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Quonic expansion and its random-phase approximation counterpart

S. S. Avancini, F. F. de Souza Cruz, J. R. Marinelli, and D. P. Menezes
Departamento de Fı´sica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Floriano´polis, SC, Brazil
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The usefulness of the quon expansion to treat Pauli principle violations and many-body correlations in
many-fermion systems is investigated within two models, namely, the Lipkin and the two level pairing models.
Theq deformation parameter of the quon algebra is fixed through a dynamical criterion. The spectra obtained
are compared with the random-phase approximation~RPA!, usual boson expansion, and exact results. The
quonic expansion is shown to take into account correlations which are not included either in the second order
boson expansion or in the RPA approach.

PACS number~s!: 21.60.Jz, 03.65.Fd, 21.10.2k
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I. INTRODUCTION

The use of quantum~or q-deformed! algebras@1,2# and
some of their partners, such as thequonalgebra, has recently
received special attention, not only from a more fundame
point of view @3#, but also as a tool to improve our descri
tions of many-particle systems. Some of the most import
differences between the quons and quantum algebras ar
scribed in@4#. Some examples of the use of those algeb
follow. In a simple application of the time depende
Hartree-Fock~TDHF! method to a toy model, it was show
that the deformation of the algebra can be associated with
correlations of the system, which had not been properly
scribed by the determinantal solution@5#. In other interesting
papers@6#, the deformation parameter of the algebra w
used to correctly account for dynamical effects associa
with the rotation of quantum mechanical systems, like m
ecules and nuclei. As another example, we would like
mention the use of the quon algebra to generate defor
boson~quonic! expansions as an alternative way to descr
many fermion systems@7–9#. The main advantage in thi
case comes from the fact that, since thequonsobey commu-
tation relations that interpolate between the usual relati
followed by regular bosons and fermions, it is possible
control the value of the deformation parameter in order
improve the convergence of the expansions. Forq5
11 (q521), boson~fermion! statistics are recovered.

In this paper we present quonic expansions for two giv
many-fermion Hamiltonians, and discuss the solution
these expansions in connection with the correspond
random-phase approximation~RPA! solutions for the origi-
nal fermionic systems. As was widely discussed in the lite
ture ~see, for example,@10#!, the second order boson expa
sion image of a fermionic Hamiltonian presents an ene
spectrum very close to the corresponding RPA solution
the original Hamilton operator, for interaction strength v
ues below the so-called transition point for a reasona
large number of particles. It was also shown that, if t
bosonic expansion is extended to include fourth order ter
the corresponding solution agrees very well with the ex
one, eliminating the breakdown which occurs at the tran
tion point. This procedure is indeed equivalent to introduc
anharmonicities in the spectrum. From a fermionic point
0556-2813/2000/62~2!/024312~7!/$15.00 62 0243
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view, it was also shown recently@11# that the so-called self-
consistent RPA~SCRPA! can in fact correct the behavior o
the system described by the pairing vibration model@12#,
when the transition point from the normal to the superflu
phase is reached. This improvement is achieved ma
through the introduction of ground state correlations, n
taken into account properly by the usual RPA solution.

In the present work we also investigate the behavior of
solution of the second order quonic Hamiltonian, close to
above-mentioned transition point, for two schematic mode
the Lipkin-Meshkov-Glick~LMG! model @13# and the two-
level pairing model@14#. We propose a dynamical way t
choose the value of the deformation parameter and fin
compare our solutions with the exact ones and with ot
approaches commonly used in the literature. At this po
we would like to stress that despite the fact that in bo
models just mentioned the angular momentum is not
evant, our choice for thequon algebra instead of quantum
algebras allows us to readily apply our procedure to ot
models for which the angular momentum is important.
was previously shown@15#, it is possible to build an su~2!
irreducible representation for the quon algebra, such that
usual angular momentum coupling rules are obeyed by
quons. Hence the extension of our results to other mod
that need to deal with tensor couplings can be easily do
We should also mention that a previous application of
formed algebras to solve the two-level pairing model in t
RPA approach has already been done~see@2# and references
therein!. In that case, the fermionic su~2! generators were
deformed from the beginning. Moreover, in quantum alg
bras, the deformation parameter can acquire any real or c
plex value and was chosen so as to fit the exact spectra. H
as stated before, a dynamical criterion is imposed in orde
fix the deformation parameter.

