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DIÄ1 staggering in octupole bands of light actinides: ‘‘Beat’’ patterns
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The DI 51 staggering~odd-even staggering! in octupole bands of light actinides is found to exhibit a
‘‘beat’’ behavior as a function of the angular momentumI, forcing us to revise the traditional belief that this
staggering decreases gradually to zero and then remains at this zero value. Various algebraic models@spf-
interacting boson model~spdf-IBM!, vector boson model, nuclear vibron model# are shown to predict in their
su~3! limits constant staggering for this case, being thus unable to describe the ‘‘beat’’ behavior. An explana-
tion of the ‘‘beat’’ behavior is given in terms of two Dunham expansions@expansions in terms of powers of
I (I 11)# with slightly different sets of coefficients for the ground-state band and the negative parity band, the
difference in the values of the coefficients being attributed to Coriolis couplings to other negative parity bands.
Similar ‘‘beat’’ patterns have already been seen in rotational bands of some diatomic molecules, like AgH.

PACS number~s!: 21.10.Re, 21.60.Fw, 21.60.Ev
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I. INTRODUCTION

Rotational nuclear spectra have long been attributed
quadrupole deformations@1#, corresponding to nuclea
shapes produced by the revolution of an ellipsis around
maximum or minimum axis and rotating around an axis p
pendicular to their axis of symmetry. In addition, it has be
suggested that octupole deformation occurs in certain
gions, most notably in the light actinides@2# and in theA
'150 mass region@3,4#, corresponding to pearlike nuclea
shapes@5–8#. In even nuclei exhibiting octupole deformatio
the ground-state band, which contains energy levels w
I p501,21,41,61, . . . , isaccompanied by a negative pari
band containing energy levels withI p512,32,52,72, . . . .
After the first few values of angular momentumI the two
bands become interwoven, forming a single octupole b
with levels characterized byI p501,12,21,32,41,52, . . .
@2–4#. ~It should be noted, however, that in the light a
tinides alternative interpretations of these bands in term
alpha clustering have been proposed@9,10#.!

It has been observed@11# that in octupole bands the leve
with odd I and negative parity (I p512,32,52, . . . ) aredis-
placed relatively to the levels with evenI and positive parity
(I p501,21,41, . . . ), i.e., the odd levels do not lie at th
energies predicted by anE(I )5AI(I 11) fit to the energy
levels, but all of them lie systematically above or all of the
lie systematically below the predicted energies. This is
example ofodd-even staggeringor DI 51 staggering, the
latter term due to the fact that each energy level with ang
momentumI is displaced relatively to its neighbors with a
gular momentaI 61.

A similar DI 51 staggering effect~i.e., a relative dis-
placement of the levels with oddI with respect to the levels
of even I! is known to occur in rotationalg bands of even
nuclei @12#, the difference being that ing bands all levels
possess positive parity.

The DI 51 staggering effect is different from theDI 52
staggering effect recently observed@13–15# in superde-
0556-2813/2000/62~2!/024301~12!/$15.00 62 0243
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formed nuclear bands@16–18#, since theDI 52 staggering
effect refers to the systematic displacement of the levels w
I 52,6,10,14, . . . relative to the levels with I
50,4,8,12, . . . , i.e., in this case the level with angular mo
mentumI is displaced relative to its neighbors with angul
momentaI 62.

On the other hand, rotational spectra of diatomic m
ecules@19# are known to show great similarities to nucle
rotational spectra, having in addition the advantage that
served rotational bands in several diatomic molecules
much longer than the usual rotational nuclear bands. In
both DI 51 @20# andDI 52 staggering effects@21,22# have
been recently observed in rotational spectra of several
atomic molecules.DI 52 staggering has been attributed@22#
to the presence of one or more bandcrossings@23,24#, while
DI 51 staggering remains an open problem.

It should be noted that all these effects are much lar
than the relevant experimental errors, with the notable exc
tion of theDI 52 staggering effect in superdeformed nucle
bands@13–15#, for which only one case†the ~a! band of
149Gd @14#‡ is known to show an effect outside the limits o
the experimental errors.

The dependence of the amplitude of the staggering ef
on the angular momentumI presents much interest. The situ
ation up to now is as follows:

~1! Algebraic models of nuclear structure appropriate
the description of octupole bands, like the spf-interacting
son model~spf-IBM! with u~11! symmetry @25#, the spdf-
IBM with u~16! symmetry @25,26#, and the vector boson
model ~VBM ! with u~6! symmetry@27–29#, predict in their
su~3! limits DI 51 staggering of constant amplitude, i.e., a
the odd levels are raised~or lowered! by the same amount o
energy with respect to the even levels. In other words,DI
51 staggering takes alternatively positive and negative v
ues of equal absolute value asI increases.

