)_(ta+

[Carqe.ip -1
0

1
tat 3]s

[Ga(N)?+[Fo(n)]*],

1)ta71/2

1
5| eAor) +M —gsqﬁo(f)}Fa(f):O

1
> eA(r)—M +gs¢o<r>}ea<r>:o,

The above equations constitute the basis of the relativistic
mean-field approach to the Lagrangian of ELy).

A new computer program to solve the above set of 10
coupled nonlinear differential equations was developed.
Starting from an initial guess of the Woods-Saxon form for o
the scalar and vector potential, the Dirac equations can be S
solved iteratively using a shooting point method. Analytic £ C
solutions to the equations in the regions of large and small o
allow one to impose the proper boundary conditions. Once
the nucleon wave functions are obtained, the densities and

— Scalar

meson fields can be reevaluated. This procedure is repeated a 0’}

number of times until convergence for the energy eigenval- -

ues is reached. We adopt the values for thew, andp 0™ L . ! L
masses and coupling constants as they were introduced by 0 2 # g g0 R

Horowitz and Serof16].

For the *2C and 'O nuclei, the newly developed C-code
SoR performed all integrations for a radial extension of the
nucleus of 20 fm and a stepsize of 0.01 fm. The coupled
Dirac equations were solved for a shooting point lying at 2
fm using a fourth-order Runge-Kutta algorithm. As a conver-
gence criterion we imposed a tolerance level as small as
0.001 MeV on all single-particle energy levels. The com-
puted densities for the nuclé?fC and 0, are depicted in
Fig. 1. We have verified that these results are comparable to
those produced by theIMORA code[16], which is widely
used to solve the set of EqR3).

C. Eikonal final state 0y 2 3 3 8

. : r [fm]
To construct the scattering states for the ejected nucleons,

we consider Hamiltoniarf20), which was already used to
calculate the bound-state wave functions
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H=—ia-V+9y'M+9°3 (1), (24)
where the self-energ¥ 4(r) is given by

1
Siu(r) = —0so(r)+9, voVo(r) + Egp707ab0a(r)

1
+§eyo(1+ T3)AS(r). (25)

With the formal substitutions

V(r)=—9gseo,

1
o).
(26)

_ 1 t,-1/2
Vu(N=g,Vo(r)+ 59,bo(r)(— 1)« eAg(r)

the time-independent Dirac equation for a projectile with
relativistic energyE = Vk%>+M? and spin stats, can be cast

in the form

p|¢&fs>:[¢;. p+ AM +/3V3(r)+VU(f)]¢(;z,+s) (@D

where we have introduced the notati¢b;) for the unbound

Crlfm]

where the central and spin orbit potentidls and V, are
defined as

E Vo2V, (1)?
Ve(D) = V(D) + 22V (1)+ =

2M
B 1 1d
Ve D= oMIET M+ Vo=V, (] T ar /s VoDl

(29

In computing the scattering wave functions, we use the sca-
lar and vector potentials as obtained from the iterative
bound-state calculations. As a result the initial- and final-
state wave functions are orthogonalized and no spurious con-
tributions can be expected to enter the calculated cross sec-
tions.

Since the lower component is related to the upper one
through

1
(+)_ = ()
ks  E+M+V—V,7 Pls (30

the solutions to Eq(28) determine the complete relativistic
eigenvalue problem. So far no approximations have been
made. Various groupgl7—19 have solved the Dirac equa-
tion (28) for the final scattering state using Dirac optical

Dirac states. The computed scalar and vector potentials fQjotentials derived from global fits to elastic proton scattering

the 12C and 10O nuclei are displayed in Fig. 2.
After some straightforward manipulations, a Salinger-
like equation for the upper component can be obtained
P vty (o-L—ir-p) (K o (28)
oM c so\0" Ir-p U s “2M Ugs s

