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Schematic model forp-a; mixing at finite density and in-medium effective Lagrangian
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Based on schematic two-level models extended taneson degrees of freedom, we investigate possible
mechanisms of chiral restoration in the vector—axial-vector channels in cold nuclear matter. In the first part of
this article we employ the massive Yang-Mills framework to construct an effective chiral Lagrangian based on
low-energy mesonic modes at finite density. The latter are identified through nuclear collective excitations of
“meson’-sobar type such as—[A(1232N"1]=m, p—[N*(1520N"1]=p, etc. In a mean-field type
treatment the in-medium gauge coupliggthe (axial-)vector meson masses aﬁd are found to decrease with
density indicating the approach towards chiral restoration in the language of in-medium effective fields. In the
second part of our analysis we evaluate fiest) in-medium Weinberg sum rule which relates vector and
axial-vector correlators to the pion decay constant. Using in-megitap spectral functiongcomputed in the
two-level mode) also leads to a substantial reduction of the pion decay constant with increasing density.

PACS numbgs): 24.85:+p, 21.65+f, 12.39.Fe, 25.75:q

[. INTRODUCTION indication for this “duality.” Indeed, in[7], Brown et al.
argued that the RCW explanation encodes features of a
The density dependence of vector-meson masses encodeensity-dependens-meson mass, calculated in a hadronic
in the so-called Brown-Rh@BR) scaling conjectur¢l] has  basis(in contrast to that of constituent quarks used by Brown
stimulated considerable discussion. From the experiment&@nd Rh9. In particular it was suggestdd] that if one re-
side, the CERES dilepton experimerj@] have provided places thep-meson massn, by the massm’(p)," at the
strong evidence that the propertiespofnesons are substan- density being considered, one would arrive at a description,
tially modified in hot and dense matter. The measurement!) hadron language, which at high densities appeared dual to
performed at the full SpS energy indicate an excess of dilepthat of the Brown-Rho one in terms of constituent quarks.
tons with invariant masses below0.6 GeV, as well as These developments involved the interpretation @b#ec-
missing strength in the region around the fyeenass. More tive iso_bar-hole excitation as an effectiv_e vector-meson field
guantitative results are expected from further runs at botfPPerating on the nuclear ground state, i.e.,
40A and 15& GeV with an additional time projection

chamber(TPC) improving the mass resolution in order to i 2 [N*(lSZQiNi’l]l*
discriminate the contributions of final staie decays from VA
the p-meson decays within the interacting hadronic fireball.
The simplest and most economical explanation for the => [p(x) or w(x)]|¥o)s, (1)
I

observed low-mass dilepton spectra is achieved in terms of
quasiparticles(both fermions and bosopsvhose masses
drop according to BR scaling, thereby making an appealin
link to the chiral(quark structure of the hadronic vacuum. In
an alternative view to this description, Rapp, Chanfray, an
Wambach(RCW) [3] showed that the excess of low-mass
dileptons follows from hadronic many-body calculations us-
ing in-medium spectral functionésee, e.g., Refl4] for a
recent review. On rather general grounds, this “alternative”
description was in a sense anticipated as discussed by onetlve fields for “meson sobars” .. . ..) which in a dense

the authorg5]. In analogy to the quark-hadron duality in . .
heavy-light meson decay processes, one may view BR scginedium are assumed to be the relevant, lowest-lying degrees

ing as a “partonic” picture while RCW as a hadronic one. of freedom in terms of the nuclear collective states in the

Loosely speaking, on the finite density axis, the former carfOrfesponding meson channels. Therefore we will assume
be thought of as a top-down approach and the latter as {at €ach meson field has its “sobar partﬁAethat IS,
bottom-up one. The link between BR scaling and the Landagr—[A(1232N""]=m, p—[N*(1520N"']=p, and
quasiparticle interactiofr, established iffi6] is one specific

with the antisymmetri¢symmetri¢ sum over neutrons and
%rotons giving a-like (w-like) nuclear excitation. The drop-

ing vector-meson masses could then be estimated in terms

f the mixing of this collective state with the elementary
vector meson stat7]. In [8], the authors studied mixing of
vector and axial-vector mesons at finite temperature.

