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Generalization of the Bloch-Messiah-Zumino theorem
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~Received 14 February 2000; published 31 May 2000!

It is shown how to construct a basis in which two arbitrary complex antisymmetric matricesC and C8
acquire simultaneously canonical forms. The present construction is not restricted by any conditions on the
properties of theC1C8 matrix. Canonical bases pertaining to the generator-coordinate-method treatment of
many-fermion systems are discussed.

PACS number~s!: 21.10.Re, 21.60.Ev
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The Bardeen-Cooper-Schrieffer~BCS! pairing theory@1#,
and its generalization by Bogoliubov@2#, is based on fermion
wave functions that have the form of fermion-pair conde
sates, i.e.,

uC&5expS 1

2 (
mn

Cmn* am
† an

†D u0&, ~1!

wheream
† are the fermion creation operators,u0& is the fer-

mion vacuum, andCmn is an antisymmetric complex matrix
Up to a unitary transformation of the single-particle basis

ām
† 5(

m8
Umm8

* am8
† , ~2!

state~1! is equal to the so-called BCS state

uC&5 )
m.0
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†
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† !u0&, ~3!

better known in its normalized form
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. ~5!

The Bloch-Messiah-Zumino theorem@3,4# provides the
link between the two forms of stateuC&, Eqs.~1! and~3!, by
stating that every complex antisymmetric matrix can
brought by a unitary transformation into its canonical for
i.e.,

~UTCU!mn5sn* cndmñ , ~6!

where indexm̃ denotes the so-called canonical partner of
statem, the phase factorssn* 5sn

2152sñ
* have for the ca-

nonical partners opposite signs, and numberscn5cñ are real
and positive. Standard notationm.0, used in Eqs.~3! and
~4!, means that only one state is taken from each canon
pair. The proof of the theorem goes through a diagonal
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tion of the Hermitian matrixC1C, which yields the unitary
transformationU and real, non-negative, pairwise degener
eigenvaluescn

2 .
When using states~1! in applications beyond the mean

field approximation, and in particular in the generator co
dinate method~GCM! @5–8#, the matrix elements and over
laps depend on the product matrixC1C8. For example, the
overlap of two states~1! reads@9,6,8#

^C8uC&5det1/2~11C1C8!, ~7!

and the transition density matrix is given by@8#

rmn5
^C8uan

†amuC&

^C8uC&
5@~11C1C8!21C1C8#mn . ~8!

It was realized a long time ago@10# that the matrixC1C8 is
also pairwise degenerate, which facilitates calculation of
phase of the overlap, otherwise ambiguous because of
square root appearing in Eq.~7!. Moreover, under certain
conditions it has been proved in Ref.@11# that it is enough to
give up the unitarity of matrixU to bring both matricesC
andC8 simultaneouslyinto canonical forms analogous to Eq
~6!. The same fact was later rediscovered in Ref.@12#, al-
though the necessary restrictions on matricesC andC8 have
not been recognized there.

In the present Brief Report, I generalize results of R
@11# by deriving canonical forms of two arbitrary comple
matricesC and C8 in a common canonical basis. These r
sults are not restricted by any conditions on matricesC and
C8.

Let us begin by recalling the notion of the Jordan for
~see, e.g.,@13#! of an arbitrary complex matrix. Focusing ou
attention on the matrixC1C8, the vectors defining its Jorda
basis can be arranged in columns of matrixW, and one has

(
n

~C1C8!mnWni5(
j

Wm jD ji , ~9!

where matrixD is block diagonal~composed of the Jorda
blocks!. One can attribute the number of the blockI i , the
length of the blockLi , and the number within the blockki ,
to every indexi that numbers the Jordan basis vectors. In t
notation,D has the form

D ji 5d I j I i
Dkjki

I i , ~10!
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where in every block matrixDkk8
I reads

Dkk8
I

5DIdkk81dkk821 ; ~11!

i.e., it has a common complex numberDI on the main diag-
onal and the ones just above the main diagonal.

Basis vectors belonging to a given blockI form the so-
called Jordan series of lengthL. The series starts with th
basis vector called the series head, and ends with an ei
vector ofC1C8. The whole series is uniquely determined
the series head, because the remaining basis vectors i
series can be obtained by a repeated action ofC1C8 on the
series head. The basis vectors in a given series are
unique, because a linear combination of these vectors
give another valid series head, and leads to the same Jo
canonical form. Explicitly, this transformation reads

Wmk8
8 5 (

k51

L

Wmkakk85 (
k51

k8

WmkaL2k11 , ~12!

where the transformation matrixakk8 depends onL arbitrary
complex numbersak ~only a1 must not vanish!, and has the
following explicit structure:

akk85S a1 a2 a3 . . . aL21 aL

0 a1 a2 . . . aL22 aL21

0 0 a1 . . . aL23 aL22

••• ••• . . . ••• ••• •••

0 0 0 . . . a1 a2

0 0 0 . . . 0 a1

D .

