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Al =1 staggering in octupole bands of light actinides: “Beat” patterns
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The Al=1 staggering(odd-even staggeringn octupole bands of light actinides is found to exhibit a
“beat” behavior as a function of the angular momentunforcing us to revise the traditional belief that this
staggering decreases gradually to zero and then remains at this zero value. Various algebrai¢spiedels
interacting boson modébpdf-IBM), vector boson model, nuclear vibron mofate shown to predict in their
su3) limits constant staggering for this case, being thus unable to describe the “beat” behavior. An explana-
tion of the “beat” behavior is given in terms of two Dunham expansipeansions in terms of powers of
I(1+1)] with slightly different sets of coefficients for the ground-state band and the negative parity band, the
difference in the values of the coefficients being attributed to Coriolis couplings to other negative parity bands.
Similar “beat” patterns have already been seen in rotational bands of some diatomic molecules, like AgH.

PACS numbds): 21.10.Re, 21.60.Fw, 21.60.Ev

[. INTRODUCTION formed nuclear bandgl6—18, since theAl =2 staggering
effect refers to the systematic displacement of the levels with
Rotational nuclear spectra have long been attributed t6=2,6,10,14... relative to the levels with |
quadrupole deformationg1], corresponding to nuclear =0,4,8,12... ,i.e., in this case the level with angular mo-

shapes produced by the revolution of an ellipsis around itenentuml is displaced relative to its neighbors with angular
maximum or minimum axis and rotating around an axis permomental + 2.
pendicular to their axis of symmetry. In addition, it has been On the other hand, rotational spectra of diatomic mol-
suggested that octupole deformation occurs in certain reecules[19] are known to show great similarities to nuclear
gions, most notably in the light actinid¢g] and in theA  rotational spectra, having in addition the advantage that ob-
~150 mass regiofi3,4], corresponding to pearlike nuclear served rotational bands in several diatomic molecules are
shape$5-8]. In even nuclei exhibiting octupole deformation much longer than the usual rotational nuclear bands. In fact
the ground-state band, which contains energy levels witlboth Al =1 [20] and Al =2 staggering effectf21,22 have
I"=0",2",47,6", ..., isaccompanied by a negative parity been recently observed in rotational spectra of several di-
band containing energy levels witf=1",3",5",7", ... .  atomic moleculesAl =2 staggering has been attributex?]
After the first few values of angular momentunthe two  to the presence of one or more bandcross[2$s24], while
bands become interwoven, forming a single octupole band| =1 staggering remains an open problem.
with levels characterized by"™=0*,1",2",37,4" 57, ... It should be noted that all these effects are much larger
[2—-4]. (It should be noted, however, that in the light ac- than the relevant experimental errors, with the notable excep-
tinides alternative interpretations of these bands in terms aion of theAl =2 staggering effect in superdeformed nuclear
alpha clustering have been propo$édl0].) bands[13-15, for which only one caséthe (a) band of
It has been observdd 1] that in octupole bands the levels 49Gd[14]] is known to show an effect outside the limits of
with odd | and negative parityl(=1",3",5, ...) aredis-  the experimental errors.
placed relatively to the levels with evérand positive parity The dependence of the amplitude of the staggering effect
(I"=0%,2",4%,...), i.e., the odd levels do not lie at the on the angular momentuipresents much interest. The situ-
energies predicted by aB(l)=Al(l +1) fit to the energy ation up to now is as follows:
levels, but all of them lie systematically above or all of them (1) Algebraic models of nuclear structure appropriate for
lie systematically below the predicted energies. This is arthe description of octupole bands, like the spf-interacting bo-
example ofodd-even staggeringr Al =1 staggering the  son model(spf-IBM) with u(11) symmetry[25], the spdf-
latter term due to the fact that each energy level with angulalBM with u(16) symmetry[25,2€, and the vector boson
momentuml is displaced relatively to its neighbors with an- model (VBM) with u(6) symmetry[27-29, predict in their
gular momentd = 1. su?3) limits Al =1 staggering of constant amplitude, i.e., all
A similar Al=1 staggering effecti.e., a relative dis- the odd levels are raisédr lowered by the same amount of
placement of the levels with oddwith respect to the levels energy with respect to the even levels. In other worlks,
of evenl) is known to occur in rotationay bands of even =1 staggering takes alternatively positive and negative val-
nuclei [12], the difference being that iy bands all levels ues of equal absolute value hicreases.
possess positive parity. (2) Algebraic models of nuclear structure suitable for the
The Al =1 staggering effect is different from thel =2 description of alpha clustering effects, like the nuclear vibron
staggering effect recently observed13—15 in superde- model(NVM) with u(6)®u(4) symmetry[9], also predict in
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the sy3) limit Al =1 staggering of constant amplitude. TABLE I. Nuclei included in the study and theiR,
(3) Older experimental work2—4] on octupole nuclear =E(4)/E(2) ratios[Eq. (8)].
bands suggests thatl =1 staggering starts from large val-

