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Schematic model forr-a1 mixing at finite density and in-medium effective Lagrangian

Youngman Kim,* R. Rapp, G. E. Brown, and Mannque Rho†
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Based on schematic two-level models extended toa1-meson degrees of freedom, we investigate possible
mechanisms of chiral restoration in the vector–axial-vector channels in cold nuclear matter. In the first part of
this article we employ the massive Yang-Mills framework to construct an effective chiral Lagrangian based on
low-energy mesonic modes at finite density. The latter are identified through nuclear collective excitations of

‘‘meson’’-sobar type such asp↔@D(1232)N21#[p̂, r↔@N* (1520)N21#[r̂, etc. In a mean-field type

treatment the in-medium gauge couplingĝ, the~axial-!vector meson masses andf̂ p are found to decrease with
density indicating the approach towards chiral restoration in the language of in-medium effective fields. In the
second part of our analysis we evaluate the~first! in-medium Weinberg sum rule which relates vector and
axial-vector correlators to the pion decay constant. Using in-mediumr/a1 spectral functions~computed in the
two-level model! also leads to a substantial reduction of the pion decay constant with increasing density.

PACS number~s!: 24.85.1p, 21.65.1f, 12.39.Fe, 25.75.2q
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I. INTRODUCTION

The density dependence of vector-meson masses enc
in the so-called Brown-Rho~BR! scaling conjecture@1# has
stimulated considerable discussion. From the experime
side, the CERES dilepton experiments@2# have provided
strong evidence that the properties ofr mesons are substan
tially modified in hot and dense matter. The measureme
performed at the full SpS energy indicate an excess of di
tons with invariant masses below;0.6 GeV, as well as
missing strength in the region around the freer-mass. More
quantitative results are expected from further runs at b
40A and 158A GeV with an additional time projection
chamber~TPC! improving the mass resolution in order
discriminate the contributions of final statev decays from
the r-meson decays within the interacting hadronic fireba

The simplest and most economical explanation for
observed low-mass dilepton spectra is achieved in term
quasiparticles~both fermions and bosons! whose masses
drop according to BR scaling, thereby making an appea
link to the chiral~quark! structure of the hadronic vacuum. I
an alternative view to this description, Rapp, Chanfray, a
Wambach~RCW! @3# showed that the excess of low-ma
dileptons follows from hadronic many-body calculations u
ing in-medium spectral functions~see, e.g., Ref.@4# for a
recent review!. On rather general grounds, this ‘‘alternative
description was in a sense anticipated as discussed by o
the authors@5#. In analogy to the quark-hadron duality i
heavy-light meson decay processes, one may view BR s
ing as a ‘‘partonic’’ picture while RCW as a hadronic on
Loosely speaking, on the finite density axis, the former c
be thought of as a top-down approach and the latter a
bottom-up one. The link between BR scaling and the Lan
quasiparticle interactionF1 established in@6# is one specific

*Present address: Department of Physics, Hanyang Univer
Seoul 133-791, Korea.

†Permanent address: Service de Physique The´orique, CE Saclay
91191 Gif-sur-Yvette, France.
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indication for this ‘‘duality.’’ Indeed, in@7#, Brown et al.
argued that the RCW explanation encodes features o
density-dependentr-meson mass, calculated in a hadron
basis~in contrast to that of constituent quarks used by Bro
and Rho!. In particular it was suggested@7# that if one re-
places ther-meson massmr by the massmr* (r),1 at the
density being considered, one would arrive at a descript
in hadron language, which at high densities appeared du
that of the Brown-Rho one in terms of constituent quar
These developments involved the interpretation of acollec-
tive isobar-hole excitation as an effective vector-meson fi
operating on the nuclear ground state, i.e.,

1

AA
(

i
@N* ~1520! iNi

21#12

.(
i

@r~xi ! or v~xi !#uC0&s , ~1!

with the antisymmetric~symmetric! sum over neutrons and
protons giving ar-like (v-like! nuclear excitation. The drop
ping vector-meson masses could then be estimated in te
of the mixing of this collective state with the elementa
vector meson state@7#. In @8#, the authors studied mixing o
vector and axial-vector mesons at finite temperature.