~2! Algebraic models of nuclear structure suitable for t
description of alpha clustering effects, like the nuclear vibr
model ~NVM ! with u~6!^u~4! symmetry@9#, also predict in
©2000 The American Physical Society01-1
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the su~3! limit DI 51 staggering of constant amplitude.
~3! Older experimental work@2–4# on octupole nuclear

bands suggests thatDI 51 staggering starts from large va
ues and its amplitude decreases with increasingI. These find-
ings are in agreement with the interpretation that an octup
band is gradually formed as angular momentum increa
@5,6#.

~4! Recent work on experimental data for diatomic m
ecules shows that in some rotational bandsDI 51 staggering
of constant amplitude seems to appear@20#, while in other
bands a variety of shapes, reminiscent of beats, are exhib
@20#.

Motivated by these recent findings, we make in t
present work a systematic study in the light actinide reg
of all octupole bands for which at least 12 energy levels
known @30–36#, taking advantage of recent detailed expe
mental work in this region. The questions to which we ha
hoped to provide answers are

~1! Which patterns of behavior of the amplitude of th
DI 51 staggering appear? Are these patterns related to
ones seen in diatomic molecules@20#?

~2! Can these patterns be interpreted in terms of the
isting models@9,25–29#, or in terms of any other theoretica
description?

In Sec. II of the present paper the formalism of stagger
is discussed, and is subsequently applied to the experime
data for octupole bands of light actinides in Sec. III. Sect
IV contains the relevant predictions of various algebr
models, while an interpretation of the experimental obser
tions is given in Sec. V. Finally, Sec. VI contains the co
clusions reached, as well as plans for future work.

II. FORMALISM

Traditionally the odd-even staggering~DI 51 staggering!
in octupole bands, as well as in gamma bands, has b
estimated quantitatively through use of the expression@11#

dE~ I !5E~ I !2
~ I 11!E~ I 21!1IE~ I 11!

2I 11
, ~1!

where E(I ) denotes the energy of the level with angu
momentumI. This expression vanishes for

E~ I !5E01AI~ I 11!, ~2!

but not for

E~ I !5E01AI~ I 11!1B@ I ~ I 11!#2. ~3!

Therefore, it is suitable for measuring deviations from t
pure rotational behavior.

Recently, however, a new measure of the magnitude
staggering effects has been introduced@15# in the study of
DI 52 staggering of nuclear superdeformed bands. In
case the experimentally determined quantities are theg-ray
transition energies between levels differing by two units
angular momentum (DI 52). For these the symbol

E2,g~ I !5E~ I 12!2E~ I ! ~4!
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le
es

ed

n
e
-
e

he

x-

g
tal
n
c
-

-

en

e

of

is

f

is used. The deviation of theg-ray transition energies from
the rigid rotator behavior is then measured by the quan
@15#

DE2,g~ I !5
1

16
@6E2,g~ I !24E2,g~ I 22!24E2,g~ I 12!

1E2,g~ I 24!1E2,g~ I 14!#. ~5!

Using the rigid rotator expression of Eq.~2! one can easily
see that in this caseDE2,g(I ) vanishes. In addition, the per
turbed rigid rotator expression of Eq.~3! gives vanishing
DE2,g(I ). These properties are due to the fact that Eq.~5! is
a ~normalized! discrete approximation of the fourth deriva
tive of the functionE2,g(I ), i.e., essentially the fifth deriva
tive of the functionE(I ). Therefore, we conclude that Eq
~5! is a more sensitive probe of deviations from rotation
behavior than Eq.~1!.

By analogy,DI 51 staggering in nuclei can be measur
by the quantity

DE1,g~ I !5
1

16
@6E1,g~ I !24E1,g~ I 21!24E1,g~ I 11!

1E1,g~ I 22!1E1,g~ I 12!#, ~6!

where

E1,g~ I !5E~ I 11!2E~ I !. ~7!

The transition energiesE1,g(I ) are determined directly from
experiment.

III. ANALYSIS OF EXPERIMENTAL DATA

We have applied the formalism described above to
octupole bands of light actinides for which at least 12 ene
levels are known@30–36# and which show no backbendin
~i.e., bandcrossing! @37# behavior. These nuclei are listed i
Table I, along with the relevant values of theR4 ratio,

R45
E~4!

E~2!
, ~8!

a well-known characteristic of collective behavio
Several nuclei (222–226Ra,224–228Th) are rotational or near
rotational ~having 10/3>R4>2.7!, while others
(218–222Rn,220Ra,220–222Th) are vibrational or near-

TABLE I. Nuclei included in the study and theirR4

5E(4)/E(2) ratios@Eq. ~8!#.

Nucleus R4 Nucleus R4 Nucleus R4

218Rn 2.014 218Ra 1.905 220Th 2.035
220Rn 2.214 220Ra 2.298 222Th 2.399
222Rn 2.408 222Ra 2.715 224Th 2.896

224Ra 2.970 226Th 3.136
226Ra 3.127 228Th 3.235
1-2
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vibrational~having 2.4>R4>2!. A special case is218Ra, for
which it has been argued@31# that it is an example of a new
type of transitional nuclei, in which the octupole deformati
dominates over all other types of deformation.

