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Medium modification of the pion-pion interaction at finite density

D. Davesne, Y. J. Zhang, and G. Chanfray
IPN Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

~Received 4 April 2000; published 18 July 2000!

We discuss medium modifications of the unitarized pion-pion interaction in the nuclear medium. We incor-
porate both the effects of chiral symmetry restoration and the influence of collective nuclear pionic modes
originating from thep-wave coupling of the pion to delta-hole configurations. We show in particular that the
dropping of the sigma-meson mass significantly enhances the low-energy structure created by the in-medium
collective pionic modes.

PACS number~s!: 21.30.Fe, 21.65.1f
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I. INTRODUCTION

Modifications of hadron properties in nuclear and hot h
ronic matter is one of the central subjects of present
nuclear physics. For instance, it has been suggested in@1#
that the in-medium pion-pion interaction might be signi
cantly reshaped at density even below normal nuclear ma
density. The basic mechanism is linked to the nuclear col
tive pionic modes, sometimes called pisobars, originat
from the p-wave coupling of the pion to delta-holes state
According to detailed calculations@2,3# these collective
modes are able to explain charge exchange data@4,5#, despite
the peripheral character of these experiments, although s
other mechanisms such as broadening of the delta@6# or
projectile excitation@7# have been proposed. In additio
other detailed studies show that collective effects are ass
ated mainly with a particular channel such as the cohe
pion one@8#. This medium effect yields a softening of th
pion dispersion relation and consequently a modification
the two-pion propagator involved in the unitarizedT matrix
describing the pion-pion interaction at finite density. Inde
on the basis of purely phenomenological models@9#, an im-
portant reshaping of the pion-pion interaction in the sca
isoscalar channel~sigma channel!, producing a sizable accu
mulation of strength near the two-pion threshold, has b
predicted. This problem has been reinvestigated with ch
symmetric models such as linear or nonlinear sigma mo
@10# with special emphasis on the consistency between ch
symmetry constraints and unitarization. It was soon reali
that this medium effect is of considerable importance for
still open problem of nuclear saturation since an import
part of the nucleon-nucleon interaction comes from cor
lated two-pion exchange and several papers have bro
extremely interesting results@11–13#. Possible evidence fo
this reshaping of thep-p strength function is provided by
the p-2p data obtained on various nuclei by the CHAO
Collaboration at TRIUMF@14#. Recent calculations show
that the observed marked structure in thep1p2 invariant
mass spectrum can be partially explained by this resha
@15,16#. These last results have been questioned in a re
paper@17# where it is found that pion absorption forces t
reaction to occur at lower peripheral density.

However, what was ignored in the previous approac
was the possible medium modification of the basicp-p in-
teraction, i.e. thep-p potential from the underlying quar
0556-2813/2000/62~2!/024604~10!/$15.00 62 0246
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substructure or, in other words, from the in-medium mod
cation of hadronic properties associated with chiral symm
try restoration. This may have considerable consequen
since applying by hand in the linear sigma model pion-p
potential a Brown-Rho scaling of the sigma mass yield
significant enhancement of the near-threshold structure in
2p strength function@18#. To go further, it is important to
construct an in-mediump-p pion-pion potential. This ques
tion has already been addressed@19# in the framework of the
Nambu–Jona-Lasinio~NJL! model at finite temperature. In
this paper we will first use exactly the same scheme but w
a straightforward generalization at finite constituent qu
density to be identified later with one-third of the baryon
~i.e., nucleonic! density. In particular we will show that, us
ing a slightly different prescription for the loop integrals, th
NJL model regenerates the linear sigma model pion-p
Born term amplitude. This result, which is numerically e
tremely close to the more involved calculational scheme
Ref. @19#, can be generalized at finite density and/or tempe
ture provided the values of the pion mass, the sigma m
and the pion decay constant are replaced by their in-med
values calculated in the NJL model. Using this scheme
are in position to study in a particularly simple way dire
observable consequences of both partial chiral symmetry
toration such as the dropping of the sigma meson mass
collectivep-wave pionic modes by looking at the in-mediu
pion-pion interaction in the scalar-isoscalar channel. This
of utmost importance since, as emphasized recently by H
suda et al., the evolution of collective scalar-isoscala
modes, i.e., the sigma meson, may reveal precursor eff
associated to chiral symmetry restoration@20#.