data[20]. Not only are global parametrizations of Dirac op-

tical potentials usually restricted to proton kinetic energies
T,<1 GeV, calculations based on exact solutions of the
Dirac equation frequently become impractical at higher en-
ergies. This is particularly the case for approaches that rely
on partial-wave expansions in determining the transition-
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matrix elements. To overcome these complications, we solveounts for the interactions that the struck nucleon undergoes
the Dirac equation(28) in the eikonal limit[21,22. In in its way out of the nucleus. The calculation of the eikonal
intermediate-energy proton scattering,500 MeV) the  phase(36) involves a transformation to a reference frame
eikonal approximation was shown to reproduce fairly wellother than the usual laboratory or center-of-mass frame,
the exact Dirac partial wave resu(tg3]. Following the dis- namely the frame where the average momentum is pointing
Cussion Of Ref[zs]’ we define the average momentua] along thez ?XiS. As the eikonal phase has to be reevaluated
and the momentum transfgrin terms of the projected initial for every (b,z) point in space, the Dirac eikonak,e’p)
(k) and final momentumI?(f) of the ejectile palculatlons are very demandlng as fgr as computing power
is concerned. In evaluating the matrix elements, the radial
K 31) integrations were performed on a 0.1 fm mesh. It is worth
remarking that the standard Glauber approach followed in
o1 many studies involves an extra approximation apart from the
K=—-(k¢+0Q). (32) ones discussed above. Indeed, in evaluating the eikonal
2 phase from Eq(36) one frequently approximates thede-
pendence of the potentials bysafunction.

.

q=Ki—

In the eikonal, or, equivalently, the small-angle approxima-
tion (q>k;) the following operatorial substitution is made in

computing the scattering wave function: D. Off-shell electron-proton coupling
5 - S - We express the matrix elements of the nucleon current in
p==[(p—K)+K]*—=2K-p—K=. (33 the usual form
After introducing this approximate relation, the Dirac equa- (PS(|3#|P;S) =u (P, Py U; (39

tion for the upper componeri28) becomes
5 (+)_ where I'* is the electromagnetic vertex function for the
[—iK V=KZ+M Vet Vs o (rxK)—ir- K])]U 0, nucleon andy; (u;) is the nucleon spinors. As discussed in
(349 many workg24—-28, some arbitrariness, often referred to as
the “off-shell ambiguity,” surrounds the choice for the func-
where the momentum operators in the spin orbit and DarW|q|0na| form of the vertex functiol“. For a free nucleori#
terms are substituted bS( Remark that the above equation can be expressed in several fu||y equ|va|ent forms
is now linear in the momentum operator. In the eikonal limit,
the scattering wave functions take on the form
T 4 =Gu(Q? )7"——F2(Q )(PE+PE), (40
+ iK-r ~i
Ugs =e* eSOy 1)) m- (35

Inserting this into Eq(34), yields an expression for the ei- [k,= (Q2)7M+|2—F2(Q2)0qu, (42)
konal phasd?21]. Defining thez axis along the direction of
the average momentuid, this phase can be written in an

: 1
integral form as ING F1(Q)(PH+PE) +i me(QZ)U’”qy,

(42)

cc3™ 2M

z
iS(B,z)=—i%J dz'[V.(b,z')+Vey(b,2")
- whereF, is the Dirac,F, is the Pauli form factor, and is
the anomalous magnetic moment. The relation with the Sa-
chs electric and magnetic form factors is established through
GE: Fl_ TKF2 andGM: Fl+ KF2, with TEQ2/4m2.
When considering boun@r, “off-shell” ) nucleons, how-
ever, the above vertex functions can no longer be guaranteed

X[o-(bxXK)—iKz']], (36)

where we have introduced the notatios (b,z). The scat-
tering wave function, which is proportional to

1 to produce the same results. As a matter of fact, explicit
(+)_ K- AiS() current conservation is rathgr an exception than a r_ule in
b 1 > B € e Xaymg 37 most calculations that deal witlee’ p) reactions from finite

E+M+V—V, P nuclei. In nuclear physics, the most widely used procedure to

“effectively” restore current conservation is based on modi-

is normalized such that fying the longitudinal component of the nuclear vector cur-

