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Microscopic derivation of interacting boson-fermion model Hamiltonian
and its application to singly magic nuclei

N. Yoshinaga*
Department of Physics, Saitama University, Urawa, Saitama 338-8570, Japan

Y. D. Devi
RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan

A. Arima
House of Councilors, Sangiin-kaikan 223, Nagatacho, Chiyodaku, Tokyo 100-8962, Japan

~Received 31 January 2000; published 19 July 2000!

The interacting boson-fermion model~IBFM! Hamiltonian is derived microscopically based on the gener-
alized seniority scheme starting from the shell-model interaction. Employing many nondegenerate levels and
identical nucleon systems, systematic studies of singly magic nuclei are given in comparison with experiments.
The resulting energy spectra in the IBFM are found to be in good agreement with those of the shell model and
the SD pair plus one-particle model.

PACS number~s!: 21.60.Fw, 21.60.Cs, 21.60.Ev
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I. INTRODUCTION

The interacting boson model~IBM ! @1# is remarkably suc-
cessful in providing a unified description of quadrupole c
lective properties of low-lying nuclear states with its angu
momentum 0~s! and 2~d! bosons. The success is not on
limited to its analytical formulation in the three dynamic
symmetry limits, but also extends to numerical formulati
which makes the study of transitional nuclei tractable due
its small model space dimensions even in the medium
heavy nuclei. It has yielded many new insights and is fou
to be equally promising in the study of odd-mass nuc
when extended to include the fermionic degree of freedom
addition to the boson core. The resulting model is known
the interacting boson-fermion model~IBFM! which was pro-
posed by Arima, Iachello, and Scholten@2–6#.

The microscopic foundation of the IBM is quantitative
satisfactory at least around the vibrational and transitio
regions@7#. That of the IBFM is less studied compared to t
IBM partly because some justification is still needed in t
boson space especially in deformed region and partly
cause its work is much involved and complicated. Howev
it is quite important to know the microscopic origin of th
interaction if the model is to be used to systematically stu
the high spin states and beta decay. Recently the super
metric level scheme has been experimentally confirm
in the quartet195,196Au and 194,195Pt @8,9#. Phenomenologi-
cally these supersymmetric nuclei can be studied in term
the IBM, IBFM, and IBFFM and its semimicroscopic origi
was partly investigated by Bijker and Scholten@10#. How-
ever, the full microscopic origin of the supersymmetry s
needs to be investigated. In that sense it is very importan
investigate both models~IBM and IBFM! microscopically
and simultaneously on the same footing.

Historically, the microscopy of the IBFM was first inves
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tigated by Scholten@4,11# using the Otsuka, Arima, and
Iachello ~OAI! @12# mapping procedure and the BCS a
proximation. Specifically he derived the fermion exchan
force coming from the strong proton-neutron quadrup
force. Talmi @13# also claimed the importance of the e
change force which was derived by the effect of the Pa
principle acting between identical nucleons on the quad
pole interaction between protons and neutrons. The excha
force was further investigated by Gelberg@14# who showed
the relation between exchange and direct forces us
Talmi’s method. However, it was soon found that the sh
model estimate of the exchange force accounted only fo
order of magnitude less than the phenomenological valu
This contradition was finally accounted for by Otsuka a
others@15# who emphasized the importance of the quad
pole pairing interaction.

In this paper we carry out a microscopic derivation of t
IBFM Hamiltonian in singly magic nuclei starting from an
shell model interaction within the framework of the gener
ized seniority. We basically follow the idea of the OAI@12#,
but the method is extended for the application to odd-A nu-
clei with nondegenerate multi-j orbits. The validity of this
procedure is tested by employing a shell model~SM! Hamil-
tonian which consists of single particle energies, monop
and quadrupole pairing and quadrupole-quadrupole inte
tions. The parameters are adjusted to fit experimental da
the shell model space. We treat even~IBM ! and odd~IBFM!
systems on the same footing, i.e., the boson core in an
system is the same as the neighboring even system. Th
sulting energy spectra in the IBM~the IBFM! are compared
with experiments, those in the SM and those in the trunca
SD space which is constructed only by the angular mom
tum zero~S! collective pair and two~D! collective pair (S
andD pairs plus one particle! in the even~odd! systems. In
our previous paper@17# we have shown numerically that ou
scheme is successful in comparison with the SM a
SD-pair truncated model in singlej shells. In this paper we
extend our scheme to the realistic many nondegeneraj
©2000 The American Physical Society09-1
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shells and apply our method to singly magic nuclei usin
realistic two-body interaction.