In the present work, we will expand on these ideas
constructing an effective chiral Lagrangian involving effe
tive fields for ‘‘meson sobars’’ (p̂,r̂, . . . ) which in a dense
medium are assumed to be the relevant, lowest-lying deg
of freedom in terms of the nuclear collective states in
corresponding meson channels. Therefore we will assu
that each meson field has its ‘‘sobar’’ partner,2 that is,
p↔@D(1232)N21#[p̂, r↔@N* (1520)N21#[r̂, and

ty,

1We will discuss the reasoning behind this suggestion in Sec.
2In general, the sobar field would be a linear combination

N* -hole states of the appropriate quantum numbers, but here
simplicity, we are taking only what we consider to be the domin
component.
©2000 The American Physical Society02-1
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YOUNGMAN KIM, R. RAPP, G. E. BROWN, AND MANNQUE RHO PHYSICAL REVIEW C62 015202
a1↔@N* (1900)N21#[â1. We then construct a chiral effec
tive Lagrangian for meson-sobar fields following the proc
dure of the massive Yang-Mills approach@9#. An explicit a1
meson is not necessarily required to formulate a chiral
variant Lagrangian involvingr mesons, as is well known
e.g., from the hidden local symmetry framework@10#; in our
framework, however, it provides a convenient treatment
the associated low-lying mode on an equal footing with thr
meson, thereby facilitating the discussion of chiral resto
tion in the vector–axial-vector doublet. Moreover, in t
mean-field analysis carried out below we find that at so
density our meson-sobar fields could be described in term
interpolating fields that are the effective fields figuring in
in-medium Lagrangian exhibiting BR scaling. One of t
main differences between the fields of BR scaling a
meson-sobar fields is that while in the former the full po
strength (Z;1) is retained by the low-lying mode, the sob
fields only carry a fraction of the strength in the respect
meson channel~typically Z;0.3). It will be suggested tha
this discrepancy can be resolved by applying a~finite! wave-
function renormalization to the sobar fields.

Our article is organized as follows: in Sec. II we revie
the schematic model@7# and extend it by includinga1 me-
son. The corresponding meson-sobar chiral Lagrangian
the ensuing finite-density results in mean-field approxim
tion are presented in Sec. III. Using the same schem
model from Sec. II, but following the philosophy of th
many-body spectral function approach@3,11#, we compute in
Sec. IV the density dependence of the pion decay cons
employing the in-medium Weinberg sum rules. Section
contains a summary and concluding remarks.

II. SCHEMATIC MODEL

Let us first briefly review the main features of the sch
matic model for the in-mediumr meson as used in@7# and
then extend it to thea1 channel.

The starting point is ther-meson propagator in nuclea
matter given by

Dr~q0 ,qW !5
1

q0
22qW 22mr

21 imrGpp~M !2SrN* N~q0 ,q!
,

~2!

whereGpp denotes the vacuumr decay width, and the rea
part of the self-energy has been absorbed into the free~physi-
cal! massmr . The entire density dependence resides in
in-mediumr self-energySrN* N induced byN* (1520)N21

excitations. It is calculated from the interaction Lagrangia

LrNN* (1520)5
f r

mr
cN*

†
~q0SW •rW a2ra

0SW •qW !tacN1H.c., ~3!

where the coupling constant can be estimated from the m
sured branching of theN* (1520)→rN decay ~as well as
information on the radiative decay@13#!. In what follows we
will for simplicity concentrate on the limit of vanishing
three-momentum where the longitudinal and transverse
larization components become identical. Because of
01520
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rather high excitation energy of DE5MN* 2MN
5580 MeV, one can safely neglect nuclear Fermi motion
obtain

SrN* N~q0!5
8

3
f rN* N

2 q0
2

mr
2

rN

4 S 2~DE!

~q01 iG tot/2!22~DE!2D
~4!