~13!

It is easy to check that matrices having this structure form
group. It is also easy to check that vectorsWmk8 form the
Jordan series, similarly as vectorsWmk do, and that they can
replace vectorsWmk in the Jordan basis, giving the sam
matrix D in Eq. ~9!.

According to the Jordan construction, the whole space
which matrixC1C8 acts splits into subspaces spanned by
Jordan series. The number of eigenvectors ofC1C8 equals
the number of different series or the number of Jord
blocks, and is in general smaller than the dimension of
matrix C1C8. Some matrices~Hermitian or not! can be fully
diagonalized; i.e., they have numbers of eigenvectors e
to their dimensions. This corresponds to the case when
the Jordan series have the length equal 1.

One calls two blocks degenerate, or two series degene
if they have the same diagonal numberDI and they have the
same lengthL. The latter condition is very important, be
cause only degenerate series defined in such a way ca
mixed; this is an analog of the possibility to mix degener
eigenvectors of a matrix which can be fully diagonalized.
two series have different lengths, then vectors of a lon
series cannot be admixed to those of the shorter series,
if the series have the same diagonal numberDI . If the matrix
can be fully diagonalized, then all the series have length
01730
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the number of eigenvectors equals to the dimension
C1C8, and transformation~12! reduces to the possibility o
arbitrarily normalizing every eigenvector.

After these necessary preliminaries, let us proceed w
presenting the main results of the present paper. Multiply
from the left-hand and right-hand sides the eigenequation~9!
by W21, and then transposing, we obtain that

C8~C1W21T
!5W21T

DT, ~14!

which multiplied byC1 from the left-hand side gives

~C1C8!~C1W21T
!5~C1W21T

!DT. ~15!

One can see now that matrixC1C8 has another equiva
lent set of Jordan series, i.e.,

(
n

~C1C8!mnVni5(
j

Vm jD ji , ~16!

where the new matrix of basis vectorsV is given by

V5C1W21T
J. ~17!

In every Jordan block, matrixJ has the ones on the ske
diagonal and zeros otherwise, i.e.,Jkk85dk,L2k811. Hence,
when an arbitrary matrix is multiplied byJ from the right-
hand ~left-hand! side, the order of its columns~rows! is
flipped. In particular, one obtains thatDT5JDJ.

We can now analyze cases of different degeneracie
the Jordan blocks. The arguments given below closely foll
proofs presented in Ref.@11#, only with the degeneracies o
eigenvalues replaced by the degeneracies of the Jo
blocks.

Let us first suppose thatC1C8 has a nondegenerate Jo
dan block. Then, in this block the basis vectorsV must be
connected with the basis vectorsW by transformation~12!,
i.e.,

~C1W21T
J!mk85 (

k51

L

Wmkakk8 . ~18!

Multiplying Eq. ~18! by W21 from the left-hand side and by
J from the right-hand side, one obtains

~W21C1W21T
!kk85~aJ!kk8 . ~19!

However, the matrix on the left-hand side of this equation
antisymmetric, while that on the right-hand side is symm
ric; therefore, matrixakk8 must vanish. This requires that, i
a nondegenerate Jordan block, all vectorsV vanish, which
contradicts Eq.~14!, unless the block has lengthL51 and
DI50. Therefore, matrixC1C8 cannot have nondegenera
Jordan blocks apart from the subspace ofL51 eigenvectors
with all eigenvalues equal to zero.

One can set this subspace aside, and assume from no
thatC1C8 is nonsingular and has an even dimension. In t
case, matrixC1C8 cannot have any nondegenerate Jord
block, and hence Jordan blocks must appear in degene
pairs.~In odd dimensions,C1C8 must have at least one nu
1-2
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eigenvalue, which can be separated, and the remaining
trix can be treated in the even dimension!.

In the present considerations, it is enough to consider o
pairs of degenerate blocks; had the higher degeneracie
the Jordan blocks occurred, one could have considered
pair after another, and at each step one could reduce
dimension of the problem. This is possible here, and has
been possible when considering degenerate eigenvalue
Ref. @11#, because the whole space can be separated
subspaces corresponding to the Jordan blocks, while it
not be separated into subpaces corresponding to the e
values.