In Sec. II our mapping method is described for both ev
and odd systems. Application of our method to a sin
j-shell case is discussed in Sec. III. Here spherical to
formed nuclei are simulated by changing a single param
in a midshell, where the direct force is found to vanish.
Sec. IV, our method is applied to realistic singly magic n
clei to test the validity of our present method involving ma
nondegeneratej shells. The work reported in this paper
summarized and certain conclusions are drawn in Sec. V

II. METHOD OF MAPPING

In the medium and heavy nuclei the number of SM co
figurations become very large ('1014– 1018) and it is unre-
alistic to treat them in the full fledged SM. Therefore w
need to truncate the model space assuming its physical
portance. The amazing success of the IBM puts forward
idea that the collectiveSD fermion pairs can become th
building blocks for the many-body collective states. The
fore it is natural to truncate the SM space to the collect
SD subspace. Using the SM interaction we can obtain
corresponding interaction in the IBM and the IBFM. For th
purpose we have to carry out two things,~i! the truncation of
the SM space to the collectiveSD pair space (SD plus one-
particle space! in case of even~odd! systems,~ii ! the boson
mapping from theSD pair space (SD plus one-particle
space! to the sd boson space (sd boson plus one particle
space! in the case of even~odd! systems. Throughout thi
paper, we deal with identical particles, but our procedure
be extended in a straightforward, but involved manner
doubly open-shell nuclei without difficulty. In the following
we describe our mapping method for both even and
systems.

Our mapping method is based on the generalized senio
starting from the SM. In the first stage we truncate the
gantic SM space to theSD pair space. Here nucleon pa
creation operators are defined as

AM
†(J)~ j 1 j 2!5@cj 1

† cj 2

† #M
(J) , ~2.1!

wherecj
† stands for the creation operator of a single partic

Using this pair, the collective nucleon pair creation operat
with angular momentum zero and two are defined as

S†5(
j

a jA0
†(0)~ j j !, ~2.2!

and

DM
† 5(

j 1 j 2

b j 1 j 2
AM

†(2)~ j 1 j 2!. ~2.3!

In our scheme we deal with nondegenerate shells and
structure coefficientsa j ,b j 1 j 2

should be determined to max
mize the collectivity in a given system as stated below. U
ing SD collective pairs, many-bodySD pair states are con
structed as
02430
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uSNsDNdgJ&F , ~2.4!

for even systems of 2Ns12Nd particles. This space is calle
the SD space hereafter. For odd systems of 2Ns12Nd11
particles, we have

uSNsDNdcjgJ8&F , ~2.5!

wherecj stands for the last particle added to the core sta
uSNsDNdgJ&F . The necessary angular momentum coupling
abbreviated here for simplicity. The space made ofSD pairs
plus one-particle is calledSDpspace. Hereg ’s are the quan-
tum numbers which uniquely specify thed-boson states
udNdgJ&B . There is a one to one correspondence betw
fermion statesuSNsDNdgJ&F and boson statesusNsdNdgJ&B
unless some fermion states are Pauli forbidden. These
mion states should be orthonormalized like boson states.
assumed that higher generalized seniority states are alw
orthogonal to all the lower seniority states in order to sec
the criterion that the creation ofD pair always raises gener
alized seniority number by two. One of the methods to ca
out this procedure was discussed in detail in@18#.

Assuming the following correspondence:

uSNsDNdgJ&F↔usNsdNdgJ&B , ~2.6!

our strategy for the boson mapping is to equate the ma
elements of any fermion operatorÔ between fermion and
boson states

^SNsDNdgJuÔuSNsDNdgJ&F5^sNsdNdgJuôusNsdNdgJ&B ,

~2.7!

whereô is the boson image of the fermion operatorÔ. With-
out breaking Hermiticity of the mapping, this necessarily
sults in many-body boson interactions. Therefore we sho
restrict this criterion to be satisfied only for matrix elemen
of physical importance. In the spherical and vibrational
gions it is well known that the generalized seniority is a go
concept@16# and the states with lower generalized senior
number are more important than those with higher senio
number. Therefore, if the boson operator hasK unknown
coefficients, we need to equateK independent matrix ele
ments ascending order of seniority starting from the low
generalized seniority state. In our mapping procedure we
determine the boson interactions~IBM part or boson core!.
The details were already given in the paper for the IBM p
@18#.