(rN is the nucleon density!. If the widths of ther and
N* (1520) are sufficiently small, one can invoke the mea
field approximation~as employed in Sec. III! and determine
the quasiparticle excitation energies from the zeros in
real part of the inverse propagator. In particular, forqW 50 the
in-mediumr mass is obtained by solving the dispersion
lation

q0
25mr

21ReSrN* N~q0!. ~5!

The pertinent spectral weights of the solutions are charac
ized byZ factors defined through

Z5S 12
]

]q0
2

ReSrN* ND 21

. ~6!

Within a chirally invariant framework, we need to includ
the chiral partners of ther and its nuclear excitation, i.e., th
a1 and a suitableN* resonance with spin-3/2 and positiv
parity. A possible candidate is theN* (1900) state, and the
interaction Lagrangian is taken in analogy to~3! as3

La1NN(1900)5
f a1

ma1

cN*
†

~q0SW •AW a2Aa
0SW •qW !tacN1H.c. ~7!

with A denoting the axial-vectora1 field. The coupling con-
stantf a1

can in principle be estimated from the partial dec

width GN* (1900)→a1N . Although the corresponding three-pio
final state has not been explicitly measured, the obser
@14,15# one- and two-pion final states leave room for up
30% branching of the totalN* (1900) width of;500 MeV
into thea1N channel. Using the baryon decay width formu
from Ref. @4#,

3We could also consider coupling terms of the typea1N* (1520)N
as well asrN* (1900)N, which in their relativistic version involve
an additionalg5 as compared to the ones used here; in the non
ativistic reduction this leads to self-energies ofP-wave nature, be-

ing proportional toqW , and can therefore be neglected in the ze
momentum limit considered here.
2-2
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SCHEMATIC MODEL FORr-a1 MIXING AT FINITE . . . PHYSICAL REVIEW C 62 015202
GN(1900)→a1N~As!

5
f a1

2

4pma1

2

2mN

As

2I a11

~2JB11!~2I B11!
SI~a1NN* !

3E
3mp

As2mNM

p
dMAa

0~M !qcmFANB~qcm
2 !2~M212q0

2!,

~8!

with a standard monopole form factorFa1NB(qcm
2 )

5La1

2 /(La1

2 1qcm
2 ) (La1

5600 MeV as for ther), we find

f a1
.25.3 for 20% andf a1

.17.8 for 10% branching ratio

This range of values will be used to indicate the inher
uncertainties in our numerical results presented below.

Before we address the construction of the full chiral L
grangian in the next section, we compute the density dep
dence of the masses andZ factors corresponding to the low
lying r- and a1-sobar states when self-consistently solvi
the dispersion relation~5!. Using the self-energy as given i
Eq. ~4! ~and the analogous expression for thea1 sobar! re-
sults are depicted by the dashed lines in Fig. 1~correspond-
ing to the RCW approach in Ref.@7#!. When neglecting the
baryon resonance widths, one finds a moderate simultan

decrease of bothm̂r andm̂a1
associated with pole strength

of 10–20 %. Upon inclusion of resonance widthsG tot5G0

1Gmed „with vacuum valuesG05120 @500# MeV for
N* (1520)@N* (1900)# and medium correctionsGmed

.300rN /r0 MeV as inferred in Refs.@12,13#… the collectiv-
ity is suppressed and little density dependence is obser
However, since large widths also imply that the quasipart
~mean-field! approximation becomes less reliable, it wou
be premature to conclude from the behavior of the mas
alone that there is no approach towards chiral restoration.
will come back to this issue in Sec. IV.

