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Polarization associated with the coupling to isoscalar dipole compression mode
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The effect of core polarization on isoscalar dipole one-particle moments due to the coupling with isoscalar
giant dipole resonandgompression modes estimated. Numerical calculations with the core nuclﬁﬁ%blze
show that a small enhancement of one-particle moments is obtained, of which the magnitude depends sensi-
tively on relevant one-particle orbitals. The results are important for a microscopic understanding of the
electric dipole moment&Schiff moment measured for nuclei in this mass region.

PACS numbgs): 21.10.Re, 21.60.Jz, 23.20.Js, 27:80.

The most precise limit on the electric dipole moment of moments considered here. Such many-body calculations for
the ground state of an isolated atomic system is the value of°T| were discussed in Ref.6] where the 3,,, proton
d<1.3x10 2" e cm obtained for the ground state 5¥Hg  single-particle contribution was found to dominate. The cal-
[1]. A nonzero value for this electric dipole moment can only culations for *Hg have not yet been carried out, but we
occur through interactions which violate b_ot_h parity conserexpect that the By, 3pg» and s, neutron orbitals will
vation and time-reversal symmetry. The limit on the atomicpe the most important terms for the Schiff moment.
dipole moment sets limits on the hadronic, semileptonic, and  The weak interaction between nucleons enters in a similar
purely leptonicP-odd andT-odd weak interactions. The had- way as for the anapole momeri&. For example, the Schiff

ronic part associated with the electric dipole moment of the,, ;- ant for the ®y, neutron-hole state is related to the

19 ; ; ;
gHg r_1uc|eus .mamfests itself thrpugh the SCh'Tf moment, ok interaction mixing ofs;;, neutron states. In this case
which is the first nonzero term in the expansion of the

nuclear electromagnetic potential after including the screent'© Matrix element¢ns, ;S| 3py,) are zero(since the neu-

ing of the atomic electron,3]. The Schiff moment can be tron charge is zer)c_)an(_:l all of the contrik_)ution will come
interpreted in terms of thB-odd andT-odd quark-quark in- from the core polarization of the protons in the'core. For the
teraction only when the nuclear structure and nucleon strud'oton-hole states, s3;, for example, the Schiff moment
ture aspects are understood. A limit which is not so precisdll arise both from the valence proton matrix elements
as in the case of*Hg has also been obtained for the dipole {NP12S|3s12) and from core polarization. In the many-
moment of the2%*2%| atom [4]. The nuclear structure as- Particle calculations for*Hg and *°Tl, one will also need
pects of these Schiff moments has to date only been basd@ include matrix elements of the tyg@ds;S|3p,,) and
upon qualitative modelg5]. (P32l S[38172)-

The purpose of this paper is to initiate a microscopic ap- Because of the large transition moments associated with
proach to the calculation of these Schiff moments within thecollective excitations, the particle-vibration coupling gives
framework of the nuclear shell model. In particular, in thisrise to important modifications in the effective one-particle
paper we study the core-polarization corrections to themoments. It is known that the static polarization effect pro-
single-particle Schiff moments. The operator for the Schiffduced by an attractive coupling is generally in phase with the
moment is[ 3] single-particle moment, while a repulsive coupling implies

opposite phase for the polarization effect and the single-
A particle moment. In the case of electric quadrupole transi-
Yau(Ti), @) tions we have sufficient experimental informations on the
properties of isoscalar and isovector shape-oscillation giant
whereeg; is e for a proton and zero for a neutron. We calcu- resonancesnamely, AN~ 2 excitation$. Consequently, the
late the effective chargdsore polarizationsassociated with  modifications coming from the coupling to both lovA
the coupling of single-hole states f?%b to the collective ~0) and high AN~2) excitations have been well studied.
excitation of the isoscalar giant dipole resonafoempres- For example, see Reff7].
sion modé, which is an excitation closely connected with  In the present paper we estimate the polarization due to
the Schiff operator. This is an important element in the fullthe coupling with the isoscalar dipole compression mode.
many-body calculation for'®Hg and other nuclei around The observation of isoscalar compression giant dipole reso-
208pp. 199q, for example, would be treated as two protonnance in?%Pb is reported in Ref8], though the extracted
holes and seven neutron holes in a closed-shell configuratidiotal strength consumed by the observed peakEat
for 2%%Pb. The many-body aspects of this calculation will =22.5 MeV may contain some ambiguity. In the self-
require a large-basis shell model calculation. With theseonsistent Hartree-FodldF) plus RPA calculations of%Pb
wave functions the many-particle Schiff moment can be rea broad peak is obtained arougg=25 MeV for both the
duced to a linear combination of the single-particle SchiffSGII and SkM* interaction. It is known that the peak posi-
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tion depends appreciably on the compressibility of theSchiff moment operator in Eq1). The energy weighted sum
Skyrme interaction employed. In the calculations of Refs.rule for the operato(4) is obtained as

