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Analysis of pÁ-nucleus elastic scattering using a local potential

S. A. E. Khallaf and A. A. Ebrahim
Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

~Received 7 September 1999; published 13 July 2000!

Pion-nucleus scattering has been analyzed using an equivalent local potential to calculate the differential
cross sections for pions elastically scattered from12C, 16O, 28Si, and 40,44,48Ca in the energy range of 30 to
292 MeV. TheDWUCK4 computer program was used to predict observables of pion-nucleus elastic scattering.
Our results are successfully compared to recent data. The skin neutrons in44,48Ca contribute top6 elastic
scattering in this energy range more than the protons.

PACS number~s!: 25.80.Dj, 24.10.2i
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I. INTRODUCTION

Satchler@1# introduced a local, phenomenological optic
potential of Woods-Saxon shape to describe—with gr
success—the angular distributions of the differential cr
sections for elastic and inelastic scattering of positive a
negative pions (p6) from the nuclei 40,48Ca, 58Ni, 90Zr,
118Sn, and208Pb at energies ranging from 100 to 300 Me
In his analysis, Satchler used thePTOLEMY computer code,
which began as a program for heavy-ion direct-react
calculations.

On the other hand, Johnson and Satchler@2# derived local
potentials at both low and resonance energies equivalen
nonlocal Kisslinger-type potentials on the basis of multip
scattering theory. With these equivalent potentials, differ
tial cross sections for (p1) elastically scattered from16O at
162 MeV were calculated. The local potentials of (p6)
1 208Pb at energies ranging from 20 to 291 MeV were a
calculated.

It may be useful to mention here that two forms of pote
tial are commonly used to describe the pion-nucleus inte
tion. These two forms are the Kisslinger@3# potential and a
Laplacian@4# one. Both contain explicitly terms that orig
nate in thep-wave pion-nucleon interaction important ne
the 3-3 resonance energy at 160 MeV. The Kisslinger po
tial @3# is

Uk~r !5
~\c!2

2v
$q~r !1¹•a~r !¹%, ~1.1!

wherev is the total energy of the pion in the center of ma
~c.m.! system,q(r ) primarily results from thes-wave part,
and a(r ) results from thep-wave part of the pion-nucleon
interaction,q(r ) and a(r ) being expressed in terms of th
nuclear densities of the target nucleus. Both are complex
energy dependent. In the Laplacian model the potentia
local and is written as

UL~r !5
~\c!2

2v H q~r !2k2a~r !2
1

2
¹2a~r !J , ~1.2!

with q(r ) anda(r ) the same as for the Kisslinger potentia
andk the wave number of the pion-nucleon in the center
momentum frame. Since the Kisslinger potential satisfies
features ofp6-nucleus interactions, it has been sugges
0556-2813/2000/62~2!/024603~8!/$15.00 62 0246
l
t
s
d

n

to

-

o

-
c-

n-

s

nd
is

f
ll
d

that the Kisslinger potential and not the Laplacian one is
more suitable for describing pion-nucleus interactions@5#.

In the present work, the equivalent local potential
Johnson and Satchler@2# is used to analyze the elastic sca
tering ofp6 from 12C, 16O, 28Si, and 40,44,48Ca in the pion
kinetic energy range of 30 to 292 MeV, where the loc
potentials are easier to visualize than the nonlocal versio
Two density distribution forms and only two Ericson-Ericso
Lorentz-Lorentz parameter values are used.

The DWUCK4 code that solves the nonrelativistic Schr¨-
dinger equation is employed in the present analysis, since
DWUCK4 program is widely available. This program wa
originally written to calculate the scattering and reaction o
servables for binary nuclear reactions using the distort
wave Born approximation@6#. Our results from calculating
angular distributions of the differential cross sections for
elastic scattering ofp6 from the above mentioned nuclei ar
compared to the corresponding experimental data. As fa
we know, this is the first use of theDWUCK4 computer code
and the equivalent local potential to calculate the ela
scattering differential cross section angular distributio
for pions.