The paper is organized as follows: we first outline t
main aspects of the Marumori mapping@16# from a fermi-
onic space to a quonic space in Sec. II. Once the deforma
parameter is set equal to 1, the usual boson mapping ex
sion is recovered. In Secs. III and IV the LMG model and t
two-level pairing model are reviewed and the correspond
Hamiltonians are mapped with the help of the procedure
plained in Sec. II. Our choice for the deformation parame
is discussed in both cases. Once the corresponding se
©2000 The American Physical Society12-1
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AVANCINI, de SOUZA CRUZ, MARINELLI, AND MENEZES PHYSICAL REVIEW C62 024312
order quon Hamiltonians are defined for both models,
discuss the connection of our results with a possi
q-deformed version of the RPA method. This is done in S
V, where we also compare the exact energy spectra with
ones obtained from the quonic and traditional bosonic exp
sions as well as with the usual RPA solution. As for t
pairing model case, a comparison with the SCRPA is a
presented. Finally, the main results obtained are summar
and the conclusions are drawn.

II. QUONIC MARUMORI MAPPING

In what follows we use aq-deformed version of the Maru
mori mapping@16# to go from a fermionic to a quonic spac
This problem was already tackled before~see, for instance
@8#!, so we just outline here the main results in order to ap
the method to the purposes of this paper. We start from
arbitrary operatorÔ acting on a finite fermionic space. Th
fermionic Hilbert space with dimensionN11 is spanned by
a basis formed by the states$un&%, with n50,1, . . . ,N.
Hence,

Ô5 (
n,n850

N

^n8uÔun&un8&^nu. ~1!

In order to obtain the quon operators, we mapÔ→ÔB:

ÔB5 (
n,n850

N

^n8uÔun&un8)~nu, ~2!

where

un)5
1

A@n#!
~b†!nu0) ~3!

are the quon states@1,3# with @n#5(qn21)/(q21), @n#!
5@n#@n21#•••1, and @b,b†#q5bb†2qb†b51. Note that
the usual bracketŝu& stand for fermionic states and th
round brackets (u) stand for bosonic~whenq51) and quonic
states. From the above considerations, it is straightforwar
check that

^muÔum8&5~muÔBum8!. ~4!

Therefore, we notice that the mapping is achieved by
equality between the matrix elements in the fermionic sp
and their counterparts in the quonic space. As examples
show the expressions for the su~2! operators in the quonic
space, which will be used in the next sections:

~Jz!B5 (
n50

2 j

(
l 50

`

~2 j 1n!
~21! lql ( l 21)/2

@n#! @ l #!
~b†!n1 lbn1 l ,

~5!

~J1!B5 (
n50

2 j

(
l 50

` A~n11!~2 j 2n!

@n11#

~21! lql ( l 21)/2

@n#! @ l #!

3~b†!n1 l 11bn1 l , ~6!
02431
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~J1
2 !B5 (

n50

2 j

(
l 50

` A~n11!~n12!~2 j 2n!~2 j 2n21!

@n12#! @n#!

3
~21! lql ( l 21)/2

@ l #!
~b†!n1 l 12bn1 l , ~7!

~J1J2!B5 (
n50

2 j

(
l 50

`

n~2 j 2n11!

3
~21! lql ( l 21)/2

@n#! @ l #!
~b†!n1 lbn1 l , ~8!

~J2J1!B5 (
n50

2 j

(
l 50

`

~2 j 2n!~n11!

3
~21! lql ( l 21)/2

@n#! @ l #!
~b†!n1 lbn1 l , ~9!

where (J2)B5(J1)B
† and (J2

2 )B5(J1
2 )B

† . In deducing the
above expressions we have used that@17#

u0)(0u5:expq~2b†b!ª(
l 50

`
~21! lql ( l 21)/2

@ l #!
~b†! lbl ,

~10!

and we define the su~2! basis as usual, i.e.,un&5u jm&, with
m52 j 1n. One should bear in mind that, forq51, the
usual Marumori boson expansions are recovered. Notice
the above mapped expressions preserve the usual su~2! com-
mutation relations@18#.

