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Statistical aspects of nuclear coupling to continuum
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Various global characteristics of the coupling between bound and scattering states are explicitly studied on
the basis of the realistic shell model embedded in the continuum. The characteristics are related to those of the
scattering ensemble. It is found that in the region of high level density, the coupling matrix elements to the
continuum are consistent with the assumptions of the statistical model. However, the assumption of channel
equivalence is, in general, violated and the real part of the coupling matrix elements cannot be neglected.

PACS number~s!: 24.60.Ky, 21.60.Cs, 24.60.Lz
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It is of great interest to relate the properties of nuclei
the ensembles of random matrices@1#. A potential agreemen
reflects those aspects that are generic and thus do not de
on the detailed form of the Hamiltonian matrix, while devi
tions identify certain system-specific, nonrandom proper
of the system. On the level of bound states the related is
are quite well explored and documented in the literat
@2,3#. In most cases, however, the nuclear states are em
ded in the continuum and the system should be considere
an open quantum system. The applicability of the rela
scattering ensembles of non-Hermitian random matri
@4,5# has never been verified by an explicit calculation due
the difficulties involved in the explicit treatment of all matr
elements needed. These include a proper handling of m
exciton internal excitations, an appropriate scatter
asymptotic of the states in the continuum and a consis
and realistic coupling among them. The recently develo
@6# advanced computational scheme termed the shell m
embedded in the continuum~SMEC! successfully incorpo-
rates all these matrix elements. It can be used therefor
study the conditions under which the statistical description
the continuum coupling is justified.

Constructing the full SMEC solution consists of thr
steps. In the first step, one solves the many-body problem
the subspaceQ of ~quasi!bound states. For that one solv
the multiconfigurational shell model~SM! problem:HQQF i
5EiF i , where HQQ[QHQ is the SM effective Hamil-
tonian which is appropriate for the SM configuration spa
used. For the continuum part~subspaceP), one solves the
coupled channel equations:

~E(1)2HPP!jE
c(1)[(

c8
~E(1)2Hcc8!jE

c8(1)50, ~1!

where the indexc denotes different channels andHPP
[PHP. The superscript (1) means that the boundary con
ditions for an incoming wave in the channelc and outgoing
scattering waves in all channels are used. The channel s
are defined by coupling of one nucleon in the scattering c
tinuum to the many-body SM state in the (N21) nucleus.
Finally one solves the system of inhomogeneous coup
channel equations:
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~E(1)2HPP!v i
(1)5HPQF i[wi ~2!

with the source termwi which is primarily given by the
structure of theN-particle SM wave functionF i . It couples
the wave functions of theN-nucleon localized states with th
decay channels, i.e., with the localized states of (N21)
nucleons plus one nucleon in the continuum@6#. These equa-
tions define the functionsv i

(1) , which describe the decay o
the quasibound statesF i in the continuum.

The resulting full solution of the SMEC equations is th
expressed as@6,7#

CE
c 5jE

c 1(
i , j

~F i1v i !
1

E2HQQ
eff ^F j uHQPujE

c &, ~3!

where

HQQ
eff 5HQQ1HQPGP

(1)HPQ[HQQ1W ~4!

defines the effective Hamiltonian acting in the space of q
sibound states. Its first term reflects the original direct m
ing of two states, while the second term originates from
mixing via the coupling to the continuum.GP

(1) is the Green
function for the single particle~s.p.! motion in theP sub-
space. The external mixing of two states, caused byW, is
thus energy dependent and consists of the principal va
integral and the residuum:

Wi j ~E!5 (
c51

L E
ec

`

dE8
^F j uHQPujE

c &^jE
c uHPQuF i&

E2E8

2 ip(
c51

L

^F j uHQPujE
c &^jE

c uHPQuF i&. ~5!

These two terms prescribe the structure of the realWR ~Her-
mitian! and imaginaryWI ~anti-Hermitian! parts of W, re-
spectively. The dyadic product form of the second term
lows us to express it as

WI52
i

2
VVT, ~6!
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where theM3L matrix V[$Vi
c% denotes the amplitude

connecting the stateF i( i 51, . . . ,M ) to the reaction channe
c(c51, . . . ,L) @8#. This form ofWI constitutes the starting
point towards a statistical description. In such a case
assumes that the internal dynamics is governed by the Ga
ian orthogonal ensemble~GOE! of random matrices. This
assumption can be traced to the classical chaotic scatte
@9#. The orthogonal invariance arguments then imply that
amplitudesVi

c can be assumed to be Gaussian distributed
the channels independent@4#. Assuming, as consistent wit
the statistical ensemble, the equivalence of the channels
then arrives at the following distribution of the off-diagon
matrix elements ofWI for L open channels:

PL~Wi j
I !5

uWi j
I u(L21)/2K (L21)/2~ uWi j

I u!