II. FORMALISM

For the Kisslinger nonlocal potential, Johnson a
Satchler @2# used the Krell-Ericson transformation, whic
leads from the Klein-Gordon equation for pion scattering t
local potential for the transformed wave function. Thus
standard nonrelativistic optical model computer progr
may be used to calculate the angular distribution for a p
scattered from a nucleus. Such a program should be prov
with an effective pion mass, the target mass, and an effec
pion energy. The transformed wave functionc satisfies a
Schrödinger equation:

$2~\2/2m!¹21UL1VC%c5Ec.m.c. ~2.1!

To solve Eq.~2.1! for pion elastic scattering from a nucleu
we employed theDWUCK4 computer code@6# with a reduced
massm:

m5MpmT /~Mp1mT!, ~2.2!

wheremT is the target mass and the effective pion mass
Mp5gpmp . gp is defined as@1#
©2000 The American Physical Society03-1
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gp5
y1g

l

~11y212yg
l
!1/2

, y5mp /mT ,

~2.3!

g
l
511~K

l
/mpc2!,

where Kl is the pion bombarding energy in the laborato
system andmp is the pion mass. Herempc25139.6 MeV
has been used. The center-of-mass kinetic energyEc.m. is

Ec.m.5~\k!2/2m, ~2.4!

where\k is the center-of-mass momentum of the incide
pion. The effective bombarding energyEl @1# is

El5Ec.m.~Mp1mT!/mT , ~2.5!

which will generate the appropriatek value in the form

k5S mpc

\ D ~gp
221!1/254.720 56mp~gp

221!1/2 fm21,

~2.6!

where mp50.1499 atomic mass units~u!. The kinematics
parameters for the cases studied here are calculated u
Eqs.~2.2!–~2.6!.

In Eq. ~2.1!, VC is the Coulomb potential due to the un
form charge distribution of the target nucleus of radiusRC
5r CA1/3 and A is the target mass number. Herer C
51.2 fm is considered@1#. UL is the nuclear local trans
formed potential and is given in detail in Ref.@2#. It is con-
structed fromS-wave andP-wave pion-nucleon interaction
parts. TheP-wave part includes the Ericson-Ericson Loren
Lorentz~EELL! parameterz @2#. In this work, two values of
the EELL parameter are considered, namely,z51.8 @7# and
z51.0 @2#, where we restricted ourselves to those two valu
of z used in Ref.@2#. We have found that this parameter
important to give good fits to data. BothS-wave andP-wave
parts depend on pion-nucleon scattering amplitudes, the
get density distribution, and its gradient. The pion-nucle
scattering amplitude depends on complex first-order
second-order interaction parameters. The first-order inte
tion parameters are related to the free pion-nucleon scatte
through phase shifts in the form described in Ref.@8#. Here,
the phase shiftsd l are calculated according to the rece
relation of Ref.@9#:

tand l

q2l 11
5b1cq21dq41

xGv0q0
2(2l 11)

v0
22v2

, ~2.7!

where the resonance energy isv0, its width isG, the strength
parameterx52ur u/G,ur u is the absolute value of the residu
for each pole,q0 is the center-of-mass momentum of th
p-N system to reachv0, and l is the angular momentum
quantum number. This parametrization was used in Ref.@9#
to compute thep-nucleus scattering with the nonloc
Kisslinger potential. The resonance parameters and co
02460
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cientsb, c, and d are taken from Ref.@9#. The first-order
parametersbi andci ( i 50,1) for various pion kinetic ener
gies Tp and targets considered here are calculated thro
Eq. ~2.7!.

Next, we present the results of studies of the sensitivity
the local potential and the associated differential cross s
tions to the choice of the model used for the density dis
bution; we use simple two-parameter and three-param
Fermi shapes for the density distributions for the stud
nuclei. Thus,

r~r !5rn~r !1rp~r !. ~2.8!

The three-parameter Fermi~3PF! form is

r i~r !5r0i~11v i r
2/ci

2!/$11exp@~r 2ci !/ai #% ~2.9!