In the present work, we will expand on these ideas by

%(%nstructing an effective chiral Lagrangian involving effec-

_ _ _ Iwe will discuss the reasoning behind this suggestion in Sec. II.
*Present address: Department of Physics, Hanyang University,?in general, the sobar field would be a linear combination of

Seoul 133-791, Korea. N*-hole states of the appropriate quantum numbers, but here, for
TPermanent address: Service de Physiqueofiiee, CE Saclay simplicity, we are taking only what we consider to be the dominant
91191 Gif-sur-Yvette, France. component.
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a;—[N*(1900N~1]=a,. We then construct a chiral effec- rather high excitation energy of AE=My«—My

tive Lagrangian for meson-sobar fields following the proce-=580 MeV, one can safely neglect nuclear Fermi motion to
dure of the massive Yang-Mills approal®l. An explicita;  obtain

meson is not necessarily required to formulate a chiral in-

variant Lagrangian involvingg mesons, as is well known,

e.g., from the hidden local symmetry framewdl0]; in our 8 , qg PN 2(AE)

framework, however, it provides a convenient treatment of 2pN* n(do) = §pr* NFT (Qo+iTyod2)2— (AE)2

the associated low-lying mode on an equal footing withghe P Qo711 tor @
meson, thereby facilitating the discussion of chiral restora-
tion in the vector—axial-vector doublet. Moreover, in the
mean-field analysis carried out below we find that at somg, is the nucleon densily If the widths of thep and
density our meson-sobar fields could be described in terms QF*(1520) are sufficiently small, one can invoke the mean-
interpolating fields that are the effective fields figuring in anfield approximation(as employed in Sec. llland determine
in-medium Lagrangian exhibiting BR scaling. One of thethe quasiparticle excitation energies from the zeros in the

main differences between the fields of BR scaling anokeal part of the inverse propagator. In particular,der0 the

meson-sobar fields is that while in the former the full pole, : . : : . .
strength Z~1) is retained by the low-lying mode, the sobar |2£irgr?d|ump mass is obtained by solving the dispersion re-
fields only carry a fraction of the strength in the respective
meson channeltypically Z~0.3). It will be suggested that
this discrepancy can be resolved by applyin@irite) wave- q§= m2+ReS e n(Go)- (5)
function renormalization to the sobar fields. P P

Our article is organized as follows: in Sec. Il we review
the schematic mod¢l7] and extend it by including; me-  The pertinent spectral weights of the solutions are character-
son. The corresponding meson-sobar chiral Lagrangian anged by z factors defined through
the ensuing finite-density results in mean-field approxima-
tion are presented in Sec. lll. Using the same schematic
model from Sec. Il, but following the philosophy of the (

many-body spectral function approd@)11], we compute in Z=
Sec. IV the density dependence of the pion decay constant

employing the in-medium Weinberg sum rules. Section V

contains a summary and concluding remarks.

9 -1
1- —ReX \+ . 6
aqg pN N) ( )

Within a chirally invariant framework, we need to include
the chiral partners of the and its nuclear excitation, i.e., the
a; and a suitableN* resonance with spin-3/2 and positive
Let us first briefly review the main features of the sche-parity. A possible candidate is thé* (1900) state, and the
matic model for the in-mediurp meson as used if[¥] and interaction Lagrangian is taken in analogy(® as
then extend it to the,; channel.
The starting point is the-meson propagator in nuclear

matter given by fa, o o L.
La,NN(1900)= o Inx (A0S  Aa—AgS Dty +H.C. (7)
4

IIl. SCHEMATIC MODEL

N 1
D,(do,q)= = , '
: qg_qz_mf)_l—lmpFWﬂ(M)_sz*N(quq) i . . . .
(2)  with A denoting the axial-vectaa; field. The coupling con-

stantfal can in principle be estimated from the partial decay
width FN*(lgoo)_,alN . Although the corresponding three-pion
‘T(tinal state has not been explicitly measured, the observed