In the odd systems we have one-body fermion interact
HF and the two-body boson-fermion interactionsHFB . Thus
the IBFM Hamiltonian is written as

H5HB1HF1HFB , ~2.8!

where the IBM HamiltonianHB is assumed to have bee
already determined using the above prescription. TheHF is
the fermion single particle energies written as

HF5(
jm

e jajm
† ajm , ~2.9!
9-2
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where single particle energiese j are assumed to take th
same values as appearing in the one-body term in the o
nal SM Hamiltonian. Hereajm

† andajm are the creation and
annihilation operators of ‘‘ideal’’ fermions which commut
with s- and d-boson operators. TheHFB is the interaction
between bosons and fermions up to two-body terms and
rametrized as@6#

HFB5(
j

wss
j A2 j 11@@s†aj

†# ( j )@sãj #
( j )#0

(0)

1(
i , j

wsd
i j A2i 11~@@s†ai

†# ( i )@ d̃ã j #
( i )#0

(0)1H.c.!

1(
J

(
i , j

wdd
Ji jA2J11@@d†ai

†# (J)@ d̃ã j #
(J)#0

(0) .

~2.10!

Therefore we only need to take up to generalized seniori
states to determine unknown parameters. Using the ferm
boson correspondence for 2N11 fermions,

uSN,cj ;J&F↔usN,aj ;J&B , ~2.11!

uSN21D,cj ;J&F↔usN21d,aj ;J&B , ~2.12!

the wss
j , wsd

i j , and wdd
Ji j parameters are determined by t

following equations, respectively:

^sNaj uHusNaj&5^SNcj uVuSNcj&, ~2.13!

^sNai uHusN21daj&5^SNci uVuSN21Dcj&, ~2.14!

^sN21dai ;JuHusN21daj ;J&5^SN21Dci ;JuVuSN21Dcj ;J&.

~2.15!

HereV is the original SM Hamiltonian up to two-body inte
actions~including one-body term!. Using fermion matrix el-
ements, the three parameters are explicitly expressed as

wss
j 52

1

N
~^SNcj uVuSNcj&2e j2k0!, ~2.16!

wsd
i j 52

1

AN
^SNci uVuSN21Dcj&, ~2.17!

wdd
Ji j52^SN21Dci ;JuVuSN21Dcj ;J&

1@e j1k01ed2wss
j ~N21!#d i j , ~2.18!

where

k05^SNuVuSN&, ~2.19!

ed5^SN21DuVuSN21D&2k0 . ~2.20!

Numerical evaluation of fermion matrix elements appear
in the right-hand side~RHS! of Eqs. ~2.16! to ~2.20! is the
most difficult task in the boson-fermion mapping. In th
paper we evaluate them explicitly using a SM code.
02430
i-

a-

3
n-

g

Another parametrization of the IBFM Hamiltonian is du
to Scholten@4#:

HFB5(
j

Aj n̂dn̂j1(
i , j

G i j ~QB•@ai
†ã j #

(2)!

1(
i jJ

LJi j

A2J11
:@@d†ã j #

(J)@ d̃ai
†# (J)#0

(0) :, ~2.21!

with

QB5s†d̃1d†s1x@d†d̃# (2), ~2.22!

where the second term in Eq.~2.21! is called the direct term
and the last term is called the exchange term. The rela
between our Hamiltonian and that of Scholten is explici
written as

wss
j 5Aj , ~2.23!

wsd
i j 52~2 ! i 1 jA 5

2i 11
G i j , ~2.24!

wdd
i jJ55G i j x~2 ! i 1JH 2 2 2

j i J J 1(
K

LKi j H 2 j J

2 i K J ,

~2.25!

apart from a constant. Note that the direct term is direc
related to thewsd term.

