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Analysis of 7*-nucleus elastic scattering using a local potential
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Pion-nucleus scattering has been analyzed using an equivalent local potential to calculate the differential
cross sections for pions elastically scattered fro@, 0, 28Si, and***4*€a in the energy range of 30 to
292 MeV. Thebwuck4 computer program was used to predict observables of pion-nucleus elastic scattering.
Our results are successfully compared to recent data. The skin neutr6fé@a contribute tor™ elastic
scattering in this energy range more than the protons.

PACS numbegps): 25.80.Dj, 24.10+i

[. INTRODUCTION that the Kisslinger potential and not the Laplacian one is the
more suitable for describing pion-nucleus interactifils

Satchler{1] introduced a local, phenomenological optical In the present work, the equivalent local potential of
potential of Woods-Saxon shape to describe—with greafohnson and Satchl¢2] is used to analyze the elastic scat-
success—the angular distributions of the differential crosgering of 7= from C, %0, 28Si, and*%#4*€a in the pion
sections for elastic and inelastic scattering of positive andinetic energy range of 30 to 292 MeV, where the local
negative pions £=) from the nuclei “**&Ca, %8Ni, °°zr,  potentials are easier to visualize than the nonlocal versions.
1183, and?%®Pb at energies ranging from 100 to 300 MeV. Two density distribution forms and only two Ericson-Ericson
In his analysis, Satchler used th&@oLEMY computer code, Lorentz-Lorentz parameter values are used.
which began as a program for heavy-ion direct-reaction The bwuck4 code that solves the nonrelativistic Schro
calculations. dinger equation is employed in the present analysis, since the

On the other hand, Johnson and Satcf#¢derived local DWUCK4 program is widely available. This program was
potentials at both low and resonance energies equivalent triginally written to calculate the scattering and reaction ob-
nonlocal Kisslinger-type potentials on the basis of multipleservables for binary nuclear reactions using the distorted-
scattering theory. With these equivalent potentials, differenwave Born approximatiofi6]. Our results from calculating
tial cross sections for*) elastically scattered from®0 at  angular distributions of the differential cross sections for the
162 MeV were calculated. The local potentials af ) elastic scattering ofr™ from the above mentioned nuclei are
+ 2%%pp at energies ranging from 20 to 291 MeV were alsocompared to the corresponding experimental data. As far as
calculated. we know, this is the first use of ttewuck4 computer code

It may be useful to mention here that two forms of poten-and the equivalent local potential to calculate the elastic
tial are commonly used to describe the pion-nucleus interacscattering differential cross section angular distributions
tion. These two forms are the Kisslingd] potential and a  for pions.
Laplacian[4] one. Both contain explicitly terms that origi-
nate in thep-wave pion-nucleon interaction important near Il. FORMALISM

the 3-3 resonance energy at 160 MeV. The Kisslinger poten- o i
tial [3] is For the Kisslinger nonlocal potential, Johnson and

Satchler[2] used the Krell-Ericson transformation, which
2 leads from the Klein-Gordon equation for pion scattering to a
U(n=—_ {a(r)+V-a(r)v}, (1.1)  local potential for the transformed wave function. Thus, a
standard nonrelativistic optical model computer program
wherew is the total energy of the pion in the center of massMay be used to calculate the angular distribution for a pion
(c.m) system,q(r) primarily results from theswave part, scattered from a nucleus. Such a program should be provided
and «(r) results from thep-wave part of the pion-nucleon with an effective pion mass, the target mass, and an effective
interaction,q(r) and «(r) being expressed in terms of the PIon energy. The transformed wave functignsatisfies a
nuclear densities of the target nucleus. Both are complex angchralinger equation:
energy dependent. In the Laplacian model the potential is
Iocalggnd ig written as P P {—(R?121)V?+ U +Vc}y=Ecmy- 2.9