The situation quantitatively changes if one adopts the s
gestion put forward in Ref.@7# to replace in the self-energ
expressions the 1/mr

2@1/ma1

2 # factor by the~self-consistent!

in-medium mass 1/(mr* )2@1/(ma1
* )2# ~BR approach; solid

lines in Fig. 1!.4 The dispersion relation then takes the for

4We have no compelling argument for the validity of this proc
dure. It is based on the following conjecture, the proof of wh
would require going beyond the framework we are developing h
The freerN* N coupling is of the form (f /m)q0 with a dimension-
less constantf and q0 the fourth component of the ther meson
momentum. Writing this asFq0 with F5 f /m the medium renor-
malization of the constantF will certainly depend on densityr. In
order for the vector meson mass to go to zero at some high de
so as to match BR scaling, it is required thatF(r)q0→const5” 0.

For q5uqW u'0, which we are considering, this can be satisfied
F(r);m* 21, modulo an overall constant. This is the essence of
proposal of Ref.@7#.
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q0
25mr

21 f rN* N
2 4

3
rN

DEFq0
22~DE!22

1

4
G tot

2 G
Fq0

22~DE!22
1

4
G tot

2 G2

1G tot
2 q0

2

.

~9!

Here, we shall assume that in the mediumDE remains un-
changed~which can be argued to hold to the leading order
1/Nc) while the widthG tot may be affected by density~as
before!. With f a1

.17.8 ~corresponding to 10% branchin

ratio! the mean-field results (G tot50) lead to chiral symme-
try restoration aroundr52.4r0; again, inclusion of finite
widths decelerates the drop in masses in this schematic t
ment ~in the more extreme case withf a1

.25.3 the in-

-

e.

ity

f
e

FIG. 1. Upper: In medium rhosobar anda1-sobar masses in the
RCW ~dashed lines! and BR ~solid lines! approach. Thick lines
represent in-medium masses withG tot5G tot(r) and thin lines are
for G tot50. Lower:Z factors for rhosobar (Zr) anda1-sobar (Za)
in the RCW ~dashed lines! and BR ~solid lines! approach for
G tot50.
2-3
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YOUNGMAN KIM, R. RAPP, G. E. BROWN, AND MANNQUE RHO PHYSICAL REVIEW C62 015202
mediuma1-meson mass drops to zero aroundr;1.2r0 for
G tot50). The ‘‘BR approach’’ in evaluating ther- and
a1-sobar self-energies is not based on rigorous argume
but it successfully reproduces BR scaling leading to ch

restoration throughm̂r ,m̂a1
merging together close to zer

somewhat below 3 times the nuclear matter density.

III. EFFECTIVE LAGRANGIAN FOR MESON SOBARS

A. Mean-field model and in-medium pion decay
constant

Our subsequent analysis in this section will be based
the following two main assumptions:~i! each meson field

has its ‘‘sobar’’ partner, i.e.,p↔@D(1232)N21#[p̂,

r↔@N* (1520)N21#[r̂, anda1↔@N(1900)N21#[â1, and
~ii ! chiral symmetry persists in the meson-sobar subsp
Before spelling out the chiral Lagrangian, let us elaborate
the pertinence of these propositions.5 In the context of our
two-level schematic model in Sec. II, a meson Green’s fu

tion ^ff1& can develop a new pole~i.e., excitation! ^f̂f̂1&
with associated pole strengthZ, due to the effects of a many
particle medium; at the same time, the original~‘‘elemen-
tary’’ ! excitation ^fefe

1&, will be shifted from its original
pole position and carry the residue 12Z,1. There appears

no mixed Green’s function̂fef̂
11H.c.& since the mixing

matrix of the nuclear collective state~resonance-hole stat
'f̂) and the elementary meson ('fe) is diagonalized. This
implies that

L~f!'L~fe!1L~f̂ !1L~f̂,fe!'L~fe!1L~f̂ !
~10!

as far as kinetic and mass terms are concerned; i.e., if
original LagrangianL(f) possesses a~linearly realized! chi-
ral symmetry, then the noninteracting part ofL(f̂) preserves
it. For the interaction parts, as well as for a nonlinear re
ization of chiral symmetry, it is not so clear how to demo
strate the existence of chiral symmetry in our meson-so
Lagrangian using the arguments given above.

