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Quonic expansion and its random-phase approximation counterpart
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The usefulness of the quon expansion to treat Pauli principle violations and many-body correlations in
many-fermion systems is investigated within two models, namely, the Lipkin and the two level pairing models.
The g deformation parameter of the quon algebra is fixed through a dynamical criterion. The spectra obtained
are compared with the random-phase approximati®RA), usual boson expansion, and exact results. The
guonic expansion is shown to take into account correlations which are not included either in the second order
boson expansion or in the RPA approach.

PACS numbgs): 21.60.Jz, 03.65.Fd, 21.10k

[. INTRODUCTION view, it was also shown recentfyL1] that the so-called self-
consistent RPASCRPA can in fact correct the behavior of
The use of quantunfor g-deformed algebrag[1,2] and the system described by the pairing vibration mofdd],
some of their partners, such as tgonalgebra, has recently when the transition point from the normal to the superfluid
received special attention, not only from a more fundamentaphase is reached. This improvement is achieved mainly
point of view[3], but also as a tool to improve our descrip- through the introduction of ground state correlations, not
tions of many-particle systems. Some of the most importantaken into account properly by the usual RPA solution.
differences between the quons and quantum algebras are de-In the present work we also investigate the behavior of the
scribed in[4]. Some examples of the use of those algebrasolution of the second order quonic Hamiltonian, close to the
follow. In a simple application of the time dependent above-mentioned transition point, for two schematic models:
Hartree-Fock TDHF) method to a toy model, it was shown the Lipkin-Meshkov-Glick(LMG) model[13] and the two-
that the deformation of the algebra can be associated with thevel pairing model[14]. We propose a dynamical way to
correlations of the system, which had not been properly deehoose the value of the deformation parameter and finally
scribed by the determinantal solutifBl. In other interesting compare our solutions with the exact ones and with other
papers[6], the deformation parameter of the algebra wasapproaches commonly used in the literature. At this point,
used to correctly account for dynamical effects associatedve would like to stress that despite the fact that in both
with the rotation of quantum mechanical systems, like mol-models just mentioned the angular momentum is not rel-
ecules and nuclei. As another example, we would like toevant, our choice for thguon algebra instead of quantum
mention the use of the quon algebra to generate deformealgebras allows us to readily apply our procedure to other
boson(quonig expansions as an alternative way to describemodels for which the angular momentum is important. As
many fermion system§7—9]. The main advantage in this was previously showfl15], it is possible to build an £@)
case comes from the fact that, since thwnsobey commu- irreducible representation for the quon algebra, such that the
tation relations that interpolate between the usual relationasual angular momentum coupling rules are obeyed by the
followed by regular bosons and fermions, it is possible toquons. Hence the extension of our results to other models
control the value of the deformation parameter in order tathat need to deal with tensor couplings can be easily done.
improve the convergence of the expansions. Fkpe We should also mention that a previous application of de-
+1 (q=-—1), boson(fermion) statistics are recovered. formed algebras to solve the two-level pairing model in the
In this paper we present quonic expansions for two giverRPA approach has already been dé¢see[2] and references
many-fermion Hamiltonians, and discuss the solution oftherein. In that case, the fermionic &) generators were
these expansions in connection with the correspondingeformed from the beginning. Moreover, in quantum alge-
random-phase approximatidRPA) solutions for the origi- bras, the deformation parameter can acquire any real or com-
nal fermionic systems. As was widely discussed in the literaplex value and was chosen so as to fit the exact spectra. Here,
ture (see, for exampld,10]), the second order boson expan- as stated before, a dynamical criterion is imposed in order to
sion image of a fermionic Hamiltonian presents an energyix the deformation parameter.
spectrum very close to the corresponding RPA solution of The paper is organized as follows: we first outline the
the original Hamilton operator, for interaction strength val-main aspects of the Marumori mappifg6] from a fermi-
ues below the so-called transition point for a reasonablynic space to a quonic space in Sec. Il. Once the deformation
large number of particles. It was also shown that, if theparameter is set equal to 1, the usual boson mapping expan-
bosonic expansion is extended to include fourth order termsion is recovered. In Secs. Il and IV the LMG model and the
the corresponding solution agrees very well with the exactwo-level pairing model are reviewed and the corresponding
one, eliminating the breakdown which occurs at the transiHamiltonians are mapped with the help of the procedure ex-
tion point. This procedure is indeed equivalent to introducingplained in Sec. Il. Our choice for the deformation parameter
anharmonicities in the spectrum. From a fermionic point ofis discussed in both cases. Once the corresponding second
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order quon Hamiltonians are defined for both models, we