G~L/2!Ap2(L21)/2
, ~7!

with ^(Wi j
I )2&5L. Kl denotes here the modified Bess

function.
The physics to be addressed in this paper is, by mak

use of the above formalism, that of a nucleus decaying by
emission of one nucleon. As an example,24Mg is taken with
the inner core of16O and the phenomenologicalsd-shell
interaction among valence nucleons@10#. For the coupling
between bound and scattering states a combination
Wigner and Bartlett forces is used, with the spin-exchan
parameterb50.05 and the overall strength couplingV12

(0)

FIG. 1. Typical projections of the distribution of the matrixW
elements coupling to the one channel continuum in the SM bas
Jp501,T50 states in 24Mg ~histograms!. The projections on
imaginary ~left! and real axis~right! are normalized and plotted
versus normalized variables5(Wi j

X2^Wi j
X&)/sX , where sX

5^Wi j
X2

&1/2, andX5I ,R denotes imaginary and real parts, respe
tively. In the upper parts all 325 states were taken into acco
while in the lower parts only 205 states in the middle of the sp
trum were included. The full curves representL51 distribution
@Eq. ~7!#.
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5650 MeV fm3 @6#. The radial s.p. wave functions in theQ
subspace and the scattering wave functions in theP subspace
are generated from the average potential of Woods-Sa
type @6#.

In the above SM space, the24Mg nucleus has 325Jp

501,T50 states. Depending on the particle emissi
threshold, these states can couple to a number of open c
nels. Such channels correspond to excited states in the ne
boring N21 nucleus.

When testing the validity of the statistical model it is in
structive to begin with one open channel and to compare
distribution of the corresponding matrix elements with fo
mula ~7! for L51. In the example shown in Fig. 1, the ope
channel corresponds to spin 1/2 and its energy to about
middle of the spectrum. Both the imaginary~left! and real
~right! parts of W are displayed. The upper part of Fig.
involves all 325Jp501,T50 states of24Mg. Clearly, there
are too many large and also too many small matrix eleme
as compared to the statistical distribution~solid line! with
L51. This may originate from the fact that many states
theQ space are localized stronger than allowed by the GO
It is natural to suspect that this may apply to the states c
to both edges of the spectrum. Indeed, by discarding
states on both ends of the spectrum~205 remain!, the picture
changes significantly as illustrated in the lower part of Fig.
In this case the statistical distribution provides a good rep
sentation. Interestingly, this holds also for the real partWR

of

-
t,
-

FIG. 2. Variance of real (sR) and imaginary (s I) parts of ma-
trix elementsWi j for one open channel and correlation coefficie
r5(^Wi j

RWi j
I &2^Wi j

R&^Wi j
I &)/(sRs I) between them. Different line

styles correspond to different daughter nucleus spins: 1/2~full line!,
3/2 ~dashed line!, 5/2 ~dot-dash!, and 7/2~dots!. All these quantities
are shown as a function of energy of the particle in the continuu
3-2
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although the applicability of formula~7! is justified only for
the imaginary partWI . A similar behavior is found for the
majority of channels, except for a small number located
the edges of the spectrum. Hence, the assumption on
Gaussian distribution of the amplitudesVi

c is justified in a
generic situation.

As for the equivalence of channels, the conditions
expected to be more intricate, especially when differ
channel quantum numbers are involved. The point is that
effective coupling strength depends on the quantum num
and, in addition, on the energyE of the particle in the con-
tinuum. Thus, the proportions among the channels may v
with E. This is illustrated in Fig. 2 which shows the ener
dependence of the standard deviations of the distributions~as
in Fig. 1! of the relevant matrix elements for several chan
spin values. Both the real and imaginary parts ofW are
shown, and also their correlation coefficient. Note howe
that within a given spin the differences are much smal
The structures seen in Fig. 2 appear as the result of the q
tum interference and are not related to the specific feature
the system which is studied. Detailed investigation of th
effects is beyond the scope of this paper and will be p
lished separately.