14,15 one- and two-pion final states leave room for up to
30% branching of the totdl* (1900) width of~500 MeV

into thea;N channel. Using the baryon decay width formula
from Ref.[4],

wherel . denotes the vacuum decay width, and the real
part of the self-energy has been absorbed into the(friegsi-
cal) massm,. The entire density dependence resides in th
in-mediump self-energy ,n« induced byN* (1520N~*
excitations. It is calculated from the interaction Lagrangian

f . - > >
Lo (1520~ - s (A0S pa— p3S- D) Tathn + Hec., (3)
P

where the coupling constant can be estimated from the mea-=we could also consider coupling terms of the tggdl* (1520)N
sured branching of th&*(1520)—pN decay (as well as as well aspN* (1900)N, which in their relativistic version involve
information on the radiative dec{3]). In what follows we  an additionalys as compared to the ones used here; in the nonrel-
will for simplicity concentrate on the limit of vanishing ativistic reduction this leads to self-energiesRsfvave nature, be-
three-momentum where the longitudinal and transverse pdng proportional tog, and can therefore be neglected in the zero-
larization components become identical. Because of thenomentum limit considered here.
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r N(1900)—>a1N(\/g) 1000 '
(MeY) | ==
f2, 2m 20,+1 m,
= 12 N a Sl(alN N*) 800 - 1
s—=myM 600 - .
XL ;dMAg(M)qcmFANB(qgm)z(M2+ZQS)’ S
m,. p
(8) 400 + .
with a standard monopole form factoFalNB(qgm) 200 + .
=A§1/(A§l+ 02w (As, =600 MeV as for thep), we find
fa,=25.3 for 20% andf, =17.8 for 10% branching ratio. 0 ‘ ‘ ‘ , ‘
This range of values will be used to indicate the inherent ~ © 0.5 ! 15 2 25 3
uncertainties in our numerical results presented below. P/Po
Before we address the construction of the full chiral La- 04
grangian in the next section, we compute the density depen- ™
dence of the masses addactors corresponding to the low-
lying p- and a;-sobar states when self-consistently solving
the dispersion relatiofb). Using the self-energy as given in
Eqg. (4) (and the analogous expression for tnesobaj re- 03 | |

sults are depicted by the dashed lines in Figcdrrespond-
ing to the RCW approach in R€f7]). When neglecting the
baryon resonance widths, one finds a moderate simultaneou
decrease of botﬁy, and rﬁal associated with pole strengths

of 10—-20 %. Upon inclusion of resonance widthg,=1", 02r Z, 1
+1 heq (With vacuum valuesI'y=120 [500] MeV for LTI T
N*(1520) N*(1900)] and medium correctionsIcq -

=300y /po MeV as inferred in Refd.12,13) the collectiv- Z,-

ity is suppressed and little density dependence is observed Z,

However, since large widths also imply that the quasiparticle 0.1 0 0‘5 ] 1‘5 5 2*5 3
(mean-field approximation becomes less reliable, it would ' ' /

be premature to conclude from the behavior of the masses P/Po

alone that there is no approach towards chiral restoration. We g 1. Upper: In medium rhosobar ang-sobar masses in the
will come back to this issue in Sec. IV. RCW (dashed linesand BR (solid lines approach. Thick lines

The situation quantitatively changes if one adopts the sugrepresent in-medium masses wifly,,=I";o(p) and thin lines are
gestion put forward in Ref.7] to replace in the self-energy for I'io;=0. Lower: Z factors for rhosobarZ,) anda;-sobar ¢,)
expressions the @[ 1/mZ ] factor by the(self-consistent ~in the RCW (dashed linesand BR (solid lineg approach for
in-medium mass 1f(1:,‘)2[1/(m§l)2] (BR approach; solid Fio=0.
lines in Fig. 2.% The dispersion relation then takes the form 1

AE{qS—(AE)Z— —Ffm}
2 4
pN*ngN

2_ 2
qo—mp+f 5

“We have no compelling argument for the validity of this proce- +Ft20tqg
dure. It is based on the following conjecture, the proof of which 9
would require going beyond the framework we are developing here. ©)
The freepN* N coupling is of the form {/m)q, with a dimension-

less constant and q, the fourth component of the the meson

1
GG (AE)?- 412,

Here, we shall assume that in the medid®& remains un-
momentum. Writing this a&qg with F=f/m the medium renor- Changec(yvhlch can be argued to hold to the leading prder n
malization of the constar will certainly depend on density. In 1/N) Wh"? the widthI',o; may be a_ffected by densn@a;
order for the vector meson mass to go to zero at some high densifefore. With f, =17.8 (corresponding to 10% branching

so as to match BR scaling, it is required tigp)qo—const-0.  ratio) the mean-field resultd,,;=0) lead to chiral symme-