III. LIPKIN-MESHKOV-GLICK MODEL

The LMG model has been often used because it has m
important physical features present in realistic models an
the same time is a relatively simple and exactly solva
model. It is a valuable tool to analyze approximations a
methods for many-body systems and to study critical p
nomena in quasispin systems. The LMG model describe
two N-fold degenerate level system with energies1

2 e and
2 1

2 e, respectively. The states in the upper level are deno
by the quantum numbersi 51, . . . ,N, the states in the lowe
level by 2 i .

The many-body LMG Hamiltonian is

H5
e

2 (
i 51

N

~ai
†ai2a2 i

† a2 i !

2
V

2 (
i ,i 851

N

~ai
†ai 8

† a2 ia2 i 81a2 i
† a2 i 8

† aiai 8!, ~11!

whereai
† (a2 i

† ) creates a particle in the upper~lower! level,
ai (a2 i) annihilates a particle in the upper~lower! level, and
V is the strength of the interaction. The Hamiltonian in term
of the quasispin operators is given by
2-2



a-
d
d

th
i

ev
r.
th

th

i

ov

in
th

r
h
el

r the
far
y is

er-

ing
q.

the

r

QUONIC EXPANSION AND ITS RANDOM-PHASE . . . PHYSICAL REVIEW C 62 024312
H5eJz2
V

2
~J1

2 1J2
2 !, ~12!

with

Jz5
1

2 (
i 51

N

~ai
†ai2a2 i

† a2 i !, J15(
i 51

N

ai
†a2 i ,

J25~J1!†. ~13!

The above quasispin operators obey the su~2! algebra.
The operatorsJ6 are particle-hole and hole-particle excit
tion operators whileJz is related to the number of excite
particle-hole pairs~half the difference between occupie
states in the upper and lower levels!. In the expressions
above and below,j 5N/2. DistributingN particles on the two
levels, forV50, means that the ground state consists of
lower level completely occupied. Once the interaction
turned on, the ground state becomes a mixture of the pr
ous configuration, butJ2 remains a good quantum numbe

Now we proceed by mapping the operators entering
Lipkin Hamiltonian. Substituting Eqs.~5! and ~7! into Eq.
~12! and truncating the expressions up to fourth order,
mapped Hamiltonian reads

HB5eF2 j 1b†b1S 2

@2#
21Db†b†bbG

2
V

2 F2Aj ~2 j 21!

@2#!
b†b†12S 2Aj ~2 j 21!

@2#!

1A3~2 j 21!~ j 21!

@3#! D b†b†b†b1H.c.G . ~14!

Notice that this expression is identical to the one given
@10# onceq is set equal to 1.

The basis states chosen for diagonalizing the ab
Hamiltonian are simply given by Eq.~3!, where the quon
operators act as usual:

b†un)5A@n11#un11), bun)5A@n#un21). ~15!

Our criterion for fixing q

It is already well known that the number operator with
the quon algebra is given by an infinite sum in powers of
deformation parameterq @3,8,9,15#. Hence, in Eq.~14!, we
substitute the diagonal term simply by the number operaton̂
and then fixq by eliminating its last term, which is a fourt
order number nonconserving operator. This procedure yi
the following second order quonic Hamiltonian:

Hq5e~2 j 1n̂!2
V

2 S 2Aj ~2 j 21!

@2#!
b†b†1H.c.D , ~16!

where

q5
211A9212/j

2
. ~17!
02431
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For a large number of particlesq goes to11, which
means that the usual bosonic expansion is a good one fo
Lipkin model, even if just the first few terms are kept, as
as the number of particles is large enough. This propert
proved and extensively discussed in@10#.

IV. PAIRING MODEL

Next, we apply the quonic expansion to the pairing int
action model@19#, which consists of twoN-fold degenerate
levels, whose energy difference ise. The lower level has
energy2e/2 and its single-particle states are labeledj 2m2
and the upper level has energye/2 and its single-particle
states are labeledj 1m1. The pairing Hamiltonian reads@14#

H5
e

2 (
m

~aj 1m
† aj 1m2aj 2m

† aj 2m!