( i 5n for neutrons,p for protons!. The two-parameter Ferm
~2PF! form is easily obtained from the above expression
the 3PF formv i50.0 andr0i ( i 5n,p) can be evaluated
from the normalization condition

E r i~r !dr̄5~A2Z! or Z, ~2.10!

which yields

r0i~r !5
~A2Z! or Z

4p~ I 11v i I 2!
, ~2.11!

where

I1.
1

3
@ci

31~aip!2ci #,

I2.
1

5
ci

31
2

3
~aip!2ci1

7

15

~aip!4

ci
,

andZ is the atomic number of the nucleus. The paramet
ci , ai , andwi ( i 5n,p) are given in Table I@2,10–13#.

The root mean square radii for nuclei considered here
calculated and the results of our calculations are include
Table II compared to those from Ref.@14#.

III. DISCUSSION

Using the interaction parameters for calculating t
nuclear potential of elastic scattering ofp6 from
12C, 16O, 28Si, and40,44,48Ca and inserting this potentialUL
added toVC into theDWUCK4 code, the results obtained fo
angular distributions of differential elastic cross section
shown in Figs. 1–6. The first-order parametersbi andci ( i
50,1) are calculated through the phase shift equation~2.7!,
as they are computed in the code of Ref.@9#. These param-
etersbi and ci are then used to generate the complex lo
potentialUL using the expressions from Ref.@2#. The same
coefficientsbi and ci are also used for calculations in th
3-2
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TABLE I. Ground-state density distribution parameters for the three- and two-parameter Fermi func
n is for neutrons andp for protons.

Nucleus Model cp (fm) ap (fm) wp cn (fm) an (fm) wn Reference

12C 3PF 2.002 0.383 0.540 2.002 0.383 0.540 @10#

2PF 2.5 0.37 0.0 2.5 0.37 0.0 @11#
16O 3PF 2.608 0.513 20.051 2.608 0.513 20.051 @12#

2PF 2.60 0.45 0.0 2.60 0.45 0.0 @2#
28Si 3PF 3.34 0.58 20.233 3.34 0.58 20.233 @10#

2PF 3.14 0.537 0.0 3.14 0.537 0.0 @10#
40Ca 3PF 3.68 0.546 20.1 3.97 0.42 20.1 @13#

2PF 3.42 0.55 0.0 3.42 0.55 0.0 @13#
44Ca 3PF 3.750 0.530 20.09 4.060 0.470 20.09 @13#

2PF 3.55 0.55 0.0 3.52 0.55 0.0 @13#
48Ca 3PF 3.74 0.48 20.03 4.06 0.46 20.03 @13#

2PF 3.47 0.55 0.0 3.63 0.55 0.0 @13#
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Kisslinger model to compare to the local potent
calculations.

Examples are taken for a wide range of energies from
MeV to 292 MeV. We found that there are two factors th
play a significant role in our calculations in order to have
good fit with the data. First is the form of the density dist
butions. We used the two parameter Fermi as well as
three- parameter Fermi forms. Second, the EELL param
z is found to play a significant role in the calculations. T
positions of the minima seen in the data are reproduced
our calculations withz51.0, while these minima are foun
to move toward forward angles with the valuez51.8.

In the figures we use solid curves for the 3PF andz
51.0, thick solid curves for the 2PF andz51.0, dot-dashed
curves for the 3PF andz51.8, dotted curves for the 2PF an
z51.8 results of the present work, and dashed curves for
previous calculations using the first-order distorted wave
pulse approximation codeDWPI @9#.

p2-12C differential elastic cross sections have been c
culated at two energies 120 and 280 MeV, where the lo
optical potential was computed by our modifiedDWUCK4
02460
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code. The comparsions between our calculations and the
perimental data of Binonet al. @15# are represented in Fig. 1
We have excellent agreement between the theoretical ca
lations and data when we use the 3PF distribution anz
51.0. Figure 1 shows that the EELL parameter has a la
effect; the value ofz51.8 destroys the agreement with th
p2-12C elastic scattering data. A significant difference b
tween the experimental data and the present computat
for p2-12C elastic scattering is found when we use the 2
distribution. Also,z51.8 moves the minima toward the for
ward angles. There are no differences between the pre
local potential calculations with 3PF andz51.0 and those
based onDWPI @9#.