III. SINGLE j-SHELL CASE

To clarify the contents of the previous section in a simp
case, we apply the method to a singlej shell. Some numeri-
cal investigations have been already carried out in Ref.@17#.
For the singlej-shell case we do not need to determine t
structure coefficients ofS andD pairs and we can make us
of the seniority scheme of Racah and its reduction form
@20#. In this case the parameters appearing in Eq.~2.10! are
evaluated analytically. Those were given in the appendix
Ref. @7#.

According to Scholten,G i j in Eq. ~2.21! is proportional to
(uiuj2v iv j )Qi j whereui and v i are the occupation ampli
tudes withQi j being the quadrupole matrix element. Ther
fore the direct term in a singlej shell vanishes in the middle
of the shell. It is interesting to see whether the direct te
vanishes in the middle of the shell or not in our prese
scheme. Using seniority scheme we get@7# for a singlej shell
of V5 j 1 1

2 ,

wsd5
1

AN
F^Dcj uVuScj&, ~3.1!

with

F5
A~2V22N22!2N

2AV22

V22N21

V23
. ~3.2!
9-3
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FIG. 1. Comparison of energy spectra in th
SM, SDp, and IBFM for the half-filled case ofj
513/2 shell as a function of strength parametex
@~a! x50.9, ~b! x50.3, ~c! x50.0#.
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Therefore in our scheme the direct term also vanishes in
middle of the shell~i.e., V5N11) due to the factor coming
from the seniority reduction formula. The direct term al
vanishes when the interaction conserves seniority. This
be easily seen from the matrix element^Dcj uVuScj& in Eq.
~3.1! where the RHS has the seniority 1 and the LHS has
seniority 3.

Our schematic Hamiltonian consists of pairing plus qu
rupole interaction with a variablex to simulate vibrational to
rotational nuclei

V52xA0
†(0)A0

(0)2~12x!:Q•Q:, ~3.3!

with

A0
†(0)5A1

2
@cj

†cj
†#0

(0) , ~3.4!

and

QM5@cj
†c̃ j #M

(2) . ~3.5!

Here we takej 5 13
2 andx is varied from 1 to 0. We taken

57 particles, which means that the shell is half filled.
Figs. 1~a!–1~c! the comparison of energy levels between t
SM, the SDp model and the IBFM is shown as a function
x. In Fig. 1~a! a spherical nucleus is simulated with a variab
x50.9. It is seen that states with different seniority numb
(v51,3,5) are grouped together due to a strong pairing
teraction. In the spectrum of the SM, there are 16 states
seniority 3 for angular momentaJ< 23

2 , among which five

TABLE I. The IBFM parameters for a singlej shell (j 513/2
andn57) with x51.0 ~pure pairing! andx50.0 ~pureQQ)

x51.0 x50.0

wss 0.143 0.238
wsd 0.0 0.0

wdd(J59) 0.0 0.173
wdd(J511) 0.0 20.058
wdd(J513) 0.0 1.090
wdd(J515) 0.0 0.606
wdd(J517) 0.0 0.198
02430
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states drawn in the figure are within SDp space. Almos
perfect reproduction is obtained as expected within the S
space. When the quadrupole-quadrupole interaction
stronger, seniority numbers are largely mixed as seen in
1~b!. The expectation value for the seniority quantum nu
ber for the ground state iŝv&51.0,1.2,1.4,1.8,3.5 forx
50.9,0.7,0.5,0.3,0.1, respectively. In Fig. 1~c! a deformed
nucleus is simulated with a pureQQ interaction (x50.0).
Low-lying energy levels are no longer well reproduced in t
SDp model compared to the SM. Even the ground state s
is not reproduced. This is caused by neglecting higher an
lar momentum pairs such asG pairs. There is a large dis
crepancy between the spectra of SDp and IBFM in this ca
This means that our boson mapping procedure based on
seniority breaks down in this deformed case. We certai
need three-body terms if we stick to the boson mapp
based on the seniority. It is accidental that the ground s
spin in IBFM is exactly reproduced in comparison with th
SM.

It is interesting to see how the IBFM interaction strengt
change as a function ofx. In Table I we list the values of
IBFM parameters in case ofx51 ~pure pairing! and x50
~pure QQ). Other cases with differentx’s are interpolated
linearly using these values because our mapping procedu
linear in the singlej-shell case. It is seen thatwdd

J with J
5 j is the most important component compared to ot
wdd

J ’s. The wsd is zero for all the cases because the shel
half filled. In this particular case the direct term does n
play any important role for the reproduction of energy sp
tra.