ues and its amplitude decreases with increakifitnese find- ~ Nucleus R, Nucleus R, Nucleus R,
g\gsdare in aé:]reﬁm(fant Wlt: the |nterp|>retat|on that an'octupolelsRn 2014 2184 1.905 2201, 2035
5aré is gradually formed as angular momentum increaseso,, 2914 2200, 2208 2221, 2399
[ '(}1.) Recent work on experimental data for diatomic mol- “Rn 2.408 “Ra 2.715 il 2.896
P 2R 2970 %Th  3.136

ecules shows that in some rotational baads-1 staggering 22634
of constant amplitude seems to appg20], while in other
bands a variety of shapes, reminiscent of beats, are exhibited

[20]. is used. The deviation of the-ray transition energies from

Motivated by these recent findings,_ we mgke in t.hethe rigid rotator behavior is then measured by the quantity
present work a systematic study in the light actinide regio 15]

of all octupole bands for which at least 12 energy levels ar
known [30-36, taking advantage of recent detailed experi-

3.127 2287 3.235

mental work in this region. The questions to which we have 1
hoped to provide answers are AE, ()= E[GEM(I)—4E2,7(I —2)—4E, (1+2)
(1) Which patterns of behavior of the amplitude of the
Al =1 staggering appear? Are these patterns related to the +Ey,(1-4)+E, (1 +4)]. (5)

ones seen in diatomic moleculgz0]?

(2) Can these patterns be interpreted in terms of the exdsing the rigid rotator expression of E() one can easily
isting modelg9,25-29, or in terms of any other theoretical see that in this cas&E, (1) vanishes. In addition, the per-
description? turbed rigid rotator expression of E@3) gives vanishing

In Sec. Il of the present paper the formalism of staggering\ E,,(1). These properties are due to the fact that &jis
is discussed, and is subsequently applied to the experimental(normalized discrete approximation of the fourth deriva-
data for octupole bands of light actinides in Sec. Ill. Sectiontive of the functionE, (1), i.e., essentially the fifth deriva-
IV contains the relevant predictions of various algebraictive of the functionE(l). Therefore, we conclude that Eq.
models, while an interpretation of the experimental observa¢s) is a more sensitive probe of deviations from rotational
tions is given in Sec. V. Finally, Sec. VI contains the con-behavior than Eq(1).
clusions reached, as well as plans for future work. By analogy,Al =1 staggering in nuclei can be measured

by the quantity
Il. FORMALISM

1
Traditionally the odd-even staggeriig| =1 staggeriny AB1,(1)= 75[6E1,(D = 4B, (1=1)—4E, (1 +1)
in octupole bands, as well as in gamma bands, has been
estimated quantitatively through use of the expresfidi +E,(1-2)+E; (1 +2)], (6)
(I+DE(I—-1)+IE(1+1) where
SE(1)=E(1)— T : (o

Ei (D=E(I+1)—E(l). (7)
where E(I) denotes the energy of the level with angular

momentuml. This expression vanishes for The transition energieg, ,(I) are determined directly from

experiment.
E(l)=Ey+Al(l+1), (2
Ill. ANALYSIS OF EXPERIMENTAL DATA

but not for . . .
We have applied the formalism described above to all

E(1)=Eo+Al(1+1)+B[I(1+1)] (3) octupole bands of light actinides for which at least 12 energy
levels are knowrf30—36 and which show no backbending
Therefore, it is suitable for measuring deviations from the(i.e., bandcrossing 37] behavior. These nuclei are listed in

pure rotational behavior. Table |, along with the relevant values of tRg ratio,
Recently, however, a new measure of the magnitude of

staggering effects has been introdu¢é8] in the study of :i“) ®)

Al =2 staggering of nuclear superdeformed bands. In this 4TE2)

case the experimentally determined quantities areythay o _ _
transition energies between levels differing by two units ofa well-known characteristic of collective behavior.

angular momentumXl =2). For these the symbol Several nuclei ¥¥27??Ra,?**=22%h) are rotational or near-
rotational (having 10/3=R,=2.7), while others
Eo,()=E(1+2)—E(l) (4  (?822Rn,??Ra,??°-22Th) are vibrational or near-
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vibrational(having 2.4=R,=2). A special case i$'®Ra, for
which it has been argud@®1] that it is an example of a new
type of transitional nuclei, in which the octupole deformation
dominates over all other types of deformation.

