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Medium modification of the pion-pion interaction at finite density
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We discuss medium modifications of the unitarized pion-pion interaction in the nuclear medium. We incor-
porate both the effects of chiral symmetry restoration and the influence of collective nuclear pionic modes
originating from thep-wave coupling of the pion to delta-hole configurations. We show in particular that the
dropping of the sigma-meson mass significantly enhances the low-energy structure created by the in-medium
collective pionic modes.

PACS numbd(s): 21.30.Fe, 21.65-f

I. INTRODUCTION substructure or, in other words, from the in-medium modifi-
cation of hadronic properties associated with chiral symme-
Modifications of hadron properties in nuclear and hot had+try restoration. This may have considerable consequences
ronic matter is one of the central subjects of present dagince applying by hand in the linear sigma model pion-pion
nuclear physics. For instance, it has been suggest¢d]in potential a Brown-Rho scaling of the sigma mass yields a
that the in-medium pion-pion interaction might be signifi- significant enhancement of the near-threshold structure in the
cantly reshaped at density even below normal nuclear matt&7 strength functio18]. To go further, it is important to
density. The basic mechanism is linked to the nuclear colleceonstruct an in-mediun- 7 pion-pion potential. This ques-
tive pionic modes, sometimes called pisobars, originatingion has already been addres$&€] in the framework of the
from the p-wave coupling of the pion to delta-holes states.Nambu-Jona-LasinioNJL) model at finite temperature. In
According to detailed calculation§2,3] these collective this paper we will first use exactly the same scheme but with
modes are able to explain charge exchange[digf) despite a straightforward generalization at finite constituent quark
the peripheral character of these experiments, although somiensity to be identified later with one-third of the baryonic
other mechanisms such as broadening of the d@taor  (i.e., nucleonif density. In particular we will show that, us-
projectile excitation[7] have been proposed. In addition, ing a slightly different prescription for the loop integrals, the
other detailed studies show that collective effects are assocNJL model regenerates the linear sigma model pion-pion
ated mainly with a particular channel such as the cohererBorn term amplitude. This result, which is numerically ex-
pion one[8]. This medium effect yields a softening of the tremely close to the more involved calculational scheme of
pion dispersion relation and consequently a modification oRef.[19], can be generalized at finite density and/or tempera-
the two-pion propagator involved in the unitariz€dnatrix  ture provided the values of the pion mass, the sigma mass,
describing the pion-pion interaction at finite density. Indeedand the pion decay constant are replaced by their in-medium
on the basis of purely phenomenological modéls an im-  values calculated in the NJL model. Using this scheme we
portant reshaping of the pion-pion interaction in the scalarare in position to study in a particularly simple way direct
isoscalar channékigma channg] producing a sizable accu- observable consequences of both partial chiral symmetry res-
mulation of strength near the two-pion threshold, has beeroration such as the dropping of the sigma meson mass and
predicted. This problem has been reinvestigated with chiratollectivep-wave pionic modes by looking at the in-medium
symmetric models such as linear or nonlinear sigma modelgion-pion interaction in the scalar-isoscalar channel. This is
[10] with special emphasis on the consistency between chiralf utmost importance since, as emphasized recently by Hat-
symmetry constraints and unitarization. It was soon realizeduda et al, the evolution of collective scalar-isoscalar
that this medium effect is of considerable importance for themodes, i.e., the sigma meson, may reveal precursor effects
still open problem of nuclear saturation since an importantssociated to chiral symmetry restorat{@®].
part of the nucleon-nucleon interaction comes from corre- From this density dependent effective linear sigma model
lated two-pion exchange and several papers have broughbtential implemented with a phenomenological form factor,
extremely interesting resulfd1-13. Possible evidence for it is possible to construct a unitarizee-7 scalar-isoscalar
this reshaping of ther-7 strength function is provided by amplitude which both preserves chiral symmetry constraints
the 7-27 data obtained on various nuclei by the CHAOS (Weinberg scattering length in the chiral limniand repro-
Collaboration at TRIUMF[14]. Recent calculations show duces experimental phase shifts. On top of precursor effects
that the observed marked structure in thé 7~ invariant  of chiral symmetry restoration, the inclusion of medium ef-
mass spectrum can be partially explained by this reshapinfgcts associated with the modification of the pion dispersion
[15,16. These last results have been questioned in a recentlation should be consistently done in the framework of the
paper[17] where it is found that pion absorption forces the NJL model by direct coupling to constituent quarks populat-
reaction to occur at lower peripheral density. ing the Fermi sea. However, the resulting pipwvave po-
However, what was ignored in the previous approachetarizability calculated with quark-particles—quark-holes
was the possible medium modification of the basier in-  would completely miss the phenomenologically well estab-
teraction, i.e. ther-7 potential from the underlying quark lished strong screening effects from short-range correlations
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TABLE I. Physical quantities gh=0 in the NJL model for different parametefisand 1) and different
schemes of calculationi@xact and simplified