Figure 2 shows the differential elastic cross sections
p1 from 16O at 114 MeV. Data@16# are compared toDWPI

and the present local potential calculations. The present l
potential calculations using the 3PF distribution andz51.0
andDWPI calculations are almost indistinguishable and ag
well with the data@16#, while the calculations based on th
present local potentials are far from the data whenz51.8.
The local potential gives poor agreement with the expe
TABLE II. rms radii in fm for the density distributions used in the present calculations.

This calculation Estimated by others@14#

Nucleus Model ^r 2&p
1/2 ^r 2&n

1/2 ^r 2&m
1/2 ^r 2&m

1/2

12C 3PF 2.32324 2.32324 2.32324 2.314
2PF 2.37521 2.37521 2.37521

16O 3PF 2.72657 2.72657 2.72657 2.596
2PF 2.61802 2.61802 2.61802

28Si 3PF 3.07564 3.07564 3.07564 3.001
2PF 3.14647 3.14647 3.14647

40Ca 3PF 3.40659 3.39968 3.38278 3.366
2PF 3.34628 3.34628 3.34628

44Ca 3PF 3.44257 3.54624 3.49973 3.410
2PF 3.42655 3.40793 3.41629

48Ca 3PF 3.38469 3.56398 3.56304 3.566
2PF 3.37703 3.47648 3.43210
3-3
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mental data@16# on using the 2PF density distribution wit
both values ofz51.0 and 1.8.

In Figs. 3 we show the differential elastic scattering cro
sections ofp6-28Si at 130 MeV@17#. The two computations
DWPI and the present local potentials with the 3PF form a
z51.0, give good agreement with the elastic scattering d
@17#. Also shown in Figs. 3 are the calculated different
cross sections usingz51.8 with the 3PF distribution; the fi
is fairly good. On using the 2PF model with both values
z51.0 and 1.8, the calculations give poor agreement w
data in these two cases.

We show in Figs. 4 and 5 elastic cross sections forp1 at
180 MeV andp2 at 292 MeV on40,44,48Ca. Parameters fo
the density distributions of the nucleons in40,44,48Ca are
taken to be those of Table I. Differential elastic cross s
tions computed with the present local potential using the 3
distribution withz51.0 andDWPI based on the phase shif

FIG. 1. p2-12C differential elastic scattering cross sections
energies 120 and 280 MeV. The solid curves use the 3PF distr
tion and z51.0, thick solid curves use the 2PF andz51.0, dot-
dashed curves use the 3PF andz51.8, while dotted curves use th
2PF andz51.8 of the present work, and dashed curves use the
phase shift calculations fromDWPI @9#. Solid points are the experi
mental data taken from Ref.@15#.
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FIG. 2. As in Fig. 1 but forp1-16O differential elastic scattering
cross sections. The experimental data are taken from Ref.@16# at
energies of 114 MeV.

FIG. 3. As in Fig. 1 but forp6-28Si differential elastic scatter-
ing cross sections. The experimental data are taken from Ref.@17#
at 130 MeV.
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ANALYSIS OF p6-NUCLEUS ELASTIC SCATTERING . . . PHYSICAL REVIEW C 62 024603
@9# are identical and are in good agreement with the exp
mental data of Boyeret al. @13#. The EELL parameterz
51.8 moves the minima toward the forward angles in
cases considered. Also shown in Figs. 4 and 5 are the di
ential elastic cross sections for40,44,48Ca(p6,p6)40,44,48Ca
using the 2PF shape for the nucleons with both values oz
51.0 and 1.8. These computations are far from adequ
although the 2PF withz51.0 gives reasonable agreeme
with data for some cases ofp6-40Ca scattering at 180 an
292 MeV.