T () rent using the substitution
bps brs =1 (38)

w
This wave function differs from the plane-wave solution in J— a\]o- (43
two respects. First, the lower component exhibits the dy-
namical enhancement due to the combination of the scalarhis procedure is partly inspired on the observation that

and vector potentials. Second, the eikonal phelS&) ac- meson-exchange and isobar terms enter the charge current
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operator in a higher relativistic order than they used to do for
the vector current. There exist several other prescriptions
which are meant to restore current conservation. Along simi-
lar lines, the charge operator can be replaced by

q
Jo—Jz (44)

One can also construct a vertex function that guarantees cur-
rent conservation for any initial and final nucleon state. This
can be achieved for example by adding an extra term to the
vertex[29]

d°6/dQ,de'dQ, [nb MeV™ 5r7]

u 2 K 2\ v 2 (Zflq” mjmn : 30 zﬂm T 0 T a0
I'oon=F1(Q%) v +imr Fa(Q9) 0*q, + Fo(QY)—, P, [MeV/c]

(45) FIG. 3. Measured®O(e,e’p) cross sections compared to rela-
tivistic eikonal and RPWIA calculations at=2.4 GeV,
which is also equivalent to Eq&10)—(42) in the free nucleon =1 GeVic, andw=0.439 GeV in quasiperpendicular kinematics.
case. An operator derived from the generalized WardThe calculations use the current opera®€l. The data are from
Takahashi identity read26] Ref.[12].

K ) dg*+Q%y* RPWIA results and the data and should by no means be
Tr= 7ﬂ_'mF2(Q2)‘7M q,+[Fi(Q*)~1] Q? ' considered as realistic. It is worth remarking that the data
(46)  closely follow the trend set by the RPWIA curves. As a
matter of fact, whereas the eikonal calculations predict huge
effects from final-state interactions at large transverse miss-
ing momenta, the data seem to suggest rather the opposite
A. Final-state interactions and the eikonal approximation effect. We consider this observation as one of the major find-
ings of this work.

_We start our (a,e’_p) investiga.tions within the relatiyistic One may wonder whether the observed behavior of the
eikonal approximation for the kinematics of &f0(e,e’p) eikonal results at higher missing momenta in Fig. 3 is a mere

experimer_n that was recently performed a}t Jefferson I“"‘%onsequence of the small-angle approximation contained in
[12]. In this experiment, the sezparaté?D(e,e pg structure Eq. (33, or whether the adopted model assumptions for
fimctlons are mea_su_red aQ - 0.8 (Gevk)” and computing the scattering states is alpartly) at the origin of

=0.439 GeV for missingor, initial) proton moment&dn  hig pathological behavior. To address this question, we have

=|k;—q| below 355 MeVt. The variation in missing mo- performed calculations for various fixed recoil angtege-
mentum was achieved by varying the detection angle of thgined as

ejected proton with respect to the direction of the momentum

Ill. RESULTS

transfer (“quasiperpendicular kinematicg:’ The measured Prm- 0
cross sections for knockout from the4{, and 1p,/, levels = TR (47)
are depicted in Fig. 3 along with the predictions of our rela- Pml G

tivistic eikonal calculations. A spectroscopic factor of 0.6

was adopted for all bound levels, and the standard dipol&@he results are displayed in terms of the reduced cross sec-
form was used for the electromagnetic form factors. At lowtion p which is defined in the standard fashion as the differ-
missing momenta, the eikonal results shown in Fig. 3 proential cross section, divided by a kinematical factor times the
duce a fair description of the data. As a comparison, the' CC1" off-shell electron-nucleon cross section of Ref.
results of a relativistic plane-wave calculation in the impulse[30]. For the results of Fig. 4 we considered in-plane kine-
approximation(RPWIA) are also displayed. Through com- matics at a fixed value of the outgoing proton momentum
paring the plane-wave and the eikonal calculations, therebyk;=1 (GeV)/c] and an initial electron energy of 2.4 GeV.
keeping all other ingredients of the calculations identical,The variation in missing momentum is achieved by changing
one can evaluate how the eikonal method deals with finalthe . For recoil angles#=0° (“parallel kinematics™) the
state interaction&=SI’s). In the eikonal calculations, the dips eikonal calculations do not exhibit an unrealistic behavior up
of the RPWIA calculations are filled in, and, at low missing to p,,=0.5 GeVk, which is the highest missing momentum
momenta the RPWIA cross sections are reduced. These twsonsidered here. With increasing recoil angles, and conse-
features reflect nothing but the usual impact of the final-stateuently, growing “transverse” components in the missing
interactions on theA(e,e’p) angular cross sections. The momenta the “unrealistic’ behavior of the eikonal results
limitations of the eikonal approximatiorgé&-k;) are imme- becomes manifest. Accordingly, the accuracy of the eikonal
diately visible at higher missing momenta,(=250 MeVk). = method based on the small-angle approximation of (8§)
Here, the eikonal cross sections largely overshoot both thean only be guaranteed for proton knockout in a small cone
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FIG. 4. The reduced cross section for ®(e,e’ p)**N(1ps/3)