2
g

4 S (j
(
m

ajm
† ajm̄

†(
j 8

(
m8

aj 8m̄8aj 8m8D , ~18!

whereajm̄5(21) j 2maj 2m . Introducing the quasispin su~2!
generators

S15S2
† 5

1

2 (
m1

aj 1m1

† aj 1m̄1

† ,

Sz5
1

2 (
m1

aj 1m1

† aj 1m1
2

N

4
,

L15L2
† 5

1

2 (
m2

aj 2m2

† aj 2m̄2

† ,

Lz5
1

2 (
m2

aj 2m2

† aj 2m2
2

N

4
,

one sees that the pairing interaction has an underly
su(2)̂ su(2) algebra. With the help of these operators, E
~18! can be rewritten as

H5e~Sz2Lz!2g~S1S21L1L21S1L21L1S2!.
~19!

In what follows, the number of particles~which are fermi-
ons! N will be even andV5N/2. Notice, however, that the
degeneracy of each levelJ is V5(2J11)/2, for J5 j 1 , j 2.

The basis of states used for the diagonalization of
above Hamiltonian is@19# uS5V/2, Sz52V/21m&uL
5V/2, Lz5V/22m&, wherem runs from 0 toV, in such a
way that, form5V, Sz5V/2 andLz52V/2. In close anal-
ogy to the LMG model we obtain, for the fourth orde
Hamiltonian@18#,
2-3
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Hq52V~e1g!1~e2gV!b1
†b11@e2g~V22!#b2

†b22gV~b1
†b2

†1b2b1!

1F S 2

@2#
21D e2gS 2V1

2~V21!

@2# D Gb1
†b1

†b1b11F S 2

@2#
21D e2gS 2~12V!1

3~V22!

@2#
1

V

2
qD G

3b2
†b2

†b2b22gSA2V~V21!

@2#
2V D ~b2

†b1
†b1

†b11b1
†b2

†b2
†b21b1

†b1b1b21b2
†b2b2b1!. ~20!
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This Hamiltonian is equivalent to the one obtained in@19#
whenq is set equal to unity. The second order Hamiltonian
easily read off from the above equation by omitting all ter
containing four quon operators. Diagonalizing Eq.~20! is a
simple task and for this purpose the basis used is

un1n2)5
1

A@n1#! @n2#!
~b1

†!n1~b2
†!n2u0) ~21!

and

b1
†un1)5A@n111#un111), b1un1)5A@n1#un121),

@ n̂1#5b1
†b1 ,

with similar expressions for theb2 andb2
† operators.

Our criterion for fixing q

The Hamiltonian~20! is somewhat different in natur
from the Lipkin Hamiltonian of Eq.~14!. Nevertheless, for
the pairing case, we have also opted to eliminate all fou
order nondiagonal terms. Again, the diagonal terms com
from thequonic image ofSz andLz are substituted by thei
corresponding number operators and the imposition that
number nonconserving fourth order terms vanish yields
value for theq parameter. The Hamiltonian becomes

Hq52V~e1g!1e~ n̂11n̂2!2gV@ n̂1#2g~V22!@ n̂2#

2gV~b1
†b2

†1b2b1!, ~22!

where

q5
2~V21!

V
21. ~23!

Again, for a large number of particles (V→`), q51 is
recovered. We should notice at this point that, differen
from the Lipkin model, not all the fourth order terms a
removed by the above choice forq and the introduction of
the the number operators. The term proportional
gb2

†b2
†b2b2 still survives. However, the contribution from
02431
s
s
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this term to the final spectrum can be safely disregarded
the assignedq value, as has been numerically checked for
the g values used in this calculation.

