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Generalization of the Bloch-Messiah-Zumino theorem
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It is shown how to construct a basis in which two arbitrary complex antisymmetric matticasd C’
acquire simultaneously canonical forms. The present construction is not restricted by any conditions on the
properties of theC*C’ matrix. Canonical bases pertaining to the generator-coordinate-method treatment of
many-fermion systems are discussed.

PACS numbds): 21.10.Re, 21.60.Ev

The Bardeen-Cooper-Schrieffe(BCS) pairing theory{1],  tion of the Hermitian matrixC" C, which yields the unitary
and its generalization by Bogoliub¢g], is based on fermion transformatiorlJ and real, non-negative, pairwise degenerate
wave functions that have the form of fermion-pair conden-eigenvalues?.
sates, i.e., When using stategl) in applications beyond the mean-
field approximation, and in particular in the generator coor-

) dinate methodGCM) [5-8], the matrix elements and over-
laps depend on the product mat@x' C’. For example, the
overlap of two state¢l) reads[9,6,8|

(C'|Cy=det’(1+C*C"), )

1
|C>:exp<§ %‘a Ch.anal|l0),

wherea' are the fermion creation operatot8) is the fer-
mion vacuum, andC,,, is an antisymmetric complex matrix.

Up to a unitary transformation of the single-particle basis, and the transition density matrix is given [8]

~t_ x ot (C'latay|C)
ah=2 U an, ) S I e cte)iCtC . (8
m Pmn <C'|C> [( ) Imn (
state(1) is equal to the so-called BCS state It was realized a long time add0] that the matrixC*C’ is
also pairwise degenerate, which facilitates calculation of the

IC)= H (1+Smcm;ngn)|0>1 3) phase of the overlap, otherwise ambiguous because of the
m>0 square root appearing in E¢7). Moreover, under certain
conditions it has been proved in Rgt1] that it is enough to
better known in its normalized form give up the unitarity of matriXJ to bring both matrice<

andC’ simultaneouslynto canonical forms analogous to Eq.
|C) —— (6). The same fact was later rediscovered in R&f], al-
<C|—C>1’2_ nl;lo (U Smom@gam)|0), (4) though the necessary restrictions on matriCendC’ have
not been recognized there.

In the present Brief Report, | generalize results of Ref.
[11] by deriving canonical forms of two arbitrary complex
1 c matricesC andC’ in a common canonical basis. These re-

U= =, U= m > (5)  sults are not restricted by any conditions on matriCesnd
1+cy, v1+cy, c'.
Let us begin by recalling the notion of the Jordan form

The Bloch-Messiah-Zumino theoref3,4] provides the (see, e.g.13]) of an arbitrary complex matrix. Focusing our
link between the two forms of stal€), Egs.(1) and(3), by  attention on the matri€ " C’, the vectors defining its Jordan
stating that every complex antisymmetric matrix can bebasis can be arranged in columns of matfixand one has
brought by a unitary transformation into its canonical form,
ie.,

for

; (C+C,)mani:; ijDji ) 9
(UTCU)mn: S: CnSmn> (6)
where matrixD is block diagonallcomposed of the Jordan
where indexm denotes the so-called canonical partner of theblocks. One can attribute the number of the blogk the
statem, the phase factors* =s-1=—s* have for the ca- length of the blocK_;, and the number within the blodk ,

] n n n . . . .
nonical partners opposite signs, and numlmgrsc;, are real aoogtiec:?\l 'Sdﬁ:;?ﬁ; ?:rTnbers the Jordan basis vectors. In this
and positive. Standard notatian>0, used in Eqs(3) and '

(4), means that only one state is taken from each canonical
pair. The proof of the theorem goes through a diagonaliza-

Dii=5|j|iD:<ijki' (10
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where in every block matriDLk, reads the number of eigenvectors equals to the dimension of
C*C’, and transformatioit12) reduces to the possibility of
DLk’ =D, S + Sk -1 (11) arbitrarily normalizing every eigenvector.