f. m, m, A m My g
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (fm?)
I (exach 93.0 139.0 700.0 620.84 347.49 5.677 0.2247
Il (exach 93.0 139.0 1000.0 573.31 498.85 5.772 0.3303
I (simplified 93.0 139.0 700.0 624.25 343.03 5.540 0.2207
Il (simplified 93.0 139.0 1000.0 573.60 495.15 5.712 0.3284

(g’ parameter Incorporation of correlation effects in the the one hand, this second set gives a higher density for chiral
NJL model obviously requires a much more involved levelsymmetry restoratiofabout 2.6, in place of 1.5.), and on

of sophistication, hence losing the simplicity which is one ofthe other hand, the values of,=1 GeV has been success-
its main interests. Furthermore, we will calculate the in-fully used in previous works to fit the vacuum-= data
medium two-pion propagator from standard pion-nucleug10,15.

phenomenology. In other words, thevave pion polarizabil- In Table I, we also include the results with different
ity will be taken as its nuclear matter expression dominatecchemes of calculation, the “exact” one and the “simpli-
in the region of interest by tha-hole piece corrected by fied” one. For the “exact” scheme, we just do the same
screening effects. The underlying philosophy can be summazalculation as Quackt al. [19] but at finite density, while
rized by saying that the medium modified soft physics linkedfor the “simplified” one, we neglect thej?> dependence in
to chiral symmetry . ,f ., low-energyw-= potentia) is  all of the integralgfor details see Sec. llin our calculation,
calculated within the NJL model whilewave physics yield- whereq is the external momentum of pion and sigma me-
ing pionic nuclear collective modes is described throughsons.

standard nuclear phenomenology. The main purpose of this section is to get the density
dependence on the-7 scattering lengtfa', which is related
Il. 77-7r INTERACTION FROM THE NJL MODEL to the 7~ scattering amplitudg at threshold as
To examine ther-7 interaction at finite densityand fi-
nite temperaturg we start from the S(2) version of the al=— 1 ReT' 3)
well-known NJL mode[21]: 32mm,, ’

L=y o= mo) ol () *+ (i ys7)?], @) \wherel is the total isospin.

To the lowest order in N, (N., the number of quark
Ccolors), the invariant amplitudd,y,. .4 of the 7-7 scattering
process &, b andc, d are the isospin indicgss calculated
from the box ando-propagation diagrams shown in Fig. 1
(see Fig. 1 in Refl19]). Following the notation of Ref.19],
we have

whereg is a coupling strength of dimensigmasg 2, and
mg is the current quark mass. To maintain the asymptoti
freedom at high energies, we simulate the situation by re
garding the coupling constant in E¢l) as a momentum
dependent ongy(p):

4
a(m=all oA=Ipi), 2) c @ P LI

where p;'s are the momenta of quarks arlis the step c by L P o : i

function. Three parameters, namaiy A, andm,, are deter-

mined to reproduce the pion mass,, the pion decay con- 0))
stantf ., and the mass of the sigma mesuop. Here form_.
and f_ we choose the well-accepted values, andnfiprwe G
select two different empirical values to test the influence of
the input data on our final results. In Table I, we list two sets

C]

are fixed, respectively, to give these two sets of values of

m,, f., andm,. In the parameter fitting, we follow the

formalism in the paper of Hatsuda, and Kunihi&2], where

the three-momentum cutoff was used. With the lowest value

of m,=700 MeV, one has a set of parameters very close to

the one of Quaclet al.[19] used for finite temperature stud-

ies. In the following mainly devoted to finite density, we will FIG. 1. Box ando-propagation diagrams fofr-7 scattering
prefer the second set with,=1 GeV for two reasons. On (a),(b),(c), and(d) are the isospin indices.