V. CONNECTION WITH THE RPA AND NUMERICAL
RESULTS

As is well known@10,19#, the second order boson expa
sion Hamiltonian gives the RPA solution if we diagonalize
in an unrestricted basis. This can be seen if we remem
that it is possible to diagonalize the boson Hamiltonian~up
to second order! by a simple linear transformation of th
Bogoliubov-Valatin type@20# and that this corresponds t
finding the RPA solution for the original fermionic problem
This unrestricted diagonalization leads, however, to vio
tions of the Pauli principle. This is partially remedied in th
boson expansion method through the projection onto
physical subspace. In what follows we define theq-RPA
method as the diagonalization of the second order q
Hamiltonian in an unrestricted basis and compare those
sults with the ones obtained through projection onto
physical subspace~the subspace chosen in such a way t
there is a one to one correspondence with the fermionic s
space!. We also remark that because of the different prop
ties of quonic operators as compared with the regular bos
it is not possible to define a linear transformation of t
Bogoliubov-Valatin type in this case.

We follow the above-mentioned scheme for the mod
described in the previous sections and for each one we
the spectrum for two numbers of fermions in the systemN
56 and N540. In the numerical calculation, we start b
diagonalizing the second order quonic Hamiltonian in t
physical basis. For example, in the Lipkin model the size
the physical basis isN11 quons whereas in the pairin
model, it isV11. The results obtained from the diagona
ization procedure yield the second order quonic expans
~SQE! spectrum. Exactly the same calculation performed
q51 leads to the well-known second order boson expans
~SBE! results. We then increase the number of quons in
basis (q is fixed by our dynamical criteria! until convergence
is achieved. As already mentioned, we have named the
sulting spectrumq-RPA.

In Fig. 1 the excitation energyE12E0 as a function of the
interaction strength is shown for the Lipkin model and f
N56 particles. Together with the exact result we also sh
the results for the diagonalization of the second or
bosonic Hamiltonian~SBE! and the usual RPA result, whic
ceases to be valid after the transition point. Moreover,
2-4
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diagonalization of our second order quonic Hamiltonian
also presented in the same figure, where we recognize
curves: one corresponding to the diagonalization in a b
for which the number of quons is restricted by the numbe
physical particles~SQE! and another for which this restric
tion is disregarded and corresponds to theq-RPA. At the
same time that these last two solutions approximate dra

FIG. 1. Lipkin model. The first excited state minus the grou
state energyE85E12E0 is plotted as a function ofN85NV/e,
from top to bottom, for the exact result~solid line!, the quonic
expansion result~SQE! for q50.618 obtained from the diagona
ization in a physical basis~long-dashed line!, the quonic expansion
result (q-RPA) for q50.618 obtained from the diagonalization
an infinite basis~dot-dashed line!, the second order expansion resu
~SBE! for q51 ~short-dashed line!, and the RPA result~solid line!.
The number of particles is six.

FIG. 2. Lipkin model. The first excited state minus the grou
state energyE85E12E0 is plotted as a function ofN85NV/e
from top to bottom, for the exact result~solid line!, the SQE result
for q50.9491 which coincides with the result forq-RPA ~long-
dashed line!, the SBE~dotted line!, and the RPA result~solid line!.
The number of particles is 40.
02431
s
o

is
f

ti-

cally to the exact one, their difference becomes very sm
when compared with the difference between the second o
bosonic and the usual RPA solutions. Actually this diffe
ence practically does not exist when we move to a system
40 particles, as can be seen in Fig. 2, for which the sa
comparisons are performed. The breakdown suffered by
RPA solution is completely overcome with the introductio
of the deformation. For the sake of comparison with theq
values obtained from our citerion, we have also calcula
the optimal value for the deformation parameter through

FIG. 3. Pairing model. The first excited state minus the grou
state energyE85E12E0 is plotted as a function of the interactio
strengthv52gV, from top to bottom, for the exact result~solid
line!, the SQE result forq50.333~long-dashed line!, theq-RPA for
q50.333 ~dot-dashed line!, the SBE result~dotted line!, and the
RPA result~solid line!. V is 3, e51.

FIG. 4. Pairing model. The first excited state minus the grou
state energyE85E12E0 is plotted as a function of the interactio
strengthv52gV, from top to bottom, for the exact result~solid
line!, the SQE andq-RPA results forq50.9 ~long-dashed line!, the
SBE result~dotted line!, and the RPA result~solid line!. V is 20;
e51.
2-5
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best fitting procedure. ForN56, the criterion yieldsq
50.618 and the best fitting yieldsq50.55. ForN540, the
values areq50.9491 andq50.94 for the criterion and the
best fitting values, respectively.