[9,10] in which the continuum effect is properly treated, the )
energy of the broad peak shifts downward by about 2.5 MeV D ﬁwk|<k|5)‘:l’720|0>|2= Al 11<r4>—2—5<r2)2).
due to the RPA correlation. In lighter nuclei the calculated " 87M 3
distribution of isoscalar compression dipole strength be- 5)

comes much wider. Consequently, it is difficult to identifyI tice iti difficult to obtai liabl timate of
the peak position or a corresponding collective mpti@. N practice, 1t 1s very difficult to obtain a reliable estimate o
To our knowledge, the polarization effect due to the cou-the polarlzau_on by using the re_sult of the self_-con5|stent
pling to any compression modes was never examined, pr RPA _calculatlons of 'SOSC?""” dipole compression _modes.
his is because the spurioysenter of mass excitation

sumably because it is not of practical interests. The best-t th at itati due t
studied compression mode is certainly the isoscalap- chdth at nonzero excitation-energy appears dué 1o a nu-

monopole compression mode. Though the isoscalar mondpencal inaccuracy and, consequently, the corresponding ra-

pole giant resonance is experimentally identified in variousdlal transition density does not exactly have thelepen-

mass region of nucldill], the modification of one-particle dence of the second term of E(). Also, a small lower-

moments associated with the coupling to the giant resonané&mg strengt_h, V.Vh'Ch IS Spurious, may contnb_ute appreciably
10 the polarization. We note that no appreciable amount of

can hardly be pinned down using presently available experi- . .
ments. In contrast, the modification of isoscalar dipole ma_!soscalar compression dipole str_eng(t?rg)ar;as ever been observed
trix elements betweeAN~1 one-particle orbitals associ- n tThr? fwnet)é(;ta:g);éﬁ{'e?ri regmge a mg.re schematic model
ated with the coupling to isoscalar dipole giant resonance. us, | P Work we u ; .
(compression mode ankiN~3 excitations can be of prac- Simulating the_res.ult of HF plus RPA caI(_:uIatlons. AWOOQS-
tical interests in connection with the Schiff moment de_Saxon potential is constructed, of which the one-particle

scribed above. Moreover, it would be interesting to try toIeveI scheme is similar to that of the HF calculation with the

. ) :
find the one-particle dipole strength by varying nuclear reac-(ssl;'\./I mteractlodn.bThen, as”sur?lng th?jt thte wh.(\)f;enstrength
tions with different energies of various incident particles, IS consumed by one coliective mode at a given, we

since the population of excitation modes with a radial nodec?onStrUCt the RPA wave function and evaluate the polariza-

in transition densities may have a sensitive dependence qun_effeqt on 'Sosca'?f dl_pole_ one-particle moments. The
reactions. particle-vibration coupling is written as

The isoscalar dipole transition operator is written as

Hpv=ch(r) X Y} ,ay,. ®)
M
A=17=0_ 3 s
Dy Z MY 1u(r)- @) where the constant is later determined so that the RPA
solution atiw consumes the sum-rule strength. The form

In the self-consistent HF plus RPA calculation the isoscalafactor h(r) is written as
dipole strength coming from the center of mass motion ap-
ears at zero excitation energy and, thus, should be com- 29 5,7
p lergy and, thus, should & h(r)=| 10 +3r2——2(r?) | po(r) )
pletely separated from excitations of physical significance. ar ar

H0\_/vever, in actual numgrlcal calculations t.here always rehich except for a small correction term is obtaird@,d]
mains very small spurious component in the nonzer

L : S ) Z€1G5m the assumption of the presence of only one collective
excitation-energy region, which in turn contributes consider-

. mode that consumes the whole sum-rule strength.
ably to the calculated matrix element of the operd®) see g

. L ' The RPA amplitude of the holengjl,,) and particle {I)
Ref.[10]. Qng way to av0|_d obtaining the spuriolgenter of configuration is obtained by solving the inhomogeneous dif-
mass$ excitation strength is to use

ferential equation

_ oy 3poD) d?e; 1(1+1)  2m
Opu(r)=py(r)—e dr ©) ?zj—r—ZQDj‘Fﬁ[E_Vo(r)](Pj

as the radial transition density instead of the originally cal- om

culatedp,(r). In expressior{3) the constant is determined =—¢c(n=1|a[n=0)(ju[Y4[i)h(r)#;,

so that the transition densit) will give vanishing spurious h

excitation strength. This procedure is equivalent to evaluat-

ing the strength function of the operator _2_m E (i h)1_1|HPv|n= 1) ®)
h2 i(er '