After these necessary preliminaries, let us proceed with
i.e., it has a common complex numk®r on the main diag- Presenting the main results of the present paper. Multiplying
onal and the ones just above the main diagonal. from the left-hand and right-hand sides the eigenequa@ipn

Basis vectors belonging to a given blotkorm the so- by W™, and then transposing, we obtain that

called Jordan series of length The series starts with the - T
basis vector called the series head, and ends with an eigen- c'(Cc'w t)=w*DT, (14
vector of C*C’. The whole series is uniquely determined by
the series head, because the remaining basis vectors in t
series can be obtained by a repeated actio® b€’ on the (CHC')(CHW- lT):(C+W_1T)DT (15
series head. The basis vectors in a given series are not '
unique, because a linear combination of these vectors may one can see now that matr&*C’ has another equiva-
give another valid series head, and leads to the same Jordgtht set of Jordan series, i.e.,
canonical form. Explicitly, this transformation reads

L K ; <c+<:'>mnvm=2 ViniDiji » (16)
Wr,nk’zz Wi = 2, Wink@L -k 1, (12
k=1 k=1

H@ich multiplied byC™* from the left-hand side gives

where the new matrix of basis vectdvsis given by

where the transformation matrix, depends o arbitrary
complex numbersgy, (only a; must not vanish) and has the
following explicit structure:

v=Cctw 1. (17)

In every Jordan block, matrid has the ones on the skew
diagonal and zeros otherwise, .8y, =6y | ' +1. Hence,
when an arbitrary matrix is multiplied by from the right-

0 a;  ap cee 0y ap hand (left-hand side, the order of its column&ows) is
flipped. In particular, one obtains thBt'=JDJ.

aq (2% a3 e a1 ap

O O aq P a3 Qg _o N .
o = We can now analyze cases of different degeneracies of
Kk the Jordan blocks. The arguments given below closely follow
0 0 0 oo ay proofs presented in Reff11], only with the degeneracies of
eigenvalues replaced by the degeneracies of the Jordan
0 0 0 0 “1 blocks
(13 Let us first suppose th&l " C’ has a nondegenerate Jor-

dan block. Then, in this block the basis vectdfsnust be

It is easy to check that matrices having this structure form &onnected with the basis vector by transformation12),
group. It is also easy to check that vectohs,, form the i.e.,
Jordan series, similarly as vectof,, do, and that they can .
replace vectordV,,, in the Jordan basis, giving the same T
mgtrix D in Eq. (93“.k INing (crw J)mk':gl Wink@ik - (18)

According to the Jordan construction, the whole space in
which matrixC* C’ acts splits into subspaces spanned by theMultiplying Eq. (18) by W~ from the left-hand side and by
Jordan series. The number of eigenvector€61C’ equals  J from the right-hand side, one obtains
the number of different series or the number of Jordan
blocks, and is in general smaller than the dimension of the (W—1C+W—1T)kk,=(a3)kk,_ (19
matrix C*C’. Some matricegHermitian or not can be fully
diagonalized,; i.e., they have numbers of eigenvectors equédowever, the matrix on the left-hand side of this equation is
to their dimensions. This corresponds to the case when a#intisymmetric, while that on the right-hand side is symmet-
the Jordan series have the length equal 1. ric; therefore, matrixy,,, must vanish. This requires that, in

One calls two blocks degenerate, or two series degeneratg, nondegenerate Jordan block, all vectgrganish, which
if they have the same diagonal numirandthey have the contradicts Eq(14), unless the block has length=1 and
same length_. The latter condition is very important, be- D;=0. Therefore, matrixC*C’ cannot have nondegenerate
cause only degenerate series defined in such a way can Berdan blocks apart from the subspacd.efl eigenvectors
mixed; this is an analog of the possibility to mix degeneratewith all eigenvalues equal to zero.
eigenvectors of a matrix which can be fully diagonalized. If One can set this subspace aside, and assume from now on
two series have different lengths, then vectors of a longethatC*C’ is nonsingular and has an even dimension. In this
series cannot be admixed to those of the shorter series, evease, matrixC*C’ cannot have any nondegenerate Jordan
if the series have the same diagonal nunigr If the matrix ~ block, and hence Jordan blocks must appear in degenerate
can be fully diagonalized, then all the series have length 1pairs.(In odd dimensionsC*C’ must have at least one null
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eigenvalue, which can be separated, and the remaining ma- (WTC'W)ji=S|*.C'Li_k_ 87, (23
trix can be treated in the even dimension I i