Let us now consider a pair of degenerate Jordan blo
each block having lengthL and the common diagonal ele
mentDI5DĨ . One can adopt here the standard notation t
originally pertained to the canonical pairs; namely, we d
note the indices of the two degenerate blocks byI and Ĩ .
Similarly, indices inside these two blocks are denoted bk

51,2, . . . ,L and k̃51,2, . . . ,L, respectively. Note that vec
tors in these two blocks form series; i.e., they are arrange
a specific order. Therefore a vector at a given position m
be associated with the vector at the same position in
second block.

Since for matrixC1C8 two equivalent Jordan bases exis
W andV, vectors in seriesV must be linear combinations o
those in seriesW. In the pair of degenerate Jordan block
this leads to the following relations between the two seri

~C1W21T
J!mk85 (

k51

L

Wmkakk81 (
k̃51

L

Wmk̃bkk8 ,

~20a!

~C1W21T
J!mk̃85 (

k51

L

Wmkgkk81 (
k̃51

L

Wmk̃ekk8 . ~20b!

All the four matricesa, b, g, ande have the same structur
~13!. One may now proceed with multiplying Eqs.~20a! and
~20b! from the left-hand side either byWkm

21 or by Wk̃m
21 and

from the right-hand side byJ. Since all matricesaJ, bJ, gJ,
and eJ are symmetric, one then obtains thata5e50 and
g52b.

Therefore, the canonical form of theC1 matrix reads

~W21C1W21T
! j i 5sI j

Ckjki

I j 1d I j Ĩ i
, ~21!

where the symmetric matrixCI5CĨ occupies the off-
diagonal part in every pair of the degenerate Jordan blo
and

CI5sIb* J, ~22!

for b having form~13!. Following the standard notation, w
have defined the phase factorssI52sĨ in such a way that
the skew-diagonal matrix elements ofCI ~which are all equal
to one another! are real and positive, i.e.,Ck,L2k11

I .0.
Since the canonical basis ofC1 is the same as the Jorda

basis ofC1C8, matrix C8 must in the very same basis a
sume an analogous canonical form:
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~WTC8W! j i 5sI i
* C8kjki

I i d I j Ĩ i
, ~23!

where the symmetric matrixC8I5C8 Ĩ reads

C8I5sI* Jb8* , ~24!

andb8 also has form~13!. Finally, in order to satisfy Eq.~9!
matricesb andb8 must obey the following condition:

bb8* 5D. ~25!

This leaves us still some freedom in the choice of the cano
cal basis, because any solution of Eq.~25! gives one valid
canonical form. Two obvious choices are, for example,b
5D andb8* 5I or b5AD andb8* 5AD, where any one of
the possible branches of the matrix square root can be ta

Equations~21! and~23! complete the proof of the canon
cal forms of two arbitrary complex antisymmetric matricesC
and C8. Both these matrices can besimultaneouslytrans-
formed by matrix W ~in general nonunitary! into block-
diagonal forms with nonzero elements only between pairs
degenerate Jordan blocks.

Needless to say, whenever matrixC1C8 can be fully di-
agonalized, which was the case in Ref.@11#, both matricesC
andC8 acquire in the canonical basis the standard canon
forms analogous to Eq.~6!, i.e.,

~W21C1W21T
! j i 5sjcj* d j ı̃ ~26!

and

~WTC8W! j i 5si* ci8d j ı̃ , ~27!

whereci* ci85Di .
In Ref. @14# it was noticed that an incorrect conjectu

was formulated in Ref.@11#, namely, the conjecture that th
simple forms of Eqs.~26! and ~27! can always be achieved
In the present study we have seen that these simple fo
occur only when matrixC1C8 can be fully diagonalized. In
fact, this is the case which occurs most often in applicatio
Therefore, let us now discuss conditions for the full diag
nalization ofC1C8.

In the applications given in Ref.@11#, the full diagonal-
ization of matrix C1C8 was secured by using a model
which matricesC were time even,

C15UTCTUT
T , ~28!

and the Hermitian and time-even matricesC̃ defined by

C̃52UTC ~29!

were positive definite. In these equations,UT is a unitary and
antisymmetric matrix,UT

15UT
2152UT* . The positive defi-

niteness of matricesC̃ was in @11# guaranteed by a specia
form of matricesC. In that study, the GCM states were co
structed within the single-particle coherent excitation mo
@15,16#, and therefore matricesC had the form shown in Eq
1-3



c

or
f

io

-

.
-

fi-
f

se

al

ere-
y

-
and
s

n
nt
ef.
the
tive.

annot
ften

re

of
wo

tes
ino
lcu-

the
. 2

BRIEF REPORTS PHYSICAL REVIEW C 62 017301
~2.13! of @11#. Therefore, the correspondingC̃ matrices were
all equal to exponents of Hermitian matrices and, hen
trivially positive definite.