5C)2 1 To solve Eq.(2.1) for pion elastic scattering from a nucleus
U (r)= (fic) q(r)—k2a(r)— =V2a(r);, (1.2  We employed thewuck4 computer cod¢6] with a reduced
20 2 massu:

with q(r) and«(r) the same as for the Kisslinger potential, w=M_m¢/(M_+mq), (2.2
andk the wave number of the pion-nucleon in the center of

momentum frame. Since the Kisslinger potential satisfies alwherem; is the target mass and the effective pion mass is
features of™-nucleus interactions, it has been suggestedM =y, m_. v, is defined a$1]
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y+7, cientsb, c, andd are taken from Ref[9]. The first-order
V= 5 7’ y=m_/mr, parameterd; andc; (i=0,1) for various pion kinetic ener-
(1+y“+2yy) gies T, and targets considered here are calculated through
(2.3 Eq.(2.79. . o
y,=1+(K, /m_c?), Next, we present the results of studies of the sensitivity of

the local potential and the associated differential cross sec-
tions to the choice of the model used for the density distri-
bution; we use simple two-parameter and three-parameter
Fermi shapes for the density distributions for the studied
nuclei. Thus,

where K, is the pion bombarding energy in the laboratory
system andm,. is the pion mass. Here_c?=139.6 MeV
has been used. The center-of-mass kinetic enEggy is

Ecm=(1ik)?/2u, (2.9
o p(r)=pn(r)+py(r). (2.9
herefk is th ter-of- t f the incident
where IS e center-or-mass momentum o0 e Inciaen The three-parameter Ferr(‘BPF) form is

pion. The effective bombarding ener@y [1] is

E/=Eom(M . +mp)/my, (2.5 pi(r)=poi(1+ wir?/c?){1+exd (r—c)lal} (2.9

(i=n for neutronsp for protons. The two-parameter Fermi
(2PPB form is easily obtained from the above expression for
the 3PF formw;=0.0 andpy (i=n,p) can be evaluated
m,_.C i ati it
_ | 2 4\1l2_ 2_ 4 \12 gn—1 from the normalization condition
k ( 7 )(7/7T 1) 4.72056n_(y,~—1)"° fm™ -,

which will generate the appropriatevalue in the form

(2.6

| | T | pndr=a-2) or z 210
where m,=0.1499 atomic mass unit&). The kinematics

parameters for the cases studied here are calculated usi\r)\%_ .
Egs.(2.2—(2.6). ich yields
In Eqg. (2.2), V¢ is the Coulomb potential due to the uni-
form charge distribution of the target nucleus of radRs (A=2) or Z
=rcA¥® and A is the target mass number. Hem poi(r)= Tl oy’ (2.1
=1.2 fm is consideredl]. U, is the nuclear local trans-
formed potential and is given in detail in R¢2]. It is con-  where
structed fromSwave andP-wave pion-nucleon interaction
parts. TheP-wave part includes the Ericson-Ericson Lorentz- 1
Lorentz(EELL) parameter [2]. In this work, two values of Ilzg[c?ﬂaiw)zci],
the EELL parameter are considered, naméhy,1.8[7] and
{=1.0[2], where we restricted ourselves to those two values
of £ used in Ref[2]. We have found that this parameter is 3 5 7 (aym)?
important to give good fits to data. Bowave andP-wave l=gci*+z@mci+ ¢ ¢
parts depend on pion-nucleon scattering amplitudes, the tar-
get density distribution, and its gradient. The pion-nucleorandZ is the atomic number of the nucleus. The parameters
scattering amplitude depends on complex first-order and;, a;, andw; (i=n,p) are given in Table [2,10-13.
second-order interaction parameters. The first-order interac- The root mean square radii for nuclei considered here are
tion parameters are related to the free pion-nucleon scatteringalculated and the results of our calculations are included in
through phase shifts in the form described in R8f. Here,  Table Il compared to those from RéfL4].
the phase shiftsy, are calculated according to the recent

relation of Ref[9]: Ill. DISCUSSION

_@21+1) Using the interaction parameters for calculating the
tang, b+ co?+d 4+XF“’OQO (2.7 huclear potential of elastic scattering ofr™ from
g2+t araq wi-w? ' 2c, 180, 28sj, and*%*4+4€a and inserting this potentitl,

added toV into thebwucka4 code, the results obtained for
where the resonance energyug, its width isI”, the strength  angular distributions of differential elastic cross section are

parametex=2|r|/T,|r| is the absolute value of the residue shown in Figs. 1-6. The first-order parameterandc; (i

for each pole,qq is the center-of-mass momentum of the =0,1) are calculated through the phase shift equatmn,