The staggering results for218–222Rn, 218–226Ra, and
220–228Th, are shown in Figs. 1, 2, and 3, respectively. In
cases the experimental errors are of the size of the sym
used for the experimental point and therefore are not visi
The following observations can be made:

~1! In all cases the shapes appearing are consistent
the following pattern:DI 51 staggering starts from large va
ues at lowI, it gradually decreases down to zero, then
starts increasing again, then it decreases down to zero
starts raising again. In other words, figures resembling b
appear. The most complete ‘‘beat’’ figures appear in
cases of 220Ra,224Ra,222Th, as well as in the cases o
218Ra,222Ra,226Ra.

~2! In all cases within the first ‘‘beat’’@from the begin-
ning up to the first zero ofDE1,g(I )# the minima appear a
odd I, indicating that in this region the odd levels are sligh
raised in comparison to the even levels. Within the sec
‘‘beat’’ @i.e., between the first and the second zero
DE1,g(I )#, the opposite holds: the minima appear at evenI,
indicating that in this region the odd levels are slightly lo
ered in comparison to the even levels. Within the th
‘‘beat’’ @after the second zero ofDE1,g(I )# the situation oc-
curring within the first ‘‘beat’’ is repeated.~Notice that220Th
is not an exception, since what is seen in the figure is
second ‘‘beat,’’ starting fromI 56.!

~3! In the case of222Rn the decrease of the staggeri
with increasingI, in the region for which experimental dat
exist, is very slow, giving the impression of almost const
staggering. One can get a similar impression from parts
the patterns shown, as, for example, in the cases of220Ra ~in
the regionI 512220!, 222Ra ~for I 59217!, 224Ra ~for I
510216!, 226Ra ~for I 514220!, 222Th ~for I 510218!.

These observations bear considerable similarities toDI
51 staggering patterns found in rotational bands of diato
molecules. In particular:

~1! Staggering patterns of almost constant amplitude h
been found in some rotational bands of the AgH@20# mol-
ecule.

~2! Staggering patterns resembling the ‘‘beat’’ structu
have been seen in several bands of the AgH molecule@20#.

The following comments are also in place:
~1! In all cases bands not influenced by bandcrossing

fects @37# have been considered, in order to make sure
the observed effects are ‘‘pure’’ single-band effects. T
only exception is220Th, which shows signs of bandcrossin
at 101 and 132, which, however, do not influence the re
evant staggering pattern, which is shown in Fig. 3~a! for
reasons of completeness. A special case is218Ra, which
shows a rather irregular dependence ofE(I ) on I. As we
have already mentioned, it has been argued@31# that this
nucleus is an example of a new type of transitional nucle
which the octupole deformation dominates over all oth
types of deformation.
02430
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FIG. 1. DE1(I ) ~in keV!, calculated from Eq.~6!, for octupole
bands of~a! 218Rn @30#, ~b! 220Rn @30#, and ~c! 222Rn @30#. The
experimental error in all cases is of the order of the symbol used
the experimental point and therefore is not seen. See Sec. III
discussion.
1-3
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FIG. 2. Same as Fig. 1, but fo
~a! 218Ra @31#, ~b! 220Ra @32#, ~c!
222Ra @30#, ~d! 224Ra @30#, and~e!
226Ra @30#.
a
an
am
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~2! The same ‘‘beat’’ pattern appears in both rotation
and vibrational nuclei. The only slight difference which c
be observed, is that the first vanishing of the staggering
plitude seems to occur at higherI for the rotational isotopes
02430
l

-

than for their vibrational counterparts. Indeed, within the
and Th series of isotopes under study, theI at which the first
vanishing of the staggering amplitude occurs seems to b
increasing function ofR4 , i.e., an increasing function of th
1-4



r

DI 51 STAGGERING IN OCTUPOLE BANDS OF LIGHT . . . PHYSICAL REVIEW C 62 024301
FIG. 3. Same as Fig. 1, but fo
~a! 220Th @32#, ~b! 222Th @33#, ~c!
224Th @34#, ~d! 226Th @35#, and~e!
228Th @36#.
e
e

as-
zero
nce
quadrupole collectivity.
~3! The present findings are partially consistent with old

works @2–4#. The limited sets of data of that time wer
reaching only up to theI at which the first vanishing of the
02430
r
staggering amplitude occurs. It was then reasonable to
sume that the staggering amplitude decreases down to
and remains zero afterwards, since no experimental evide
for ‘‘beat’’ patterns existed at that time.
1-5
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IV. ALGEBRAIC MODELS

As we have seen in the previous section, certainDI 51
staggering patterns occur in the octupole bands of the l
actinides. Before attempting any interpretation of these
sults, it is instructive to examine what kind of staggeri
patterns are predicted by various algebraic models of nuc
structure describing such bands. As we have already m
tioned, these models are related to the description of o
pole degrees of freedom, which are responsible for the p
ence of octupole bands, i.e., bands with a sequence of le
with I p501,12,21,32,41,52, . . . @2–4#. These bands are
thought to be present in cases in which the nucleus acqu
a shape with octupole deformation, i.e., a pearlike sh
@5,6#.