In the present considerations, it is enough to consider only ) o p
pairs of degenerate blocks; had the higher degeneracies ¥here the symmetric matrig’' =C"" reads
the Jordan blocks occurred, one could have considered one ko
pair after another, and at each step one could reduce the Cl=s/Jp"", (24)
dimension of the problem. This is possible here, and has not , . . .
been possible when considering degenerate eigenvalues ?ﬁ]d@ also has f’orn(13). Finally, in ordgr to saus;f_y Eq9)
Ref. [11], because the whole space can be separated infgaficess and 3" must obey the following condition:
subspaces corresponding to the Jordan blocks, while it can- BB"* =D 25)
not be separated into subpaces corresponding to the eigen- '
values.

. . This leaves us still some freedom in the choice of the canoni-
Let us now consider a pair of degenerate Jordan block

S . R X .
each block having length and the common diagonal ele- tal basis, because any solution of 85) gives one valid

mentD,=D7. One can adopt here the standard notation tha?:agogr']fﬁlg,iorj'orgi 3%’:#; ,8(’:22(:\(/%% jﬁérfg;ﬁxin;g}gf’
originally pertained to the canonical pairs; namely, we de- ’ y

o ~ the possible branches of the matrix square root can be taken.
note the indices of the two degenerate blockslbgnd |. Equations(21) and(23) complete the proof of the canoni-
Similarly, indices inside these two blocks are denoteckby ¢4 forms of two arbitrary complex antisymmetric matris
=1,2,...L andk=1,2,... ], respectively. Note that vec- and C’. Both these matrices can multaneouslytrans-
tors in these two blocks form series; i.e., they are arranged iformed by matrix W (in general nonunitagy into block-
a specific order. Therefore a vector at a given position mustliagonal forms with nonzero elements only between pairs of
be associated with the vector at the same position in thélegenerate Jordan blocks.
second block. Needless to say, whenever mat@X C’ can be fully di-
Since for matrixC"C’ two equivalent Jordan bases exist, agonalized, which was the case in Réfl], both matrice<C
W andV, vectors in serie¥ must be linear combinations of andC’ acquire in the canonical basis the standard canonical
those in seriesV. In the pair of degenerate Jordan blocks, forms analogous to Ed6), i.e.,
this leads to the following relations between the two series:
. . (WiCrw 1) =s;ck o (26)
(C+W71TJ)mk’= > kaa'kk""E WiriiBk »
k=1 =1 and
(209
. L (WTC,W)ji:SEkCi, 51';, (27)
(C*W )i =k21 Wink¥ikr + 2 Wirikeii - (20D) wherecf ¢/ =D;.
k=1 In Ref. [14] it was noticed that an incorrect conjecture
All the four matricesa, 8, y, ande have the same structure was formulated in Refl11], namely, the conjecture that the
(13). One may now proceed with multiplying Eq®0a and ~ simple forms of Eqs(26) and(27) can always be achieved.
(20b) from the left-hand side either ka—n% or by WR_n::- and In the present study we have seen that these simple forms

from the right-hand side by. Since all matricesJ, BJ, yJ occur only when matrixC*C’ can be fully diagonalized. In
and eJ are symmetric, one then obtains that ;:O’ an(’j fact, this is the case which occurs most often in applications.

y=—p Therefore, let us now discuss conditions for the full diago-
) . " . nalization ofC*C’.
Therefore, the canonical form of ti&™ matrix reads In the applications given in Ref11], the full diagonal-
N PN . .
w-lctw-1"). =s Cclit s - 21 |za.t|on of matnxC C was secured by using a model in
( )i ik it 21) which matricesC were time even,

where the symmetric matrixC' =c! occupies the off- C*=UTCTU¥, (28)
diagonal part in every pair of the degenerate Jordan blocks,
and

and the Hermitian and time-even matrid@slefined by
I *

C=sh, 22 C=-u-C (29)
for B having form(13). Following the standard notation, we
have defined the phase factais= —sj in such a way that Were positive definite. In these equatiobls; is a unitary and
the skew-diagonal matrix elements®¥ (which are all equal ~antisymmetric matrixJ7 =U7"=—U% . The positive defi-
to one anothérare real and positive, i.eCL,L,k+1>0. niteness of matrice€ was in[11] guaranteed by a special