reaction versus missing momentum at three values of the recolly o niia| cross section starts deviating from the trend set by
angle 6. A fixed outgoing proton momentum ¢p|=1 GeV was the RPWIA cross section. In the light of the conclusions
considered. The solid line shows the fully relativistic eikonal calcu-qy.qwn from the comparison between data and the eikonal
lation, while the dashed one shows the RPWIA results. The calcuz g5 in Fig. 3, the eikonal results should be regarded with
lations use theC1 prescription. care beyond this missing momentum. Furthermore, it is clear
that the change in the slope of the angular cross section be-

about the momentum transfer. A similar quantitative behav ? ;
comes more and more pronounced@sincreases. It is ap-

ior as a function of the recoil angle to what is observed in . . i . .
Fig. 4 was reported in Ref3] for d(e,e’p)n cross sections parent from Fig. 5 that the eikonal differential cross section

— 2
determined in a Glauber framework. We conclude this secS"2nges slope at abop,=250 MeVic for all values ofQ

tion with remarking that the eikonal method does not excludé:.ons'derEd' We remark that we imposed quasielastic condi-

situations with high initial(or, missing momenta, it only tions for all cases contained in Fig. 5. As a consequence, the

requires that the perpendicular component of ejectiles’s mghomentum of the ejected nucleon varies quite dramatically

k. | Hicientl It ks for itself that h as one moves up i®?. The uniform behavior of all curves
mentumky 1S sutficiently Small. 1t Speaks Tor Sel that SUCN ¢, niqinaq in Fig. 5 allows one to write down a relation be-

conditions are best fulfilled as one approaches parallel kine- h terred mand th | .
matics. This observation puts serious constraints on the ap/€en the transterred momentugnand the polar scattering

plicability of the Glauber method, which is based on theangle 6: [q|§<250 MeV rad. This simple relation could
eikonal approximation, for modeling the final-state interac-Serve as a conservative guideline to determine the opening
tions in high-energy &,e’p) reactions from nuclei. How- angle of the cone in which the outgoing proton momentum
ever, it should be noted that our framework does use purelfas to reside to ascertain that the eikonal approximation pro-
real scalar and vector potentials. More realistic scatteringluces “realistic” results. This limitation of the eikonal
potentials demand an imaginary part that accounts for théethod can also be inferred from the results contained in
inelastic channels that are open during the reaction procesBefs.[9,31]. Indeed, in Figs. 3 and 4 of Ref9] one can

The Glauber approach effectively includes these inelasticonfirm that the above relation betwelgh and 6 defines the
channels and on these grounds one may expect that its ranggssing momentum at which a sudden change inghele-

of applicability is somewhat wider than what is observedpendence of the calculated cross sections is observed. The
here. With the eye on defining the region of validity for the above relation can be understood as follows. In quasiperpen-
eikonal approximation more clearly, we have studied differ-dicular and quasielastic kinematics, the missing momentum
ential cross sections for variou@?. In Fig. 5, we display roughly equals the transverse momentum of the ejected
the computed differential cross sections for thenucleon. With increasing momentum transfer, the longitudi-
12C(e,e'p)*'B(1p4;) process against the missing momen-nal momentum of the escaping nucleon increases corre-
tum for Q? varying between 1 and 20 (GedP. Hereby, spondingly, while its transverse momentum has to stay
guasielastic conditions were imposed. The arrow indicatesmaller than the suggested value of 250 MeMAence, the