A. The spf-interacting boson model

In the spf-IBM @25#, which possesses a u~11! symmetry,
s, p, andf bosons~i.e., bosons with angular momentum 0,
and 3, respectively! are used. Octupole bands are describ
in the su~3! limit, which corresponds to the chain

u~11!.u~10!.su~3!.o~3!.o~2!. ~9!

The relevant basis is

uN,Nb ,vb ,~lb ,mb!,Kb ,I ,M &, ~10!

whereN is the total number of bosons labeling the irredu
ible representations~irreps! of u~11!, Nb is the total number
of negative parity bosons~p and f ! labeling the irreps of
u~10!, vb is the ‘‘missing’’ quantum number in the decom
position u~10!.su~3!,(lb ,mb) are the Elliott quantum num
bers @38# labeling the irreps of su~3!, Kb is the ‘‘missing’’
quantum number in the decomposition su~3!.o~3! @38#, I is
the angular momentum quantum number labelling the irr
of o~3!, M is the z component of the angular momentu
labeling the irreps of o~2!. The energy eigenvalues are give
by

E~Nb ,lb ,mb ,I !5a1bNb1gNb
21kC~lb ,mb!

1k8I ~ I 11!, ~11!

where

C~l,m!5l21m21lm13l13m. ~12!

It is clear that positive parity states occur whenNb is
even, while negative parity states occur whenNb is odd. In
the case ofN being even, the ground-state band is sitting
the (3N,0) irrep, while the odd levels of negative parity a
sitting in the (3N23,0) irrep. Then from Eq.~6! one obtains

DE~ I !5H 2~b1g~2N21!118kN!, for I 5even,

1~b1g~2N21!118kN!, for I 5odd.
~13!
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In the case ofN being odd, the ground-state band is sitting
the (3N23,0) irrep, while the odd levels of negative pari
are sitting in the (3N,0) irrep. Then from Eq.~6! one has

DE~ I !5H 1~b1g~2N21!118kN! for I 5even,

2~b1g~2N21!118kN! for I 5odd.
~14!

Since N is a constant for a given nucleus, expressing
number of valence nucleon pairs counted from the nea
closed shells@39#, we see thatDI 51 staggering of constan
amplitude is predicted.

B. The spdf-interacting boson model

In the spdf-interacting boson model@25,26#, which pos-
sesses a u~16! symmetry,s, p, d, and f bosons~i.e., bosons
with angular momentum 0, 1, 2, and 3, respectively! are
taken into account. Octupole bands are described in the s~3!
limit, which corresponds to the chain

u~16!.ua~6! ^ ub~10!.sua~3! ^ sub~3!

.su~3!.o~3!.o~2!. ~15!

The relevant basis is

uN,Na ,Nb ,vb ,~la ,ma!,~lb ,mb!,~l,m!,K,I ,M &,
~16!

whereN is the total number of bosons labeling the irreps
u~16!, Na is the number of positive parity bosons labeling t
irreps of ua(6), and Nb is the number of negative parit
bosons labelling the irreps of ub(10). The rest of the quan
tum numbers are analogous to those appearing in the bas
the u~11! model, described above. su~3! is the algebra ob-
tained by adding the corresponding generators of sua(3) and
sub(3). Theenergy eigenvalues are given by

E~Nb ,la ,ma ,lb ,mb ,l,m,I !5a1bNb1gNb
2

1kaC~la ,ma!

1kbC~lb ,mb!1kC~l,m!

1k8I ~ I 21!, ~17!

with C(l,m) defined as in Eq.~12!.
The ground-state band is sitting in the (2N,0)a irrep

~which containsN bosons of positive parity and no bosons
negative parity!, while the odd levels of negative parity ar
sitting in the (2N22,0)a(3,0)b(2N11,0) band~which con-
tainsN21 bosons of positive parity and one boson of neg
tive parity!. Then from Eq.~6! one has
1-6
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DE~ I !5H 1@b1g22ka~4N11!118kb14k~N11!# for I 5even,

2@b1g22ka~4N11!118kb14k~N11!# for I 5odd.
~18!
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Therefore,DI 51 staggering of constant amplitude is pr
dicted, sinceN is a constant for a given nucleus, represent
the number of valence nucleon pairs counted from the n
est closed shells@39#.