For q=|g|~0, which we are considering, this can be satisfied iftry restoration aroung=2.4p,; again, inclusion of finite
F(p)~m* 1, modulo an overall constant. This is the essence of thevidths decelerates the drop in masses in this schematic treat-
proposal of Ref[7]. ment (in the more extreme case witf131225.3 the in-
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mediuma;-meson mass drops to zero aroynd 1.2p, for 1., P
I'0=0). The “BR approach” in evaluating the- and  £= 77 Tr(D,UD*U)+
a,-sobar self-energies is not based on rigorous arguments,
but it successfully reproduces BR scaling leading to chiral 1 . . A Ao A AL A A

A A — =Tr(F F{7+F  rRFE) +m5(A Al +A RAR),
restoration throughm,,m, merging together close to zero 2 (P FUHFrF RO+ Mo(Au ACH AurAR)
somewhat below 3 times the nuclear matter density. (12)

E2TIM0+01-2)]

Al

where
IIl. EFFECTIVE LAGRANGIAN FOR MESON SOBARS

~ ~_T
A. Mean-field model and in-medium pion decay U=ei , m=m 2
constant

Our subsequent analysis in this section will be based on FLR=p ALR_5 ALR - AL
the following two main assumptiongi) each meson field
has its “sobar” partner, i.e., m—[A(1232N "=, D,U=d,0-igA, U+igA, g0,
p—[N*(1520N~1]=p, anda;—[N(1900N']=a,, and )
(i) chiral symmetry persists in the meson-sobar subspace. M=mz1. (12)
Before spelling out the chiral Lagrangian, let us elaborate on .
the pertinence of these propositiohi the context of our _Note that we have _the same mass matvixas appearing
two-level schematic model in Sec. Il, a meson Green’s funcy R?f' [9]. 1t remains to fix the free parameters in EQ.

(12) in terms off ., g and the masses of the original MYM

tion (¢¢*) can develop a new polée., excitatiod (¢¢*) | agrangian(9),

with associated pole strength due to the effects of amany-  Following the procedure ifi9], the physical mass differ-
partyl’cle medium; at trle same time, the origifatlemen-  on00 hotweer, andp is obtained after diagonalizing the
tary”) excitation(¢e¢e ), Will be shifted from its original  gyadratic piece of the Lagrangidl) to remove the spuri-
pole position and carry the residue-Z<1. There appears OUSA,,d*m mixing term?®

no mixed Green’s functiofi.¢»* +H.c.) since the mixing

matrix of the nuclear collective statgeesonance-hole state sy 9’2 ﬁﬁl
~ &) and the elementary mesor ) is diagonalized. This Mo, ~M="% 2 (13

implies that p
L(P)~L(pe)+ L a,) + ﬁ([j,, be)~L(be) + ﬁ(gb) where ﬁ1p= AE=1520-940=580 MeV and rhal= 1900

(10 —940=960 MeV. Rewriting Eq(13) as

. . . . 32 2 ﬁ'li a2 Ny}

as far as kinetic and mass terms are concerned, i.e., if the fwz§ ﬁ]—z(mal—mp), (14)
a

original Lagrangiari(¢) possesses @nearly realized chi- 1

ral symmetry, then the noninteracting part&{f$) preserves . , . N
it. For the interaction parts, as well as for a nonlinear realWe notice that knowledge of thén-medium values ofg,
ization of chiral symmetry, it is not so clear how to demon-m,, andm,, allows us to infer the density dependence of
strate the existence of chiral symmetry in our meson-sobay
. . . "

Lagrangian using the arguments given above. The masses will be taken from the lower nuclear branches