The staggering results fof'8-22Rn, 218-22Ra, and
220-228h " are shown in Figs. 1, 2, and 3, respectively. In all
cases the experimental errors are of the size of the symbol
used for the experimental point and therefore are not visible.
The following observations can be made:

(1) In all cases the shapes appearing are consistent with
the following patternAl =1 staggering starts from large val-
ues at lowl, it gradually decreases down to zero, then it
starts increasing again, then it decreases down to zero and
starts raising again. In other words, figures resembling beats
appear. The most complete “beat” figures appear in the
cases of??Ra,??’Ra,???Th, as well as in the cases of
218Ra,%*Ra,?*Ra.

(2) In all cases within the first “beat’[from the begin-
ning up to the first zero oAE,; ,(I)] the minima appear at
oddl, indicating that in this region the odd levels are slightly
raised in comparison to the even levels. Within the second
“beat” [i.e., between the first and the second zero of
AE, ()], the opposite holds: the minima appear at eljen
indicating that in this region the odd levels are slightly low-
ered in comparison to the even levels. Within the third
“beat” [after the second zero &E, ,(I)] the situation oc-
curring within the first “beat” is repeatedNotice that?*°Th
is not an exception, since what is seen in the figure is the
second “beat,” starting from =6.)

(3) In the case of?Rn the decrease of the staggering
with increasingl, in the region for which experimental data
exist, is very slow, giving the impression of almost constant
staggering. One can get a similar impression from parts of
the patterns shown, as, for example, in the casé€%ta (in
the regionl =12—20), ?*?Ra (for |=9—17), ?**Ra (for |
=10-16), ?*Ra (for | =14~ 20), ??°Th (for | =10—18).

These observations bear considerable similaritiea to
=1 staggering patterns found in rotational bands of diatomic
molecules. In particular:

(1) Staggering patterns of almost constant amplitude have
been found in some rotational bands of the A®] mol-
ecule.

(2) Staggering patterns resembling the “beat” structure
have been seen in several bands of the AgH mold@g

The following comments are also in place:

(1) In all cases bands not influenced by bandcrossing ef-
fects[37] have been considered, in order to make sure that
the observed effects are “pure” single-band effects. The
only exception i2°Th, which shows signs of bandcrossings
at 10" and 13, which, however, do not influence the rel-
evant staggering pattern, which is shown in Figa)3for
reasons of completeness. A special casé'fRa, which
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shows a rather irregular dependencekdf) on I. As we FIG. 1. AE(I) (in keV), calculated from Eq(6), for octupole
have already mentioned, it has been arg{@t] that this  pands of(a) 21%Rn [30], (b) 22°Rn [30], and (c) 22?Rn [30]. The
nUf}|EUS is an example of a new type Qf transitional nuclei inexperimental error in all cases is of the order of the symbol used for
which the octupole deformation dominates over all otherthe experimental point and therefore is not seen. See Sec. Il for
types of deformation. discussion.
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(2) The same “beat” pattern appears in both rotationalthan for their vibrational counterparts. Indeed, within the Ra
and vibrational nuclei. The only slight difference which canand Th series of isotopes under study, Itk which the first
be observed, is that the first vanishing of the staggering amvanishing of the staggering amplitude occurs seems to be an
plitude seems to occur at highkefor the rotational isotopes increasing function oRy, i.e., an increasing function of the
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qguadrupole collectivity. staggering amplitude occurs. It was then reasonable to as-

(3) The present findings are partially consistent with oldersume that the staggering amplitude decreases down to zero
works [2—4]. The limited sets of data of that time were and remains zero afterwards, since no experimental evidence
reaching only up to thé at which the first vanishing of the for “beat” patterns existed at that time.
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IV. ALGEBRAIC MODELS In the case oN being odd, the ground-state band is sitting in
the (3N—3,0) irrep, while the odd levels of negative parity