Employing the massive Yang-Mills~MYM ! framework
@9#, we can write a chiral effective Lagrangian wit
SU(2)L3SU(2)R symmetry for meson-sobar fields wit
minimal couplings,

5To see how to identify, e.g., thep̂ field, consider the equation o

motion for pions with LpND in Eq. ~15!, (]m]m2mp
2 )pW

5( f pND* /mp)]m(c̄D,mTW cN)1H.c. with cD,m denoting theD field.
Taking the expectation value and ignoring the kinetic term, we h

^pW &5(1/mp
2 )^( f pND* /mp)]m(c̄D,mTW cN)1H.c.&. Thus thep-sobar

field can be identified as

pŴ 5
1

mp
2 K fpND*

mp
]m~c̄D,mTWcN!1H.c.L .
01520
ts,
l

n

e.
n

-
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L5
1

4
f̂ p

2 Tr~DmÛDmÛ†!1
1

4
f̂ p

2 Tr@M ~Û1Û†22!#

2
1

2
Tr~ F̂mnLF̂L

mn1F̂mnRF̂R
mn!1m̂0

2~ÂmLÂL
m1ÂmRÂR

m!,

~11!

where

Û5e
2i p̂

f̂ p
, p̂5p̂a

ta

2
,

F̂mn
L,R5]mÂn

L,R2]nÂm
L,R , Âm

L,R5V̂m6Âm ,

DmÛ5]mÛ2 igAmLÛ1 igAmRÛ,

M5mp
2 1. ~12!

Note that we have the same mass matrixM as appearing
in Ref. @9#. It remains to fix the free parameters in E
~12! in terms of f p , g and the masses of the original MYM
Lagrangian@9#.

Following the procedure in@9#, the physical mass differ-
ence betweenâ1 and r̂ is obtained after diagonalizing th
quadratic piece of the Lagrangian~11! to remove the spuri-
ousAm]mp mixing term,6

m̂a1

2 2m̂r
25

ĝ2 f̂ p
2

2

m̂a1

2

m̂r
2

, ~13!

where m̂r5DE5152029405580 MeV and m̂a1
51900

29405960 MeV. Rewriting Eq.~13! as

f̂ p
2 5

2

ĝ2

m̂r
2

m̂a1

2 ~m̂a1

2 2m̂r
2!, ~14!

we notice that knowledge of the~in-medium! values ofĝ,
m̂r , and m̂a1

allows us to infer the density dependence

f̂ p .
The masses will be taken from the lower nuclear branc

of the schematic two-level model discussed in Sec. II. N
that the additional meson interaction vertices do not ind
further medium dependences at zero temperature. To
mate the value of the gauge coupling constantĝ, we use the
relation ĝrpp5(3/4A2)ĝ @9#, and assessĝrpp by evaluating
the diagram shown in Fig. 2. With the standard phenome
logical interaction Lagrangians

LpND5
f pND

mp
c̄D,mTW cN•]mpW 1H.c.,e

6In the following our parameters and fields will always correspo

to the physical ones, denoted byf̃ p , p̃, andÃm in Ref. @9#.
2-4
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SCHEMATIC MODEL FORr-a1 MIXING AT FINITE . . . PHYSICAL REVIEW C 62 015202
LrNN* 5
f rNN*
mr

c̄N* ,ngmtWcN•~]mrW n2]nrW m!1H.c.,

Lrpp5grpprW m•~pW 3]mpW !, ~15!

we obtain in ther-meson rest frame, whereqm5(DE,0W ),

Lr̂p̂p̂5ĝrpprŴ i•] ipŴ 3pŴ , ~16!

with7

ĝrpp5grpp

1

DE22mr
2 S 1

~DE/2!22kW22mp
2 D 2

mr
2mp

4

~17!