Another limit of the spdf-IBM in which octupole band
occur is the o~4! limit @26#, which corresponds to the chain

u~16!.u~4!a^ u~4!b.sp~4!a^ sp~4!b.su~2!a^ su~2!b

.o~3!.o~2!, ~19!

and owes its name to the isomorphism

su~2!a^ su~2!b'o~4!. ~20!

The relevant basis is

uN,~n1 ,n2 ,n3 ,n4!,~n1a8 ,n2a8 !,~n1b8 ,n2b8 !,n, j a , j b ,I ,M &,
~21!

whereN is the total number of bosons labeling the irreps
u~16!, (n1 ,n2 ,n3 ,n4) are labeling the irreps of u~4!a and
u~4!b , (n1a8 ,n2a8 ) and (n1b8 ,n2b8 ) are labeling the irreps o
sp~4!a and sp~4!b , respectively,n denotes the three missin
quantum numbers required in this case,j a and j b label the
irreps of su~2!a and su~2!b respectively, whileI andM have
the same meaning as before. The energy eigenvalues
given by

E~N,n1 ,n2 ,n3,n4 ,n1a8 ,n2a8 ,n1b8 ,n2b8 ,n, j a , j b ,I ,M !

5E022A@ j a~ j a11!1 j b~ j b11!#1~B1A!I ~ I 11!

5E02A@v~v12!1~v8!2#1~B1A!I ~ I 11!, ~22!

where (v,v8) are labeling the irreps of o~4! and are con-
nected toj a and j b through the relations

v5 j a1 j b , v85u j a2 j bu. ~23!

The lowest lying irrep is the irrep (3N,0), which contains
states of positive parity and states of negative parity toget
i.e., it contains the states 01,12,21,32,41,52, . . . , up to the
state withI 53N. It is clear that in this case Eq.~6! gives a
vanishing result, i.e., noDI 51 staggering occurs in thi
limit.

C. The vector boson model

In the vector boson model~VBM ! @27–29#, the collective
states are described in terms of two distinct kinds of vec
bosons, whose creation operatorsj1 andh1 are o~3! vectors
and in addition transform according to two independent su~3!
irreducible representations~irreps! of the type (l,m)
5(1,0), i.e., they are two distinct bosons of angular mom
02430
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tum 1. Octupole bands are described in the su~3! limit of the
VBM, which corresponds to the chain

u~6!.su~3! ^ u~2!.so~3! ^ u~1!. ~24!

The relevant basis is

uN,~l,m!,~N,T!,K,I ,T0&, ~25!

whereN is the total number of bosons labeling the irreps
u~6!, ~l,m! are the Elliott quantum numbers@38# labeling the
irreps of su~3!, N andT are the quantum numbers labellin
the irreps of u~2!, K is the ‘‘missing’’ quantum number in the
su~3!.so~3! decomposition@38#, I is the angular momentum
quantum number labeling the irreps of so~3!, andT0 is the
pseudospin projection quantum number labeling the irrep
u~1!. The algebras su~3! and u~2! are mutually complemen
tary @40–42#, their irreps~l, m! and ~N, T! being related by

N5l12m, T5l/2. ~26!

The energy eigenvalues are given by

E~N,l,m,K,I ,T05T!5aN1a6N~N15!1a3C~l,m!

1b3I ~ I 11!1a1

l2

4
, ~27!

with C(l,m) defined as in Eq.~12!.
The ground-state band is sitting in the (0,m)5(0,N/2)

irrep of su~3!, while the odd levels of negative parity ar
sitting in the (2,m21)5(2,N/221) irrep. Then from Eq.~6!
one obtains

DE~ I !5H 1~6a31a1!, for I 5even,

2~6a31a1!, for I 5odd.
~28!

Therefore,DI 51 staggering of constant amplitude is pr
dicted.

D. The nuclear vibron model

As we have already mentioned, an alternative interpre
tion of the low-lying negative parity states appearing in t
light actinides has been given following the assumption t
alpha clustering is important in this region@9,10#. An alge-
braic model appropriate for the description of clustering
fects in nuclei is the nuclear vibron model@9#, which usess
andd bosons for the description of nuclear collectivity, plu
s8 andp bosons for taking into account the distance sepa
ing the center of the cluster from the center of the remain
nucleus. The chain corresponding to the su~3! limit of this
model is
1-7
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u~6! ^ u~4!.sua~3! ^ ub~3!.sua~3! ^ sub~3!

.su~3!.o~3!.o~2!, ~29!

where the subscripta labels the subalgebras of u~6!, while
the subscriptb labels the subalgebras of u~4!. The relevant
basis is

uN,M ,~la ,ma!,np ,~l,m!,x,I ,M &, ~30!

whereN is the number of thes andd bosons related to the
u~6! algebra,M is the number of thes8 andp bosons related
to the u~4! algebra, (la ,ma) are the Elliott quantum number
@38# related to sua(3), np is the number ofp bosons,~l,m!
are the Elliott quantum numbers related to su~3!, x is the
Vergados ‘‘missing’’ quantum number@43# in the decompo-
sition su~3!.o~3!, while I andM represent the angular mo
mentum and itsz component respectively, as usual. The e
ergy eigenvalues are given by

E~np ,la ,ma ,l,m,I !5epnp1apnp~np13!1kdC~la ,ma!