As we have seen in the previous section, certain- 1 re sitting in the (81,0) irrep. Then from Eq(6) one has

staggering patterns occur in the octupole bands of the Iigh"il
actinides. Before attempting any interpretation of these re-
sults, it is instructive to examine what kind of staggering +(B+y(2N—1)+18«kN) for I=even,
patterns are predicted by various algebraic models of nuclear AE(l)=

structure describing such bands. As we have already men- —(B+y(2N-1)+18«N) for I=odd.
tioned, these models are related to the description of octu- (14
pole degrees of freedom, which are responsible for the pres-

ence of oct+up9Ie+ba|jds+, i.e., bands with a sequence of levesince N is a constant for a given nucleus, expressing the
with 17=0",1",2",37,4",57, ... [2-4]. These bands are npumber of valence nucleon pairs counted from the nearest

thOUght to be present in cases in which the nucleus aCCIUirQﬁosed She||$39], we see thaAl =1 Staggering of constant
a shape with octupole deformation, i.e., a pearlike shapgmplitude is predicted.

[5.6].

A. The spf-interacting boson model B. The spdf-interacting boson model

In the spdf-interacting boson modg25,26], which pos-
sesses a(6) symmetry,s, p, d andf bosons(i.e., bosons
ith angular momentum 0, 1, 2, and 3, respectiyeye
aken into account. Octupole bands are described in 8 su
limit, which corresponds to the chain

In the spf-IBM[25], which possesses d1l) symmetry,
s, p, andf bosond(i.e., bosons with angular momentum O, 1,
and 3, respectivelyare used. Octupole bands are describe
in the sy3) limit, which corresponds to the chain

u(1)Du(10)Dsu3)Do(3)D0o(2). 9 u(16) D u,(6) ®Uu,(10) Dsuy(3)@sw,(3)

The relevant basis is
Dsu3)D0(3)D0(2). (15

IN,Np, @, (Np ), Ky, 1,M), (10
The relevant basis is

whereN is the total number of bosons labeling the irreduc-
ible representation6rreps of u(1l), N, is the total number
of negative parity boson§ and f) labeling the irreps of IN,Na Ny, @p,(Nasita),(Np ), (N, ) KT M,
u(10), w,, is the “missing” quantum number in the decom- (16)
position 10)Dsu?3),(\,,up) are the Elliott quantum num-
bers[38] labeling the irreps of 48), K, is the “missing”
guantum number in the decomposition3mo(3) [38], | is
the angular momentum quantum number labelling the irrep
of 0(3), M is the z component of the angular momentum
labeling the irreps of @). The energy eigenvalues are given

whereN is the total number of bosons labeling the irreps of
u(16), N, is the number of positive parity bosons labeling the
ﬁreps of y(6), andNy is the number of negative parity
bosons labelling the irreps o,{0). The rest of the quan-
tum numbers are analogous to those appearing in the basis of

by the U11) model, described above. (8) is the algebra ob-
) tained by adding the corresponding generators gf3uand
E(Np. Ny, ip,1)=a+ BN+ yNp+ «C(Np, p) sy,(3). Theenergy eigenvalues are given by
+x'1(1+1), 11
E(Nb Natta Mo s Ny, 1) = a+ BNp+ yN
where
+ kaC(Naspta)
CN, ) =N+ pu?+ A pu+3N+3pu. (12 +kpC(Np, ip) + KC(\, 1)
It is clear that positive parity states occur whig is +x'1(1=1), 17

even, while negative parity states occur whpnis odd. In
the case oN being even, the ground-state band is sitting in
the (3N,0) irrep, while the odd levels of negative parity are
sitting in the (N —3,0) irrep. Then from Eq(6) one obtains

with C(\,u) defined as in Eq(12).

The ground-state band is sitting in the ND), irrep
(which containdN bosons of positive parity and no bosons of
negative parity, while the odd levels of negative parity are
—(B+y(2N—-1)+18«N), for I=even, sitting in the (N—2,0),(3,0),(2N+1,0) band(which con-
+(B+v(2N—1)+18«N), for I=odd. tainsN—1 bosons of positive parity and one boson of nega-

(13)  tive parity). Then from Eq.(6) one has

AE(I)=
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+[B+v—2k(4N+1)+18k,+4k(N+1)] for I=even,

AE(l)= —[B+y—2k,(4N+1)+ 18k, +4k(N+1)] for I=odd.