(1)
of values form_, f_, andm,, and alsay, A, andmg which 3)
&)
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Tab:ca=(CPc;dPg| Z[ap, ;b py) =A(S,t,U) Sapdeq T?=2T3+ 275, (10

+B(S,t,U) dacdbat C(S,t,U) Saadhc, (4) where theZ; are the function in Eqg5) and(6) expected of

wheres, t, and u are the usual Mandelstam variabless; the iSospin factors. To get the density dependence ome
=(PatPu)2 t=(pa—po)2 andu=(p,— py)>. must calculate the constituent quark massand the pion

Because of the crossing relations, there are three possibifi@Ssm- at finite density first.

ties for the box diagrarf23] which, after a direct evaluation,  AS in Ref.[22], we get the in-medium constituent quark
mass from the gap equation due to the one-loop quark self-

ives
g energy diagran(Fig. 5 in Ref.[22]). The in-medium pion
(T1) abicd= — (SapSedt Sacdpd— 5ad5bc)[4NcNfigiqq] mas;(and aI§0q—meson ma§)5|§ determined from the (EiIS—
5 persion relationin the g—0 limit) of the meson excitation
X[1(0)+1(p)—p°K(p)], (which itself is the solution of the Dyson equation in the
- ring-diagram approximation For the details of deriving the
(72) ab;cd= — (Sapdcd™ FacObdt 9adSbc) [ANcNtig 7 4] gap equation for quarks and the dispersion relation or

2 (and alsoo) meson, one can resort to Ref49,22 with a
X[HO)+1(p)=pK(p)], straightforward extension at finite density. Some specific re-
_ 4 sults and integrals are explicitely given in the Appendix.
(T3)abica= = (~ dapdea+ Sacdbat daddbc) [BNcN1IGqq] Here we display only the final results evolving with respect
X[1(0)+p*L(p)/2—2p3K(p)], (5) to density at zero temperature. One thing to be mentioned
here is that there are two different definitions for the cou-
in terms of integrald (0), I(p), K(p), andL(p) (see the pling between pions and quarks, namegy,: one is from
Appendix. Hatsuda and Kunihirf22] and the other is from Quad al.
The diagram with intermediate propagation shown in [19]. These twog ,4q differ from each other only by a term
Fig. 1 can be simply expressed in terms of its componentgroportional to
By combination, one has

k2
(T2)abica= ~ BanOcdTmqdl I (P, — P)1°D4(2p), ,BJ dkEf(E)f(— E)F(E.p),

(75)abca=— (BacBoat 8addbc)Irqd 77" (P.P)1°D,4(0), o _
(6) where g is the inverse of the temperaturE) the Fermi-

distribution function, andF(E,p) a rational fraction of

where E (E=m?+k? andp (external momentum of piohslt

P _ turns out that this term disappears when the temperature goes

T7(p,—p)= =8N:Niml(p), to zero. So the discrepan&? between these th()) definiti%ns

will not give rise to any difference in the parameter fitting
which is done only at zero temperature and also in the main
part of this paper as we focus our calculation on the cases of
finite density but at zero temperature.

T777(p,p) = —8NNm[1(0) — p?K(p)] ()

are theo-7r-7 vertex in thes channel and channel, respec-

tively, and . .
The density dependence of constituent quark mass,
i mass,o mass, and . is shown in Fig. 2. We find that all
D, (k)= (8) these quantities evolve with density almost linearly except in

2NN (K?—4m?)I (k) —mZ1(m,)] the high density regiofisay p>0.30 fm3) and the trends

: . - of these curves are all the same as those evolving with tem-
is the sigma meson propagator. Similar to Eg), we also perature[22]. Here we use two sets of parameters listed in
have[19,23 Table I.

4 _ _\2 2 2 : _ We first show that the density dependences of the thresh-
Grgq= ~NI(O)+1(p)—m:K(p)]™  with N_NCNfig) old amplitudes and scattering lengths are very similar to
those obtained at finite temperature[itQ]. In Fig. 3, we
We note here that all above results are evaluated at threshoftiaw the curves of the various pieces of the scattering am-

(p2=p?=m?=s/4), and we restrict them, foF>0, to the  Plitudes as a function of densitiat zero temperatuyewith
scattering of pions whose c.m. system is at rest in the he&oth sets of parameters. Again, we see that all the curves
bath[19]. evolve linearly with density in the low- and medium-density

Summing Egs(5) and(6) and with the help of projection egion. At a certain densityy, there exists a divergence as
of the amplitudes on total isospin one finds theswave @t high temperaturgl9]. Similar behavior also holds in Fig.