Employing the massive Yang-MillsMYM) framework ¢ the schematic two-level model discussed in Sec. II. Note
[9], we can write a chiral effective Lagrangian with {h4; the additional meson interaction vertices do not induce
S'jJ(,Z)lesu(f)R symmetry for meson-sobar fields With frther medium dependences at zero temperature. To esti-
minimat coupiings, mate the value of the gauge coupling consnive use the

relationg, ,,= (3/4y2)g [9], and assess, ., by evaluating
) the diagram shown in Fig. 2. With the standard phenomeno-
5To see how to identify, e.g., the field, consider the equation of logical interaction Lagrangians
motion for pions with £ ya in Eq. (15), (aﬂa"—mi)ﬁ-
=(ffTNA/m,,)a“(ZA,#ﬂpN)+H.c. with ¢, , denoting theA field.
Taking the expectation value and ignoring the kinetic term, we have
(m)=(Um2){(FEna/m) (4, Tym) +H.c). Thus the 7-sobar
field can be identified as

A1 R — . ) .
= —< T (Y T + H.C.> . ®In the following our parameters and fields will always correspond

me, \ My to the physical ones, denoted By, 7, andA,, in Ref.[9].

T

fona— - w
‘C‘ITNA_m_lrbA,,uTwN'a T+ H.C.,
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/ A(1232)

-1
N(1520) N

A(1232)

-1
N

FIG. 2. The diagram for the decay procgss 7 of the low-
lying sobar modes determining the effective decay con@g,n,t.

prN*— - sy v
m_lﬂN*,ﬂ#Tl//N'(ﬁ p'—d"p*)+H.c.,
p

‘CpNN* =

Lpﬁﬂzgpﬂﬂf;ﬂ'(%xa,u’;—)! (15)

we obtain in thep-meson rest frame, wherg*= (AE,0),

E;%%:épﬂwsi'ai%—x%r (16)
with’
1 1 ? 2.4
s s g mm’IT
977~y AE?2—m? | (AE/2)?—Kk?— P

7

andd' corresponding to the spatial componéhss.compli-

cation arises from the fact thé},mT depends on the momen-
tum of the pions and, consequently, so vfliy. Even worse,

as written in Eq(17), (::jpm diverges for a single-pion energy
of w,=AE/2, which essentially coincides with typical
m-sobar energies. The latter problem can be remedied
accounting for(in-mediunm widths for both pion and rho

PHYSICAL REVIEW C 62 015202

35 T T
3.0 - J
25 - A
2.0 1 Il Il 1 Il
0.0 0.5 1.0 15 2.0 25 3.0
P/Po
FIG. 3. Density dependence gf
x(@,k)
g fx\? AE_+Kk2/2m, i
~9lm. ~(Kpn,

1 2
w+|2 ) —(AE+K3/2m)?

(19

with AE_=M,—My=300 MeV and a hadronic form fac-
tor F .. For thep meson, we have

1
D,= 2_ 2 : ’
(AE)"—mS—3 n«n(AE)+im, I,

(20

b§s before. At a given density, we then average the momen-

tum dependence aj over an appropriate range according

propagators. Within the isobar-hole model the former takeso g= fo g(k)dk/k, with k,=700 MeV. The final result

the standard form

1

—m2—K[1+ xo/(1-9"x0)]’
(189)

D (w=AERK)=
(e ) (AE/2)?

where the pion susceptibility is given by[16]

for the density dependence of is displayed in Fig. 3
where we have neglected any medium dependences
of m,, AE, m,, AE,, and the decay widths. We

find that QPM initially decreases quickly with density and
stabilizes beyond nuclear saturation density.

We are now in position to assemble the main result of this
section. Evaluating Eq14) with the additional input of the

density-dependent anda; masses as found in Sec. [for
the I',,;=0 case results in an in-medium pion decay con-

"Within the spirit of the mean-field description pursued here westantf . (p) as shown in Fig. 4. As anticipated from the upper

neglect in our estimate further vertex corrections of, e.g. pther

panel of Fig. 1, the BR prescription leads to a vanishing

coupling which are in principal necessary to ensure gauge invarivalue at about 2 /&, whereas in the RCW prescription com-

ance of the vector current.

paratively little density dependence is observed. However, as

8Since Lorentz invariance is broken in the medium, we will en-mentioned before, the latter might still encode an approach

counter noncovariant terms in our effective Lagrangian. ®and
may thus be considered as the space components of the ifiashion which cannot be deduced from the behavior of the

fr

medium gauge coupling and pion decay constant.