(18)

Therefore,Al =1 staggering of constant amplitude is pre-tum 1. Octupole bands are described in thgslimit of the

dicted, sinceN is a constant for a given nucleus, representingBM, which corresponds to the chain

the number of valence nucleon pairs counted from the near-

est closed shellg39]. u6)dsu3)u(2)Dsa3)®u(l). (29
Another limit of the spdf-IBM in which octupole bands o

occur is the 64) limit [26], which corresponds to the chain The relevant basis is

u(16) D u(4),@u(4),DSp(4),®Sp(4)p, D sU2) 25U 2), IN, (N, ),(N,T),K,1,To), (25
D0(3)D0(2), (19 whereN is the total number of bosons labeling the irreps of
u(6), (\,u) are the Elliott quantum numbe}38] labeling the
and owes its name to the isomorphism irreps of s@3), N and T are the quantum numbers labelling
the irreps of (2), K is the “missing” quantum number in the
SU2),®@SU2)p~0(4). (200 suB)Dsa3) decompositioi38], | is the angular momentum
o guantum number labeling the irreps of(3p and T is the
The relevant basis is pseudospin projection quantum number labeling the irreps of
., ., o u(1). The algebras $8) and 2) are mutually complemen-
IN,(N1,N,N3,N4),(N15.N22), (N1 N3p) P as b | ’M>(=21) tary [40—42, their irreps(\, u) and(N, T) being related by
N=N+2u, T=\/2. (26)

whereN is the total number of bosons labeling the irreps of
u(16), (nq1,ny,n3,n,) are labeling the irreps of (4), and
Uy, (n14.n5,) and (ny,.n5,) are labeling the irreps of
sp4), and sp4),, respectively,r denotes the three missing
guantum numbers required in this cagg,and |, label the

The energy eigenvalues are given by

E(N, A, 1,K, 1, To=T)=aN+agN(N+5)+asC(\,u)

irreps of sui2), and sy2), respectively, whild andM have A2
the same meaning as before. The energy eigenvalues are +hsl(I+1)+a,7-, (27)
given by

with C(\,u) defined as in Eq(12).
The ground-state band is sitting in the 0= (0,N/2)
=Eo—2A[ja(iat D +ip(ip+1)]+(B+A(I+1) irrep of sy3), while the odd levels of negative parity are
sitting in the (2u—1)=(2,N/2—1) irrep. Then from Eq(6)
=Eo—Alw(w+2)+(0')?]+(B+A)I(1+1), (220  one obtains

! ’ ’ ! H H
E(N1n11n21n31n4!n1a1n231n]_b1n2bavalayjb1|1M)

where (,w") are labeling the irreps of(d4) and are con- +(6as+a,), for I=even

nected toj, andj, through the relations AE(l)= (28

—(6agt+ay;), for I=odd.
0=jat]p, w,:|ja_jb|- (23 ) . .
Therefore,Al =1 staggering of constant amplitude is pre-
The lowest lying irrep is the irrep (8,0), which contains dicted.
states of positive parity and states of negative parity together,
i.e., it contains the states'Q1~,2",37,4",57, ..., up to the

state withl =3N. It is clear that in this case E¢6) gives a ) o
vanishing result, i.e., na\l=1 staggering occurs in this As we have already mentioned, an alternative interpreta-

limit. tion of the low-lying negative parity states appearing in the
light actinides has been given following the assumption that
alpha clustering is important in this regi¢f,10]. An alge-
braic model appropriate for the description of clustering ef-

In the vector boson modéVBM) [27-29, the collective  fects in nuclei is the nuclear vibron modé], which usess
states are described in terms of two distinct kinds of vectoandd bosons for the description of nuclear collectivity, plus
bosons, whose creation operatgfsand " are d3) vectors s’ andp bosons for taking into account the distance separat-
and in addition transform according to two independef@)su ing the center of the cluster from the center of the remaining
irreducible representationgirreps of the type {,u) nucleus. The chain corresponding to thé3$uimit of this
=(1,0), i.e., they are two distinct bosons of angular momenmodel is

D. The nuclear vibron model

C. The vector boson model
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U(6)®@u(4)Dsu(3)®@uy(3) Dsuy(3)®sy,(3) As far as limits of algebraic models different from the
su3) limit are concerned, no staggering occurs in tté) o
Dsu3)D0(3)Do(2), (29)  limit of the spdf-IBM, which has been fully worked o[26].