Instead of trying to identify~with the help of Fig. 2! a
sequence ofL approximately equivalent channels and
verify the resulting distribution of matrix elements ofW
against formula~7! we find it more informative to make a
random selection of such channels. An example forL510
and two different energies (E520 and 40 MeV) of the par-
ticle in the continuum is shown in Fig. 3. Among these t
randomly selected channels, two correspond to spin

FIG. 3. The same as lower part of Fig. 1 but for ten channels
spins ranging from 1/2 to 7/2 and two energies of the particle in
continuum~depicted in the figure!. The full curves representPLeff

fits with Leff indicated while the dashed curves correspond to d
tribution with L510. Only 205 states in the middle of the spectru
were included.
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three to spin 3/2, three to spin 5/2, and two to spin 7/2. T
distributions significantly change as compared to those of
lower part of Fig. 1. Moreover,PL510(Wi j

I ,R) @Eq. ~7!#
~dashed lines! does not provide an optimal representation
these explicitly calculated distributions. ForE520 MeV
particle energy~the upper part of Fig. 3!, the best fit in terms
of the formula~7! is obtained forLeff53.1 for the imaginary
part andLeff54.4 for the real part ofW. At E540 MeV one
obtainsLeff54.8 andLeff53.1, correspondingly. This, firs
of all, indicates that effectively a smaller number of chann
are involved which is caused by the broadening of the wi
distribution as a result of the nonequivalence of the chann
@11#. Secondly, such effective characteristics depend on
energy of the particle in the continuum, which in turn
natural in view of the dependences displayed in Fig. 2. I
interesting to notice thatWi j

R obeys a similar distribution as

f
e

-

FIG. 4. 205 complex eigenvalues for ten channels and energ
the particle in the continuum of 40 MeV are presented as sm
circles with coordinates ofER and GR . The upper part represent
those for the original residual interaction betweenQ and P sub-
spaces. The middle one is obtained for seven times stronger i
action, and in the lower part this stronger force is applied toWI

only.
3-3
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Wi j
I although this does not result from Eq.~5! @8#.
The fact that genericallyLeff is much smaller than the

actual number of open physical channels can be anticip
from their obvious nonequivalence in the majority of com
nations as can be concluded from Fig. 2. The global dis
bution, especially in the tails, is dominated by stronger ch
nels.

Due to the separable form ofW, which in terms ofL
explicitly expresses its reduced dimensionality relative
HQQ , an interesting related effect in the eigenvalues ofHQQ

eff

may take place. For a sufficiently strong coupling to the c
tinuum one may observe a segregation effect among
states, i.e.,L of them may separate from the remainingM
2L states@12#. This effect is especially transparent whe
looking at the structure ofWI . For the physical strengthV12

(0)

of the residual interaction in24Mg this effect is negligible, as
shown in the upper panel of Fig. 4. Only one state in t
case separates from all others by acquiring a larger width
magnification of the overall strengthV12

(0) of the coupling to
the continuum by a constant factorf allows further states to
consecutively separate. Forf 57, all ten states become un
ambiguously separated as illustrated in the middle pane
Fig. 4. Their distance from the remaining, trapped states
flects approximately the order of their separation whenf is
kept increasing. This nicely illustrates the degree of n
equivalence of the channels. It further shows thatLeff'5,
being consistent with Fig. 3 atE540 MeV, is an appropri-
ate representation for an effective number of relevant o
channels. It needs to be noticed that the segregation e
takes place also in the direction of the real energy a
though in this sense only three states uniquely sepa
~again consistent withLeff53.1 of Fig. 3!. This direction of
separation originates from the real part ofW. Incorporating
an equivalent multiplication factor intoWI only, results in a
picture as shown in the lower panel of Fig. 4. No separat
in energy can be observed anymore.
02431
ed

i-
-

o

-
e

s
A

of
e-

-

n
ct

s,
te

n

In summary, the present study indicates that certain ch
acteristics of the statistical description of the nuclear c
pling to the continuum do indeed apply when the nongene
edge effects are removed. Such a characteristic is the d
bution of the coupling matrix elements to the one-chan
continuum. On the other hand, the realistic SMEC calcu
tions contain a nonequivalence of the channels which con
dicts the orthogonal invariance arguments and results
strong reduction of the number of effectively involved cha
nels. The quantitative identification and understanding of t
effect may turn out to be helpful in postulating not on
improved scattering ensembles which automatically acco
for this effect. They may be helpful also in choosing vario
versions of the random matrix ensembles invented@1,13,14#
in the context of bound states.

Up to now the statistical models ignore the real part of
matrix connecting the bound states to the scattering sta
The real part ofHQQ

eff is likely to be dominated byHQQ .
Therefore, this may be not a bad approximation in so
cases. Keeping in mind, however, the relatively strong
ergy dependence ofWR ~see Fig. 2! the approximation may
be worse, especially, because the segregation of state
energy ~along the real axis! originates from this part. An-
other interesting result is thatWR is found to obey similar
statistical characteristics asWI . This does not however ye
mean that the two parts ofW can simply be drawn as inde
pendent ensembles. In fact, the individual matrix eleme
Wi j

I andWi j
R are often strongly correlated and the degree

correlation depends on the energy of the particle in the c
tinuum. A more detailed account of such correlations will
presented elsewhere.
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