scattering amplitudes 4 where the relation between scattering length and density is
illustrated. An interesting feature is that one gets a higher
T°=6T7,— T3+ 37,+ 275 value of densitypy with the higher input vacuuna-meson
mass. This divergence occurring in the sigma propagator
T=0, [19] actually corresponds to the point where the in-medium
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FIG. 4. Scattering lengths® anda? vs density(at zero tempera-
ture) with parameter sets | and Il: solid lines for the exact calcula-

ture) with parameter sets | and II: solid lines for the exact calcula-fion and dashed lines for the simplified calculation.
tion and dashed lines for the simplified calculation.

sigma mass drops to twice the in-medium pion mass. In th
second set of parameters the dengifyturns out to bepy

moderate density region below nuclear matter density acces-

~2.4p,. Once unitarization is don@ee Sec. Ythis density
goes down to aboyiy~2p, due to the presence of the two-

pion loop in the sigma propagator. We will come to this

Ill. SIMPLIFIED SCHEME

sible in thesr-27 experiment. For that purpose, we show in
?:ig. 5 the low density behavior of the scattering lengths.

Now we turn to the simplified scheme of our calculation,

important point in Sec. V since, as pointed out by Hatsudayhere we neglect the momentum dependence in all of above
et al.[20], the vanishing of the real part of the inverse Sigmaintegrals, i.e.l(p), K(p), andL(p) (we will state later in
propagator aE=2m, can be seen as a precursor effect ofthjs section the reason for such a treatieRtt before this
chiral symmetry restoration. However, the aim of this papefsimplified processing, we would like to check whether the
is not primarily to study the phase transition region but theyyeinberg limit is still kept at finite density and finite tem-
perature. First we want to see how these integ@tsl then
other related quantitigsbehave in the first order chiral ex-
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FIG. 3. Scattering amplitudeg vs density(at zero temperatuye
with parameter sets | and Il: solid lines for the exact calculation and
dashed lines for the simplified calculation.
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FIG. 5. Same as Fig. 4 but for a moderate range of density.
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pansion(expanding to the order dhf,). Keeping in mind

that we are always in the three-dimensional cutoff constraint

and following the regularization of Ref23], we find after
straightforward calculation that

PHYSICAL REVIEW (62 024604
2 2 1 2
K(p?=m?)=K(0)~ 5mZL(0),

5
L(p?=m?)= L(O)—gm 2150), 1D

wherel 35(0) is shown explicitly in the Appendix. With these
expansions, we get, from Eq&)—(9),

4i

N( 21(0)— %miK(O)—mi[K(O)— 1mf,|.(0)”

2

T,=1,,

L(O)—5m |32(0)}/2 2m [K(O) Lo L(O)H

l(p?=m )—I(O) 1m K(O)
|
']‘1:
I(0)+m
’]’3:

1 2
[—8m{l(0)—§m,27K(0)“
Ta=

N{ 21(0)— %miK(O)—mi[K(O)— %miL(O)H

1 1 2 4 1
(ZI(O)——m K(0)— [ K(0 )——m L(O)“ 2N[(4m127—4m2)[l(0)—§miK(O)}—mi[l(O)—§meK(O)“

2
(—Sm[ I(O)—mi[K(O)— %miL(O)“)

Ts= 2 : (12
1 2 2 1 2 2 2 1 2
21(0) = 3mZK(0)—mZ K(0) = 5mIL(0)|{ 2N} —4m?I(0)—mZ 1(0)— 3m7K(0)
|
Keeping to the first order ah? with the help of Eqs(3) and 2i
(10), one finds finally that T1=Tp= 73=W0),
o 1 7m? s 8im® 1 14
_3277mﬂ. _ffr ) 4 5—N|(0) k2—m(27' ( )
5 where m2=4m?+m? in the simplified calculation, which
2 1 —2m; 1y can be easily verified from Ref[22]. Since f2=
32mm,  f2 ' —2iNm?1(0) in the simplified calculation, the above ampli-

wheref _ is defined as in Ref22]. Note there that the func-
tions1(0), K(0), L(0), andl3,(0) are the integrals at finite

density and finite temperature. We thus recover the Wein-

berg limit (in the first order chiral expansipat threshold for
finite density and finite temperature.