Working out the details of other non{&@) limits, like the
where the subscripa labels the subalgebras of@), while  ones of the vector boson model mentioned in IR&7], is an
the subscripb labels the subalgebras of4). The relevant interesting open problem.
basis is

|NaM'()\a,Ma),npy()\aM)-){J ,M), (30) V. INTERPRETA(‘I;I;)SNE(;CA'I'TT(ENE;PERIMENTAL
whereN is the number of thes andd bosons related to the
u(6) algebraM is the number of the’ andp bosons related
to the y4) algebra, §,,u,) are the Elliott quantum numbers
[38] related to sy(3), n, is the number ofp bosons,(\,u)
are the Elliott quantum numbers related td3u y is the
Vergados “missing” quantum numbg#3] in the decompo-  «peat pattern, as in Sec. Il has been exhibited.

sition su3)20(3), while | andM represent the angular mo- A simple explanation for the appearance of beat patterns
mentum and itz component respectively, as usual. The en-.5 pe given by the following assumptions:

ergy eigenvalues are given by

Although the results of the previous section are sufficient
for providing an explanation foAl =1 staggering in the
cases in which this appears as having almost constant ampli-
tude, it is clear that some additional thinking is required for
the many cases in which the experimental results show a

(1) Itis clear that in each nucleus the even levels form the
ground-state band, which starts at zero energy, while the odd

E(p Aastta, Mot 1) = epnp - apnp(np +3) + 1qC(ha s ta) levels form a separate negative parity band, which starts at

+kC\,u)+x"1(1+1), (31)  some higher energy. Let us cd&l}, the bandhead energy of
the negative parity band.
with C(\,u) defined as in Eq(12). (2) It is reasonable to try to describe the ground-state band

The ground-state band is characterized by,,,) by an expression like
=(2N,0), n,=0, (A, ) =(2N,0) [i.e., it containsN bosons
of positive parity and n@ boson of negative parify while E,(N=AII+1)—B((1+1)2+C>(1+1))3+---,
the negative parity band is characterized by, («z) (33
=(2N,0), ny=1, (\,u)=(2N+1,0) (i.e., it containsN
bosons of positive parity plus oreboson of negative par- yhere the subscript reminds us of the positive parity of
ity). Then from Eq.(6) one has these levels. Such expansions in terms of powers (bf
+1) have been long used for the description of nuclear col-
lective bands[44]. They also occur if one considef45]
—[ept4ap+4x(N+1)] for 1=odd. Taylor expansions of the energy expressions provided by the

(32)  variable moment of inertia modp46] and the sy(2) model

[47]. Notice that fits to experimental dafd4] indicate that

one always hasA>0,B>0,C>0, ..., while A is usually

three orders of magnitude larger th&n B is 3 orders of

. . magnitude larger tha@, etc. Equation(33) has been long
E. Discussion used in molecular spectroscopy as well, under the name of

We conclude that the various algebraic models, describingfunham expansiof48].
low-lying negative parity bands in terms of octupole defor-  (3) In a similar way, it is reasonable to try to describe the
mation[25—29 or in terms of alpha clusterin@], predictin ~ negative parity levels by an expression like
their su3) limits odd-even staggering\| =1 staggeringof
constant amplitude. In all cases the staggering results from E_(1)=Ey+A’l(I+1)—B'(I(I+1))>+C'(1(1+1))3
the fact that the negative parity states belong to an irrep
different from the one in which the positive parity states ' (34)
composing the ground-state band sit.

It should be noticed, as already remarked in Sec. lll, thatvhere the subscript reminds us of the negative parity of
the experimental data indicate that the valué af which the  these levels, whil&, is the above-mentioned bandhead en-
first vanishing of the staggering amplitude occurs increasesrgy. In analogy to the previous case one expects to have
as a function oR,, i.e., as the rotational limit is approached. A’>0,B">0,C'>0, ... .

The higher the value dfat which the first vanishing occurs, (4) In the above expansions it is reasonable to assume that
the more smooth the decrease of the staggering as a functidv>A’,B>B',C>C’, ... . This assumption is in agree-

of | is. We see, therefore, that as the rotational limit is ap-ment with earlier worl{49-51], in which the Coriolis cou-
proached, the experimental data approach more and more tpéngs between the lowed{=0 negative parity band and
constant staggering prediction provided by the various algehigher negative parity bands witk+#0 are taken into ac-
braic models. The best example is provided B§Th, the  count, resulting in an increase of the moment of inertia of the
most rotational among the nuclei studied here. lowestK =0 negative parity bangb2]. This argument means

+[eptda,+4x(N+1)] for I=even,
AE(l)=

Therefore,Al =1 staggering of constant amplitude is pre-
dicted.