2j - -

n+1)(n+2)(2j—n)(2j—n—1

discuss the connection of our results with a possible (J2)g= §O|§0 ( 4 (21~ n)(2] )
n= =

g-deformed version of the RPA method. This is done in Sec. [n+2]![n]!
V, where we also compare the exact energy spectra with the (—1)'g'(-Dr
ones obtained from the quonic and traditional bosonic expan- X ——————— (TNt 2t 7
sions as well as with the usual RPA solution. As for the (!
pairing model case, a comparison with the SCRPA is also _
presented. Finally, the main results obtained are summarized 2 = )
and the conclusions are drawn. (J+~L)B:nzo Eo n(2j—n+1)
_\al(=1)2
Il. QUONIC MARUMORI MAPPING ><( ) ? - (bHn+1pn+!, )
In what follows we use a-deformed version of the Maru- (]t
mori mapping 16] to go from a fermionic to a quonic space. N
This problem was already tackled befdsee, for instance, A .
[8]), so we just outline here the main results in order to apply (J—J+)B:zo |Zo (2j=n)(n+1)
the method to the purposes of this paper. We start from an
arbitrary operato© acting on a finite fermionic space. This (—1)'ql('71)/2(bT)n+|bn+| ©)
fermionic Hilbert space with dimensidd+1 is spanned by [n]iIe '
a basis formed by the statd$n)}, with n=0,1,...N.
Hence, where (0_)g=(J;)% and (0?)g=(J2)}. In deducing the
N above expressions we have used fiad
O= 2> (n'[Olm)[n")nl. (1) §
nn’ =0 (- 1)|q|(|—1)/2
10)(0=:expy(—b'b) = > —————(b"'b!,
In order to obtain the quon operators, we n@p>Og: 1=0 [ 10
N
Og= X, (n'|Ony|n")(n], (2)  and we define the $P) basis as usual, i.eln)=|jm), with
n.n'=0 m=—j+n. One should bear in mind that, fa;=1, the
where usual Marumori boson expansions are recovered. Notice that
the above mapped expressions preserve the us(@lcm-
1 mutation relation$18].
In)=-—=—=(b")"|0) ()
[n]! 1. LIPKIN-MESHKOV-GLICK MODEL
are the quon stateld,3] with [n]=(q"-1)/(q—1), [n]! The LMG model has been often used because it has many

=[n][n—1]---1, and[b,b"],=bb"—qgb'b=1. Note that important physical features present in realistic models and at
the usual bracketg|) stand for fermionic states and the the same time is a relatively simple and exactly solvable
round brackets|} stand for bosoniéwheng=1) and quonic  model. It is a valuable tool to analyze approximations and
states. From the above considerations, it is straightforward tmethods for many-body systems and to study critical phe-
check that nomena in quasispin systems. The LMG model describes a
R ~ two N-fold degenerate level system with energies and
(m[O|m")=(m|Og|m’). (4)  —1Le¢, respectively. The states in the upper level are denoted

. o ] by the quantum numbeis=1, . .. N, the states in the lower
Therefore, we notice that the mapping is achieved by thggye| py —j.