In the simplified calculation, we neglect the momentum

dependence of all above integrals inside the formulaZfor
i.e., p2=m2=0, except that we keep? in Eq. (8) un-

tudes can be rewritten as

2i
2¢2 1
Ti=T= N0, (15)

with the orar coupling constant defined by Z\fz—m

changed as the momentum transfer in the two-pion mterac—m as in the linear sigma modédee, for instance, Sec 4
tion. Thus one gets of [10]) In other words, this simplified scheme yields ex-
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actly the amplitudes of the linear sigma model but with 1 1
f,, m,, andm_ being functions of densityand tempera- Gon(B Q)= 227 (19
wq wgtly

ture). The numerical results for the simplified calculation are
also displayed in Figs. 2—4 by dashed lines. We find that
these two calculations have not much difference from each Ignoring thet andu dependence in the denominators, the
other except for the high-density region. So the simplifiedpotential [Eq. (16)] reduces to a combination of separable
calculation is a rather good approximation to address in oupotentials. Taking parameter set Ing=1 GeV) imple-
region of interest the density dependencewf,_, m,, f.,  mented with a one-parameter form facter(k)=1/(1
and even the scattering amplitude and scattering length. +k?/64mZ2), one exactly recovers the potential usedif].

The phase shifts are correctly reproduced up to 800 MeV and

IV. IN-MEDIUM UNITARIZED T MATRIX th'e scattering Iengtha0=0.23m;1, is also in agrgement

with experimental data. It can be checked that, with such a
separable potential, the correction to the scattering length

ered as a irreducible potential into a Lippman-SchwingelIrom the umt_arlzatlon procedure is of hlgher ordermﬁ,,
(LS) equation to get the unitarize® matrix in the scalar- US preserving the chiral symmetry res(iVeinberg scat-

isoscalar channel. However, when solving the LS integraf€'ing length in the chiral limit.
equation, the use of the “exact”’ scheme with its full mo- From the underlying NJL quark model, the above results

mentum dependence turns out to be of hopeless complexitf" the T matrix, Egs.(16)—(19), can be generalized at finite

For this reason we prefer to use the potential from the “sim-denSity by simply replacing the pio_n mass, _the sigma mass,
plified scheme” which has been shown to be very close t@nd the pion decay constant by their in-medium values. With

the observablegpion decay constant, masses, scatterind@r@meter set Il, the pion mass does not change very much.
lengthg and their density dependences calculated with theot@rting from the vacuum valua,, =139 MeV, one finds at
“exact” scheme. Hence, the potential will be simply the half nuclear matter densitin,(po/2)=140.3 MeV and at
linear sigma potential. For simplicity we restrict ourselves toSaturation densityn,(po) =143 MeV. The variation of the
an interacting pion pair with zero total momentum. In thePiOn mass is usually expressed in terms of sheave pion

scalar-isoscalar channel, the potential reads, with the obviou%Otigal potential or in term of an effective scattering length

We now incorporate the previous-7- amplitudes consid-

notations, Am:=2m_V,n=—4m(bg)etip. Here we find Bg)esr~
—0.01 m;l which coincides with the experimental pion-
m2 — m?2 nucleon scattering length. In reality the pion optical potential
(k,—k|V(E)|k’,—k’>=v(k)v(k’)%f—” is more repulsive due to higher order rescattering effects but
m still giving a very small modification of the pion mass.

s—m2 t—-m2 u-—m? Hence, this modification of the pion mass, which simulates
s > 7. swave pion-nucleus interaction, is practically negligible. In
S—m, t—m, u-m, other words, the model does not give an unrealistically large

(16)  shift in the pion mass.
On the contrary, there is a sizable dropping of the sigma
The prescription for the Mandelstam variables to be used ifinass of 110 MeV at half nuclear matter density and 225
the LS equation are the ones used in Sec. [40f E=sis  MeV at normal density. Consequently, one finds a significant
the energy variable at which the unitariz&matrix is cal- réshaping of ther- strength function, as we will see in the
culated t andu are chosen according to their on-shell values:Next section, even gi=0.5, which is the typical density
reached inm-27 experiment16]. We now come to study
t=2mi—2wkwkr +2k-k’, u=2m727—2wkwkr —2k-Kk'. the dressing of the pion p(opagator byptgvave coupling in
(17) matter. As already stated in the Introduction, the direct use of
the standard NJL model for this problem would give totally

The form factorv (k), which is assumed to simulate the mo- unrealistic results since there is no repulsion and short-range
mentum dependence of the vertices, is to be fitted on experforrelation @’ parameter Hence, we turn to a conventional
mental phase shifts and scattering lengths in the free casBuclear matter description of thgwave self-interaction of

The unitarizedT matrix is the solution of the LS equation; the pion on top of the NJL approach for the basic pion-pion
potential. The pion propagator has the form

(K, —K|T(E)[K",—k')=(k, —K|V(E)|K",—K')
D, (k,0)=[w?-m>—k?®—S_(k,w)]" %, (20

10 dq
+5[ —k—Kvia-a) | |

(2m) where S_(k,®) is the conventional nuclear mattprwave

, , pion self-energy to be specified below. Notice that is the
X Gaq(E.q){a, —qlV[K',—k'), in-medium pion mass calculated in the NJL model. Accord-

(18 ing to the previous discussion, the smsllvave pion self-
energy is partially accounted for but this gives in practice a

where the two-pion propagator in vacuum i€)] negligible effect for the in-mediumr-7 T matrix. For this
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first work, mixing the effects from the underlying quark width. This can be incorporated through the replacement in
structure (modification of m, . ,f.) with those from pion the pion propagatdrEq. (23)]:

p-wave coupling, we use the simplest possible approach.