4.
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that the coefficienA’ in Eq. (34), which is inversely propor- The amplitude starts from a negative value and then becomes
tional to the moment of inertia of the negative parity band,consequently positivébecause of the second termegative
should be smaller than the coefficiehin Eqg. (33), whichiis  (because of the third tenmagain positive(because of the
inversely proportional to the moment of inertia of the posi-fourth term, and so on. The first three steps of this behavior
tive parity band. In analogy to the relatida>A’, which we  can be seen in Fig. 4.

just justified, one can assunge>B’,C>C’, ... . This last (4) When drawing the staggering figure one jumps from
argument is admitedly a weak one, which is however drivingan even to an oddl, then back to an eveln then back to an
to interesting results, as we shall soon see. odd I, and so on. It is clear therefore that a beat pattern
Using Egs.(33) and(34) in Eqgs.(6) and (7) we find the  appears, as it is seen in Fig. 4.
following results: The following additional comments are also in place:
(1) In the case of a single bande., in the case oA
AE()=Ep— (A=A")(17+21+2) =A’, B=B’, C=C/', etc), the first contribution to the stag-
23 gering measurd\E(l) is the last term in Eqs(35), (36),
+(B—B")| 1*+413+ 1312+ 18/ + — which comes from thec(I(1+1))3 term in the energy ex-
2 pansion[see Eqs(33), (34)]. This is understandable: Since
357 333 Eq. (6) is a discrete approximation of the fifth derivative of
—(C—C’)( 154+ 61°+3314+ 9213+ 7|2+ - the functionE(l), as has already been remarked, the terms

up to B(I(1 +1))? are “killed” by the derivative, while the
C(1(1+1))3 term gives a contribution linear in
+45C'(I+1)+---, for l=even, (35 (2) The last term in Eqgs(35), (36) does not influence
significantly the behavior of the staggering pattern, sidée
usually six orders of magnitude smaller tharand 3 orders
of magnitude smaller thaB [44].
(3) One could argue that the above reasoning is valid only
14+ 413+ 132+ 18 + > for the case of rotational or near-rotational bands, for which
the expansions of Eq$33), (34) are known to be adequate
6 5 . 5 , 333 (although one should be reminded at this point that the VMI
I°+61°+ 33"+ 92°+ —- 1"+ —-I model describes quite well not only rotational, but also tran-
sitional and even vibrational nuc)eiOne can attempt to
mend this problem by adding to the expansions of E8Q).
—45C/(I+1)+---, for I=odd.  (36)  and(34) a linear term, in the spirit of the Ejiri formulgs3],
the variable anharmonic vibrator modé4], and the (5)
A sample staggering pattern drawn using these formulas i8nd @6) limits of the interacting boson modgs5]
shown in Fig. 4. On these results the following comments

+68

AE(l)=—Eo+(A—A")(12+21+2)

—(B—B’)

+(C-C")

+68

can be made: E.(D=Ad+AI(I+1)=B((I+1)*+CU(1+1))*+--,
(1) The expression for oddis the opposite of the expres- 37

sion with evenl. This explains why in Fig. 4 the staggering

points for everl and the staggering points for otlform two E_()=Eo+Afl +A'I(1+1)=B’(I(1+1))?

lines which are reflection symmetric with respect to the hori-

zontal axis. g P FC A +1) - (38)

(2) For evenl the behavior of the staggering amplitude is -
as follows: At lowl it starts from a positive value, because of 1"eN EAs(35) and(36) get modified as follows:
the presence dE,. As | increases, the second term, which is
essentialy proportional tt?, becomt/as |mpprtan[E9 is ex- AE(1)=Eo—(A;—A))
pected to be much larger thaA{ A’).] This term is nega-
tive (sinceA>A’"), thus it decreases the amplitude down to
negative values. At higher valueslathe third term, which is +(B—B)
essentially proportional td%, becomes important. (Rem-
ember that usuallid is 3 orders of magnitude smaller than
[44].) This term is positive(sinceB>B’), thus it increases
the amplitude up to positive value§.he behavior up to this
point can be seen in Fig. At even higher values df the 1
fourth term, which is essentially proportlonal Ite) become; AE()=—Eq+ (Al—Ai)( [+ =
important.(Remember that usuall€ is 3 orders of magni- 2
tude smaller tharB [44].) This term is negativesince C
>C'), thus it decreases the amplitude again down to nega- —(B-B')
tive values, and so on.