towards chiral restoration, albeit in a somewhat different

quasiparticle masses. This issue will be addressed in Sec. IV.
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300 . . . then gives
(MeV)

1 1
Lox=52Z50,m d*m* +C12;,f*—2((9ﬂ77*)((9“77*)

e ‘\\‘\\\. T
200 | . 1 2
‘ X * W*—Emfrzﬂ'*z-i-cz f:2 T4+ (25
A
fr "

A proper normalization of the kinetic term can be recovered
by introducing a scale transformation

100 - 7
x—x' =2,
m
so that we obtain
0 Il 1 1 1 Il
0 05 1 15 2 25 3 oy (Bum )
=5 d, T ey~ (9, T
P/Po 2 f
FIG. 4. In-mediunt , in the RCW(dashed linesand BR(solid 1, m?* 2
lines) framework. Xoar* ar* — Em: 77*2+Cz_f*2 T Lot
o
B. Relation to BR scaling (26)

Let us now comment on thélausible connection be- ) ]
tween our sobar field and effective fields of BR scaling. AsHowever, since our sobar Lagrangian cannot be expected to

was shown in Sec. Il, the pole strengt# facton of the _be fully scal_e invariantas opposed to a Lagrangian exhib_it-
sobar fields is less than unity while the effective fields of BRING BR scaling[1]), there appear both terms corresponding
scaling carry full pole strength. This discrepancy can bd© those of BR scaling as well as stemming from broken
(partly) reconciled by a finite wave-function renormalization Sc@le invariancgdenoted byZ). Carrying out the same
(rescaling of the sobar field§which somewhat resembles Procedure for vector mesons, we find

the (infinite) wave-function renormalization of free fields

Consider, e.g., ther field. ExpandingJ in terms of pisobar
fields, one has

* _ 51/27 * _ 51127
mp—Zp m,, m; =2Z; Mg,

~ /
e Oprn=0prnZ) 22 27

E;T:%5M’7T(9“7T—%mwﬂ'z‘i‘clllfﬂ.(o”’uﬁ)(ﬁﬂﬁ)ﬂﬁ
Using Eqs.(24) and(27) and neglectind.,,, Eq.(14) finally

+e,m2/tiatt .., 1) pecomes
with coefficientsc,; and c,. Since the corresponding two- m*2
point function(propagatoris given by ¥ T P (mElom*?) (28)
™ *2 *2 a p /7
g™~ my
~ Z:
(mat)y~ o (220 where we have approximatet, ~Z, (cf. lower panel of

Fig. 1). Note thatm* = m;,Z}T/2 does not imply large changes

we rescale the field according &:Z}T’zw*, so as to obtain f(_)r;?e ir'lt-r:ngdiur'? (pion mass,;i?f%)does not vary appre-
: 2_ 2 : ciably with density(see, e.g., Ref.17]).
a residue of 1 ak®=m,. This leads to These observations indicate that the effective fields of BR
scaling could be identified with a coherent linear combina-
tion of the resonance-nucleon-hole degrees of freedom at
some relevant density. Similar arguments have been pre-
sented in Ref[18] where the authors identified the sigma
o s LU= field in the Walecka model with the degrees of freedom as-
— 5 Zzmem +szq;f—277 e (23)  sociated with the\ (1232) in the context of quantum hadro-

g dynamics. However, we repeat that—as opposed to a La-
grangian leading to BR scalingl]—our effective meson-
sobar Lagrangian is not invariant under scale transformation

. e .3 12 symmetry. A possible extension to restore scale invariance
my=m.Z27 =127, (24 might be the introduction of appropriate dilaton fields.

m

1
£;=§Z;,<9M17* Ma* + le—zzqé((?#ﬂ'* Y(o*a* ) m* o*

2

A redefinition of the coupling constant and mass,
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IV. IN-MEDIUM WEINBERG SUM RULES 100
In this section we will pursue a somewhat different strat- — :gz a‘m‘lgg?
egy to assess the degree of chiral restoration realized within 80 | N\ > a,NN(1900)
the schematic model of Sec. Il. Rather than imposing the
mean-field approximation, we here account for the full spec- < 60 ‘\
tral shape of botlp anda, spectral functions. A rather direct 2
way of doirlg sois provided' by the Weinberg sum ryles, = 40|
one of which relates the pion decay constérging one of .
the order parameters of chiral restorajiom the (integrated
difference in the spectral shapes between the vegtgr &nd 20| N
axialvector p,) correlators, i.e.,
0 , ‘ \
=ds 0 1 2 3 4
2= fo < [Pu(S)—pa(s)]. (29 pu[pdl