7-N system to reachw,, andl is the angular momentum as they are computed in the code of Hé&fl. These param-

guantum number. This parametrization was used in f8f. etersb; andc; are then used to generate the complex local

to compute thew-nucleus scattering with the nonlocal potentialU, using the expressions from R¢R]. The same

Kisslinger potential. The resonance parameters and coeffeoefficientsb; and c; are also used for calculations in the
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TABLE I. Ground-state density distribution parameters for the three- and two-parameter Fermi functions.

n is for neutrons ang for protons.
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Nucleus Model ¢, (fm) a, (fm) Wp ¢, (fm) a, (fm) W, Reference

e 3PF 2.002 0.383 0.540 2.002 0.383 0.540 [10]
2PF 2.5 0.37 0.0 25 0.37 0.0 [11]

%0 3PF 2.608 0.513 —0.051 2.608 0.513 —0.051 [12]
2PF 2.60 0.45 0.0 2.60 0.45 0.0 2]

g 3PF 3.34 058 —0.233 3.34 058 —0.233 [10]
2PF 3.14 0.537 0.0 3.14 0.537 0.0 [10]

4ca 3PF 3.68 0546 -0.1 3.97 0.42 -0.1 [13]
2PF 3.42 0.55 0.0 3.42 0.55 0.0 [13]

4“ca 3PF 3.750 0.530 —0.09 4.060 0.470 —0.09 [13]
2PF 3.55 0.55 0.0 3.52 0.55 0.0 [13]

48Ca 3PF 3.74 0.48  —0.03 4.06 0.46 —-0.03 [13]
2PF 3.47 0.55 0.0 3.63 0.55 0.0 [13]

model to compare to the local potential code. The comparsions between our calculations and the ex-

calculations. perimental data of Binomt al.[15] are represented in Fig. 1.

Examples are taken for a wide range of energies from 3@We have excellent agreement between the theoretical calcu-
MeV to 292 MeV. We found that there are two factors thatlations and data when we use the 3PF distribution and
play a significant role in our calculations in order to have a=1.0. Figure 1 shows that the EELL parameter has a large
good fit with the data. First is the form of the density distri- effect; the value off=1.8 destroys the agreement with the
butions. We used the two parameter Fermi as well as ther~-1%C elastic scattering data. A significant difference be-
three- parameter Fermi forms. Second, the EELL parametaween the experimental data and the present computations
¢ is found to play a significant role in the calculations. Thefor 7~ -12C elastic scattering is found when we use the 2PF
positions of the minima seen in the data are reproduced bgtistribution. Also,{/=1.8 moves the minima toward the for-
our calculations withy=1.0, while these minima are found ward angles. There are no differences between the present
to move toward forward angles with the valge 1.8. local potential calculations with 3PF and=1.0 and those

In the figures we use solid curves for the 3PF anhd based orpwei [9].
= 1.0, thick solid curves for the 2PF arga- 1.0, dot-dashed Figure 2 shows the differential elastic cross sections of
curves for the 3PF ang= 1.8, dotted curves for the 2PF and = from %0 at 114 MeV. Datd16] are compared towrI
{= 1.8 results of the present work, and dashed curves for theand the present local potential calculations. The present local
previous calculations using the first-order distorted wave impotential calculations using the 3PF distribution ane1.0
pulse approximation codewri [9]. andbwprI calculations are almost indistinguishable and agree

m~-12C differential elastic cross sections have been calwell with the data[16], while the calculations based on the
culated at two energies 120 and 280 MeV, where the locabresent local potentials are far from the data wigenl.8.
optical potential was computed by our modifiesvuck4a  The local potential gives poor agreement with the experi-

TABLE Il. rms radii in fm for the density distributions used in the present calculations.