From this density dependent effective linear sigma mo
potential implemented with a phenomenological form fact
it is possible to construct a unitarizedp-p scalar-isoscalar
amplitude which both preserves chiral symmetry constra
~Weinberg scattering length in the chiral limit! and repro-
duces experimental phase shifts. On top of precursor eff
of chiral symmetry restoration, the inclusion of medium e
fects associated with the modification of the pion dispers
relation should be consistently done in the framework of
NJL model by direct coupling to constituent quarks popul
ing the Fermi sea. However, the resulting pionp-wave po-
larizability calculated with quark-particles–quark-hol
would completely miss the phenomenologically well esta
lished strong screening effects from short-range correlati
©2000 The American Physical Society04-1
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TABLE I. Physical quantities atr50 in the NJL model for different parameters~I and II! and different
schemes of calculations~exact and simplified!.

f p mp ms L m m0 g
~MeV! ~MeV! ~MeV! ~MeV! ~MeV! ~MeV! (fm2)

I ~exact! 93.0 139.0 700.0 620.84 347.49 5.677 0.2247
II ~exact! 93.0 139.0 1000.0 573.31 498.85 5.772 0.3303
I ~simplified! 93.0 139.0 700.0 624.25 343.03 5.540 0.2207
II ~simplified! 93.0 139.0 1000.0 573.60 495.15 5.712 0.3284
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(g8 parameter!. Incorporation of correlation effects in th
NJL model obviously requires a much more involved lev
of sophistication, hence losing the simplicity which is one
its main interests. Furthermore, we will calculate the
medium two-pion propagator from standard pion-nucle
phenomenology. In other words, thep-wave pion polarizabil-
ity will be taken as its nuclear matter expression domina
in the region of interest by theD-hole piece corrected by
screening effects. The underlying philosophy can be sum
rized by saying that the medium modified soft physics link
to chiral symmetry (mp , f p , low-energyp-p potential! is
calculated within the NJL model whilep-wave physics yield-
ing pionic nuclear collective modes is described throu
standard nuclear phenomenology.

II. p-p INTERACTION FROM THE NJL MODEL

To examine thep-p interaction at finite density~and fi-
nite temperature!, we start from the SU~2! version of the
well-known NJL model@21#:

L5c̄~ i ]”2m0!c1g@~ c̄c!21~ c̄ ig5tc!2#, ~1!

whereg is a coupling strength of dimension@mass#22, and
m0 is the current quark mass. To maintain the asympto
freedom at high energies, we simulate the situation by
garding the coupling constant in Eq.~1! as a momentum
dependent one,g(p):

g~p!5g)
i 51

4

u~L2upi u!, ~2!

where pi ’s are the momenta of quarks andu is the step
function. Three parameters, namely,g, L, andm0, are deter-
mined to reproduce the pion massmp , the pion decay con-
stantf p , and the mass of the sigma mesonms . Here formp

and f p we choose the well-accepted values, and forms we
select two different empirical values to test the influence
the input data on our final results. In Table I, we list two s
of values formp , f p , andms , and alsog, L, andm0 which
are fixed, respectively, to give these two sets of values
mp , f p , and ms . In the parameter fitting, we follow the
formalism in the paper of Hatsuda, and Kunihiro@22#, where
the three-momentum cutoff was used. With the lowest va
of ms5700 MeV, one has a set of parameters very close
the one of Quacket al. @19# used for finite temperature stud
ies. In the following mainly devoted to finite density, we w
prefer the second set withms51 GeV for two reasons. On
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the one hand, this second set gives a higher density for ch
symmetry restoration~about 2.6r0 in place of 1.5r0), and on
the other hand, the values ofms51 GeV has been succes
fully used in previous works to fit the vacuump-p data
@10,15#.

In Table I, we also include the results with differe
schemes of calculation, the ‘‘exact’’ one and the ‘‘simp
fied’’ one. For the ‘‘exact’’ scheme, we just do the sam
calculation as Quacket al. @19# but at finite density, while
for the ‘‘simplified’’ one, we neglect theq2 dependence in
all of the integrals~for details see Sec. III! in our calculation,
whereq is the external momentum of pion and sigma m
sons.

The main purpose of this section is to get the dens
dependence on thep-p scattering lengthaI , which is related
to thep-p scattering amplitudeT I at threshold as

aI52
1

32pmp
ReT I , ~3!

whereI is the total isospin.
To the lowest order in 1/Nc (Nc , the number of quark

colors!, the invariant amplitudeTab;cd of the p-p scattering
process (a, b andc, d are the isospin indices! is calculated
from the box ands-propagation diagrams shown in Fig.
~see Fig. 1 in Ref.@19#!. Following the notation of Ref.@19#,
we have

FIG. 1. Box ands-propagation diagrams forp-p scattering
~a!,~b!,~c!, and~d! are the isospin indices.
4-2
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MEDIUM MODIFICATION OF THE PION-PION . . . PHYSICAL REVIEW C62 024604
Tab;cd5^cpc ;dpduTuapa ;bpb&5A~s,t,u!dabdcd

1B~s,t,u!dacdbd1C~s,t,u!daddbc , ~4!