1kC~l,m!1k8I ~ I 11!, ~31!

with C(l,m) defined as in Eq.~12!.
The ground-state band is characterized by (la ,ma)

5(2N,0), np50, (l,m)5(2N,0) @i.e., it containsN bosons
of positive parity and nop boson of negative parity#, while
the negative parity band is characterized by (la ,ma)
5(2N,0), np51, (l,m)5(2N11,0) ~i.e., it containsN
bosons of positive parity plus onep boson of negative par
ity!. Then from Eq.~6! one has

DE~ I !5H 1@ep14ap14k~N11!# for I 5even,

2@ep14ap14k~N11!# for I 5odd.
~32!

Therefore,DI 51 staggering of constant amplitude is pr
dicted.

E. Discussion

We conclude that the various algebraic models, describ
low-lying negative parity bands in terms of octupole defo
mation@25–29# or in terms of alpha clustering@9#, predict in
their su~3! limits odd-even staggering~DI 51 staggering! of
constant amplitude. In all cases the staggering results f
the fact that the negative parity states belong to an ir
different from the one in which the positive parity stat
composing the ground-state band sit.

It should be noticed, as already remarked in Sec. III, t
the experimental data indicate that the value ofI at which the
first vanishing of the staggering amplitude occurs increa
as a function ofR4 , i.e., as the rotational limit is approache
The higher the value ofI at which the first vanishing occurs
the more smooth the decrease of the staggering as a fun
of I is. We see, therefore, that as the rotational limit is a
proached, the experimental data approach more and mor
constant staggering prediction provided by the various a
braic models. The best example is provided by228Th, the
most rotational among the nuclei studied here.
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As far as limits of algebraic models different from th
su~3! limit are concerned, no staggering occurs in the o~4!
limit of the spdf-IBM, which has been fully worked out@26#.
Working out the details of other non-su~3! limits, like the
ones of the vector boson model mentioned in Ref.@27#, is an
interesting open problem.

V. INTERPRETATION OF THE EXPERIMENTAL
OBSERVATIONS

Although the results of the previous section are suffici
for providing an explanation forDI 51 staggering in the
cases in which this appears as having almost constant am
tude, it is clear that some additional thinking is required
the many cases in which the experimental results sho
‘‘beat’’ pattern, as in Sec. III has been exhibited.

A simple explanation for the appearance of beat patte
can be given by the following assumptions:

~1! It is clear that in each nucleus the even levels form
ground-state band, which starts at zero energy, while the
levels form a separate negative parity band, which start
some higher energy. Let us callE0 the bandhead energy o
the negative parity band.

~2! It is reasonable to try to describe the ground-state b
by an expression like

E1~ I !5AI~ I 11!2B„I ~ I 11!…21C„I ~ I 11!…31¯ ,
~33!

where the subscript1 reminds us of the positive parity o
these levels. Such expansions in terms of powers ofI (I
11) have been long used for the description of nuclear c
lective bands@44#. They also occur if one considers@45#
Taylor expansions of the energy expressions provided by
variable moment of inertia model@46# and the suq(2) model
@47#. Notice that fits to experimental data@44# indicate that
one always hasA.0,B.0,C.0, . . . , while A is usually
three orders of magnitude larger thanB, B is 3 orders of
magnitude larger thanC, etc. Equation~33! has been long
used in molecular spectroscopy as well, under the nam
Dunham expansion@48#.

~3! In a similar way, it is reasonable to try to describe t
negative parity levels by an expression like

E2~ I !5E01A8I ~ I 11!2B8„I ~ I 11!…21C8„I ~ I 11!…3

1¯ , ~34!

where the subscript2 reminds us of the negative parity o
these levels, whileE0 is the above-mentioned bandhead e
ergy. In analogy to the previous case one expects to h
A8.0,B8.0,C8.0, . . . .

~4! In the above expansions it is reasonable to assume
A.A8,B.B8,C.C8, . . . . This assumption is in agree
ment with earlier work@49–51#, in which the Coriolis cou-
plings between the lowestK50 negative parity band and
higher negative parity bands withKÞ0 are taken into ac-
count, resulting in an increase of the moment of inertia of
lowestK50 negative parity band@52#. This argument means
1-8
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that the coefficientA8 in Eq. ~34!, which is inversely propor-
tional to the moment of inertia of the negative parity ban
should be smaller than the coefficientA in Eq. ~33!, which is
inversely proportional to the moment of inertia of the po
tive parity band. In analogy to the relationA.A8, which we
just justified, one can assumeB.B8,C.C8, . . . . This last
argument is admitedly a weak one, which is however driv
to interesting results, as we shall soon see.