TABLE II. Single particle energies and structure constantsa j

for N582 isotones and Sn isotopes. In the second~sixth! column
single proton-particle~neutron-hole! energies are shown in units o
MeV.

Levels « j
134Te 136Xe 138Ba « j

130Sn 128Sn 126Sn

d3/2 2.6 0.194 0.181 0.167 0.0 0.615 0.615 0.61
h11/2 2.5 0.179 0.167 0.154 0.05 0.564 0.568 0.57
s1/2 2.0 0.232 0.220 0.208 0.4 0.447 0.447 0.44
d5/2 0.6 0.448 0.446 0.447 1.3 0.251 0.246 0.24
g7/2 0.0 0.822 0.832 0.840 1.8 0.203 0.197 0.19
9-4
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FIG. 2. Energy levels of evenN582 isotones
in experiment~Exp!, shell model~SM!, SD pair
space~SD!, and the IBM space~IBM !.
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IV. APPLICATION OF THE METHOD TO SN ISOTOPES
AND NÄ82 ISOTONES

In this section we apply our method to singly magic n
clei. Our SM Hamiltonian consists of the single particle e
ergies and monopole- and quadrupole-pairing interaction
quadrupole-quadrupole interaction

V5(
j

e j n̂ j2G0P†(0)P(0)2G2P†(2)
•P(2)2k:Q•Q:.

~4.1!

The precise definition of the multipole interactions is giv
in Refs. @7,18#. In many j shells, pair structures should b
determined in a proper way. First we determine the coll
tive S pair variationally

d^SNuVuSN&50, ~4.2!

and using the sameS pair, we determine theD pair by re-
quiring

d^SN21DuVuSN21D&50. ~4.3!

This method is expected to work well in the spherical and
vibrational regions. In this numerical work we assumeG2
02430
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5k partly because of simplicity and partly because senio
of Racah is exactly conserved@18,19# if single particle ener-
gies are almost degenerate. It is one of our purposes to
vestigate how single particle energy splitting breaks senio
in realistic situations. In this analysis we have assumed
the single particle energies and two-body interact
strengths are constant for all Sn isotopes andN582 isotones.
For N582 isotones we takeG050.18 and G25k
50.018 MeV. For the Sn isotopes we takeG050.16 and
G25k50.018 MeV. In Table II we show single particl
energies and structure constantsa j for N582 isotones and
Sn isotopes. It is seen that thea j ’s are rather constants as
function of pair numbers.

In Fig. 2 we show energy spectra in the SM, SD mod
and the IBM for evenN582 isotones. In Fig. 3 we show
energy spectra in the SM, SDp model, and the IBFM for o
N582 isotones. These are compared with experimental d
for N582 isotones where we have valence protons. In134Te
~two-particle system!, 135I ~three-particle system!, and 136Xe
~four-particle system! energy spectra of SD model~SDp
model! andsd boson (sd boson plus one-particle! are iden-
tical in each case. This is because our boson mapp
scheme is exact up to the generalized seniority 4. In134Te
and 136Xe it should be reminded that the first 41 states of
experimental data cannot be compared directly to the first1
FIG. 3. Energy levels of oddN582 isotones
in experiment~Exp!, shell model~SM!, SDp pair
space~SDp!, and the IBFM space~IBFM!.
9-5
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FIG. 4. Energy levels of even Sn isotopes
experiment ~Exp!, shell model ~SM!, SD pair
space~SD!, and the IBM space~IBM !.
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states in the SD model and the IBM. Because the form
have nature of one-phonon structure such as aG pair excita-
tion while the latter have nature of two-phonon excitatio
such asuDD,J54&. In all the present examples of eve
~odd! systems the ground states are found to have gen
ized seniority 0~1! almost precisely. For instance, in139La
case expectation value of generalized seniority is 1.12 in
SDp model. Namely, this state has the structureuSNcj ,J
5 j &. In 135I, 137Cs, and 139La all the low-lying excited
states in figures have generalized seniority 3 except the
J5 5

2
1 states, which have generalized seniority 1. Anot

exception is the firstJ5 1
2

1 state in 139La. In this case first
J5 1

2
1 state is very close to the secondJ5 5

2
1 state because

the single particle energyes1/2
is rather high. It is seen tha

the low-lying experimental levels are reproduced well in t
SM although we still need some improvement with respec
the SM interaction. Especially the ground state spins are
produced for all the cases. We have a good agreement am
the SM, the SD model~SDp model!, and IBM ~IBFM!.