where s, t, and u are the usual Mandelstam variables:s
5(pa1pb)2, t5(pa2pc)

2, andu5(pa2pd)2.
Because of the crossing relations, there are three poss

ties for the box diagram@23# which, after a direct evaluation
gives

~T1!ab;cd52~dabdcd1dacdbd2daddbc!@4NcNf igpqq
4 #

3@ I ~0!1I ~p!2p2K~p!#,

~T2!ab;cd52~dabdcd2dacdbd1daddbc!@4NcNf igpqq
4 #

3@ I ~0!1I ~p!2p2K~p!#,

~T3!ab;cd52~2dabdcd1dacdbd1daddbc!@8NcNf igpqq
4 #

3@ I ~0!1p4L~p!/222p2K~p!#, ~5!

in terms of integralsI (0), I (p), K(p), and L(p) ~see the
Appendix!.

The diagram with intermediates propagation shown in
Fig. 1 can be simply expressed in terms of its compone
By combination, one has

~T4!ab;cd52dabdcdgpqq
4 @Gspp~p,2p!#2Ds~2p!,

~T5!ab;cd52~dacdbd1daddbc!gpqq
4 @Gspp~p,p!#2Ds~0!,

~6!

where

Gspp~p,2p!528NcNfmI~p!,

Gspp~p,p!528NcNfm@ I ~0!2p2K~p!# ~7!

are thes-p-p vertex in thes channel andt channel, respec
tively, and

Ds~k!5
i

2NcNf@~k224m2!I ~k!2mp
2 I ~mp!#

~8!

is the sigma meson propagator. Similar to Eq.~8!, we also
have@19,23#

gpqq
24 52N2@ I ~0!1I ~p!2mp

2 K~p!#2 with N5NcNf .
~9!

We note here that all above results are evaluated at thres
(pi

25p25mp
2 5s/4), and we restrict them, forT.0, to the

scattering of pions whose c.m. system is at rest in the h
bath @19#.

Summing Eqs.~5! and~6! and with the help of projection
of the amplitudes on total isospinI, one finds thes-wave
scattering amplitudes

T 056T12T313T412T5

T 150,
02460
ili-
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T 252T312T5 , ~10!

where theTi are the function in Eqs.~5! and~6! expected of
the isospin factors. To get the density dependence onTi , we
must calculate the constituent quark massm and the pion
massmp at finite density first.

As in Ref. @22#, we get the in-medium constituent qua
mass from the gap equation due to the one-loop quark s
energy diagram~Fig. 5 in Ref. @22#!. The in-medium pion
mass~and alsos-meson mass! is determined from the dis
persion relation~in the q→0 limit ! of the meson excitation
~which itself is the solution of the Dyson equation in th
ring-diagram approximation!. For the details of deriving the
gap equation for quarks and the dispersion relation forp
~and alsos) meson, one can resort to Refs.@19,22# with a
straightforward extension at finite density. Some specific
sults and integrals are explicitely given in the Append
Here we display only the final results evolving with respe
to density at zero temperature. One thing to be mentio
here is that there are two different definitions for the co
pling between pions and quarks, namely,gpqq : one is from
Hatsuda and Kunihiro@22# and the other is from Quacket al.
@19#. These twogpqq differ from each other only by a term
proportional to

bE dk
k2

E2
f ~E! f ~2E!F~E,p!,

whereb is the inverse of the temperature,f (E) the Fermi-
distribution function, andF(E,p) a rational fraction of
E (E5Am21k2) and p ~external momentum of pions!. It
turns out that this term disappears when the temperature
to zero. So the discrepancy between these two definiti
will not give rise to any difference in the parameter fittin
which is done only at zero temperature and also in the m
part of this paper as we focus our calculation on the case
finite density but at zero temperature.

The density dependence of constituent quark massp
mass,s mass, andf p is shown in Fig. 2. We find that al
these quantities evolve with density almost linearly excep
the high density region~say r.0.30 fm23) and the trends
of these curves are all the same as those evolving with t
perature@22#. Here we use two sets of parameters listed
Table I.