FIG. 5. Density dependence of, as extracted from the first
A Second We|nberg sum rule app“es to the next h|gher moWeinberg sum I’ule Using in'medium and al Spectral funCtionS
ment of the correlator difference according to within the schematic two-level model; the two curves correspond to
branching ratios of 10%solid line) and 15%(dashed lingfor the
- N*(1900)— Na; decay.
0=f dspv(s)—pa(s)]. (30
0 The in-medium extensions of these sum rules have been

i o . o derived in Ref[23]. In the zero-momentum limit to which
Whereas the first one, Eq29), is firmly established in its e restrict ourselves here, one has

given form with no known corrections, the second one, Eq.

(30), is likely to be modified away from the chiral limi20] dop
and due to (1) symmetry breakin21]. From a practical fr2_ f“_o 1=0)— i=0 33
point of view, it is clear that within the scope of our low- ” g [pv(@0.0=0)~Pa(G0.q=0)] (33

energy effective model, the first sum rule is the more rel-

evant one. _ and an analogous expression for the second one. The right-
In the low-mass region the correlators can be accuratelygng side (RHS) of Eq. (33) is now readily evaluated

saturated within thée}xial—)vector domingnce modéVDM) employing thep and a, spectral functions. As off-shell

by the spectral function of the lowest-lying resonane@d  rgperties are of potential relevance, we calculate thedree

a, according to self-energy microscopically using experimental data on the

pion electromagnetic form factor anpgtwave 7 phase

( )= — m&/%)‘l Im Dy A( ) 31) shifts [3]. Similarly, we obtain the(imaginary part of the
Pv.allo.G 702 A v.Aldo. ), free a, self-energy from decays inter in terms of the free

p spectral function[3,24] [where possible energy depen-
with mV’% denoting the bare pole masses agg, the dences of the real part are neglected; that is, we take

(axial)vector coupling constants. However, theand a, (m{Y)?+ReX, (s)=mZ; the remaining free parameter,
spectral functions account for two- and three-pion statega,=7.8, has been fixed via Eq29) by requiring f
only. Therefore, at higher masses, the contributions from 2 =93 MeV]. The in-medium resonance-hole self-energies
and (2h+1)-pion stategwith n>1) have to be included. are then introduced as described in Sec. Il, i.e., @pand
This can be done by an appropriate continuum ansatz chathe analogous expression for tagN* (1900)N ! excitation
acterized by an onset threshold atasymptoti¢ plateau [with microscopic free widths for bothN*(1520),
value governed by perturbative QCD, e[@2], N*(1900), and including in-medium broadening
Figure 5 shows that the pion decay constant indeed de-
Jeonis) s 1 g[)easgs rathder rapidly startinlg fr0||”n Iov(\j/ densitiss reaghing a
vAlS)= thr —40 % reduction at normal nuclear density, depending on
87 1+ et (Eya—s)/ 0y a] the precise value for tha;N* (1900N coupling constant.
0.22 The uncertainty quickly increases towards higher densities,
(32 resulting in either a leveling-off or even a dropping to zero.
However, the point here is not so much to predict quantita-
tively the critical density for chiral restoration but to demon-
with  8,=6,=0.2 GeV and EIM=13 Gev, E strate qualitatively that in-medium spectral functions based
=1.45 GeV. The merging of the continuum plateaus intoon many-body excitations in the nuclear environment encode
their perturbative form is crucial to ensure the convergencan approach towards chiral restoration. To gain more insight
of the sum rulesione-gluon exchanges do not distinguishinto the underlying mechanism we show in Fig. 6 the perti-
between vector and axial-vector chanpels nent vector and axial-vector spectral distributions in vacuum

0

i In[1+/s/(0.2GeV)])’
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tations, we have pursued two approaches to assess possible
avenues towards chiral restoration. In addition to the well-
establishedr-sobar ang-sobar states, we have furthermore
included thea, sobar based on thid(1900)N ! excitation

as a candidate for the chiral partner of tN€1520N !

state.