In Figs. 3 and 4 we do the same type of analysis for
two-level pairing model and once more for 6 and 40 p
ticles, respectively. Again we may conclude that the qu
expansion approaches the exact result. For this model a
fitting analysis was also performed. ForN56, the criterion
yields q50.333 and the best fittingq50.34. ForN540, the
values areq50.9 andq50.94 for the criterion and the bes
fitting values, respectively.

We stress that our emphasis was not in fitting or adjus
the q parameter. The results were obtained with the cho
made using the dynamical criteria in Eqs.~17! and ~23! for
the Lipkin and pairing models, respectively. The comparis
between theq-RPA and SQE curves shows that the impo
tance of the projection onto the physical subspace is gre
reduced, even for a small number of particles. In ot
words, independently of the number of particles conside
either for the Lipkin or the pairing model, the great diffe
ence between the RPA and second order boson expan
results practically disappears once deformation is turned
Moreover, the behavior of the curves turns out to be
same as the exact one.

It is a well-known fact that the fourth order boson (q
51) Hamiltonian diagonalization reproduces the exact re
in the LMG model@10# and gives results very close to th
exact ones in the pairing model@19#. This can be interpreted
as an effect of the introduction of anharmonicities in t
Hamiltonian as compared with the second order one. On
other hand, one can see from@3,21,22# that a quonic oscilla-
tor is equivalent to a regular oscillator with anharmon
terms and we strongly believe that this is the reason why
quonic solution approaches so well the exact ones.
course, the degree of anharmonicity introduced by the de
mation depends on the chosen value for the deformation

FIG. 5. Pairing model. The ground state energy~GSE! E0 is
plotted as a function of the interaction strengthv52gV, for the
exact result~solid line!, theq-RPA result forq50.9 ~dashed line!,
the SBE result~dotted line!, and the SCRPA result~dot-dashed
line!. V is 20; e51.
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rameter. In this respect, our criteria, as explained in the p
vious sections, seem to be very reasonable.

Finally, we would like to make quantitative compariso
with previous improvements made in the RPA solution, li
the SCRPA, for instance. One crucial difference between
RPA and SCRPA is that the last one introduces import
ground state correlations@12#, which allow for following the
system across the transition point@11#. Therefore, the com-
parison with the SCRPA can give us a measure of
amount of correlations taken into account by the quon
proach. A numerical comparison of our results for t
ground state energyE0 with the ones obtained from th
SCRPA, taken from@12#, for the pairing model is seen in
Fig. 5. Our q-deformed RPA result is much closer to th
exact values than the SCRPA after the transition point. Ho
ever, as also pointed out in@12#, it is expected that the
SCRPA solution deteriorates as the interaction strength
creases and this can be remedied by the generalization
quasiparticle description after the transition point@SC quasi-
particle RPA~SCQRPA!#. In our case the solution also i
more and more inaccurate as the interaction strengthg in-
creases, but the results are in much better agreement as
pared with the exact ones.

VI. CONCLUSIONS

In this work we propose a way to improve the RPA so
tion for a system of interacting fermions based on a Ma
mori type of quon expansion of the original Hamiltonia
First, we choose the deformation parameter such that
effects of the fourth order terms in the quonic Hamiltoni
are minimized. Second, we notice that the use of the de
tion of the number operator in the quon space automatic
sums up a whole class of terms in the expansion. Finally,
solve numerically the second order Hamiltonian in aninfinite
basis quonic space, following the known result that the us
RPA solution can be recovered if we diagonalize the sec
order boson (q51) expansion in an infinite boson basi
This scheme was applied for the simple LMG and pairi
two-level models, showing that the introduction of the defo
mation in the RPA method allows us to avoid the we
known collapse. Besides, our choice for the deformation
rameter gives results very close to the exact ones, pointin
the possibility of a unified description of the two region
~before and beyond the transition point! without any redefi-
nition of the vacuum.