Hence, in the spirit of Ref[9], we assume that the pion ~Im ﬁo(k,ﬂj(k))

self-energy is dominated by virtual-h excitations in the Qj (k)= Q; (k) +i T 200(k) (26)
domain of energy of interest, namely, !

om0 oo . o where Imi1°, calculated along the ling takes into account
Sy(k, ) =KII7(K,0) =KII(K, 0)/[ 1= gy, IT7(K, @) ]. the delta width, corrected from Pauli blocking, together with
(21) extra two-particle—two-hol€2p-2h contributions which are
not reducible to a delta width piece. Details are given in Ref.

Heregj ,=0.5 accounts for the short-range screening of thet24]_ The imaginary part of the two-pion propagator is ob-
A-h polarization bubbld1°. The numerical calculations are tained through a spectral representation

performed in the framework of the two-level model already

used in Ref[9]. The main approximation of this model is to 1 (E

neglect the Fermi motion of the nucleons in theh bubble. ImG,(k,E)=— —f dw ImMD (k,E)ImD (k,E— ).
In addition we first neglect the width of the delta resonance. mJo

This last approximation will be relaxed below. The polariza- (27)

tion bubble has the form The real part is calculated with a dispersion relation.

2
1 1
— V. RESULTS
F(k)) p(a)—eAk-Hn w-l—eAk !

(22 To clearly illustrate the basic physical mechanisms, we
present the results for the in medium pion-pion scattering
with e, = Vk2+ MA2 —My andI'(k) is the 7NN form fac-  matrix in the simplified calculational scheme discussed in the
tor. It is a simple matter to show that the pion propagatomprevious sections, using systematically the second set of pa-
takes the very simple form typical of a two-level model: ~ rameters withm,=1 GeV. First, the treatment of collective
7NA configurations entering the two-pion propagator is

*
7NA

0 _4<f
Mok, 0)=g| —

ks

Z,(k,w;p) done in the extended two-level model summarized just

Da(k,wip)= 02— 0%K,wp)+i7 above. In addition we use the leading order term of the so-
called 1N expansion of the linear sigma model. In a forth-

Zy(k,w;p) coming paper we will incorporate the full linear sigma model

(23 potential together with a full calculation of the in-medium

two-pion propagator. However, we believe that the conclu-

where the eigenenergieQ,,(), and the strength factors sions concerning the relative weigh; of qollective_ pion_ic
Z,,Z, (Z,+Z,=1) are very simple functions of the density mode_s and _ch|ral symmetry restoration will remain valid.
which can be found in Ref9]. As explained in detail in this  The linear sigma model can be seen a®@+1) model

last reference, the pion strength function splits into two col-With N=3. It has been show{25,1§ that, to leading order
lective eigenmodes. Of special interest is the lower branci @ 1N expansion, one gets a consistent symmetry conserv-
(©;), sometimes called the pionic branch responsible for thé"g approach fulfilling Ward identities and all chiral symme-
softening of the pion dispersion curve. To calculate the melly constraints. The corresponding potential is obtained from
dium modifieds- T matrix, we have to solve the LS equa- EG. (16) by simply keeping thes channel pole term and

tion [Eq. (18)] with a modified two-pion propagator accord- dropping theu andt sigma propagators. In practice it has the
ing to great advantage of making the potential separable. Accord-

ing to[15], we take the potential as

w?—Q5(k,w;p)+in’

idk
GorlkE)= [ 52D, (K koD (~KE—kp). (24 E2-mi
2m (k,—k|V(E)|k",—k"y=60v(k)v (k')A =7 With
In the two-level model, its explicit expression is
, m2—m2
0,0 +9Q;(k) Mo (28)