A
DLTTO= 2 (P ) Y, (4)  where
(R;, (N=e; (1), XI"(n)=g(r),

where »=3(r?), using the original transition densipy, (r). 0o
We note that theD operator has the same structure as the and rY ;" (r)=g;(r) ©)
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FIG. 1. Core-polarization effect on one-particle operators. The & 1 i
dashed line with a cross mark expresses the external field itHEq. 0.1 B
while the wavy line denotes the isoscalar dipole<(1) compres- 1 i
sion vibration. The one-particle matrix element is expresse@d)in -0.2 =
while the diagrams in(b) and (c) represent the core-polarization 1 r
effect which renormalizes the one-particle bare operatda)in -0.3 L . s B S S S

0 5 10 15
andE= *fiw+¢;_for forward- and backward-going ampli- r(fm)
tudesXJ(”‘)(r) and YEJh)(r) [13,14. In Eq. (8) the phonon FIG. 2. Calculated radial transition densit§) of the isoscalar

number of the isoscalar giant dipole resonaf@mempression  dipole compression vibration ofstPh;,¢ as a function of radial

mode is expressed by, while the potentiaMy(r) consists  coordinate.

of the Woods-Saxon and spin-orbit potential plus Coulomb

potential in case of protons. The second term on the rightin the present case only one phonon exhausts the whole sum

hand side of Eq(8) is needed to fulfill the requirement that rule. Writing expressioril2) as

the solutiong; should be orthogonal to single-particle wave

functions ¢; of all occupied orbits with the angular momen- (hw)?

tum j. The solutiong;(r) is constructed so as to have the X=Xo 2 > (13
) ) h . (hw) —(€;.—€;.)

proper asymptotic behavior corresponding to the sign and li T2

value ofE. Solving the inhomogeneous equation for all pos- . . ) o

sible (jl) in connection with all occupied orbitsij ), we € quantityx, is called as static polarizability.

sum up the solution and obtain the radial transition density ag !N the self-consistent ZHOF plus RPA calculation with the
SkM* interaction[10] of 2°%Pb the lowestAN~3 unper-

turbed particle-hole §-h) excitations, in which the particle
|Y1||jh>[x§ih)(r)+Y§jh)(r)]th(r)_ state is either a bound or resonant state, start slightly above
E,=27 MeV, while the peak of the calculated RPA strength
(100 appears aE,=25MeV. It is difficult to obtain parameters of
N o a Woods-Saxon potential, which produces both piHe ex-
The reduced transition probability is calculated as citation energies and root-mean-square radius that are similar
to the result of the HF calculation. We make a compromise
(11) by taking the Woods-Saxon parameters; radius parameter
=r.=1.18fm, diffusenesa=0.60 fm, and spin-orbit poten-
tial parametei = 32. See, for example, Rdf15] for param-
We note that in our RPA calculation all excitations of the eters of Woods-Saxon potentials. Tpéh excitations in this
particles in the ground state, which can contribute to théNoods-Saxon potential start at 25.7 MeV, while the calcu-
compression giant dipole resonance, are included and there is

1 .
pu(r>=§1 ﬁﬂl

2

B(0"—17)=3 f r3p (r)r2dr

0

no truncation of the configuration space. 200 e L
The core polarization effect on one-particle moments is 1 2.Pby |
expressed by Fig. 1, in which the wavy line denotes the
isoscalar dipole X=1) compression vibration. The polariz- &~ 100 N\ =
ability y is the ratio of the contribution by Figs(l) and Xc) g i s \ i
to the one by Fig. (), and expressed Hgee the analogous o e \\
expressiorn(6-218 in Ref.[7]] s 0 \/ o~
Pl
jalh(nliz)  e(n=1|aln=0 g
X=— I 5 2) < \/§ ) -100 - (5/3) <r’>r infm® |
(jalr®= §<f2>f|jz> : —— h()infm? i
. '200 T T T T | T ¥ T T | T T T T
_1IPA=17=0] ., _
X|(n=1|Dj}, [n=0)| 0 5 10 15
r(fm)
2 (hw)?
(12 FIG. 3. Radial dependence of the operators appearing in the

ho 2_,. __ 2
@ (ho)™= (€, €},) numerator and denominator of E@d.4) in the case of9Pby .
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TABLE I. Calculated static polarizability, in Eq. (13), the ratio(14), and the radial matrix elements of
the operators;® andr3—3(r?)r, for some selected neutron and proton orbital§atPhy .