We first show that the density dependences of the thre
old amplitudes and scattering lengths are very similar
those obtained at finite temperature in@19#. In Fig. 3, we
draw the curves of the various pieces of the scattering
plitudes as a function of density~at zero temperature! with
both sets of parameters. Again, we see that all the cu
evolve linearly with density in the low- and medium-dens
region. At a certain densityrd , there exists a divergence a
at high temperature@19#. Similar behavior also holds in Fig
4 where the relation between scattering length and densi
illustrated. An interesting feature is that one gets a hig
value of densityrd with the higher input vacuums-meson
mass. This divergence occurring in the sigma propaga
@19# actually corresponds to the point where the in-medi
4-3
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D. DAVESNE, Y. J. ZHANG, AND G. CHANFRAY PHYSICAL REVIEW C62 024604
sigma mass drops to twice the in-medium pion mass. In
second set of parameters the densityrd turns out to berd
;2.4r0. Once unitarization is done~see Sec. V! this density
goes down to aboutrd;2r0 due to the presence of the two
pion loop in the sigma propagator. We will come to th
important point in Sec. V since, as pointed out by Hatsu
et al. @20#, the vanishing of the real part of the inverse sigm
propagator atE52mp can be seen as a precursor effect
chiral symmetry restoration. However, the aim of this pa
is not primarily to study the phase transition region but

FIG. 2. Constituent quark massm, pion massmp , s-meson
massms , and pion decay constantf p vs density~at zero tempera-
ture! with parameter sets I and II: solid lines for the exact calcu
tion and dashed lines for the simplified calculation.

FIG. 3. Scattering amplitudesTi vs density~at zero temperature!
with parameter sets I and II: solid lines for the exact calculation
dashed lines for the simplified calculation.
02460
e
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moderate density region below nuclear matter density ac
sible in thep-2p experiment. For that purpose, we show
Fig. 5 the low density behavior of the scattering lengths.

III. SIMPLIFIED SCHEME

Now we turn to the simplified scheme of our calculatio
where we neglect the momentum dependence in all of ab
integrals, i.e.,I (p), K(p), andL(p) ~we will state later in
this section the reason for such a treatment!. But before this
simplified processing, we would like to check whether t
Weinberg limit is still kept at finite density and finite tem
perature. First we want to see how these integrals~and then
other related quantities! behave in the first order chiral ex

-

d

FIG. 4. Scattering lengthsa0 anda2 vs density~at zero tempera-
ture! with parameter sets I and II: solid lines for the exact calcu
tion and dashed lines for the simplified calculation.

FIG. 5. Same as Fig. 4 but for a moderate range of density
4-4
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pansion~expanding to the order ofmp
2 ). Keeping in mind

that we are always in the three-dimensional cutoff constr
and following the regularization of Ref.@23#, we find after
straightforward calculation that

I ~p25mp
2 !5I ~0!2

1

3
mp

2 K~0!,
-

in

m

ra

02460
t K~p25mp
2 !5K~0!2

1

2
mp

2 L~0!,

L~p25mp
2 !5L~0!2

5

6
mp

2 I 32~0!, ~11!

whereI 32(0) is shown explicitly in the Appendix. With thes
expansions, we get, from Eqs.~5!–~9!,
T15
4i

NH 2I ~0!2
1

3
mp

2 K~0!2mp
2 FK~0!2

1

2
mp

2 L~0!G J ,

T25T1 ,

T35

8i H I ~0!1mp
4 FL~0!2

5

6
mp

2 I 32~0!G /222mp
2 FK~0!2

1

3
mp

2 L~0!G J
NH 2I ~0!2

1

3
mp

2 K~0!2mp
2 FK~0!2

1

2
mp

2 L~0!G J ,

T45

H 28mF I ~0!2
1

3
mp

2 K~0!G J 2

H 2I ~0!2
1

3
mp

2 K~0!2mp
2 FK~0!2

1

2
mp

2 L~0!G J 2

i

2NH ~4mp
2 24m2!F I ~0!2

4

3
mp

2 K~0!G2mp
2 F I ~0!2

1

3
mp

2 K~0!G J ,

T55

X28mH I ~0!2mp
2 FK~0!2

1

3
mp

2 L~0!G J C2

H 2I ~0!2
1

3
mp

2 K~0!2mp
2 FK~0!2

1

2
mp

2 L~0!G J 2

i

2NH 24m2I ~0!2mp
2 F I ~0!2

1

3
mp

2 K~0!G J . ~12!
li-

4
x-
Keeping to the first order ofmp
2 with the help of Eqs.~3! and

~10!, one finds finally that

a05
1

32pmp

7mp
2

f p
2

,

a25
1

32pmp

22mp
2

f p
2

, ~13!

wheref p is defined as in Ref.@22#. Note there that the func
tions I (0), K(0), L(0), andI 32(0) are the integrals at finite
density and finite temperature. We thus recover the We
berg limit ~in the first order chiral expansion! at threshold for
finite density and finite temperature.

In the simplified calculation, we neglect the momentu
dependence of all above integrals inside the formula forTi ,
i.e., p25mp

2 50, except that we keepk2 in Eq. ~8! un-
changed as the momentum transfer in the two-pion inte
tion. Thus one gets
-

c-

T15T25T35
2i

NI~0!
,

T45T55
8im2

NI~0!