In the general presentation of the present Brief Rep
conditions ~28! and ~29! can be formulated as follows: I
there exists a unitary antisymmetric matrixUT such that Eq.
~28! holds forC andC8, and at the same time at leastC̃ or
C̃8 is positive definite, then matrixC1C8 can be fully diago-
nalized, and the simple canonical forms~26! and ~27! exist.
The proof of this statement has been given in Ref.@11# ~Ap-
pendix C!, and will not be repeated here.

The positive definiteness ofC̃ is a required condition,
because the Hermitian square root ofC̃ must exist. Unfortu-
nately, this condition cannot be released; i.e., if bothC̃ and
C̃8 are not positive definite, it may happen that matrixC1C8
cannot be fully diagonalized. An example of such a situat
is provided by the following two 434 matrices:

C5S 0 A

2AT 0 D and C85S 0 A8

2A8T 0 D , ~30!

where the two-dimensional matricesA andA8 read

A5S 1 a

a* 0D and A85S 0 1

1 0D . ~31!

For the standard time-reversal matrixUT given by

UT5S 0 I

2I 0D one has C̃5S AT 0

0 AD , ~32!

and C̃8 has the same form. NeitherC̃ ~for a5” 0) nor C̃8 is
positive definite, and theC1C85C̃C̃8 matrix,

C1C85S ~AA8!* 0

0 AA8
D for AA85S a 1

0 a* D ,

~33!

cannot be fully diagonalized, unlessa5” a* .
However, for any small but nonzero imaginary part ofa,

matrix C1C8 can be fully diagonalized. Therefore, this ex
ample also shows that the positive definiteness of~time-
01730
e,

t,

n

even! matrix C̃ or C̃8 is only a sufficient condition for the

full diagonalization ofC1C85C̃C̃8, but it is not necessary
Moreover, it is clear that matrixC1C8 cannot be diagonal
ized for a5a* , because in the limit ofI a→0 two eigen-
vectors ofC1C8 become parallel. This illustrates the dif
culty of diagonalizingC1C8 numerically for small values o
I a; the task is then bound to become ill conditioned.

In the GCM, matricesC are most often obtained from
solutions of the Hartree-Fock-Bogoliubov~HFB! or Hartree-
Fock1BCS @8# equations for time-even states. In the

cases, matricesC̃ are diagonal in the HFB or BCS canonic
bases@8# ~composed of pairs of time-reversed states!, and
their eigenvalues are equal tovm /um5cm , wherevm andum

are the standard quasiparticle amplitudes of Eq.~5!. Here, the
canonical pairs are defined by the time reversal, and th
fore the eigenvaluescm can have, in principle, arbitrar
signs.

However, in the BCS method~with a constant gap param
eter D) all these quasiparticle amplitudes are positive,
hence all the resultingC̃ matrices are positive definite, thu
fulfilling the sufficient condition for the full diagonalizatio
of C1C85C̃C̃8. In fact, quasiparticle amplitudes of differe
signs rarely occur in nuclear physics applications; cf. R
@17#. This is so, because typical pairing forces couple
time-reversed states and, in general, are always attrac
This shows that the Jordan structures discussed here c
be expected to be frequently encountered, and most o
one will deal with the standard canonical forms of Eqs.~26!
and ~27!, in which the only nonzero matrix elements a
adjacent to the main diagonal.

In summary, I have shown how to extend the results
Ref. @11# in order to construct a canonical basis in which t
arbitrary complex antisymmetric matricesC andC8 acquire
simultaneously canonical forms. This construction comple
the generalization of the classic Bloch-Messiah-Zum
theorem to the case of nondiagonal matrix elements ca
lated between fermion-pair condensates.

A critical reading of the manuscript by S.G. Rohozin´ski
is gratefully appreciated. This research was supported by
Polish Committee for Scientific Research, Contract No
P03B 040 14.
@1# J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.108,
1175 ~1957!.

@2# N. N. Bogoliubov, Zh. E´ksp. Teor. Fiz.34, 58 ~1958! @Sov.
Phys. JETP7, 41 ~1958!#; Usp. Fiz. Nauk.67, 549 ~1959!
@Sov. Phys. Usp.2, 236 ~1959!#.

@3# C. Bloch and A. Messiah, Nucl. Phys.39, 95 ~1962!.
@4# B. Zumino, J. Math. Phys.3, 1055~1962!.
@5# D. L. Hill and J. A. Wheeler, Phys. Rev.89, 1102~1953!.
@6# N. Onishi and S. Yoshida, Nucl. Phys.80, 367 ~1966!.
@7# C. W. Wong, Phys. Rep., Phys. Lett.15C, 283 ~1975!.
@8# P. Ring and P. Schuck,The Nuclear Many-Body Problem

~Springer-Verlag, Berlin, 1980!.
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