equality between the matrix elements in the fermionic space The many-body LMG Hamiltonian is
and their counterparts in the quonic space. As examples, we

show the expressions for the(8u operators in the quonic e N
space, which will be used in the next sections: H=> 2:1 (afa,—a’ a ;)
2f = _alal=1)/2
. (=g N
J)r= —i+n)————(pb" n+|bn+|, V
(J2)e n§=:0 Zo( J+n [n]'[I]! ®9 —— > (afalaja ., +ala' ,aa,), 11
(5) 2 (B I I [ | 1240y
ii'=1
22 J(n+1)(2j—n)(-1)'q'0-vr2 wherea! (a')) creates a particle in the uppéowen level,
(J+)B=n§0 Zo [n+1] [n]!I7! a; (a_;) annihilates a particle in the uppéower) level, and
V is the strength of the interaction. The Hamiltonian in terms
X (b *ipnt!, (6)  of the quasispin operators is given by
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vV For a large number of particleg goes to+1, which
H=eJ,~ E(Ji +3%), (120 means that the usual bosonic expansion is a good one for the
Lipkin model, even if just the first few terms are kept, as far
with as the number of particles is large enough. This property is

proved and extensively discussed] irQ].
N

N
1
3= 2 (ala—a';a ), J,=> ala i,
=1 =1 IV. PAIRING MODEL

J =) (13) Next, we apply the quonic expansion to the pairing inter-
action model[19], which consists of twd\-fold degenerate
The above quasispin operators obey th€2swalgebra. levels, whose energy difference & The lower level has
The operators).. are particle-hole and hole-particle excita- energy — /2 and its single-particle states are labe|gth,
tion operators whilel, is related to the number of excited and the upper level has ener@y2 and its single-particle
particle-hole pairs(half the difference between occupied states are labelegim;. The pairing Hamiltonian read44]
states in the upper and lower leveldn the expressions
above and belowj,=N/2. DistributingN particles on the two e
levels, forV=0, means that the ground state consists of the H=— 2 (ajT ndy m_aj‘f mm)
lower level completely occupied. Once the interaction is 2 v 2n
turned on, the ground state becomes a mixture of the previ- g
ou?\lconflguratlon, bud? remains a good quantum nurr_]ber. -3 2 2 aijajETZ 2 & mam |, (18
ow we proceed by mapping the operators entering the "om’
Lipkin Hamiltonian. Substituting Eq¥5) and (7) into Eq.
(12) and truncating the expressions up to fourth order, the

j m
mapped Hamiltonian reads whereaj,=(—1)""Ma;_p,. Introducing the quasispin &)

generators

2
_ tht
B 1)bbbb}

— >3
\Y; j(2)—1) j(2)—1)
_E{ZV 2] bTbT*( N "2

. - 1 S o N
Y bt bk TSP O >77 a4 AmPmT g
[3]!
Notice that this expression is identical to the one given in ;1 + 1
[10] onceq is set equal to 1. Li=L_=3 % aj,m, ), m,

The basis states chosen for diagonalizing the above
Hamiltonian are simply given by Ed3), where the quon
operators act as usual: 1 N

LZ:E 2 a;rzmzajzmz_ 4
bfln)=\[n+1]|n+1), bln)=[n]ln—1). (15 my

our criterion for fixing q one sees that the pairing interaction has an underlying

: - 2 2) algebra. With the help of these operators, Eg.
It is already well known that the number operator within (15(;) c)irslub(e )rewgr]ltten as I P S€ operafors, £q

the quon algebra is given by an infinite sum in powers of the
deformation parameteay [3,8,9,15. Hence, in Eq(14), we

substitute the diagonal term simply by the number operator ~ H=€(S;~L2)—-9(S;S_+L.L_+S,L_+L,S).

and then fixg by eliminating its last term, which is a fourth (19
order number nonconserving operator. This procedure yields
the following second order quonic Hamiltonian: In what follows, the number of particlegsvhich are fermi-

ons N will be even and=N/2. Notice, however, that the
(16) degeneracy of each levélis Q=(2J+1)/2, ford=jq,]j,.
The basis of states used for the diagonalization of the
above Hamiltonian is[19] |S=Q/2, S,=—Q/2+m)|L

Hy=e(—j+n)— ( \/J([lz]l )bTbT+H.c.,

where =Q/2, L,=Q/2—m), wherem runs from 0 to(2, in such a
way that, form=Q, S,=Q/2 andL,= — /2. In close anal-
_ 1+v9-12) (17 09y to the LMG model we obtain, for the fourth order