1

k22ms
2

, ~14!

where ms
254m21mp

2 in the simplified calculation, which
can be easily verified from Ref.@22#. Since f p

2 5
22iNm2I (0) in the simplified calculation, the above amp
tudes can be rewritten as

T15T25T35
2i

NI~0!
522l,

T45T554l2f p
2 1

k22ms
2

, ~15!

with the spp coupling constantl defined by 2l f p
2 5ms

2

2mp
2 as in the linear sigma model~see, for instance, Sec.

of @10#!. In other words, this simplified scheme yields e
4-5
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actly the amplitudes of the linear sigma model but withl,
f p , ms , and mp being functions of density~and tempera-
ture!. The numerical results for the simplified calculation a
also displayed in Figs. 2–4 by dashed lines. We find t
these two calculations have not much difference from e
other except for the high-density region. So the simplifi
calculation is a rather good approximation to address in
region of interest the density dependence ofm, mp , ms , f p ,
and even the scattering amplitude and scattering length.

IV. IN-MEDIUM UNITARIZED T MATRIX

We now incorporate the previousp-p amplitudes consid-
ered as a irreducible potential into a Lippman-Schwin
~LS! equation to get the unitarizedT matrix in the scalar-
isoscalar channel. However, when solving the LS integ
equation, the use of the ‘‘exact’’ scheme with its full m
mentum dependence turns out to be of hopeless comple
For this reason we prefer to use the potential from the ‘‘s
plified scheme’’ which has been shown to be very close
the observables~pion decay constant, masses, scatter
lengths! and their density dependences calculated with
‘‘exact’’ scheme. Hence, the potential will be simply th
linear sigma potential. For simplicity we restrict ourselves
an interacting pion pair with zero total momentum. In t
scalar-isoscalar channel, the potential reads, with the obv
notations,

^k,2kuV~E!uk8,2k8&5v~k!v~k8!
ms

22mp
2

f p
2

3S 3
s2mp

2

s2ms
2 1

t2mp
2

t2ms
2 1

u2mp
2

u2ms
2 D .

~16!

The prescription for the Mandelstam variables to be use
the LS equation are the ones used in Sec. 4 of@10#. E5As is
the energy variable at which the unitarizedT matrix is cal-
culated.t andu are chosen according to their on-shell valu

t52mp
2 22vkvk812k•k8, u52mp

2 22vkvk822k•k8.
~17!

The form factorv(k), which is assumed to simulate the m
mentum dependence of the vertices, is to be fitted on exp
mental phase shifts and scattering lengths in the free c
The unitarizedT matrix is the solution of the LS equation:

^k,2kuT~E!uk8,2k8&5^k,2kuV~E!uk8,2k8&

1
1

2E d3q

~2p!3
^k,2kuVuq,2q&

3G2p~E,q!^q,2quVuk8,2k8&,

~18!

where the two-pion propagator in vacuum is@10#
02460
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G2p~E,q!5
1

vq

1

E224vq
21 ih

. ~19!

Ignoring thet andu dependence in the denominators, t
potential @Eq. ~16!# reduces to a combination of separab
potentials. Taking parameter set II (ms51 GeV! imple-
mented with a one-parameter form factorv(k)51/(1
1k2/64mp

2 ), one exactly recovers the potential used in@10#.
The phase shifts are correctly reproduced up to 800 MeV
the scattering length,a050.23mp

21 , is also in agreemen
with experimental data. It can be checked that, with suc
separable potential, the correction to the scattering len
from the unitarization procedure is of higher order inmp

2 ,
thus preserving the chiral symmetry result~Weinberg scat-
tering length! in the chiral limit.

From the underlying NJL quark model, the above resu
for the T matrix, Eqs.~16!–~19!, can be generalized at finit
density by simply replacing the pion mass, the sigma ma
and the pion decay constant by their in-medium values. W
parameter set II, the pion mass does not change very m
Starting from the vacuum valuemp5139 MeV, one finds at
half nuclear matter densitymp(r0 /2)5140.3 MeV and at
saturation densitymp(r0)5143 MeV. The variation of the
pion mass is usually expressed in terms of thes-wave pion
optical potential or in term of an effective scattering leng
Dmp

2 52mpVopt524p(b0)e f fr. Here we find (b0)e f f'
20.01 mp

21 which coincides with the experimental pion
nucleon scattering length. In reality the pion optical poten
is more repulsive due to higher order rescattering effects
still giving a very small modification of the pion mas
Hence, this modification of the pion mass, which simula
s-wave pion-nucleus interaction, is practically negligible.
other words, the model does not give an unrealistically la
shift in the pion mass.

