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A ten-parameter Skyrme force, along with a four-parameterd-function pairing force, have been fitted, using
the Hartree-Fock-BCS method, to the masses of 1719 nuclei, both spherical and deformed, with an rms error
of 0.754 MeV. The corresponding value of the symmetry coefficientJ is 28.0 MeV, and that of the effective
nucleon massM* is 1.05M .

PACS number~s!: 21.10.Dr, 21.30.Fe, 21.60.Jz, 21.65.1f
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I. INTRODUCTION

The r process of nucleosynthesis depends crucially on
binding energies~among other properties! of heavy nuclei
that are so neutron-rich that there is no hope of being abl
measure them in the laboratory~see Ref.@1# for a general
review!. It thus becomes of the greatest importance to
able to make reliable extrapolations of nuclear masses~and
other relevant properties, such as fission barriers, defor
tions, nuclear radii,. . . ) away from the known region, rela
tively close to the stability line, out towards the neutron-d
line. This means that one should have a mass formula
not only gives a good fit to the data, but also has a so
theoretical basis; generally speaking, the more microsc
cally grounded is a mass formula, the better one would
pect its theoretical basis to be.

Until recently the masses and barriers used in all stud
of the r process were calculated on the basis of one form
another of the liquid-drop model, the most sophisticated v
sion of which is the ‘‘finite-range droplet model’’~FRDM!
@2#. Despite the great empirical success of this formula~it fits
1654 masses with an rms error of 0.669 MeV!, there is still
an obvious need to develop a mass formula that is m
closely connected to the basic nuclear interactions. Two s
approaches can reasonably, be contemplated at the pr
time, one being the nonrelativistic Hartree-Fock~HF!
method ~see Refs.@3,4# for a recent compilation of refer
ences!, and the other the relativistic Hartree method, a
known as the relativistic mean-field~RMF! method~see Ref.
@5# for a guide to the literature on this topic!. Each of these
methods is characterized by a set of phenomenological
rameters relating either to an effective nuclear force in
case of the HF method, or to effective bosons in the cas
the RMF method; in both cases the parameters can be fi
to the mass~and possibly other! data. Not only would mass
formulas based on either of these methods have a more
damental basis, but their underlying parameter sets wo
permit the construction of equations of state of stellar nuc
matter that have a very direct connection with nuclear da

Ultimately, one would wish to go to a deeper level, co
necting with the two- and three-nucleon data on the o
hand, and the quark model of nucleons on the other hand
quantitative success on these lines, with the level of pr
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sion required for astrophysics, can hardly be expected in
near future. Indeed, little progress has been made even a
more modest level of the nonrelativistic HF method or of t
RMF method. In neither case has the basic parameter
been fitted to the masses of more than ten or so nuclei,
sumably because of the computer-time limitations that ar
in the past with deformed nuclei. However, using parame
sets determined in this way, the masses~and some other
properties! of more than a thousand nuclei have been cal
lated in both the HF@6# and RMF@5# approaches. Unfortu-
nately, in both cases the rms errors in the resulting m
predictions for nuclei of known mass were well in excess
2 MeV, which is unacceptable for astrophysical purpos
moreover, both sets of calculations were limited to eve
even nuclei.

The result is that the most microscopically founded m
formulas of practical use are those based on the so-ca
ETFSI ~extended Thomas-Fermi plus Strutinsky integr!
method. This is a high-speed macroscopic-microscopic
proximation to the HF method based on Skyrme forces~SHF
method!, with pairing correlations generated by ad-function
force that is treated in the usual BCS approach~with block-
ing!. The macroscopic part consists of a purely sem
classical approximation to the SHF method, the full four
order extended Thomas-Fermi~ETF! method, while the
second part, which is based on what is called the Strutins
integral ~SI! form of the Strutinsky theorem, constitutes a
attempt to improve this approximation perturbatively, and
particular to restore the shell corrections that are miss
from the ETF part. For full details of this method see Re
@7–11#. In the latest version of this mass formula, ETFSI-
1719 measured masses are fitted with an rms error of 0
MeV @12#. ~Also to be mentioned in this context is th
Thomas-Fermi mass formula of Ref.@13#, which fits 1654
masses with an rms error of 0.655 MeV. However, the m
croscopic corrections, along with the equilibrium deform
tion configurations, in this mass formula are taken in th
entirety from the FRDM fit@2#, with the seven force param
eters being fitted exclusively to the macroscopic terms,
that self-consistency is by no means assured. The ET
model, on the other hand, is completely self-consistent.!

As to the extent to which the ETFSI method constitute
good approximation to the HF method, it is found that if
©2000 The American Physical Society08-1
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given force is run in both ETFSI and HF codes, the lat
code will typically give finite-nucleus energies about 4 Me
higher than will the former code. Nevertheless, we ha
shown@7,8# that the two methods are essentially equival
in the sense that when a Skyrme-type force is fitted to
same data by one method or the other they give very sim
extrapolations out to the neutron-drip line: the discrepanc
less than 1 MeV for total energies and fission barriers,
less than 0.5 MeV for the neutron-separation energiesSn and
beta-decay energiesQb .