Hamiltonian[18],
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Hq=—Q(e+0)+(e—gQ)blb; +[e—g(Q—2)]blb,—gQ(bibl+byb,)

|2 1) 0+ 281 bty +| | 2 -1 21—y 2, 8
I A B PII fee LT P R e P
20(Q-1)
xb;bgbzbz—g( T—Q)(bEbIbIlerb{b£b£b2+b1blblb2+bgbzbzbl). (20)

This Hamiltonian is equivalent to the one obtainedif]  this term to the final spectrum can be safely disregarded for
whenq is set equal to unity. The second order Hamiltonian isthe assigned value, as has been numerically checked for all
easily read off from the above equation by omitting all termsthe g values used in this calculation.
containing four quon operators. Diagonalizing E2Q) is a
simple task and for this purpose the basis used is

V. CONNECTION WITH THE RPA AND NUMERICAL
RESULTS

[n1n;) = ———=——=—=(b])"(b})"|0) (21) As is well known[10,19, the second order boson expan-
VIniJt[na]! sion Hamiltonian gives the RPA solution if we diagonalize it
in an unrestricted basis. This can be seen if we remember
and that it is possible to diagonalize the boson Hamiltoniap
to second orderby a simple linear transformation of the
Bogoliubov-Valatin type[20] and that this corresponds to
byIny)=v[ny+1]ny+1), byln;)=y[n;][n;—1), finding the RPA solution for the original fermionic problem.
This unrestricted diagonalization leads, however, to viola-
A N tions of the Pauli principle. This is partially remedied in the
[n1]=bsby, boson expansion method through the projection onto the
physical subspace. In what follows we define tpRPA
method as the diagonalization of the second order quon
Hamiltonian in an unrestricted basis and compare those re-
sults with the ones obtained through projection onto the
Our criterion for fixing g physical subspacé&he subspace chosen in such a way that
there is a one to one correspondence with the fermionic sub-
spacé. We also remark that because of the different proper-
ﬁies of quonic operators as compared with the regular bosons,
is not possible to define a linear transformation of the
ogoliubov-Valatin type in this case.

with similar expressions for thie, and b; operators.

The Hamiltonian(20) is somewhat different in nature
from the Lipkin Hamiltonian of Eq(14). Nevertheless, for
the pairing case, we have also opted to eliminate all fourt
order nondiagonal terms. Again, the diagonal terms comin%
from the quonicimage ofS, andL, are substituted by their ;
corresponding number operators and the imposition that th We follow the above-mentioned scheme for the models

number nonconserving fourth order terms vanish yields th%escrlbe? n t?e g;/ewous bsect|ofn]§ anq for_ee;ﬁh onet we get
value for theq parameter. The Hamiltonian becomes € spectrum for two numbers ol Termions n the sys &im,
=6 and N=40. In the numerical calculation, we start by

__ Nony R N diagonalizing the second order quonic Hamiltonian in the

Hy=—Q(e+g)+e(n;+n Q[n Q-2)[n

d (e+@)+e(ni+nz) g gl ] physical basis. For example, in the Lipkin model the size of
—gQ(bIb}r b,b,), (22 the physical basis idN+1 quons whereas in the pairing

model, it isQ)+1. The results obtained from the diagonal-

ization procedure yield the second order quonic expansion

(SQB spectrum. Exactly the same calculation performed for

g=1 leads to the well-known second order boson expansion
2(Q0-1) (SBE) results. We then increase the number of quons in the

T o v (23 basis @ is fixed by our dynamical criterjauntil convergence

is achieved. As already mentioned, we have named the re-

sulting spectrung-RPA.