In the first part, we constructed a chiral effective Lagrang-
ian for the “meson-sobar” fields supposed to be valid in the
medium, incorporating vector and axial-vector degrees of
freedom within the massive Yang-Mills framework. The pa-
rameters entering this Lagrangian have been estimated from
the schematic model. Within a mean-field approximation,
and imposing a general matching condition inherent in the
MYM formalism, we found that the in-medium gauge cou-
pling g and the(axial)vector meson masses decrease with
density. Performing a rescaling of the meson-sobar fields, we
argued that the latter might be identified with the fields of

Vector, vacuum BR scallng.Ou_r proposition is that these are 'Fhe degrees of
. freedom that figure in effective Lagrangian field theory en-
————— Axialvector, vacuum . . .
V. dowed with chiral symmetry and other flavor symmetries and
0.06 - - ector, pN=2p0 h b d . h dl d . .
ey Axialvector, p.=2p that are probed in the dilepton production experiments at
@ PPN high density.The fields that figure in BR scaling are there-
2 fore collective fields carrying the quantum numbers of me-
E oosl n g=0 ] sons and baryons treated as local fields and hence must nec-
NE A essarily be approximate, with their range of validity
& A ey depending on kinematics.
\; | \\ /N - In the second part we have made use of the in-medium
a o002 | s SN 1 extension of the first Weinberg sum rule to evaluate the den-
! \\\___/‘,Z—"‘""\-‘:.:-,\_._m__“ sity dependence of the pion decay constant. Employing in-
/I < medium many-body spectral functions for both ghanda;
0.00 & e -7 ‘ ‘ as arising from the two-level model, together with appropri-
0.0 0.5 1.0 , 15 2.0 ate (density-independenhigh energy continuaf .(py) ex-
9 [GeV7] hibits an appreciable reduction 6f30% at normal nuclear

_ matter density. The driving mechanism in this calculation
FIG. 6. p anda; spectral functionsuppe) andV/A correlators  poc peen identified as a growing overlap of te and
divided by g3 (lowen within the schematic resonance-hole model: A-spectral distributions due to both the appearance of the
solid lines, freep (V); dotted lines, fre@, (A): long-dashed and low-lying “sobar” excitations as well as an accompanying
dashed linesp (V) anda; (A) at py=2po. resonance broadening.

) ) . Although our modeling of the various effective interac-
and at twice normal nuclear density: clearly, the chiral breakyjong at finite density is far from complete, we expect that the
ing in vacuum, mamly constituted 'ghrough dlffgreﬂandal qualitative features of our results will persist in a more elabo-
pole positions, is much reduced in the medium due to the,te treatment. The latter might also provide a better estimate
appearance of low-lying excitations as well as a smearing ofyr the critical density with most of the uncertainty likely to
the elementary/a, peaks. The schematic two-level model regjge in thea, channel where there is little empirical infor-
employed here certainly lacks accuracy, but it is conceivable,siion available. QCD-based modéésg., with instanton or
that the inclusion of further excitations will reinforce the Nambu—Jona-Lasinio{NJL-) type interaction typically
tendency towards degeneration of the spectral densities. give a rather low value fop, (around %), which might
well be due to the neglect of interactions at the composite
(hadronig level. So far these are more reliably addressed in
effective hadronic models as the one presented here.

The identification of experimental signatures as well as
theoretical mechanisms associated with chiral symmetry res-
toration in hot and dense matter has become an important

issue in(nonperturbativestrong interaction physics. In this
article we have focused on the behavior of the vector and We thank C.-H. Lee and J. Wambach for useful discus-

axial-vector correlators in cold nuclear matter which have tasions. This work was supported in part by DOE Grant No.
degenerate at the critical density. Using phenomenologicalf)DE-FG02-88ER40388. Y.K. is supported in part by the Ko-
well-motivated—albeit somewhat schematiGwo-level) rea Ministry of Education(BSRI 98-244}1 and KOSEF
models based on low-lying resonance-h@lsobar”) exci-  (Grant No. 985-0200-001)2
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