But even though it might thus seem that there is very li
to be gained from constructing a HF mass formula, there
nevertheless three reasons for doing so.~i! The ETFSI
method is limited, at least in its present form, to Skyrm
forces for which the effective nucleon massM* is equal to
the real massM. Since the HF method suffers from no su
limitation, an extra degree of freedom becomes availa
leading to the possibility of a still better fit to the mass da
~ii ! The widespread availability of HF codes makes it high
desirable that one have at one’s disposal a HF effective fo
that has been fitted to the same mass data and with the
~or better! precision as has the best available ETFSI fo
~SkSC18 at the present time@12#!. This need becomes eve
stronger when one wishes to go beyond the HF method
include RPA correlations, since here too there exist m
codes constructed on an HF basis, while the ETFSI met
itself has not been generalized in this respect.~iii ! To calcu-
late the equation of state of stellar nuclear matter at
temperatures, as found, for example, in decompressing
tron matter, it is necessary to include shell corrections,
the HF method will be better adapted than the ETFSI
proximation to the complicated configurations that may
encountered.

Actually, the limitation of the ETFSI method to an effe
tive mass ofM* 5M was not a gross defect, since it
known that to have the correct single-particle~s.p.! level
density in the vicinity of the Fermi surface one must ha
M* /M equal to, or slightly larger than, 1.0@14–16#, and
without the correct s.p. level density it is impossible to fit t
masses of open-shell nuclei, even if a fit to the masse
doubly magic nuclei is possible. On the other hand,
nuclear-matter calculations with forces that are realistic
the sense that they fit the two- and three-nucleon data i
cate that at the equilibrium densityM* /M.0.7 @17,18#.
Rough experimental confirmation thatM* is considerably
smaller thanM first came from measurements of the deep
s.p. states in light nuclei@19# ~for a theoretical discussion
see, for example, Refs.@20–22#!. More precise empirical in-
formation comes from analyses of the giant isoscalar qu
rupole and isovector dipole resonances. From the former
finds @23# a value of around 0.8M for the nuclear-matter
isoscalar effective massMs* , defined in Eq.~9a! below,
while from the latter one finds@24# a value of around 0.7M
for the nuclear-matter isovector effective massM v* , defined
in Eq. ~9b! below.

However, there is no contradiction between these two v
ues ofM* /M ~i.e., 0.7–0.8 on the one hand, 1.0–1.1 on
other!, since Bernard and Giai@25# have shown that one ca
obtain reasonable s.p. level densities in finite nuclei w
02430
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realistic values ofM* /M , i.e., of 0.7–0.8, provided one
takes into account the coupling between s.p. excitat
modes and surface-vibration RPA modes. Since the g
agreement with measured s.p. level densities found in R
@14–16# was obtained without making these corrections
must be supposed that the resulting error is being comp
sated by the higher value ofM* /M , i.e.,M* /M.1.0, which
may thus be regarded as a semiempirical value that per
considerable phenomenological success with straightforw
HF, or other mean-field calculations, without any of the co
plications of Ref.@25#. It is in this way, in fact, that the
ETFSI mass formulas@11,12# have achieved their high leve
of precision. Nevertheless, by releasing the constraint
M* /M being exactly equal to unity one may hope for furth
improvement in the quality of the fit.

Actually, nearly all of the many HF forces that have be
constructed impose the constraint of a realistic value
M* /M , i.e., 0.7–0.8, but that this choice is incompatib
with correct masses of open-shell nuclei is well illustrated
the force SLy4: see Figs. 1–4 of Ref.@4#. It seems, in fact,
that the only HF forces that adopt the semiempirical value
M* /M.1.0 are SkP@26# and the forces T1–6@27#, but they
have been fitted to only a very small number of nuclei, a
so cannot serve as the basis of a mass formula. The obje
the present paper is to rectify this situation by making a
fit of a Skyrme-type force to essentially all the measur
masses, with the effective nucleon massM* /M being taken
as a free fitting parameter. While this latter feature is ess
tial for a good fit to the masses, and will lead to improv
fission barriers@27,28#, it should not be forgotten that ther
are several applications in which it is essential to impose
the outset the realistic value of 0.7–0.8 forM* /M , e.g., for
the calculation of giant multipole resonances.

In Sec. II we summarize the required SHF formalism, a
discuss our treatment of pairing. In this same section we a
explain our fitting strategy, which involves two distinc
phases. The first of these phases is limited to spherical
clei, and is described in Sec. III, while the second pha
involving both spherical and deformed nuclei, is described
Sec. IV.

II. THE SHF-BCS METHOD

The Skyrme forces that we consider have the usual fo

v i j 5t0~11x0Ps!d~r i j !1t1~11x1Ps!
1

2\2
$pi j

2 d~r i j !1H.c.%

1t2~11x2Ps!
1

\2
pi j •d~r i j !pi j 1

1

6
t3~11x3Ps!