On the contrary, there is a sizable dropping of the sig
mass of 110 MeV at half nuclear matter density and 2
MeV at normal density. Consequently, one finds a signific
reshaping of thep-p strength function, as we will see in th
next section, even atr50.5r0 which is the typical density
reached inp-2p experiment@16#. We now come to study
the dressing of the pion propagator by itsp-wave coupling in
matter. As already stated in the Introduction, the direct use
the standard NJL model for this problem would give tota
unrealistic results since there is no repulsion and short-ra
correlation (g8 parameter!. Hence, we turn to a conventiona
nuclear matter description of thep-wave self-interaction of
the pion on top of the NJL approach for the basic pion-p
potential. The pion propagator has the form

Dp~k,v!5@v22mp
2 2k22Sp~k,v!#21, ~20!

where Sp(k,v) is the conventional nuclear matterp-wave
pion self-energy to be specified below. Notice thatmp is the
in-medium pion mass calculated in the NJL model. Acco
ing to the previous discussion, the smalls-wave pion self-
energy is partially accounted for but this gives in practice
negligible effect for the in-mediump-p T matrix. For this
4-6
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first work, mixing the effects from the underlying qua
structure~modification of ms,p , f p) with those from pion
p-wave coupling, we use the simplest possible approa
Hence, in the spirit of Ref.@9#, we assume that the pio
self-energy is dominated by virtualD-h excitations in the
domain of energy of interest, namely,

Sp~k,v!5k2P̃0~k,v!5k2P0~k,v!/@12gDD8 P0~k,v!#.
~21!

HeregDD8 .0.5 accounts for the short-range screening of
D-h polarization bubbleP0. The numerical calculations ar
performed in the framework of the two-level model alrea
used in Ref.@9#. The main approximation of this model is t
neglect the Fermi motion of the nucleons in theD-h bubble.
In addition we first neglect the width of the delta resonan
This last approximation will be relaxed below. The polariz
tion bubble has the form

P0~k,v!5
4

9 S f pND*

mp
G~k! D 2

rS 1

v2eDk1 ih
2

1

v1eDk
D ,

~22!

with eDk5Ak21MD
2 2MN and G(k) is the pNN form fac-

tor. It is a simple matter to show that the pion propaga
takes the very simple form typical of a two-level model:

Dp~k,v;r!5
Z1~k,v;r!

v22V1
2~k,v;r!1 ih

1
Z2~k,v;r!

v22V2
2~k,v;r!1 ih

, ~23!

where the eigenenergiesV1 ,V2 and the strength factor
Z1 ,Z2 (Z11Z251) are very simple functions of the densi
which can be found in Ref.@9#. As explained in detail in this
last reference, the pion strength function splits into two c
lective eigenmodes. Of special interest is the lower bra
(V1), sometimes called the pionic branch responsible for
softening of the pion dispersion curve. To calculate the m
dium modifiedp-p T matrix, we have to solve the LS equa
tion @Eq. ~18!# with a modified two-pion propagator accord
ing to

G2p~k,E!5E idk0

2p
Dp~k,k0!Dp~2k,E2k0!. ~24!

In the two-level model, its explicit expression is

G2p~k,E!5 (
i , j 51

2
V i~k!1V j~k!

2V i~k!V j~k!

3
Zi~k!Zj~k!

E22~V i~k!1V j~k!!21 ih
. ~25!

Obviously, in the absence ofp-wave coupling, one recover
Eq. ~19!. In a more realistic description the main features
the two-level model survive but the modesV1,2 acquire a
02460
h.
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.
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r
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e
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f

width. This can be incorporated through the replacemen
the pion propagator@Eq. ~23!#:

V j~k!→V j~k!1 i
Im P̃0

„k,V j~k!…

2V j~k!
, ~26!

where ImP̃0, calculated along the linej, takes into account
the delta width, corrected from Pauli blocking, together w
extra two-particle–two-hole~2p-2h! contributions which are
not reducible to a delta width piece. Details are given in R
@24#. The imaginary part of the two-pion propagator is o
tained through a spectral representation

Im G2p~k,E!52
1

pE0

E

dv Im Dp~k,E!Im Dp~k,E2v!.

~27!

The real part is calculated with a dispersion relation.

V. RESULTS

To clearly illustrate the basic physical mechanisms,
present the results for the in medium pion-pion scatter
matrix in the simplified calculational scheme discussed in
previous sections, using systematically the second set of
rameters withms51 GeV. First, the treatment of collectiv
pND configurations entering the two-pion propagator
done in the extended two-level model summarized j
above. In addition we use the leading order term of the
called 1/N expansion of the linear sigma model. In a fort
coming paper we will incorporate the full linear sigma mod
potential together with a full calculation of the in-mediu
two-pion propagator. However, we believe that the conc
sions concerning the relative weight of collective pion
modes and chiral symmetry restoration will remain val
The linear sigma model can be seen as aO(N11) model
with N53. It has been shown@25,15# that, to leading order
in a 1/N expansion, one gets a consistent symmetry cons
ing approach fulfilling Ward identities and all chiral symm
try constraints. The corresponding potential is obtained fr
Eq. ~16! by simply keeping thes channel pole term and
dropping theu andt sigma propagators. In practice it has th
great advantage of making the potential separable. Acc
ing to @15#, we take the potential as

^k,2kuV~E!uk8,2k8&56v~k!v~k8!l
E22mp

2

E22ms
2 with

l5
ms

22mp
2

2 f p
2 , ~28!

with a phenomenological form factorv(k)5g/(11k2/qd
2)a.