N1j1 Naj> 1(ialr3j2)l |(j1|r3—§<r2>r|j2>| Ratio in Eq.(14) Xo
in fm3 in fm?3 in fm~°

Neutron &y,  3py, 234 66.5 ~0.062 0.015
38y, 3Py 168 20.3 -0.83 0.21
28,  3pip 64 46.1 -0.78 0.20
18, 3P 12 8.7 ~1.52 0.38
3ds, 3Py 250 32.3 +0.43 -0.11
2ds, 3Py 140 15.3 —0.61 0.15

Proton P 3sy 153 30.3 —-0.67 0.17
2Pz 3Sip 108 13.3 —0.44 0.11
1py, 38y 35 29.3 ~0.85 0.21
3psn 35y 150 26.9 ~0.67 0.17
2psn 35y 115 16.3 ~0.48 0.12

lated root-mean-square radius Pb is 5.23 fm, which is The calculated polarizability is small, but it depends strongly
smaller than the HF value, 5.55 fm. If one uses the “stan-on the combination of particle orbitals because of the pres-
dard” parameter$7] of Woods-Saxon potential which pro- ence of radial node in the relevant operators as exhibited in
duce the observed root-mean-square radius or the HF onEjg. 3. Both matrix elements appearing in Efj4) are often

the p-h excitations withAN~ 3 start at 22.1 MeV. Since the the result of cancellation between the contributions from the
reported energy of the giant resonance is 22.5 MeV, the urinside and outside of the nucleus. For example, for the neu-
perturbedp-h excitation energies of 22.1 MeV are too low. tron (4s,,, 3py,) pair the sign of the total matrix elements
We estimate the polarizability assuming that the whole sumis the same as that of the contribution from the outside, while
rule strength is consumed by an RPA solution 7ab  for the proton (Dy, 3sy),) pair it is the same as that from
=23.5 MeV, which is pushed down by 2.2 MeV comparedihe inside.

with the lowest-lying AN~3 p-h excitations. We have e note that in the RPA calculation most components
checked that the value of polarizability estimated in thecontribute coherently to the isoscalar giant dipole resonance
present note is rather insensitive to the det'c_nls of Woods compression modewhile a few components, for example
Saxon parameters, as far as the energy shift by the RP e neutron ,=3),=1)—(1=2) excitations such as

correlation is taken to be slightly larger than 2 MeV. : :
. . . .. 3p1p—dgp and 34— dgn, make a destructive contribu-
[n '.:'g' .2 we show Fhe calculated radial transition denSIty’tion. The static polarizability calculated in the related neu-
while in Fig. 3 the radial dependence of the operators appea{-

ing in the numerator and denominator of the first factor in" 0" Pall's of orbitals, such asp3,—3ds, and 3y,

Eq. (12) —3dgp, has a negative sign. The fact that a few components
do not make a coherent contribution to the giant resonance
{ja|h(r)]j2) shows that the present compression mode is not really an
— N (14)  ideal collective mode.
(Jalr®=(13Kr*)rliz) In conclusion, we have estimated the modification of

one-particle isoscalar dipole moments due to the coupling
with the isoscalar giant dipole resonanéeompression

given for some selected neutron and proton orbitals. ThénOde_' Corresponding to Fhe _attr_active parti(_:le-vibration
dynamical factor, namely the second factor in expressioff®UPling, the renormalization is in phase with most of
(13), may make the actual polarizability larger than the one-particle moments. The magnitude is small, however, it

static polarizability y, by a factor of 1.1-1.3 for th N ggpendsd S.enti't'vleli’ é)n t.partltclque torbna}[s |r:v_olv?d. Af
~1 pairs of orbitals in Table I. For the operator for the IScussed In the introduction, the type o matrix elements

Scnif moment) he efectve charge, i nluds e X400 1 fA0Cr e souies Iy micseone
olarization charge estimated in the present note, become . . .
P 9 P ®2080h in order to extract information of the odd and
T odd strength of the hadronic weak interaction from the
e for protons, very precise limits which have been determined experimen-
tally.

is plotted. In Table | the calculated static polarizability, the
ratio (14), and matrix elements of® and r®—3(r?r are

1+ Z
KX
Ceft= (15

—ye for neutrons.
AX
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