3rgd~r i j !1
i

\2
W0~si1sj !•pi j 3d~r i j !pi j , ~1!

wherePs is the two-body spin-exchange operator. The to
energy EHF corresponding to this force is, in a standa
notation@20#,
8-2
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EHF5E E~r !d3r5E E nuc~r !d3r1E E Coul~r !d3r , ~2!

where

E nuc~r !5
1

4
t0$~21x0!r22~2x011!~rp

21rn
2!%1

1

8
$t1~21x1!1t2~21x2!%tr1

1

8
$t2~2x211!2t1~2x111!%

3~tprp1tnrn!1
1

32
$3t1~21x1!2t2~21x2!%~“r!2

2
1

32
$3t1~2x111!1t2~2x211!%$~“rp!21~“rn!2%1

1

24
t3rg$~21x3!r22~2x311!~rp

21rn
2!%

1
1

2
W0$J•“r1Jp•“rp1Jn•“rn%2

1

16
~ t1x11t2x2!J21

1

16
~ t12t2!~Jp

21Jn
2! ~3a!

~note particularly that we retain the terms inJ2 andJq
2), while for the Coulomb term we have, making the Slater approxima

in the exchange part,

E Coul5
e2

2
rp~r !E rp~r 8!

ur2r 8u
d3r 82

3e2

4 S 3

p D 1/3

rp
4/3. ~3b!

Minimizing EHF with respect to arbitrary variations in the s.p. wave functionsf i ,q , wherei labels all quantum numbers
andq denotesn ~neutrons! or p ~protons!, leads to the HF equation

H 2“•

\2

2Mq* ~r !
“1Uq~r !1Vq

Coul~r !2 iWq~r !•“3sJ f i ,q5e i ,qf i ,q , ~4!

where the nuclear part of the central s.p. field,Uq(r ), the Coulomb fieldVq
Coul(r ), and the spin-orbit s.p. fieldWq(r ) are as

follows:

Uq~r !5
1

2
t0$~21x0!r2~2x011!rq%1

1

8
$t1~21x1!1t2~21x2!%t1

1

8
$t2~2x211!2t1~2x111!%tq

1
1

16
$t2~21x2!23t1~21x1!%¹2r1

1

16
$3t1~2x111!1t2~2x211!%¹2rq1

1

24
t3@~21x3!~21g!rg11

2~2x311!$2rgrq1grg21~rp
21rn

2!%#2
1

2
W0“•~J1Jq!, ~5!

Vq
Coul~r !5e2E rp~r 8!

ur2r 8u
d3r 82e2S 3

p D 1/3

rp
1/3, ~6!
en-

r
ass,

-

and

Wq~r !5
1

2
W0“~r1rq!1

1

8
~ t12t2!Jq2

1

8
~ t1x11t2x2!J.

~7!

As for the effective-mass term, we have

\2

2Mq* ~r !
5

\2

2M
1

1

8
$t1~21x1!1t2~21x2!%r~r !

1
1

8
$t2~2x211!2t1~2x111!%rq~r !. ~8!
02430
The effective mass so defined is a function of the local d
sity and neutron/proton ratio, but if we setrn5rp5 1

2 r0,
where r0 is the equilibrium density of symmetric nuclea
matter, we obtain the nuclear-matter isoscalar effective m
Ms* , according to

\2

2Ms*
5

\2

2M
1

1

16
$3t11t2~514x2!%r0 . ~9a!

Also, setting rq50,r5r0 leads to the nuclear-matter is
ovector effective mass, given by
8-3
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\2

2M v*
5

\2

2M
1

1

8
$t1~21x1!1t2~21x2!%r0 . ~9b!

Pairing correlations are taken into account in the B
approximation~with blocking!, using ad-function pairing
force,

vpair~r i j !5Vpqd~r i j !. ~10!

We shall always allow the pairing-strength parameterVpq to
be different for neutrons and protons, but without furth
generalization there is a tendency to overestimate even
mass differences, with serious implications for both theSn
andQb , especially in the case of heavy nuclei~see Sec. 4 of
Ref. @9#!. We could, of course, have reduced the errors in
even-odd mass differences simply by taking a weaker pai
force, and since these errors also contribute to the ove
error of the mass fit it might be expected that the latter wo
improve at the same time. This is not so, since the pair
force not only generates even-odd fluctuations, but also c
tributes a much smoother~though shell-dependent! term to
the total energy. Thus optimizing the overall mass fit a
optimizing the fit to the even-odd differences may be in co
flict if we limit ourselves to the simple parametrization~10!
of the pairing force.