the missing momentum where the slope of the eikonal difsine of the angle between the transferred momentum and the
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= mentum for I, knockout from
o 150 in the kinematics of Fig. 3.
The calculations in the left col-
umn imposed current conservation
by replacing the longitudinal com-
ponent of the vector current op-
erator[Eq. (43)], while for the re-
L0T75 F 41 075 = sults in the right column the
E E charge density operator was modi-
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a4 [ curves refer to the different off-
025 -/ 8 02s |/ . shell prescriptions as they were
e g introduced in Sec. Il D.
10 e e e
Ss0 o
£ £
- -
;:: 10+ e ;::
oY1 Y S IR I I W B K
0 50 100 150 200 250 300 0 50 100 150 200 250 300
p,, [MeV/c] p,, [MeV/c]

ejectile’s momentum has to decrease. Since we are dealimpmponent of the vector current operatbereafter denoted
with small angles, sin{) can be approximated by. The as the “JO method), or by modifying the charge operator
opening angle of the cone in which the eikonal approxima<{hereafter denoted as the “J3 methodalong the lines of
tion is valid, can be inferred to be independent@# in the  Egs. (43) and (44). Note that for the operator of E¢45),
Lorentz frame where the ejected nucleon is at rest. WheRoth methods yield the same results, since, by construction,
transforming back to the lab frame, lateral dimensions bethis operator is current conserving, regardless of the method
come dilated, and, thus, angles contracted. adopted to compute the wave function for the initial and final
state.

Turning to the results shown in Fig. 6, the predicted

A major point of concern in any(e,e’p)B calculation strengths in the longitudinal structure functioRs and Ry,
are the ambiguities regarding the off-shell electron-protordepend heavily on the choice made for the electron-proton
coupling. Most calculations do not obey current conservatiorcoupling. For theCC1 prescription, for example, the values
and a variety of prescriptions have been proposed to partiallpbtained with the J3 method are several times bigger than
cure this deficiency. Here we adopt a heuristic view andhose obtained within the JO method. The predicted differ-
estimate the sensitivity of the calculated observables by comences among the various current operators within one
paring the results obtained with different viable prescriptionsscheme(**J0” or “J3” ) are also sizeable. The ambiguities
for the electron-proton coupling. Among the infinite numberare, however, much smaller for the calculations performed
of possible prescriptions for the off-shell electron-protonwith the J,— (w/q)Jy substitution. This clearly speaks in
coupling we have selected four that are frequently used ifiavor of this recipe which is mostly used &(e,e’p) calcu-
literature. Figure 6 shows the separated structure functiongtions. TheR;+ and Ry structure functions are, obviously,
for 1p,» knockout in the kinematics of Fig. 3. Current con- insensitive to whether the “J0” or “J3” method is adopted.
servation was imposed by either modifying the longitudinalAll adopted electron-proton couplings but t8&C1 one pro-

B. The Q? evolution of off-shell effects
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FIG. 7. TheQ? dependence of the sensitivity of the calculated & 2 T T T
(e,e’p) structure functions to the choice for the electron-nucleus QL
vertex for 1p,, knockout from*%C in quasielastic kinematics. The O
curves show for the various observables the ratio of the predictions OH 1Lr 7]
with the “J3” method to those obtained with the “JO” method. MH ......................................
Solid (dashed line corresponds with thep,,=0 MeV/c (ppn, \/-—Ir | |
=150 MeV/c) situation. 2
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duce the same results in tig and Ryt responses. 5
With increasingQ? and the corresponding decreasing dis- ©,
tance scale, the role of off-shell ambiguities in the photon- r::
nucleus coupling is expected to decline and the impulse ap-
proximation is believed to become increasingly accurate. In 04 3 10 15 20
order to investigate the degree and rate to which this virtue Qz [(GeV /C)z]

may be realized, we have performed calculations for kine-

P 2 2
mat|C§ in the range of 0:8Q SZ,O (GeV/C) - We use two FIG. 8. TheQ? dependence of the sensitivity of the,é'p)
techniques to estimate the relative importance of the c’ff'She@tructure functions to the choice for the electron-nucleus vertex for