This calculation Estimated by other4]

Nucleus Model (r3)i? (r3ylz (r3ykz (raylz

2c 3PF 2.32324 2.32324 2.32324 2.314
2PF 2.37521 2.37521 2.37521

%0 3PF 2.72657 2.72657 2.72657 2.596
2PF 2.61802 2.61802 2.61802

28gj 3PF 3.07564 3.07564 3.07564 3.001
2PF 3.14647 3.14647 3.14647

4ca 3PF 3.40659 3.39968 3.38278 3.366
2PF 3.34628 3.34628 3.34628

4Cca 3PF 3.44257 3.54624 3.49973 3.410
2PF 3.42655 3.40793 3.41629

“8Ca 3PF 3.38469 3.56398 3.56304 3.566
2PF 3.37703 3.47648 3.43210
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FIG. 2. As in Fig. 1 but forr ™ -0 differential elastic scattering
0.1 cross sections. The experimental data are taken from [R&f.at
energies of 114 MeV.
0.01
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0.001 ‘ ‘ : 1,000,000 N
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Ocm (deg) '
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FIG. 1. = -'2C differential elastic scattering cross sections at 1,000
energies 120 and 280 MeV. The solid curves use the 3PF distribu- 100
tion and {=1.0, thick solid curves use the 2PF afie¢ 1.0, dot- 10
dashed curves use the 3PF and1.8, while dotted curves use the R
2PF and/=1.8 of the present work, and dashed curves use the new 5 1
phase shift calculations fromwri [9]. Solid points are the experi- re) 0.1
mental data taken from Réf15]. £ 0
10,000,000
mental datd16] on using the 2PF density distribution with %} 1,000,000
both values off=1.0 and 1.8. B 100,000
In Figs. 3 we show the differential elastic scattering cross © 10,000
sections ofr*-?%Sj at 130 MeV[17]. The two computations, 1,000
pwrpl and the present local potentials with the 3PF form and 100
{=1.0, give good agreement with the elastic scattering data 10
[17]. Also shown in Figs. 3 are the calculated differential 1
cross sections using= 1.8 with the 3PF distribution; the fit
is fairly good. On using the 2PF model with both values of 0.1
[=1.0 and 1.8, the calculations give poor agreement with 0.01
[ 0.001 : : : : :
data in these two cases. . . O 20 40 60 80 100 120
We show in Figs. 4 and 5 elastic cross sectionsi#orat 0crm (deg)
cm.

180 MeV andw~ at 292 MeV on“*%4*4Ca. Parameters for

the density distributions of the nucleons #9*44Ca are

taken to be those of Table I. Differential elastic cross sec- FIG. 3. As in Fig. 1 but form*-8Si differential elastic scatter-
tions computed with the present local potential using the 3Pkng cross sections. The experimental data are taken from[R&f.
distribution with{=1.0 andbwrI based on the phase shifts at 130 MeV.
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FIG. 4. As in Fig. 1 but form™*-40444Ca differential elastic Ocm (deg)
scattering cross sections at 180 MeV. The experimental data are

taken from Ref[13].
FIG. 5. As in Fig. 1 but form~-40444¢Ca differential elastic

9 identical and . d t with th .scattering cross sections at 292.5 MeV. The experimental data are
[9] are identical and are in good agreement wi € eXPerigzien from Ref[13].