A way around this problem@29# is to allow Vpq to be
slightly stronger for an odd number of nucleons (Vpq

2 ) than
for an even number (Vpq

1 ), i.e., the pairing force betwee
neutrons, for example, depends on whetherN is even or odd.
As noted in Ref.@29#, this ‘‘staggered pairing’’ device can
indeed lead to improved fits, but itsad hoccharacter might
be found to be rather unsatisfactory. However, the very c
cept of a pairing force is highly phenomenological, and
deriving it from more realistic forces the Pauli princip
could conceivably give rise to staggering effects of this s
the strength of the pairing force itself could be subject
‘‘blocking’’ by an odd nucleon. Moreover, the HF wav
function of an odd nucleus is not an eigenstate of the tim
reversal operator@20#, and in projecting out from it a state o
good time-reversal properties the total energy will be lo
ered. Thus the extra pairing attraction that we give to o
nuclei could be regarded, at least qualitatively, as comp
sating for our failure to make this projection. In our ow
calculations further compensation may be required by
fact that our HF codes do not treat odd-A and odd-odd nucle
completely self-consistently, since we suppose that the
paired nucleons do not perturb the field generated by
even-even core.

Note that we do not use the Lipkin-Nogami variant of t
BCS method, because in the ETFSI calculations we fo
better mass fits with the conventional form of the method
possible reason for this is discussed in Sec. 4 of Ref.@9#.

Computational details. As explained below, we use bot
spherical and deformed HF-BCS codes. These are writte
terms of an expansion of the s.p. functions in a harmon
oscillator basis. In the summation over s.p. states in the B
calculation we include all continuum states up to an ene
of 1\v, where\v is the oscillator strength. In calculatin
02430
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the Coulomb energy we fold over the finite size of the p
ton, assuming the charge to be Gauss-distributed with an
radius of 0.8 fm. A correction is made for the spurio
center-of-mass motion, using the method of Butleret al.
@30#.

In our deformed code we also subtract out from the to
computed energy the spurious rotational energy

Erot5
\2

2I ^Ĵ2&, ~11!

where Ĵ2 represents the usual angular-momentum opera
and I is the moment of inertia. For this latter quantity w
write

I5b$~12a!Icrank1aIrigid%, ~12!

whereIcrank is the cranking-model@31# value of the moment
of inertia with pairing correlations included@32#, andIrigid is
the rigid-rotor value. The coefficientsa andb are determined
by fitting to experimental moments of inertia: see Tables
and 10 of Ref.@9#. We take the valuea50.25 for all nuclei,
while b51 for even-even nuclei, 1.2 for odd-A nuclei and
1.4 for odd-odd nuclei~see Sec. 5 of Ref.@9#, where the best
value ofa for the ETFSI model was found to be 0.20!.

Fitting strategy. Even though the computer-time consi
erations that led to HF mass fits being limited in the pas
only a very small number of nuclei are no longer applicab
the fact remains that most nuclei are deformed, and a mas
entails that every nucleus that is included in the fit has to
calculated many times over. Thus making a direct fit with
deformed HF code to all of the more than 1700 measu
masses would impose a very serious strain on one’s c
puter facilities if one varied all 14 force parameters. So
simplifications have to be made, and in particular we ad
the strategy of dividing the fit into two distinct phases.

In the first phase~Sec. III! the fit is limited to the 400 or
so spherical, or quasispherical, known nuclei, which can
computed with a much more rapid spherical HF code. T
force resulting from this fit, while not final, is used to t
down once and for all~for the purposes of the present pape!
the nuclear-matter parametersav ~the energy per nucleon a
equilibrium in symmetric nuclear matter!, r0 @the corre-
sponding density, or equivalently the Fermi momentumkF ,
given by „(3p2/2)r0…

1/3], J ~the symmetry coefficient!, and
the effective massesMs* andM v* . In the second phase~Sec.
IV ! we fit to essentially all nuclei, including deformed nu
clei, but the parameter search is constrained by imposing
values of the nuclear-matter parametersav, kF, J, Ms* , and
M v* determined in the first phase.

However, while this reduces the number of independ
parameters that have to be searched from 14 to nine,
amount of computer time required for this second and fi
phase would still be excessive if we did not adopt furth
simplifying procedures. The essential step is to define
each nucleus a deformation energy

Edef5Esph2Eeq, ~13!

whereEeq is the energy at the equilibrium deformation an
Esph the energy in the spherical configuration, both calc
8-4
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TOWARDS A HARTREE-FOCK MASS FORMULA PHYSICAL REVIEW C62 024308
lated with the deformed code. NowEdef as defined by this
equation is much less sensitive to the exact values of
Skyrme-force parameters than either of the two absolute
ergies on the right-hand side, a fact which makes the c
struction of a HF mass formula a feasible proposition if t
fits of the second phase are made according to the follow
three-step reiterative procedure.

~1! With the force resulting from the limited spherica
nucleus fit of the first phase~Sec. III!, or with the one emerg-
ing from the complete fit of step~3! below, we make a full
~unconstrained! deformed HF calculation of the energyEeq
of each of the more than 1700 nuclei in our data set. T
calculation is performed just once for each nucleus: ther
no question of data fitting with the much slower deform
code.