Moreover, elastic scattering differential cross sections
p2-12C at 150, 180, and 200 MeV,p1-16O at 163 and 240
MeV, p6-28Si at 180 and 226 MeV, andp6-40,44Ca at 116
MeV are also calculated with the present local poten
model where the experimental data are available@13,15–17#.
In all cases considered, it is noted that the 3PF shape o
considered nuclei with the EELL parameterz51.0 yields
better fits to the experimental data than any other comp
tions using 3PF withz51.8 or the 2PF shape withz51.0 or
z51.8.

At lower pion beam energiesTp<80 MeV, the differen-
tial elastic cross sections for scattering ofp1 from 16O and

FIG. 4. As in Fig. 1 but forp1-40,44,48Ca differential elastic
scattering cross sections at 180 MeV. The experimental data
taken from Ref.@13#.
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40Ca at energies of 30 and 50 MeV are calculated and c
pared to the experimental data@11#. Following Ref. @2# we
have taken the complex second parametersB1 and C150.
We compare in Fig. 6 the differential elastic cross sectio
for scattering ofp1 from 16O at 30 MeV. Calculations in
our modified first-order local optical potentials, using t
3PF with both values ofz51.0 and 1.8, have been done an
compared with those fromDWPI of Ref. @9#. Both calcula-
tions are unlike the data@11#, especially at forward angles
When the second-order parametersB0 andC0 ~see Ref.@2#!
are included in addition to the first-order parametersb0, b1,
c0, andc1 with both the present local potential and theDWPI

code of Ref.@9# to compute the second-order curves in F
6~a! we get good agreement with the data. These seco
order parameters at 30 MeV are taken from Ref.@18#. The
values are B0520.1621 i0.103 fm4 and C050.747
1 i0.615 fm6 at 30 MeV, while at 50 MeV they areB0
50.0642 i0.077 fm4 andC050.6661 i1.219 fm6. It is evi-
dent that the second-order parameters are very importa
lower pion energiesTp<80 MeV. For optical potentials

re

FIG. 5. As in Fig. 1 but forp2-40,44,48Ca differential elastic
scattering cross sections at 292.5 MeV. The experimental data
taken from Ref.@13#.
3-5
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S. A. E. KHALLAF AND A. A. EBRAHIM PHYSICAL REVIEW C 62 024603
these terms may take the form of higher powers in the d
sity expansion~the so-calledr2 terms! @2#.

The calcium isotopes have special significance in
study of nuclear radii because40Ca is often used for ‘‘cali-
bration’’ of the projectile-target effective interaction and al
because these isotopes span a wide range of neutron
bers, including two doubly closed shell nuclei40,48Ca, which
are of particular interest for nuclear structure calculatio
The root mean square~rms! radii are calculated for proton
^r 2&p

1/2, for neutrons^r 2&n
1/2, and for nuclear matter̂r 2&m

1/2

for all nuclei under consideration. These results are liste
Table II as well as^r 2&m

1/2 estimated by others@14#. The

FIG. 6. ~a! Differential elastic scattering cross sections ofp1

from 16O at 30 MeV. The solid curves are for second-order lo
potential calculations using the 3PF form andz51.0, while dot-
dashed curves use the 3PF andz51.8. The dashed curves use th
second-order terms of@9#. Solid points are the experimental da
taken from Ref.@11#. ~b! The data@11# compared to first-order loca
potential calculations using the 3PF andz51.0 as the solid curves
the 3PF andz51.8 as the dot-dashed curves. The dashed curves
the first-order phase shifts calculations fromDWPI @9#.
02460
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^r 2&m
1/2 calculated in the present work are very close to tho

estimated corresponding values except for16O.
In Table III, the differences between̂r 2&n

1/2 and ^r 2&p
1/2

are calculated for Ca isotopes and compared to the co
sponding experimental values predicted from pion-calci
scattering at 180 MeV@13#. Also shown are the difference
between^r m

2 (A)&1/2 and ^r m
2 (40)&1/2 ~in fm! extracted from

Table II and compared to those of Ref.@19#, whereA544 or
48. As can be seen from Table III, these differences dedu
from the present work agree well with those of others exc
for the magnitude of̂ r 2&n

1/22^r 2&p
1/2 for 40Ca.