In Fig. 4 we show energy levels for even Sn isotop
where we have neutron holes. In Fig. 5 we show ene
levels for odd Sn isotopes. Such asN582 isotones, energy
spectra of SD model~SDp model! andsd boson (sd boson
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plus one particle! are identical in each case for up to gene
alized seniority 4. Again all the ground states have gene
ized seniority 0~1! approximately in the present examples
even ~odd! systems. In129Sn,127Sn, and 125Sn, the firstJ
5 3

2
1, J5 11

2
2, andJ5 1

2
1 states have generalized seniori

1. The firstJ5 3
2

1 andJ5 11
2

2 states are almost degenera
in odd isotopes, but the ordering is not reproduced only
127Sn for the SM, SDp and IBFM. Considering the extent
degeneracy ofd1/2 andh11/2 levels, it is not surprising tha
there is a small flip in the ordering of these levels in127Sn.
However, it should be noted that this is the case with all
models considered and just not in the IBFM. It is remarka
that a single schematic interaction is able to describe
systematics of low-lying collective states in both even a
odd systems. We have achieved this consistently in these
sets~Sn isotopes andN582 isotones! of singly magic nuclei
with proper ordering of levels in all the odd nuclei und
consideration with the exception of127Sn discussed above
The reproduction of the ordering of levels in odd Sn isotop
is a nontrivial task@21#. Throughout this analysis we hav
seen that the IBFM Hamiltonian derived here reprodu
low-lying energy levels very well. This means oursd boson
description of odd nuclei is as good as that of the IBM.
in
FIG. 5. Energy levels of odd Sn isotopes
experiment~Exp!, shell model~SM!, SDp pair
space~SDp!, and the IBFM space~IBFM!.
9-6
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V. SUMMARY AND CONCLUSIONS

In this article we have successfully demonstrated the
lidity of our procedure to derive microscopically IBM an
IBFM Hamiltonians based on the generalized seniority in
consistent and a straightforward manner. We treat even
tems ~IBM ! and odd systems~IBFM! on the same footing
namely, the boson core in the IBFM has the same struc
as in the IBM. The resulting Hamiltonian is tested in bo
singlej-shell and manyj-shell cases using a realistic intera
tion.

In a singlej-shell case the spectra in the IBFM have be
compared with those in the SM, SDp. In the spherical a
vibrational regions a good correspondence between the
the SDp, and IBFM is obtained. Since our boson mapp
scheme is based on the seniority, in the deformed region
ordering of energy levels of the SM is not reproduced wel
the SDp model and IBFM. It should also be expected t
higher angular momentum pairs such as aG pair play an
important role in deformed region. The direct term in t
IBFM also vanishes in the middle of the shell as in t
Scholten’s case. However, it does not harm low-lying sta
at least in spherical and vibrational regions where the sen
ity scheme is assumed to be valid.

As examples of manyj-shell cases, by employing a mono
pole and quadrupole pairings plus quadrupole quadrupole
teraction which simulates the vibrational to rotational tran
tion, we have applied our method to singly magic nuclei. T
.
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resulting spectra in the IBM~the IBFM! are compared with
those in SM andSD pair ~SDp! spaces and experiments. I
these cases generalized seniority is found to be a good
cept. All the ground state spins are reproduced excep
127Sn. It is also found to be a good approximation that t
low-lying excited states in odd systems consist of gene
ized seniority 1 and 3. The results clearly indicate that o
mapping procedure provides a good approximation both
the IBM and the IBFM at least in spherical and vibratio
regions. Our main concern in this paper has been the tr
ment of the spherical and vibrational odd-nuclei since o
method is based on the generalized seniority. For the
scription of deformed nuclei, it is apparent that we need
more appropriate method. Recently, Elliott and Evans p
posed a mapping procedure based on SU~3! rather than se-
niority @22#. This might provide us with another microscop
method for deriving IBFM interaction in deformed nucle
This is an open question.
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