~2! With the same force that went into step~1! we use the
deformed HF code to calculate the energyEsph of each
nucleus of our data set when a spherical configuration
imposed. The deformation energyEdef defined by Eq.~13!
can now be calculated for the current force, and all measu
masses renormalized to their ‘‘equivalent spheric
configuration’’ values. The rms error of the current force
calculated with the spherical code by comparing the mas
it gives with therenormalizedexperimental masses.

~3! Using next the spherical code, the force is refitted
the masses ofall nuclei in our data set, renormalized a
described in step~2!; this fit is constrained to keep the sam
nuclear-matter parametersav, kF, J, Ms* , andM v* as deter-
mined in phase~1!. We stress that this is the only point
which a fit is made, and it is always the spherical code tha
used: the use of the deformed code is limited to the calc
tion of the Edef. Making the fit with the spherical code i
meaningful only because of the relative insensitivity ofEdef
to small changes in the force parameters. However, bec
Edef will change slightly over the course of this refit the ne
force it gives rise to is fed back into step~1!, and a new
iteration cycle begins.

The process can be halted on completion of step~2! dur-
ing any iteration cycle, since we will then have a comple
set of masses calculated self-consistently with a given fo
However, for an optimal fit it will be necessary to reitera
until there is sufficient convergence of the rms error eme
ing from step~2!.

III. PRELIMINARY CALCULATIONS
ON SPHERICAL NUCLEI

All of the fits ~MSk1-5! described in this section wer
made to 416 spherical, or quasispherical, nuclei, the crite
being that the deformation energyEdef @see Eq.~13!# given
by the ETFSI-1 table@11# does not exceed 0.30 MeV. Eve
in these quasispherical fits we renormalize the experime
masses by these values ofEdef, as explained in Sec. II. All
the mass data used in this paper come from the 1995 A
Wapstra compilation@33#.

Our fitting procedure works as follows. Of the ten Skyrm
parameters,x1 andg take the same fixed values througho
20.5 and 0.333 333, respectively, these values having b
found to give optimal fits in rough preliminary tests~actu-
02430
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ally, the mass fits are rather insensitive tox1, but only be-
cause we have retained in the expression for the total en
EHF the terms inJ2 andJq

2). Of the remaining eight param
eters,x0, t2, and W0 are fitted automatically to the mas
data, using the CERN routine MINSQ. The five degrees
freedom that remain are handled in terms of the nucle
matter parametersav , kF , J ~the symmetry coefficient!, and
the effective massesMs* andM v* defined above; the expres
sions forav , kF , andJ are given in Ref.@34# by Eqs.~2.12!,
~2.15!, and~2.20!, respectively. Also, we always impose th
constraintMs* 5M v* [M* , preliminary tests having shown
that there is no advantage to doing otherwise~it then follows
that x2520.5 in all cases!. The four remaining degrees o
freedom, corresponding toav, kF, J, and M* /M , are ad-
justed manually.

Of these degrees of freedom, all of which relate to nucl
matter, we take forkF the fixed value of 1.326 fm21 (r0
50.1575 fm23), this value always giving an optimal mas
fit and, at the same time, an rms charge radius of208Pb that
is in close agreement with the experimental value of 5.50
@35#. We also variedM* /M systematically, and found tha
the best fit was consistently given by the value 1.05, in
cordance with the findings of Refs.@14–16#, while the ‘‘re-
alistic’’ value of 0.7–0.8 led to fits that were unacceptab
bad.

As for the symmetry coefficientJ, we constrain it to con-
form to some of the known properties of neutron matt
Now the solid line~FP! in Fig. 1 shows as a function o
density the energy per nucleon of pure neutron matter
calculated by Friedman and Pandharipande@18# for the real-
istic force v141TNI, containing two- and three-nucleo
terms. More recent realistic calculations of neutron ma
@36–38# give similar results up to nuclear densities; high
densities do not concern us here. We find that the best fi
the curve FP is obtained if we impose on the mass fits
constraintJ530 MeV ~forces MSk1 and 2!, while lower
values ofJ lead to softer neutron-matter curves, with a no
physical collapse occurring below nuclear-matter densi
for J,28 MeV. On the other hand, the quality of the ma
fits improves if we take lower values ofJ, although it starts
to deteriorate again somewhere between 28 and 27 MeV.

FIG. 1. Energy per nucleon~MeV! of neutron matter as a func
tion of density (nucleons fm23) for the forces of this paper, and fo
the calculations of Ref.@18#.
8-5
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TABLE I. Parameters of the forces developed in this paper.