mental data of Boyeet al. [13]. The EELL parameter
=1.8 moves the minima toward the forward angles in all4°Ca at energies of 30 and 50 MeV are calculated and com-
cases considered. Also shown in Figs. 4 and 5 are the diffepared to the experimental dafthl]. Following Ref.[2] we
ential elastic cross sections fdf***Ca(m=,7=)**4*€a  have taken the complex second parameRysand C,;=0.
using the 2PF shape for the nucleons with both value$ of We compare in Fig. 6 the differential elastic cross sections
=1.0 and 1.8. These computations are far from adequatéor scattering ofz™ from %0 at 30 MeV. Calculations in
although the 2PF witht=1.0 gives reasonable agreementour modified first-order local optical potentials, using the
with data for some cases of“-*°Ca scattering at 180 and 3PF with both values of=1.0 and 1.8, have been done and
292 MeV. compared with those fromwepi of Ref. [9]. Both calcula-

Moreover, elastic scattering differential cross sections fotions are unlike the datfl1], especially at forward angles.
7~ -1%C at 150, 180, and 200 MeVr*-1%0 at 163 and 240 When the second-order parametBgsandC, (see Ref[2])
MeV, 7*-28Si at 180 and 226 MeV, and“-**4Ca at 116 are included in addition to the first-order parameteysb;,
MeV are also calculated with the present local potentialc,, andc; with both the present local potential and thePpi
model where the experimental data are availahB315-17.  code of Ref[9] to compute the second-order curves in Fig.
In all cases considered, it is noted that the 3PF shape of th&a) we get good agreement with the data. These second-
considered nuclei with the EELL parametés1.0 yields order parameters at 30 MeV are taken from R&8]. The
better fits to the experimental data than any other computaralues are B,=—0.162+i0.103 fnf and C,=0.747
tions using 3PF witi’=1.8 or the 2PF shape with=1.0 or  +i0.615 fnf at 30 MeV, while at 50 MeV they ar®,
[=1.8. =0.064-i0.077 fnf andCy=0.666+i1.219 fnf. Itis evi-

At lower pion beam energies,<80 MeV, the differen- dent that the second-order parameters are very important at
tial elastic cross sections for scatteringmf from °0 and  lower pion energiesT .<80 MeV. For optical potentials
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FIG. 6. (a) Differential elastic scattering cross sectionsmof 0.05
from %0 at 30 MeV. The solid curves are for second-order local ‘
potential calculations using the 3PF form afié 1.0, while dot- 8 10
dashed curves use the 3PF and1.8. The dashed curves use the r [fm]
second-order terms dB]. Solid points are the experimental data
taken from Ref[11]. (b) The datd11] compared to first-order local
potential calculations using the 3PF afid 1.0 as the solid curves,
the 3PF and'= 1.8 as the dot-dashed curves. The dashed curves u
the first-order phase shifts calculations framvei [9].

FIG. 7. The density distributions obtained from three-parameter
SFermi and two-parameter Fermi shapes for Ca isotopes with param-
Sters given in Table I.

(r®)Y2 calculated in the present work are very close to those
these terms may take the form of higher powers in the denestimated corresponding values except 1.
sity expansior{the so-callecp? terms [2]. In Table Ill, the differences betweefr?)¥' and (r2)?

The calcium isotopes have special significance in there calculated for Ca isotopes and compared to the corre-
study of nuclear radii becaus®Ca is often used for “cali- sponding experimental values predicted from pion-calcium
bration” of the projectile-target effective interaction and alsoscattering at 180 MeV13]. Also shown are the differences
because these isotopes span a wide range of neutron nuivetween(r2(A))*? and (r2(40))*? (in fm) extracted from
bers, including two doubly closed shell nucféi*Ca, which  Table Il and compared to those of REf9], whereA= 44 or
are of particular interest for nuclear structure calculations48. As can be seen from Table Ill, these differences deduced
The root mean squar@ms) radii are calculated for protons from the present work agree well with those of others except
(r?)3?, for neutrons(r?)1?, and for nuclear mattefr®);?  for the magnitude ofr2)2—(r?)? for *’Ca.
for all nuclei under consideration. These results are listed in  Figure 7 presents the density distributions obtained from
Table Il as well as(r?)¥? estimated by other§l4]. The = 3PF and 2PF shapes for Ca isotopes. This figure indicates

TABLE lll. From Table Il in the case of 3PF, neutron minus proton rms radii for Ca isotopes compared
with the corresponding values of Réfl3], and nuclear matter rms radii fé¥**€Ca minus that of**Ca
compared with the corresponding valueq ©8]. Values in fm.