Using Eqs.~33! and ~34! in Eqs. ~6! and ~7! we find the
following results:

DE~ I !5E02~A2A8!~ I 212I 12!

1~B2B8!S I 414I 3113I 2118I 1
23

2 D
2~C2C8!S I 616I 5133I 4192I 31

357

2
I 21

333

2
I

168D145C8~ I 11!1¯ , for I 5even, ~35!

DE~ I !52E01~A2A8!~ I 212I 12!

2~B2B8!S I 414I 3113I 2118I 1
23

2 D
1~C2C8!S I 616I 5133I 4192I 31

357

2
I 21

333

2
I

168D245C8~ I 11!1¯ , for I 5odd. ~36!

A sample staggering pattern drawn using these formula
shown in Fig. 4. On these results the following comme
can be made:

~1! The expression for oddI is the opposite of the expres
sion with evenI. This explains why in Fig. 4 the staggerin
points for evenI and the staggering points for oddI form two
lines which are reflection symmetric with respect to the ho
zontal axis.

~2! For evenI the behavior of the staggering amplitude
as follows: At lowI it starts from a positive value, because
the presence ofE0 . As I increases, the second term, which
essentialy proportional toI 2, becomes important.@E0 is ex-
pected to be much larger than (A2A8).# This term is nega-
tive ~sinceA.A8!, thus it decreases the amplitude down
negative values. At higher values ofI the third term, which is
essentially proportional toI 4, becomes important. ~Rem-
ember that usuallyB is 3 orders of magnitude smaller thanA
@44#.! This term is positive~sinceB.B8!, thus it increases
the amplitude up to positive values.~The behavior up to this
point can be seen in Fig. 4.! At even higher values ofI the
fourth term, which is essentially proportional toI 6, becomes
important.~Remember that usuallyC is 3 orders of magni-
tude smaller thanB @44#.! This term is negative~since C
.C8!, thus it decreases the amplitude again down to ne
tive values, and so on.

~3! For oddI the behavior of the staggering amplitude
exactly the opposite of the one described in~2! for even I.
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The amplitude starts from a negative value and then beco
consequently positive~because of the second term!, negative
~because of the third term!, again positive~because of the
fourth term!, and so on. The first three steps of this behav
can be seen in Fig. 4.

~4! When drawing the staggering figure one jumps fro
an evenI to an oddI, then back to an evenI, then back to an
odd I, and so on. It is clear therefore that a beat patt
appears, as it is seen in Fig. 4.

The following additional comments are also in place:
~1! In the case of a single band~i.e., in the case ofA

5A8, B5B8, C5C8, etc.!, the first contribution to the stag
gering measureDE(I ) is the last term in Eqs.~35!, ~36!,
which comes from theC„I (I 11)…3 term in the energy ex-
pansion@see Eqs.~33!, ~34!#. This is understandable: Sinc
Eq. ~6! is a discrete approximation of the fifth derivative
the functionE(I ), as has already been remarked, the ter
up to B„I (I 11)…2 are ‘‘killed’’ by the derivative, while the
C„I (I 11)…3 term gives a contribution linear inI.

~2! The last term in Eqs.~35!, ~36! does not influence
significantly the behavior of the staggering pattern, sinceC is
usually six orders of magnitude smaller thanA and 3 orders
of magnitude smaller thanB @44#.

~3! One could argue that the above reasoning is valid o
for the case of rotational or near-rotational bands, for wh
the expansions of Eqs.~33!, ~34! are known to be adequat
~although one should be reminded at this point that the V
model describes quite well not only rotational, but also tra
sitional and even vibrational nuclei!. One can attempt to
mend this problem by adding to the expansions of Eqs.~33!
and~34! a linear term, in the spirit of the Ejiri formula@53#,
the variable anharmonic vibrator model@54#, and the u~5!
and o~6! limits of the interacting boson model@55#

E1~ I !5A1I 1AI~ I 11!2B„I ~ I 11!…21C„I ~ I 11!…31¯ ,
~37!

E2~ I !5E01A18I 1A8I ~ I 11!2B8„I ~ I 11!…2

1C8„I ~ I 11!…31¯ . ~38!

Then Eqs.~35! and ~36! get modified as follows:

DE~ I !5E02~A12A18!S I 1
1

2D2~A2A8!~ I 212I 12!

1~B2B8!S I 414I 3113I 2118I 1
23

2 D2¯ ,

for I 5even, ~39!

DE~ I !52E01~A12A18!S I 1
1

2D1~A2A8!~ I 212I 12!