MSk1 MSk2 MSk3 MSk4 MSk5 MSk6

t0 (MeV fm3) 21813.03 21830.67 21810.32 21827.96 21827.96 21827.96
t1 (MeV fm5) 274.828 260.301 269.092 254.129 254.326 258.4
t2 ~MeV fm5) 2274.828 2293.742 2269.092 2287.569 2287.766 2291.924

t3 ~MeV fm3(11g)) 13050.1 13442.1 13027.5 13419.5 13419.5 13419
x0 0.365395 0.356875 0.631485 0.610360 0.605152 0.576
x1 20.5 20.5 20.5 20.5 20.5 20.5
x2 20.5 20.5 20.5 20.5 20.5 20.5
x3 0.449882 0.409759 0.903680 0.835063 0.827182 0.783

W0 (MeV fm5) 116.708 116.663 116.871 115.943 115.932 118.8
g 0.333333 0.333333 0.333333 0.333333 0.333333 0.333

Vpn
1 (MeV fm3) 2220.0 2220.0 2220.0 2220.0 2220.0 2227.0

Vpp
1 (MeV fm3) 2224.0 2224.0 2228.0 2228.0 2228.0 2242.0

Vpn
2 (MeV fm3) 2220.0 2220.0 2220.0 2220.0 2224.0 2236.0

Vpp
2 (MeV fm3) 2224.0 2224.0 2228.0 2228.0 2232.0 2251.0
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adopt therefore the valueJ528 MeV, this giving the best
mass fit consistent with the known stability of neutron mat
~forces MSk3–6!. ~It is not clear whether the exact minimum
in the rms error occurs after or before collapse, but
changes in the rms error in this region, i.e., between 27
28 MeV, are quite insignificant, being of the order of 0.0
MeV.! While we see that the fit to the FP curve of Fig. 1
not as good forJ528 MeV as for 30 MeV, we note tha
even at subnuclear densities the neutron-energy curve
Refs. @36–38# do not agree exactly with the FP curve a
there is a sufficient margin of uncertainty to make it difficu
to excludeJ528 MeV on this basis. Moreover, both Ref
@36# and@37# calculate the symmetry energy of nuclear m
ter as a function of density for various realistic forces, a
we find that their results are compatible with all values oJ
lying in the range 27 to 30 MeV.~In Ref. @39# it was stated
that the relative positions of the neutron and proton s.p. sp
tra are very sensitive toJ, but we find that once a larg
number of masses have been fitted, as in the present c
lations, this is no longer the case, and that it is impossible
distinguish between different values ofJ on this basis.!

Our preferred value ofJ, 28 MeV, is to be compared with
the value of 32.73 MeV found in the most recent dropl
model fit, the FRDM@2#. ~An almost identical value ofJ,
32.65 MeV, emerges from the zeroth-order Thomas-Fe
calculation of Ref.@13#, but this evaluation is not indepen
dent of the FRDM value, since the shell corrections a
equilibrium deformation configurations, which themselv
are J dependent, are taken directly from the FRDM. Se
consistency then requires that the same value ofJ be found
in the purely macroscopic fit: had a significantly differe
value of J been found this would simply have indicated
failure of self-consistency in the adopted procedure.! The
value of 28 MeV was also found with the ETFSI fits of Re
@40#, in which all nuclear masses were fitted, not just the 4
or so spherical or quasispherical nuclei. The present calc
tion confirms that the ETFSI result was not simply a quirk
the semi-classical approximation, or possibly of the som
what restricted parametrization of the density distributio
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that was adopted in the ETFSI model. In a separate calc
tion @40# we tried to force higher values ofJ by including an
extra t3 term in the Skyrme force, but to no avail. We a
thus led to believe that the value of 28 MeV forJ is quite
robust, within the framework of Skyrme-type forces.

It is, of course, important to understand the contradict
with the FRDM result, and Ref.@40# suggests one way in
which the FRDM could lead to a spuriously high value ofJ.
At the same time, since Skyrme-type forces are not the
word in effective forces, there is an obvious need for para
studies with finite-range~Gogny-type! forces and also in
RMF theory before drawing any definitive conclusions co
cerning the real value ofJ. However, such mass fits woul
have to be as extensive as those we have performed
with Skyrme-type forces, and thus would make even hea
demands on computer time. In any case, we stress that
objective here is to build a mass formula, not determine
value ofJ, but as long as we are using Skyrme forces as
basis of our mass formula, we have no option but to take
value ofJ as being close to 28 MeV.

Referring to Tables I and II, we present these differe
features in terms of four different fits, MSK1–4, that w
have made with different fixed values ofJ and M* : for the
first two J530 MeV, and for the second two 28 MeV, wit
MSk1 and MSk3 each havingM* /M51.00, while MSk2
and MSk4 each haveM* /M51.05. In each case we hav
fitted the parametersx0, t2, and W0 automatically to the
mass data, as always, while varyingav and the pairing pa-
rameters manually, the latter with the constraint of no st
gering, so that there are just two pairing parameters. It w
be seen from Table III thatJ528 MeV gives a better fit
than 30 MeV, while 1.05 is a better value than 1.00 f
M* /M .

Taking next the values ofJ andM* /M found for the best
of these four forces, MSk4, we introduce the degree of fr
dom corresponding to staggered pairing, and refit the
masses, varyingav, x0, t2, W0, and all four pairing param-
eters. In this way we arrive at the force MSk5; it will be se
from Table III that the staggered-pairing feature has led t
significant reduction in the rms errors of the absolute mas
8-6
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TABLE II. Nuclear-matter parameters of the forces of Table I~see text!.