It is important to note that the introduction of such a for
factor does not destroy in any way the chiral symmetry pr
erties. Takingg50.9, a53, and qd51 GeV one gets a
reasonable fit to experimental phase shifts@15#. With such a
separable potential one easily obtains the explicit form of
T matrix:
4-7
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^k,2kuT~E!uk8,2k8&56v~k!v~k8!l

3
E22mp

2

E22ms
223l~E22mp

2 !S~E!
,

~29!

with S(E) given by

S~E!5E d3q

~2p!3 v2~q!G2p~q,E!. ~30!

In Fig. 6, we present the results of the calculation for
p-p strength function~i.e., the imaginary part of the scatte
ing amplitude! for zero density, half nuclear matter densi
(0.5r0), and normal nuclear matter density (r0). We limit
ourselves to the low-energy sector (E,600 MeV) since it
corresponds to the domain of validity of the low energy
fective theory and to the region experimentally probed
instance in the CHAOS experiment. In Fig. 6~a! we keep the
sigma mass, the pion mass, and the pion decay consta
their vacuum values and incorporate the effects ofp-wave
pND collective modes. We recover the well-known stru
ture near the two-pion threshold originating from the softe
ing of the pion dispersion relation and extensively discus
in @1,9,10#. In Fig. 6~b!, we disregard the effect of thes
pionic modes but simply replace in the vacuumT matrix the
sigma mass, the pion mass, and the pion decay constan
their in-medium value. In this way we isolate the effec
intimately related to chiral symmetry restoration. We se

FIG. 6. Strength function for thep-p interaction at zero density
~dot-dashed curves!, half nuclear matter density~dashed curves!,
and normal nuclear matter density~solid curves!. ~a! ~upper left
panel! corresponds to a calculation with coupling to the pionic c
lective modes, keepingms , mp , andf p at their vacuum values.~b!
~upper right panel! incorporates the in-medium modification ofms ,
mp , and f p from the NJL model, ignoring the effect of collectiv
pionic modes.~c! ~lower panel! incorporates both effects. We us
the parameter set II withms51 GeV.
02460
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spectacular enhancement of the strength with increasing
sity which is roughly uniform in the energy domain consi
ered. The origin of this effect is mainly the dropping of th
sigma mass. However, it is less pronounced in the den
domain typical of ordinary nuclei than in the work of Ha
sudaet al. @20# for at least two obvious reasons. First, w
start with a vacuum sigma mass of 1 GeV~used in our pre-
vious works to fit the phase shifts! significantly larger than
the values of 550 MeV or 750 MeV used in@20#. Second, the
spp coupling constantl5ms

22mp
2 /2f p

2 slightly decreases
at variance with the work of Hatsudaet al. where it was
density independent. We will come to a more detailed co
parison of the two works when discussing the sigma pro
gator itself. In Fig. 6~c!, we include simultaneously the tw
mechanisms. We recover the typical low energy struct
associated with pionic collective modes but significantly
inforced by the effect of chiral symmetry restoration.

To study the evolution with density of scalar-isosca
modes, it is also very interesting to study the sigma me
spectral function, i.e., the imaginary part of the sigma pro
gator. It is a simple matter to obtain the explicit form of th
sigma meson propagator in this simple model@15#:

Ds~E!5
1

E22ms
22Ss~E!

, ~31!

with the sigma self-energy given by

Ss~E!5
6 f p

2 l2S~E!

123lS~E!
. ~32!

The results of the calculation are shown in Fig. 7 for t
three previous cases: pionic collective modes only@Fig.

-

FIG. 7. Spectral function for the sigma meson at various de
ties. ~a! ~upper panel! corresponds to a calculation with coupling
the pionic collective modes, keepingms , mp , and f p at their
vacuum values.~b! ~lower panel! incorporates the in-medium modi
fication of ms , mp , and f p from the NJL model on top of collec-
tive pionic modes. We use the parameter set II withms51 GeV.
4-8
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6~a!#, chiral symmetry restoration only@Fig. 6~b!#, and both
@Fig. 6~c!#. It is also interesting to compare our results w
the calculation of Ref.@18# where chiral symmetry restora
tion is implemented by only dropping the sigma mass, ign
ing the modification of thespp coupling constant. Since w
find in this present work thatl is only slightly modified
~about 20% lower atr5r0), it is not surprising that the
reinforcement of the low energy enhancement is qualitativ
similar in these two works, at least at normal nuclear ma
density.