. 2 . .
effects as a function o@”. First, results computed with the ;1 ynockout from 22C. The curves display the ratio of the pre-

“J0” and “J3" method can be compared. Second, predic- gictions using the vertex functioR%, to those usind’, . Solid

tions with various choices for the electron-proton coupling(dashegilines correspond withp,,=0 MeVic (p,,=150 MeVk).

are confronted with one another. The validity of the IA is

then established whenever the final result happens to becomghere the decrease in the longitudinal response is almost
independent of the adopted choice. In order to assess thgponential. The overall behavior is identical for the higher
degree to which this independence is realized, we have comnissing momentum casg =150 MeV/c), but the rate of
sidered ratios of structure functions for some fixed kinematdecrease is somewhat slower. This can be attributed to the
ics but calculated with different choices for the electron-fact that at higher momenta, hence, greater angles, the trans-
proton coupling. As a benchmark calculation, we haveverse components of the vertex functions play a more impor-
computed*’C(e,e’ p)'B(1p,j;) observables in quasielastic tant role. Looking at Fig. 8 one can essentially draw the same
kinematics for several values of the four-momentum transferconclusions. The predictions with the different prescriptions
The results are shown in Figs. 7 and 8. Figure 7 shows foalso converge to each other as the energy is increased. Again
several observables the ratio of the values obtained with ththis convergence is more pronounced for the low missing
“J3” scheme to the corresponding prediction using themomentum case. This feature is most apparent in the purely
“J0” scheme. Figure 8 shows the ratio of the strengths ob+ransverse channel, which dominates the cross section at suf-
tained with theCC1 vertex function compared to the corre- ficiently high energies. It appears thus as if off-shell ambi-
sponding predictions with th€ C2 form. We remark that in  guities, speaking in terms of strengths and absolute cross
the limit of vanishing off-shell effects, these ratios shouldsections, are of far less concern at higigrthan they used
equal one. It is indeed found that the calculations that ar¢o be in theQ?<1 (GeV/c)? region, where most of the data
based on the substitutiah— (w/q)Jy, tend to converge to have been accumulated up to now. The interference structure
those based ody— (g/w) J, with increasing energy trans- functions Rt and Ry are subject to off-shell ambiguities
fer. This is particularly the case at low missing momentathat are apparently extending to the highest four-momentum
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FIG. 10. The left-right asymmetn  for both 1p,;, and 1ps,
knockout from €0 in the kinematics of Fig. 3. The data are from
Ref.[12].

states. For that reason, we interpret the effect of the coupling
between the lower components in the bound and scattering
states as a measure for the importance of relativistic effects.
In Fig. 9 we display results of fully relativistic
12C(e,e’'p)1'B(1p4;) calculations and calculations in
7 which the specific coupling between the lower components
OF .7 n in the bound and scattering states have been left out. We
consider quasielastic conditions and study @reevolution
of the structure functions for two values of the missing mo-
S0 g 1'0 1'5 20 mentum p,,=0 and 150 MeVE) both corresponding with
Qz [(GeV/C)Z] small recoil angles. Hence, the results of Fig. 9 refer to ki-
nematic conditions for which the eikonal approximation is
FIG. 9. TheQ? dependence of the sensitivity of the,¢'p)  Justified. A rather complex and oscillatogy dependence of
structure functions to dynamical relativistic effects. The curvesth® relativistic effects emerges from our numerical calcula-
show for Ips, knockout from2C the ratio of the fully relativistic ~ tions. Looking first at thep,,~0 MeV/c case, which nearly
results to the predictions when the coupling between the lower comcorresponds with parallel kinematics, we observe that for
ponents is neglected. The solidashedl line presents results for the both the longitudinal and transverse structure functions, the
situationp,=0 MeV/c (p,=150 MeV/c). impact of the coupling among the lower components first
increases, and then tends to become fairly constant for higher
values ofw. The genuine relativistic effect stemming from
ap'l_e coupling between the lower components in the initial and

lished in Ref.[29] and explained by referring to the large Inal states is larger in the longitudinal than in the transverse

weight of the negative energy solutions in the interferenceChanne!" It IS nptpworthy that in the ct'oss section the impact
structure functionsRy, and Ry, of the “relativistic dynamical effects” never exceeds the