Since the canonical basis 6f" is the same as the Jordan form of matricesC. In that study, the GCM states were con-
basis ofC*C’, matrix C’ must in the very same basis as- structed within the single-particle coherent excitation model
sume an analogous canonical form: [15,16, and therefore matriceS had the form shown in Eq.
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(2.13 of [11]. Therefore, the correspondiﬁg matrices were

PHYSICAL REVIEW C62 017301

even matrix C or C’ is only a sufficient condition for the

all equal to exponents of Hermitian matrices and, henceg diagonalization ofC*C’=CC’, but it is not necessary.

trivially positive definite.

In the general presentation of the present Brief Report
conditions (28) and (29) can be formulated as follows: If

there exists a unitary antisymmetric mattix such that Eq.
(28) holds forC andC’, and at the same time at ledstor

C’ is positive definite, then matri€ *C’ can be fully diago-
nalized, and the simple canonical forif#6) and (27) exist.

The proof of this statement has been given in REf] (Ap-

pendix Q, and will not be repeated here.

The positive definiteness o is a required condition,
because the Hermitian square root®fust exist. Unfortu-
nately, this condition cannot be released; i.e., if bGtland
C’ are not positive definite, it may happen that ma€ikC’

Moreover, it is clear that matri€*C’ cannot be diagonal-
ized fora=a*, because in the limit offa—0 two eigen-
vectors ofC*C’ become parallel. This illustrates the diffi-
culty of diagonalizingC*C’ numerically for small values of
J a; the task is then bound to become ill conditioned.

In the GCM, matricesC are most often obtained from
solutions of the Hartree-Fock-BogoliubdMFB) or Hartree-
Fock+BCS [8] equations for time-even states. In these

cases, matrice€ are diagonal in the HFB or BCS canonical
bases[8] (composed of pairs of time-reversed statesd
their eigenvalues are equaldq,/u,=c,,, wherev,, andu,,

are the standard quasiparticle amplitudes of(By.Here, the
canonical pairs are defined by the time reversal, and there-

cannot be fully diagonalized. An example of such a situatiorfore the eigenvalueg,, can have, in principle, arbitrary

is provided by the following two % 4 matrices:

0 A
€= -AT 0

! A,
and C=< 0), (30

_ArT

where the two-dimensional matricésandA’ read

1 a 4 A 0
A= & 0 and A’'= 1 o (3D
For the standard time-reversal mattix given by
0 | has AT 0
Ur= 10 one has C= 0 Al (32

andC’ has the same form. Neith€ (for a#0) norC’ is

positive definite, and th€*C’'=CC’ matrix,

(AA)* 0
0 AA’

(33

0 a*

a 1
ctCc’'= for AA'=

cannot be fully diagonalized, unleasta* .
However, for any small but nonzero imaginary partapf

matrix C*C’ can be fully diagonalized. Therefore, this ex-

ample also shows that the positive definiteness(tmhe-

signs.
However, in the BCS metho@vith a constant gap param-
eter A) all these quasiparticle amplitudes are positive, and

hence all the resulting matrices are positive definite, thus
fulfilling the sufficient condition for the full diagonalization

of C*C'=CC’. In fact, quasiparticle amplitudes of different
signs rarely occur in nuclear physics applications; cf. Ref.
[17]. This is so, because typical pairing forces couple the
time-reversed states and, in general, are always attractive.
This shows that the Jordan structures discussed here cannot
be expected to be frequently encountered, and most often
one will deal with the standard canonical forms of E@6)

and (27), in which the only nonzero matrix elements are
adjacent to the main diagonal.

In summary, | have shown how to extend the results of
Ref.[11] in order to construct a canonical basis in which two
arbitrary complex antisymmetric matric€&andC’ acquire
simultaneously canonical forms. This construction completes
the generalization of the classic Bloch-Messiah-Zumino
theorem to the case of nondiagonal matrix elements calcu-
lated between fermion-pair condensates.
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