Again, for a large number of particle€)(—»=), g=1 is In Fig. 1 the excitation enerdy; — E, as a function of the
recovered. We should notice at this point that, differentlyinteraction strength is shown for the Lipkin model and for
from the Lipkin model, not all the fourth order terms are N=6 particles. Together with the exact result we also show
removed by the above choice fgrand the introduction of the results for the diagonalization of the second order
the the number operators. The term proportional tobosonic HamiltoniafSBE) and the usual RPA result, which
gbgbgbzbz still survives. However, the contribution from ceases to be valid after the transition point. Moreover, the

where
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FIG. 1. Lipkin model. The first excited state minus the ground  FIG. 3. Pairing model. The first excited state minus the ground
state energye’' =E;—E, is plotted as a function oN’=NV/e, state energ¥’ =E;—E, is plotted as a function of the interaction
from top to bottom, for the exact resulsolid line), the quonic  strengthw=2g{}, from top to bottom, for the exact resulolid
expansion resul{SQBE for q=0.618 obtained from the diagonal- line), the SQE result fog= 0.333(long-dashed ling theg-RPA for
ization in a physical basi@ong-dashed ling the quonic expansion q=0.333 (dot-dashed ling the SBE resultdotted ling, and the
result (@-RPA) for q=0.618 obtained from the diagonalization in RPA result(solid line). Q is 3, e=1.
an infinite basigdot-dashed ling the second order expansion result
(SBB) for g=1 (short-dashed lineand the RPA resulsolid ling).  cally to the exact one, their difference becomes very small
The number of particles is six. when compared with the difference between the second order

bosonic and the usual RPA solutions. Actually this differ-
diagonalization of our second order quonic Hamiltonian isence practically does not exist when we move to a system of
also presented in the same figure, where we recognize tw40 particles, as can be seen in Fig. 2, for which the same
curves: one corresponding to the diagonalization in a basisomparisons are performed. The breakdown suffered by the
for which the number of quons is restricted by the number oRPA solution is completely overcome with the introduction
physical particleSQBE and another for which this restric- of the deformation. For the sake of comparison with the
tion is disregarded and corresponds to thRPA. At the values obtained from our citerion, we have also calculated
same time that these last two solutions approximate drastthe optimal value for the deformation parameter through a

20 . . ., .
15 b
|
P
) 2 -7
2 £ ] P
S 5 4
5 : -
= b g 1.0 + // J
] 5 /
: : /
w w H
05 | : .
0.0 L L L
2.0 0.0 0.5 1.0 1.5 2.0

FIG. 2. Lipkin model. The first excited state minus the ground FIG. 4. Pairing model. The first excited state minus the ground
state energye’'=E;—E, is plotted as a function oN'=NV/e state energf’' =E;—E, is plotted as a function of the interaction
from top to bottom, for the exact resuykolid ling), the SQE result  strengthw=2g(}, from top to bottom, for the exact resukolid

for g=0.9491 which coincides with the result fgrRPA (long- line), the SQE and-RPA results forg= 0.9 (long-dashed ling the
dashed ling the SBE(dotted ling, and the RPA resultsolid line). SBE result(dotted ling, and the RPA resultsolid line). Q) is 20;
The number of particles is 40. e=1.
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-20.0

rameter. In this respect, our criteria, as explained in the pre-
vious sections, seem to be very reasonable.

Finally, we would like to make quantitative comparisons
with previous improvements made in the RPA solution, like
the SCRPA, for instance. One crucial difference between the
RPA and SCRPA is that the last one introduces important
ground state correlatiorid 2], which allow for following the
300 | 1 system across the transition po[dtl]. Therefore, the com-

; parison with the SCRPA can give us a measure of the
amount of correlations taken into account by the quon ap-
350 | | proach. A numerical comparison of our results for the

ground state energ¥, with the ones obtained from the
SCRPA, taken fron{12], for the pairing model is seen in
X Fig. 5. Ourg-deformed RPA result is much closer to the
0% 05 10 5 20 exact values than the SCRPA after the transition point. How-
o ever, as also pointed out ifl2], it is expected that the