Nucleus (18— (r7)5? (F(A) V2= (r i (40)*
Present calculation From RéflL3] Present calculation From RdfL9]

“Cca —0.00691 —0.02+0.04

4“Cca 0.10367 0.110.04 0.11695 0.180.03

“8Ca 0.17929 0.180.04 0.18026 0.180.04
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FIG. 9. The calculated rms radii of nuclear matter density dis-
tributions (r2)¥2 using 3PF and 2PF againat’® are shown. The

FIG. 8. Differences between the density distributionsttCa solid and dashed lines are to guide the eye.

and *°Ca using the two forms of density shapes 2Rsft) and 3PF
(right).
IV. CONCLUSION

that the 3PF density distribution is higher than the 2PF in the ) ) )
central and surface regions for all Ca isotopes under consid- The conc!usmn_ reached from these calcu_lauons is that the
eration. This may be the reason that the 3PF distribution®cal Potential, without free parameters, gives a good de-
produces better agreement with the experimental data thaif'iPtion for them™-nucleus elastic scattering, especially if
the 2PF distribution, especially at backward scatteringVe limit ourselves to energies where tt&3) resonance is
angles. But, as mentioned in Ref20], pions of T, dominant; the mean free path of the pion in the nuclear mat-
~20-250 MeV can be completely absorbed in the surfacéer becomes small0.5 fm) [20], with the consequence
region. It is also stated in Reff2] that the scattering in the that the interaction of the pion with the nucleus dominates in
resonance region is mostly sensitive to the potential in théhe nuclear surface. Also, we observe that the 3PF shape of
surface. This means that the central density slightly affectthe nuclear distributions along with the EELL paramefer
the elastic scattering of * differential cross sections. There- =1.0 are more suitable forr™ elastic scattering using the
fore, it may be suggested that the distribution in the surfac€quivalent potential. The first-order local potential is ad-
region is significant to predict well the elastic scattering dif-equate to give a good description®f -nucleus scattering at
ferential cross sections at larger scattering angles. T,>80 MeV, whereas the second-order terms are required
Differences between the density distributions ¥f*%Ca  at lower energie§ ,<80 MeV. The skin neutrons if"*Ca
and “°Ca using the two forms of density shapes 2PF and 3PEontribute torr™ elastic scattering in this energy range more
are displayed in Fig. 8. These differences of the densityhan protons. The rms radius for the nuclei considered in-
shapes of the Ca isotopes show evidence for a neutron skiifeases linearly a&'? increases.
in 4%Ca. For convenience the calculated rms radii of Finally, it may be suggested that this work can be ex-
nuclear matter density distributioris?)>? using 3PF and tended to use thewuck4 program to compute the™ in-
2PF shapes again#t’® are shown in Fig. 9. This figure elgstlc scattering cross sections from nuclei. The success of
suggests tha(r2)}? increases linearly a#®\'® increases. this analysis wnrl thewuck4 program may also set one up
Table Il also shows that the rms matter radii of the Ca isof0 compute ther™ coupled channel reactions.
topes increase with mass number. A considerable difference
between proton and total matter distribution radii occurs for
48Ca, indicating again a neutron skin for this nucleus. There-
fore, it might be expected that the surface neutror&fiCa
have a larger effect than surface protons on fits withttie We would like to thank Professor R. J. Peterson, Univer-
elastic scattering experimental data up to about 300 Me\sity of Colorado at Boulder, for a careful reading of the

pion kinetic energy, while the central nucleons slightly affectmanuscript and for providing us with second-order param-
the fitting. eters.
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