GorlE)= 2. 50,000, 0
with a phenomenological form factonk) =g/(1+ kzlqﬁ)“.
% Zi(k)Z;(k) (25) It is important to note that the introduction of such a form
E2—(Q;(k) +Qj(k))2+i 7’ factor does not destroy in any way the chiral symmetry prop-
erties. Takingg=0.9, «=3, andgy=1 GeV one gets a
Obviously, in the absence gfwave coupling, one recovers reasonable fit to experimental phase sHitS]. With such a
Eqg. (19. In a more realistic description the main features ofseparable potential one easily obtains the explicit form of the
the two-level model survive but the modék, , acquire a T matrix:
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FIG. 7. Spectral function for the sigma meson at various densi-

FIG. 6. Strength function for the- interaction at zero density ties.(a) (upper panglcorresponds to a calculation with coupling to
(dot-dashed curveshalf nuclear matter densitgdashed curvgs  the pionic collective modes, keeping,, m,, and f_ at their
and normal nuclear matter densitgolid curves. (a) (upper left  vacuum values(b) (lower panel incorporates the in-medium modi-
pane) corresponds to a calculation with coupling to the pionic col- fication of m,, m_, andf, from the NJL model on top of collec-
lective modes, keeping,., m,., andf _ at their vacuum valuegb) tive pionic modes. We use the parameter set Il with=1 GeV.
(upper right panglincorporates the in-medium modification rof, ,
m,., andf_ from the NJL model, ignoring the effect of collective spectacular enhancement of the strength with increasing den-
pionic modes.(c) (lower panel incorporates both effects. We use sity which is roughly uniform in the energy domain consid-

the parameter set Il witm,=1 GeV. ered. The origin of this effect is mainly the dropping of the
sigma mass. However, it is less pronounced in the density
(k,—K|T(E)|k’,—k")=60v(K)v (k')A domain typical of ordinary nuclei than in the work of Hat-
s 2 sudaet al. [20] for at least two obvious reasons. First, we
X E*—m7 start with a vacuum sigma mass of 1 Géysed in our pre-
E2—m§—3)\(E2— mi)E(E) ' vious works to fit the phase shiftsignificantly larger than

the values of 550 MeV or 750 MeV used[ia0]. Second, the

@) coupling constank =m?—m?/2f2 slightly decreases
with 3 (E) given by at variance with the work of Hatsudet al. where it was
. density independent. We will come to a more detailed com-
d°q parison of the two works when discussing the sigma propa-
E(E):f (2m)3Y (2)G24(9,E). (30 gator itself. In Fig. c), we include simultaneously the two

mechanisms. We recover the typical low energy structure
In Fig. 6, we present the results of the calculation for theassociated with pionic collective modes but significantly re-
-1 strength functior(i.e., the imaginary part of the scatter- inforced by the effect of chiral symmetry restoration.
ing amplitude for zero density, half nuclear matter density  To study the evolution with density of scalar-isoscalar
(0.500), and normal nuclear matter densityof. We limit  modes, it is also very interesting to study the sigma meson
ourselves to the low-energy sectd<< 600 MeV) since it spectral function, i.e., the imaginary part of the sigma propa-
corresponds to the domain of validity of the low energy ef-gator. It is a simple matter to obtain the explicit form of the
fective theory and to the region experimentally probed forsigma meson propagator in this simple mofded|:
instance in the CHAOS experiment. In Figapwe keep the
sigma mass, the pion mass, and the pion decay constant at

their vacuum values and incorporate the effectp-ofave D,(E)= E2—m§—SU(E)’ (31)
7NA collective modes. We recover the well-known struc-

ture near the two-pion threshold originating from the soften-with the sigma self-energy given by

ing of the pion dispersion relation and extensively discussed

in [1,9,10. In Fig. 6b), we disregard the effect of these S (E) 6T2\?3(E) 32

pionic modes but simply replace in the vacudimnmatrix the
sigma mass, the pion mass, and the pion decay constant by
their in-medium value. In this way we isolate the effectsThe results of the calculation are shown in Fig. 7 for the
intimately related to chiral symmetry restoration. We see ahree previous cases: pionic collective modes offiyg.