10% level. If we turn our attention to the interference struc-
ture functionsRy, and Ry, the relativistic effects grow in
C. Relativistic effects importance. Especially for thR+_ structure function the ef-
fects are large and extend to the smallest value®“€ton-
Recently, there have been several claims for strong indisijdered here. This enhanced sensitivity of Byg response
cations for genuingor, “dynamic”) relativistic effects in o relativistic effects, even when relatively low valuesQ@t
A(e,e’'p) observable§12,32—34. In an attempt to imple- are probed, complies with the conclusions drawn in other
ment some of these effects in calculations based on a Schretudies[28,32,35—37. Also the tendency of the relativistic
dinger picture, several techniques to obtain a “relativizedeffects to increase the cross section when higher valupg, of
version” of the electron-nucleus vertex have been develare probed complies with the findings of earlier studizs.
oped. In leading order in @/M expansion these “relativ- A quantity that is relatively easy to access experimentally
ized” electron-nucleus vertices typically miss the couplingand depends heavily upon tRg, term, is the so-called left-
between the lower components in the bound and scatteringght asymmetryA,

RTLRel/Non-rel RTTRel/Non-rel RTRellNon-rel

transfers considered here. This feature was already est
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minishes. This feature indicates that the asymma@try is

I e ; .
Son | e nearly exclusively generated by the coupling between the
02 F T e o
o4 b Q= 108 Geviey lower components a®¢ increases.
: 1 1

IV. SUMMARY

We have outlined a fully relativistic eikonal framework
for calculating cross sections fore,g’p) reactions from
spherical nuclei at intermediate and high four-momentum
transfers and carried odtC(e,e’p) and *®O(e,e’p) calcu-
lations for a variety of kinematical conditions, thereby cov-
ering four-momentum transfers in the range <9@?
<20 (GeVk)?2. Our results illustrate that the validity of the
eikonal method is confined to proton emission in a cone with
a relatively small opening angle about the direction of the
virtual photon’s momentum. This observation puts serious
constraints on the applicability of the Glauber method, which
_ is based on the eikonal approximation, for modeling the
. FIG. 11. The Igft-rlght asymmetn, r for 1pg;, knockout from  fing|-state interactions in high-energg, €’ p) reactions from

°C for differentQ?, under quasielastic conditions and perpendicu-pyclei. Incorporation of the inelastic channels in the eikonal
lar kinematics. method is, however, needed to fully appreciate the limits of
the Glauber model, and work along these lines is in progress.
In line with the expectations, our investigations illustrate that
the uncertainties induced by off-shell ambiguities on the cal-
culated observables diminish & increases. Nevertheless,
in the relativistic eikonal framework four-momentum trans-

) _ fers of the order 5 (Ge\t)? appear necessary to assure that
In Fig. 10 we have plotted the left-right asymmetry for both the effect of the off-shell ambiguities can be brought down to
1py, and Ipg; knockout from*0 in the kinematics of Fig. the percent level. Our theoretical framework permits to as-
3. Itis indeed verified that the asymmetry is very sensitive tosess the impact of the relativistic effects over a wide energy
relativistic effects. As has been reported, relativistic effectsrange_ The impact of the lower components on tag/(p)
enhance the asymmetry further, and this enhancement {shservables is observed to be significant over the widle
more pronounced for thepdk, knockout reaction. The role range studied. Especially the left-right asymmetry lends it-

played by the lower components in this dynamical enhanceself very well to study these effects of genuine relativistic
ment of the left-right asymmetry can be further clearified bygyigin.

looking at the results of Fig. 11. In this figure, we plot the
left-right asymmetry for b, knockout from*%C, for differ-
entQ? and quasielastic conditions. Looking at the fully rela-
tivistic curves, we observe a gradual decrease of the asym- This work was supported by the Fund for Scientific Re-
metry with increasingQ?. At the same time, the relative search of Flanders under Contract No. 4.0061.99 and the
contribution of the “nonrelativistic” contribution t&\ 1 di-  University Research Council.
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