MSk1 MSk2 MSk3 MSk4 MSk5 MSk6

av ~MeV! 215.83 215.83 215.79 215.79 215.79 215.79
r0 ~fm23) 0.1575 0.1575 0.1575 0.1575 0.1575 0.157
J ~MeV! 30.0 30.0 28.0 28.0 28.0 28.0
Ms* /M 1.00 1.05 1.00 1.05 1.05 1.05
M v* /M 1.00 1.05 1.00 1.05 1.05 1.05

Kv ~MeV! 233.7 231.6 233.2 231.5 231.1 231.1
G0 20.1828 20.2585 20.004121 20.06958 20.07017 20.0826
G08 0.2515 0.2275 0.2667 0.2448 0.2442 0.231

r frmg /r0 1.3 1.3 1.6 1.5 1.5 1.4
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of the Sn , and of theQb . This is our final fit to the masse
of the 416 spherical or quasispherical nuclei, and phase
the project outlined in Sec. II is now complete.~Table III
also shows the precision with which we reproduce the cha
radius of 208Pb; a comparable agreement for other nucle
found.!

Further comments on force properties listed in Table.
Even though the nuclear-matter incompressibilityKv @see
Eq. ~2.16! of Ref. @34#! # is not a fitted quantity, line 6 of
Table II shows that all our forces developed so far are
excellent agreement with the experimental value of 2
65 MeV extracted from breathing-mode measureme
@41#. However, our calculation should not be regarded as
independent determination ofKv , since it has been show
@39# that with a suitable generalization of the Skyrme for
(t4 term! it is possible to changeKv , along with the
breathing-mode energies, while maintaining the fit to mas
~at least to those of doubly magic nuclei!. Rather, the agree
ment we find here could be taken as an indication that
simple form of Skyrme force 1 is adequate for our pres
purposes, and that generalizations are not necessary.

Lines 7 and 8 show the LandauG0 andG08 parameters of
our forces, as defined in Ref.@42#. Our values ofG0 are in
reasonable agreement with the experimental value of
proximately zero@43#, but there is in all cases a serious d
agreement with the experimental value of 1.80 forG08 @43#.
In principle, we could have fittedG08 by adjustingx1, a de-
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gree of freedom that has not yet been exploited, but the m
fits would then have deteriorated drastically, and the go
agreement with experiment found forG0 destroyed. In any
case, we do satisfy the conditionG08.21, necessary for the
stability of symmetric nuclear matter against a spin-isos
flip @44#.

Line 9 indicates the densityr frmg , expressed in terms o
the equilibrium density of symmetric nuclear matterr0, at
which neutron matter flips over into a ferromagnetic st
that has no energy minimum and would collapse indefinit
@45#. It will be seen that for all our forces this happens on
at densities significantly higher than nuclear-matter densit
for which the nonrelativistic Skyrme-form force is expect
to be invalid anyway.

IV. INCLUSION OF DEFORMED NUCLEI,
AND FINAL FIT

We expand our data set now to include all nuclei w
A>36 for which measured masses are given in the 1
compilation@33#, with the exception of nuclei for whichN
5Z,Z61, since they are subject to Wigner-term anomal
~see, for example, Refs.@46–52#!. These anomalies ar
highly conspicuous in the ETFSI-1 mass table@11#, mani-
festing themselves as an underbinding with respect to exp
ment of about 2 MeV for such nuclei; they cannot be
moved without leaving the HF-BCS framework~see also the
ted.
ration

an
TABLE III. Errors in the data fit of the forces of Table I. The first line gives the number of nuclei fit
s(M ), s(Sn), and s(Qb) denote the rms errors in the fit to the absolute masses, the neutron-sepa
energies, and the beta-decay energies, respectively, while thee quantities refer to the corresponding me
errors. The last line gives the calculated rms charge radiusRch of 208Pb ~in fm21), to be compared with the
experimental value of 5.50 fm21. All quantities~except for the first and last lines! are in MeV.

MSk1 MSk2 MSk3 MSk4 MSk5 MSk6

Number 416 416 416 416 416 1719
s(M ) 0.848 0.816 0.784 0.730 0.709 0.754
e(M ) 20.048 20.054 0.028 20.063 20.030 20.042
s(Sn) 0.559 0.558 0.549 0.556 0.501 0.434
e(Sn) -0.019 20.010 20.027 20.013 20.010 0.025
s(Qb) 0.753 0.742 0.729 0.735 0.674 0.564
e(Qb) 20.0526 20.0712 20.0768 20.0783 20.0811 0.053

Rch(
208Pb) 5.500 5.503 5.499 5.502 5.502 5.503
8-7



n
y
H

te

t o

us

r

ce
9

th
m

de

th

te

ik
es
e
in
n-
he

iri
al
t
rin
e

it
r
1

a
u
e

ar

is

the
t too
t
we

I-2

s
r
e al-
h
any
for-

the

tter
that
lear
SI-

f

ts

bly
ere
of
.,
the
rior
416
an
09

t,
of
t of
nt
to

le

of
-
re
by
rt

P. TONDEUR, S. GORIELY, J. M. PEARSON, AND M. ONSI PHYSICAL REVIEW C62 024308
discussion in Ref.@10#!. We are left then with a total of 1719
masses in our data set, which is identical to the one take
the ETFSI-2 fit@12# ~the deformation parameters given b
this latter are taken as the starting values in our deformed
calculations!.