T1-3\3(E)
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6(a)], chiral symmetry restoration onl\Fig. 6(b)], and both  ence of chiral symmetry restoration itself is visible by com-
[Fig. 6(c)]. It is also interesting to compare our results with parison of Fig. 7a) and Fig. 7b).
the calculation of Ref[18] where chiral symmetry restora-
tion is implemented by only dropping the sigma mass, ignor-
ing the modification of ther7# coupling constant. Since we
find in this present work thak is only slightly modified In this paper we have examined medium effects on the
(about 20% lower afp=p,), it is not surprising that the unitarized pion-pion interaction in the scalar-isoscalar chan-
reinforcement of the low energy enhancement is qualitativelynel and the sigma-meson spectral function. The new feature
similar in these two works, at least at normal nuclear matteof this work is the simultaneous treatment of chiral symme-
density. try restoration and the nuclear effect associated with the ex-
Until now we have considered the density regime accesistence of collective pionic modes. Starting from the standard
sible in experiments on ordinary nuclei such as the CHAOSNambu—Jona-Lasinio model generalized at finite density, we
experiments. It is, however, extremely interesting to go behave obtained an in-medium pion-pion potential. In particu-
yond, although the basics nuclear physics ingredients of thiar, we have shown that the NJL model regenerates the linear
calculation are less under control. We now follow for a while sigma model potential but with modified parametens,
the arguments 0off20]. Let us consider the spectral function m_, andf ). This modification of the parameters intimately

VI. CONCLUSION

of the sigma meson: related to chiral symmetry restoration strongly reenforces the
7rar strength function in the threshold region. Since the NJL
po(E)=— ilm D (E) model is not adapted to the calculation of collective pionic
7 T 7 modes, we have used the standard phenomenological nuclear
physics approach. When both effects are incorporated, the
1 Im S,(E) low-energy 7 structure resulting from the existence of
T [Ez—mi—ReS(,(E)]zwL[lm SU(E)]Z’ nuclear collective modes is significantly enhanced, in par-

ticular through the dropping of the sigma mass. This feature
(33) is obviously of considerable importance for the understand-

. . . . ing of the structure observed by the CHAOS Collaboration in
wherem,, is as usual the in-medium sigma meson mass ob-

tained here from the NJL model. As in the work of HatsudaW_ZW experiments on various nuclel.
et al.[20], this in-medium sigma meson mass has an evolu-

tion which follows linearly at low density the scalar conden- ACKNOWLEDGMENTS
sate. However, the precise law of evolution is different since
it comes from a nucleonic tadpole diagram[#0]. Near the
two-pion threshold the phase space factor yields to the wel
known behavior:

We are indebted to Z. Aouissat, J. Delorme, M. Ericson,
(J- Marteau, P. Schuck, and J. Wambach for stimulating and
enlightening discussions.

ImD,~ImS,~ (E?~4m2)"2. (34 APPENDIX
Before chiral symmetry restoration with complete- 7 de- We list below the various integrals appearing in the text:
generacy, there must exist a density at whichD'gé(E
=2m,)=0 or 4m2—mZ—S(E=2m,)=0. At such a den- Pk 1
sity pq4, ignoring the effect of pionic collective modes, the |(D):J , (A1
sp)écgt?al %nctio% behaves as P (2m)* [K*=m?][(k+p)*—m?]
1 1 4
pAE=2m;)=— — o =f Sl !
7 ImS,(E=2m,) K(p) (2m) (=Pl (ko p)P—m?]
~6(E—2m,)/(E?2—4m2)Y2. (35 (A2)

This implies that there arises a mild integrable singularity ok 1
just above the two-pion threshold in the medium. With our L(p):j '
set of parameters this precursor effect of chiral symmetry (2m)* [K2=m?]?[ (k+p)*—m?*]?
restoration occurs at a density slightly larger thaw, At (A3)
variance with20] where this density was found at 125 In
addition when collective pionic modes are included, there is d*k 1
strength below two-pion threshold due to the various sources lmn(P)= J _
of width (A-h, 2p-2h). As a consequence, the mathematical (2m)* [K*=m?]"[(k+p)?—m?]"
singularity disappears. However, a precursor effect still (A4)
manifests itself through a strong enhancement of the near-
threshold structure created by tpewvave pionic collective The above equations are strictly valid B&=0. The ex-

modes. This feature is illustrated in Fig. 7 where the influ-plicit expressions at finite temperature are giveflii] and
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can be straightforwardly extended at both finite density and Adk K2 1 12E2
temperature. Here we simply quote a few relevant results for —iL(pg)= — =33 5" 55
numerical calculation at finite density: kedm® AE°py | po—4E”  (po—4E%)
64E*
1 (py) fAdk k2 -1 _(sz)s’ (A5)
—i = —=—— _
PI= ) 2m? E p2_ag? Po
and the gap equation is
K (po) jA dk —k?| 1 8E? AK2dK M
—j - | == _ , _ M
Po kF27T2 4E3 p(2)_4E2 (pg—4E2)2 M m+4NCNfgij2W2 E" (A6)
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