Figure 7 presents the density distributions obtained fr
3PF and 2PF shapes for Ca isotopes. This figure indic

l

se

FIG. 7. The density distributions obtained from three-parame
Fermi and two-parameter Fermi shapes for Ca isotopes with pa
eters given in Table I.
ared
TABLE III. From Table II in the case of 3PF, neutron minus proton rms radii for Ca isotopes comp
with the corresponding values of Ref.@13#, and nuclear matter rms radii for44,48Ca minus that of40Ca
compared with the corresponding values of@19#. Values in fm.

Nucleus ^r 2&n
1/22^r 2&p

1/2 ^r m
2 (A)&1/22^r m

2 (40)&1/2

Present calculation From Ref.@13# Present calculation From Ref.@19#

40Ca 20.00691 20.0260.04
44Ca 0.10367 0.1160.04 0.11695 0.1060.03
48Ca 0.17929 0.1860.04 0.18026 0.1860.04
3-6
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ANALYSIS OF p6-NUCLEUS ELASTIC SCATTERING . . . PHYSICAL REVIEW C 62 024603
that the 3PF density distribution is higher than the 2PF in
central and surface regions for all Ca isotopes under con
eration. This may be the reason that the 3PF distribu
produces better agreement with the experimental data
the 2PF distribution, especially at backward scatter
angles. But, as mentioned in Ref.@20#, pions of Tp

;20–250 MeV can be completely absorbed in the surf
region. It is also stated in Ref.@2# that the scattering in the
resonance region is mostly sensitive to the potential in
surface. This means that the central density slightly affe
the elastic scattering ofp6 differential cross sections. There
fore, it may be suggested that the distribution in the surf
region is significant to predict well the elastic scattering d
ferential cross sections at larger scattering angles.

Differences between the density distributions of44,48Ca
and 40Ca using the two forms of density shapes 2PF and 3
are displayed in Fig. 8. These differences of the den
shapes of the Ca isotopes show evidence for a neutron
in 44,48Ca. For convenience the calculated rms radii
nuclear matter density distributionŝr 2&m

1/2 using 3PF and
2PF shapes againstA1/3 are shown in Fig. 9. This figure
suggests that̂ r 2&m

1/2 increases linearly asA1/3 increases.
Table II also shows that the rms matter radii of the Ca i
topes increase with mass number. A considerable differe
between proton and total matter distribution radii occurs
48Ca, indicating again a neutron skin for this nucleus. The
fore, it might be expected that the surface neutrons in44,48Ca
have a larger effect than surface protons on fits with thep6

elastic scattering experimental data up to about 300 M
pion kinetic energy, while the central nucleons slightly affe
the fitting.

FIG. 8. Differences between the density distributions of44,48Ca
and 40Ca using the two forms of density shapes 2PF~left! and 3PF
~right!.
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IV. CONCLUSION

The conclusion reached from these calculations is that
local potential, without free parameters, gives a good
scription for thep6-nucleus elastic scattering, especially
we limit ourselves to energies where the~3,3! resonance is
dominant; the mean free path of the pion in the nuclear m
ter becomes small (;0.5 fm) @20#, with the consequence
that the interaction of the pion with the nucleus dominates
the nuclear surface. Also, we observe that the 3PF shap
the nuclear distributions along with the EELL parameterz
51.0 are more suitable forp6 elastic scattering using th
equivalent potential. The first-order local potential is a
equate to give a good description ofp6-nucleus scattering a
Tp.80 MeV, whereas the second-order terms are requ
at lower energiesTp<80 MeV. The skin neutrons in44,48Ca
contribute top6 elastic scattering in this energy range mo
than protons. The rms radius for the nuclei considered
creases linearly asA1/3 increases.

Finally, it may be suggested that this work can be e
tended to use theDWUCK4 program to compute thep6 in-
elastic scattering cross sections from nuclei. The succes
this analysis with theDWUCK4 program may also set one u
to compute thep6 coupled channel reactions.
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FIG. 9. The calculated rms radii of nuclear matter density d
tributions ^r 2&m

1/2 using 3PF and 2PF againstA1/3 are shown. The
solid and dashed lines are to guide the eye.
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