This data set is fitted by the reiteration of the three-s
scheme outlined in Sec. II, an essential feature of which
that the fit of step 3 is always made under the constrain
keeping the same nuclear-matter parametersav, kF, J, and
M* /M as found for the force MSk5 in the spherical-nucle
fits of Sec. III. We are thus left with varying justx0 ,t2, and
W0, which is done automatically, and the pairing paramete
which is done manually. (x1 andg are left unchanged from
the values used in Sec. III.!

Three complete iteration cycles brought us from for
MSk5 to force MSk6, for which the rms error for the 171
nuclei of our data set is 0.754 MeV~Table III!. It seems that
further improvement is impossible as long as we keep
constraints emerging from Sec. III, i.e., maintain the sa
nuclear-matter parametersav, kF, J, and M* /M as found
for the best spherical-nucleus fit MSk5. Exploiting these
grees of freedom, along with those associated withx1 andg,
could lead to some further reduction in the rms error of
fit.

We see from Table II that the nonfitted nuclear-mat
properties of force MSk6, i.e.,Kv, G0, G08, and r frmg, are
very similar to those of force MSk5. Indeed, the most str
ing difference between our final force MSk6 and the b
spherical-nucleus fit MSk5 is that the introduction of d
formed nuclei into the fit has led to a much stronger pair
force ~Table I!. Presumably, the specific function of this e
hanced pairing is to give an increased attraction mids
~where the deformed nuclei are situated!, relative to nuclei
nearer to shell closure. In any case, we see that a pa
force that is optimal for spherical nuclei will be suboptim
for deformed nuclei, andvice versa. It must be stressed tha
staggering is an absolutely essential feature of the pai
term in MSk6, since otherwise the even-odd mass diff
ences would be unacceptably large.

V. CONCLUSIONS
We have fitted a ten-parameter Skyrme force, along w

a four-parameterd-function pairing force, to 1719 nuclea
masses, using the HF-BCS method. With just seven of the
parameters being freely varied in the fit to the complete d
set, the rms error of our final force, MSk6, is 0.754 MeV, b
this could probably be improved a little if we relaxed th
constraint of imposing on our fits the values of the nucle
matter parametersav, kF, J, Ms* , and M v* that optimized
the fit to spherical nuclei~force MSk5!; attention should be
paid in particular to the effective masses. We could likew
investigate the degrees of freedom associated withx1 andg,
t.

a
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although for the first of these we have to ensure that
phase transition to a ferromagnetic state does not occur a
low a density@45#, while for the second we would not wan
to destroy the excellent agreement with experiment that
already have for the incompressibilityKv . However,
whether or not we eventually improve on the recent ETFS
fit to the identical set of mass data@12#, for which the rms
error was 0.709 MeV, we see from Table III that the rm
errors in theSn andQb , quantities of greater importance fo
the r process than the absolute masses themselves, ar
ready slightly smaller for MSk6 than for ETFSI-2, for whic
the corresponding values are 0.455 and 0.577 MeV. In
case, we have demonstrated that constructing a HF mass
mula is now a practical proposition.

The nuclear matter corresponding to force MSk6 has
following parameters:av5215.79 MeV, r50.1575 fm23

(kF51.326 fm21), M* /M51.05, and J528 MeV. Our
value for the last of these parameters, the nuclear-ma
symmetry coefficient, was obtained under the constraint
neutron matter must not collapse at nuclear or subnuc
densities, and agrees with the value extracted from ETF
model fits to the mass data@40#. We conclude that the value
J528 MeV is quite robust, within the framework o
Skyrme-type forces.

While the force MSk6 presented here is, with i
effective-mass parameterM* /M.1.0, well adapted to the
HF calculation not only of nuclear masses but presuma
also of fission barriers, it should not be forgotten that th
are applications for which forces having a realistic value
M* /M ~0.7–0.8!, such as those of will still be essential, e.g
the calculation of the giant dipole resonance. However,
mass fits obtained with such forces are considerably infe
to what we have found here: with the same data set of
nuclei as we took in Sec. III the best fit we could find had
rms error of 1.141 MeV, which is to be compared with 0.7
MeV for force MSk5.

Note added in proof.We have now realized this projec
varying essentiallyall the force parameters. The rms error
this new force, MSk7, is 0.702 MeV for the same data se
1719 nuclei to which we fitted the force MSk6 of the prese
paper. A complete mass table, HFBCS-1, corresponding
this force is being submitted for publication, and is availab
on the web at http://www-astro.ulb.ac.be
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