(3) For oddl the behavior of the staggering amplitude is
exactly the opposite of the one described2n for evenl. for 1=odd. (40)

— (A=A (12421 +2)

|+l
2

23
|4+4|3+13|2+18|+7)—---,

for I=even, (39

+(A—A)(1%2+21+2)

23
|4+4|3+13|2+18|+7)+---,
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AE, T K# 0 negative parity band€9-51] results in an increase of
400 . - the moment of inertia of the lowest =0 negative parity
7 ST T band[52], offering in this way an argument in favor of using
. " ] different coefficients in the Dunham expansions for the nega-
" . tive parity states and the positive parity states of the octupole
200 " n| A band. However, this argument holds for the coefficients of

thel (I +1) terms only. If Coriolis coupling leads to different
coefficients for the rest of the terms of the Dunham expan-
sion remains to be seen.

V \} (2) Nuclei with octupole deformatio(pear-shaped nuclei
P

are supposed to be described by double-well potentials, the
relative displacement of the negative parity levels and the
200 | positive parity levels being attributed to the tunneling
" . through the barrier separating the weébs6,56. The relative

- ] displacement vanishes in the limit in which the barrier sepa-
n rating the two wells becomes infinitely high. It should be
-400 - wlla 1 examined if the details of the relevant potentiglis6,56

give rise to a “beating” behavior of the relevant displace-

T T T T T T T T T T T ment.

(3) The coupling between the quadrupole modes and the
Angular Momentum | octupole modes can also give rise to relative displacement of
the negative parity levels and the positive parity levels of the
with even| the expansion of Eq33) with A=10, B=510"%, C octupole ban_cﬂS?].lln this case the octupole deformation can
=0, and for the levels with odtl the expansion of Eq34) with be parametrized n th(_a YYay C!esSrlbed n RéﬁS—Gq: It .
E,=200,A’=9, B'=10* C’=0. See Sec. V for discussion. should be gxam_med if . begtlng patterns appear in this
case. Work in this direction is in progress.

FIG. 4. AE4(l), calculated from Eq(6), using for the levels

We see that the extra term, which is proportional #o; (
—A}), plays the same role as the term proportional Ao (
—A') in shaping up the behavior of the staggering ampli- We have demonstrated that octupole bands in the light
tude. Therefore the conclusions reached above for rotationalctinides exhibitAl =1 staggering(odd-even staggering
nuclei apply equally well to vibrational and transitional nu- the amplitude of which shows a beat behavior. The same
clei as well. pattern appears in both vibrational and rotational nuclei,

(4) This type of explanation of the staggering patternsforcing us to modify the traditional belief that in octupole
seems to be outside the realm of the form of th@limits bands the staggering pattern is gradually falling down to zero
of the algebraic models presented above. Even if one decides a function of the angular momentunand then remains
to include higher-order terms of the tyge(l+1))%, (I1(I there.
+1))3, etc., in these models, by including in the Hamil- It has also been demonstrated that th@glimits of vari-
tonian higher powers of the relevant Casimir operator, theseus algebraic models, including octupole degrees of freedom
terms will appear with the same coefficients for both the[25—-29 or based on the assumption that alpha clustering is
ground-state band and the negative parity band, even thougmportant in this regioi9], predictAl =1 staggering of am-
these two bands belong to different irreps. The only possiblglitude constant as a function of the angular momentum
contributions to the staggering will then come from termsAlthough this description becomes reasonable in the rota-
like the last term in Eqs(35) and (36), which comes from tional limit, it cannot explain the beat patterns appearing in
the term(1(1+1))3, and similar terms coming from higher both the rotational and the vibrational regions. The detailed
powers of[(1+1). However, the term(I(1+1))% in the study of limits other than the §8) ones for these models
framework of the algebraic models already corresponds toemains an interesting open problem.
six-body interactiong39], which are usually avoided in A simple explanatation of the beat behavior has been
nuclear structure studies. given by describing the eveh levels of the ground-state

We conclude, therefore, that the beat pattern can be eMsand and the odtllevels of the negative parity band by two
plained in terms of two Dunham expansions with slightly Dunham expansiongt8] [expansions in powers d¢fl +1)]
different sets of coefficients, one for the ground-state bandvith slightly different sets of coefficients, the difference in
with guadrupole deformation and another for the negativehe coefficients being attributed to Coriolis couplings of the
parity band in which in addition the octupole deformation negative parity band to other negative parity bands. How-
appears. This is, however, a phenomenological finding, thever, the microscopic origins of the beat behavior need fur-
microscopic origins of which should be searched for. On thigher elucidation, for example in the ways mentioned at the
open problem the following comments apply: end of Sec. V.

(1) As has been mentioned above, the Coriolis coupling The “beat” patterns found here in the octupole bands of
between the lowesK =0 negative parity band and higher the light actinides bear striking similarities to the “beat”

VI. DISCUSSION
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