FIG. 5. Pairing model. The ground state ene(@SB E, is SCRPA squtio_n deteriorates as the interaction st.ren_gth in-
plotted as a function of the interaction strengils=2g(}, for the Crea§es "’,md this C‘,”m_ be remedied by Fhe gen.erallzatlo.n toa
exact resul(solid ling), the g-RPA result forq=0.9 (dashed ling ~ guasiparticle description after the transition pd@€ quasi-

the SBE result(dotted ling, and the SCRPA resulidot-dashed ~Particle RPA(SCQRPA]. In our case the solution also is
line). Q is 20; e=1. more and more inaccurate as the interaction streqgjth

creases, but the results are in much better agreement as com-

best fitting procedure. FON=6, the criterion yieldsq Pared with the exact ones.
=0.618 and the best fitting yield$=0.55. ForN=40, the
values areq=0.9491 andy=0.94 for the criterion and the VI. CONCLUSIONS
best fitting values, respectively.

In Figs. 3 and 4 we do the same type of analysis for the[io
two-level pairing model and once more for 6 and 40 par-

-25.0

GSE (arbitrary units}

In this work we propose a way to improve the RPA solu-
n for a system of interacting fermions based on a Maru-
mori type of quon expansion of the original Hamiltonian.
r]:irst, we choose the deformation parameter such that the
trects of the fourth order terms in the guonic Hamiltonian
are minimized. Second, we notice that the use of the defini-
tion of the number operator in the quon space automatically
sums up a whole class of terms in the expansion. Finally, we
solve numerically the second order Hamiltonian inrimite
Pasis guonic space, following the known result that the usual
RPA solution can be recovered if we diagonalize the second
.__order boson =1) expansion in an infinite boson basis.

) Prhis scheme was applied for the simple LMG and pairing
between theg-RPA and SQE curves shows that the IMPOT=4\\0-level models, showing that the introduction of the defor-

tance of the projection onto the physical subspace is great%ation in the RPA method allows us to avoid the well-

redl:jceq,deven Jortla Sfr?ﬁ" numbber ?f p?.rtllcles. In.dOthe(ifnown collapse. Besides, our choice for the deformation pa-
W.?r: s,fm tipelr_]' in y Oth € number Odplart;’? es Co?sdl'ﬁere ameter gives results very close to the exact ones, pointing to
either for the Lipkin or (h€ pairing model, the great dilter- y,q possibility of a unified description of the two regions

ence betwegn the .RPA and second order _bospn eXp"’ms'?tgefore and beyond the transition pgimtithout any redefi-
results practically disappears once deformation is turned ONition of the vacuum

Moreover, the behavior of the curves turns out to be the The extension of this investigation to other schematic

sarlne_ as the”e>|iact on(fa. hat the fourth order b models for which angular momentum coupling is important
tisa well-known act't "’?‘ the fourth order bosoq ( can be done in a straightforward manner, as pointed out in
;1) Hamiltonian d|agonallzat_|on reproduces the exact resul{he Introduction. For example the quadrupole-quadrupole
in the LMG_modeI[l_O_] and gives res_ults very (_:Iose to the plus pairing interaction is a good candidate. Based on our
exact ones in the pairing model9]. This can be interpreted previous experience aquonicexpansiong9,15] of that type

ZS a!? effect of the intr%dugtri‘or;] of anhe:jrmodnicities ig thEof interaction in terms o§, d, andg g-deformed bosons, we
amiltonian as compared with the second order one. On gy, geyise some applications that may give us important

othgr hand', olne can see frc[?Zl,ZZ_ltlhat a q_urc:nlc ﬁscnla- ._hints about the type of improvements which can be obtained
tor is equivalent to a regular oscillator with anharmonic;, \ore realistic cases.

terms and we strongly believe that this is the reason why our
guonic solution approaches so well the exact ones. Of
course, the degree of anharmonicity introduced by the defor-
mation depends on the chosen value for the deformation pa- This work has been partially supported by CNPq.

fitting analysis was also performed. FNE=6, the criterion
yields g=0.333 and the best fitting=0.34. ForN=40, the
values areqg=0.9 andg=0.94 for the criterion and the best
fitting values, respectively.

We stress that our emphasis was not in fitting or adjustin
the q parameter. The results were obtained with the choic
made using the dynamical criteria in Eq$7) and (23) for
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