Until now we have considered the density regime acc
sible in experiments on ordinary nuclei such as the CHA
experiments. It is, however, extremely interesting to go
yond, although the basics nuclear physics ingredients of
calculation are less under control. We now follow for a wh
the arguments of@20#. Let us consider the spectral functio
of the sigma meson:

rs~E!52
1

p
Im Ds~E!

52
1

p

Im Ss~E!

@E22ms
22ReSs~E!#21@ Im Ss~E!#2

,

~33!

wherems is as usual the in-medium sigma meson mass
tained here from the NJL model. As in the work of Hatsu
et al. @20#, this in-medium sigma meson mass has an evo
tion which follows linearly at low density the scalar conde
sate. However, the precise law of evolution is different sin
it comes from a nucleonic tadpole diagram in@20#. Near the
two-pion threshold the phase space factor yields to the w
known behavior:

Im Ds;Im Ss;~E224mp
2 !1/2. ~34!

Before chiral symmetry restoration with completes2p de-
generacy, there must exist a density at which ReDs

21(E
52mp)50 or 4mp

2 2ms
22S(E52mp)50. At such a den-

sity rd , ignoring the effect of pionic collective modes, th
spectral function behaves as

rs~E.2mp!52
1

p

1

Im Ss~E.2mp!

;u~E22mp!/~E224mp
2 !1/2. ~35!

This implies that there arises a mild integrable singula
just above the two-pion threshold in the medium. With o
set of parameters this precursor effect of chiral symme
restoration occurs at a density slightly larger than 2r0 at
variance with@20# where this density was found at 1.25r0. In
addition when collective pionic modes are included, there
strength below two-pion threshold due to the various sour
of width (D-h, 2p-2h). As a consequence, the mathemati
singularity disappears. However, a precursor effect s
manifests itself through a strong enhancement of the n
threshold structure created by thep-wave pionic collective
modes. This feature is illustrated in Fig. 7 where the infl
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ence of chiral symmetry restoration itself is visible by com
parison of Fig. 7~a! and Fig. 7~b!.

VI. CONCLUSION

In this paper we have examined medium effects on
unitarized pion-pion interaction in the scalar-isoscalar ch
nel and the sigma-meson spectral function. The new fea
of this work is the simultaneous treatment of chiral symm
try restoration and the nuclear effect associated with the
istence of collective pionic modes. Starting from the stand
Nambu–Jona-Lasinio model generalized at finite density,
have obtained an in-medium pion-pion potential. In partic
lar, we have shown that the NJL model regenerates the lin
sigma model potential but with modified parameters (ms ,
mp , and f p). This modification of the parameters intimate
related to chiral symmetry restoration strongly reenforces
pp strength function in the threshold region. Since the N
model is not adapted to the calculation of collective pion
modes, we have used the standard phenomenological nu
physics approach. When both effects are incorporated,
low-energy pp structure resulting from the existence
nuclear collective modes is significantly enhanced, in p
ticular through the dropping of the sigma mass. This feat
is obviously of considerable importance for the understa
ing of the structure observed by the CHAOS Collaboration
p-2p experiments on various nuclei.
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APPENDIX

We list below the various integrals appearing in the te

I ~p!5E d4k

~2p!4

1

@k22m2#@~k1p!22m2#
, ~A1!

K~p!5E d4k

~2p!4

1

@k22m2#2@~k1p!22m2#
,

~A2!

L~p!5E d4k

~2p!4

1

@k22m2#2@~k1p!22m2#2
,

~A3!

I mn~p!5E d4k

~2p!4

1

@k22m2#m@~k1p!22m2#n
.

~A4!

The above equations are strictly valid atT50. The ex-
plicit expressions at finite temperature are given in@19# and
4-9
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can be straightforwardly extended at both finite density a
temperature. Here we simply quote a few relevant results
numerical calculation at finite density:

2 i I ~p0!5E
kF

L dk

2p2

k2

E

21

p0
224E2

,

2 iK ~p0!5E
kF

L dk

2p2

2k2

4E3 F 1

p0
224E2

2
8E2

~p0
224E2!2G ,
ca

J

02460
d
or 2 iL ~p0!5E

kF

L dk

4p2

k2

4E3p0
2 F 1

p0
224E2

2
12E2

~p0
224E2!2

2
64E4

~p0
224E2!3G , ~A5!

and the gap equation is

M5m14NcNfgE
kF

Lk2dk

2p2

M

E
. ~A6!
ys.
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