The extension of this investigation to other schema
models for which angular momentum coupling is importa
can be done in a straightforward manner, as pointed ou
the Introduction. For example the quadrupole-quadrup
plus pairing interaction is a good candidate. Based on
previous experience onquonicexpansions@9,15# of that type
of interaction in terms ofs, d, andg q-deformed bosons, we
can devise some applications that may give us impor
hints about the type of improvements which can be obtai
in more realistic cases.

ACKNOWLEDGMENT

This work has been partially supported by CNPq.
2-6



na

.

y

M

.

no

be

n

. G

tic

ys.

.P.

or.

n-

Lett.
y-

QUONIC EXPANSION AND ITS RANDOM-PHASE . . . PHYSICAL REVIEW C 62 024312
@1# M.R. Kibler, Lectures Presented at The Second Internatio
School of Theoretical Physics, 1992 ~World Scientific, Sin-
gapore, 1992!.

@2# D. Bonatsos and C. Daskaloyannis, Prog. Part. Nucl. Phys43,
537 ~1999!.

@3# O.W. Greenberg, Phys. Rev. D43, 4111 ~1991!; Physica A
180, 419 ~1992!.

@4# M. Chaichian, R. Gonzalez Felipe, and C. Montonen, J. Ph
A 26, 4017~1993!.

@5# S.S. Avancini, F.F. de Souza Cruz, D.P. Menezes, and
Watanabe de Moraes, J. Phys. A28, 701 ~1995!.

@6# D. Bonatsos, E.N. Argyres, S.B. Drenska, P.P. Raychev, R
Roussev, and Y.F. Smirnov, Phys. Lett. B251, 477~1990!; D.
Bonatsos, P.P. Raychev, R.P. Roussev, and Y.F. Smir
Chem. Phys. Lett.175, 300 ~1990!.

@7# S.S. Avancini, J.R. Marinelli, D.P. Menezes, M.M. Watana
de Moraes, and N. Yoshinaga, Int. J. Mod. Phys. E7, 379
~1998!.

@8# S.S. Avancini, F.F. de Souza Cruz, J.R. Marinelli, D.P. Me
ezes, and M.M. Watanabe de Moraes, J. Phys. G25, 525
~1999!.

@9# S.S. Avancini, J.R. Marinelli, and D.P. Menezes, J. Phys
25, 1829~1999!.

@10# S.C. Pang, A. Klein, and R.M. Dreizler, Ann. Phys.~N.Y.! 49,
477 ~1968!.
02431
l

s.

.

P.

v,

-

@11# E.J.V. de Passos, A.F.R. de Toledo Piza, and F. Krmpo´,
Phys. Rev. C58, 1841~1998!.

@12# J. Dukelsky, G. Ro¨pke, and P. Schuck, Nucl. Phys.A628, 17
~1998!.

@13# H.J. Lipkin, N. Meshkov, and A.J. Glick, Nucl. Phys.62, 188
~1965!.

@14# M.C. Cambiaggio, G.G. Dussel, and M. Saraceno, Nucl. Ph
A415, 70 ~1984!.

@15# S.S. Avancini, F.F. de Souza Cruz, J.R. Marinelli, and D
Menezes, Phys. Lett. A267, 109 ~2000!.

@16# T. Marumori, M. Yamamura, and A. Tokunaga, Prog. The
Phys. 31, 1009 ~1964!; T. Marumori, M. Yamamura, A.
Tokunaga, and T. Takada,ibid. 32, 726 ~1964!.

@17# D.I. Fivel, J. Phys. A24, 3575~1991!.
@18# S.S. Avancini, F.F. de Souza Cruz, J.R. Marinelli, D.P. Me

ezes, and M.M. Watanabe de Moraes, J. Phys. A29, 5559
~1996!.

@19# M. Kleber, Phys. Lett.30B, 588 ~1969!.
@20# P. Ring and P. Shuck,The Nuclear Many Body Problem

~Springer-Verlag, New York, 1980!.
@21# K. Hagino and G. Bertsch, Phys. Rev. C61, 024307~2000!.
@22# D. Bonatsos, P.P. Raychev, and A. Faessler, Chem. Phys.

178, 221 ~1991!; D. Bonatsos, E.N. Argyres, and P.P. Ra
chev, J. Phys. A24, L403 ~1991!.
2-7