2~B2B8!S I 414I 3113I 2118I 1
23

2 D1¯ ,

for I 5odd. ~40!
1-9
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We see that the extra term, which is proportional to (A1

2A18), plays the same role as the term proportional toA
2A8) in shaping up the behavior of the staggering amp
tude. Therefore the conclusions reached above for rotati
nuclei apply equally well to vibrational and transitional n
clei as well.

~4! This type of explanation of the staggering patter
seems to be outside the realm of the form of the su~3! limits
of the algebraic models presented above. Even if one dec
to include higher-order terms of the type„I (I 11)…2, „I (I
11)…3, etc., in these models, by including in the Ham
tonian higher powers of the relevant Casimir operator, th
terms will appear with the same coefficients for both t
ground-state band and the negative parity band, even tho
these two bands belong to different irreps. The only poss
contributions to the staggering will then come from term
like the last term in Eqs.~35! and ~36!, which comes from
the term„I (I 11)…3, and similar terms coming from highe
powers of I (I 11). However, the term„I (I 11)…3 in the
framework of the algebraic models already corresponds
six-body interactions@39#, which are usually avoided in
nuclear structure studies.

We conclude, therefore, that the beat pattern can be
plained in terms of two Dunham expansions with sligh
different sets of coefficients, one for the ground-state b
with quadrupole deformation and another for the nega
parity band in which in addition the octupole deformati
appears. This is, however, a phenomenological finding,
microscopic origins of which should be searched for. On t
open problem the following comments apply:

~1! As has been mentioned above, the Coriolis coupl
between the lowestK50 negative parity band and highe

FIG. 4. DE1(I ), calculated from Eq.~6!, using for the levels
with even I the expansion of Eq.~33! with A510, B55 1024, C
50, and for the levels with oddI the expansion of Eq.~34! with
E05200,A859, B851024, C850. See Sec. V for discussion.
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KÞ0 negative parity bands@49–51# results in an increase o
the moment of inertia of the lowestK50 negative parity
band@52#, offering in this way an argument in favor of usin
different coefficients in the Dunham expansions for the ne
tive parity states and the positive parity states of the octup
band. However, this argument holds for the coefficients
the I (I 11) terms only. If Coriolis coupling leads to differen
coefficients for the rest of the terms of the Dunham exp
sion remains to be seen.

~2! Nuclei with octupole deformation~pear-shaped nuclei!
are supposed to be described by double-well potentials,
relative displacement of the negative parity levels and
positive parity levels being attributed to the tunnelin
through the barrier separating the wells@5,6,56#. The relative
displacement vanishes in the limit in which the barrier se
rating the two wells becomes infinitely high. It should b
examined if the details of the relevant potentials@5,6,56#
give rise to a ‘‘beating’’ behavior of the relevant displac
ment.

~3! The coupling between the quadrupole modes and
octupole modes can also give rise to relative displacemen
the negative parity levels and the positive parity levels of
octupole band@57#. In this case the octupole deformation ca
be parametrized in the way described in Refs.@58–60#. It
should be examined if ‘‘beating’’ patterns appear in th
case. Work in this direction is in progress.

VI. DISCUSSION

We have demonstrated that octupole bands in the l
actinides exhibitDI 51 staggering~odd-even staggering!,
the amplitude of which shows a beat behavior. The sa
pattern appears in both vibrational and rotational nuc
forcing us to modify the traditional belief that in octupo
bands the staggering pattern is gradually falling down to z
as a function of the angular momentumI and then remains
there.

It has also been demonstrated that the su~3! limits of vari-
ous algebraic models, including octupole degrees of freed
@25–29# or based on the assumption that alpha clustering
important in this region@9#, predictDI 51 staggering of am-
plitude constant as a function of the angular momentumI.
Although this description becomes reasonable in the ro
tional limit, it cannot explain the beat patterns appearing
both the rotational and the vibrational regions. The detai
study of limits other than the su~3! ones for these model
remains an interesting open problem.

A simple explanatation of the beat behavior has be
given by describing the evenI levels of the ground-state
band and the oddI levels of the negative parity band by tw
Dunham expansions@48# @expansions in powers ofI (I 11)#
with slightly different sets of coefficients, the difference
the coefficients being attributed to Coriolis couplings of t
negative parity band to other negative parity bands. Ho
ever, the microscopic origins of the beat behavior need
ther elucidation, for example in the ways mentioned at
end of Sec. V.

The ‘‘beat’’ patterns found here in the octupole bands
the light actinides bear striking similarities to the ‘‘beat
1-10
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patterns seen in the rotational bands of some diatomic m
ecules, like AgH@20#. It is expected that an explanation o
the ‘‘beat’’ behavior in terms of two Dunham expansio
with slightly different sets of coefficients should be equa
applicable in this case.

It is also of interest to check if beat patterns appear
other kinds of bands as well. Preliminary results indicate t
such patterns appear in some gamma bands~164Er, 170Yb,! as
well as in a variety of negative parity bands. Further work
this direction is needed.
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