and] i corresponding to the spatial components.8 A compli-
cation arises from the fact thatĝrpp depends on the momen
tum of the pions and, consequently, so willf̂ p . Even worse,
as written in Eq.~17!, ĝrpp diverges for a single-pion energ
of vk5DE/2, which essentially coincides with typica
p-sobar energies. The latter problem can be remedied
accounting for~in-medium! widths for both pion and rho
propagators. Within the isobar-hole model the former ta
the standard form

Dp~v5DE/2,kW !5
1

~DE/2!22mp
2 2kW2@11x0 /~12g8x0!#

,

~18!

where the pion susceptibilityx is given by@16#

7Within the spirit of the mean-field description pursued here
neglect in our estimate further vertex corrections of, e.g., therpp
coupling which are in principal necessary to ensure gauge inv
ance of the vector current.

8Since Lorentz invariance is broken in the medium, we will e
counter noncovariant terms in our effective Lagrangian. Ourĝ and

f̂ p may thus be considered as the space components of th
medium gauge coupling and pion decay constant.

FIG. 2. The diagram for the decay processr̂→p̂p̂ of the low-

lying sobar modes determining the effective decay constantĝrpp .
01520
by

s

x~v,kW !

.
8

9 S f p*

mp
D 2 DEp1kW2/2mD

S v1 i
1

2
GDD 2

2~DEp1kW2/2mD!2

Fp~kW !rN ,

~19!

with DEp5MD2MN.300 MeV and a hadronic form fac
tor Fp . For ther meson, we have

Dr5
1

~DE!22mr
22SrN* N~DE!1 imrGr

, ~20!

as before. At a given density, we then average the mom
tum dependence ofĝ over an appropriate range accordin
to ĝ5*0

kcg(k)dk/kc with kc.700 MeV. The final result

for the density dependence ofĝ is displayed in Fig. 3
where we have neglected any medium dependen
of mr , DE, mp , DEp , and the decay widths. We
find that ĝrpp initially decreases quickly with density an
stabilizes beyond nuclear saturation density.

We are now in position to assemble the main result of t
section. Evaluating Eq.~14! with the additional input of the
density-dependentr̂ and â1 masses as found in Sec. III~for
the G tot50 case! results in an in-medium pion decay con
stantf̂ p(r) as shown in Fig. 4. As anticipated from the upp
panel of Fig. 1, the BR prescription leads to a vanish
value at about 2.5r0, whereas in the RCW prescription com
paratively little density dependence is observed. However
mentioned before, the latter might still encode an appro
towards chiral restoration, albeit in a somewhat differe
fashion which cannot be deduced from the behavior of
quasiparticle masses. This issue will be addressed in Sec

e

ri-

-

in-

FIG. 3. Density dependence ofĝ.
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YOUNGMAN KIM, R. RAPP, G. E. BROWN, AND MANNQUE RHO PHYSICAL REVIEW C62 015202
B. Relation to BR scaling

Let us now comment on the~plausible! connection be-
tween our sobar field and effective fields of BR scaling.
was shown in Sec. II, the pole strength (Z factor! of the
sobar fields is less than unity while the effective fields of B
scaling carry full pole strength. This discrepancy can
~partly! reconciled by a finite wave-function renormalizatio
~rescaling! of the sobar fields@which somewhat resemble
the ~infinite! wave-function renormalization of free fields#.
Consider, e.g., thep̂ field. ExpandingÛ in terms of pisobar
fields, one has

Lp̂5 1
2 ]mp̂]mp̂2 1

2 mp
2 p̂21c11/f̂ p

2 ~]mp̂!~]mp̂!p̂p̂

1c2mp
2 / f̂ p

2 p̂41•••, ~21!

with coefficientsc1 and c2. Since the corresponding two
point function~propagator! is given by

^p̂p̂†&'
Zp̂

k22mp
2

, ~22!

we rescale the field according top̂5Zp̂
1/2

p* , so as to obtain
a residue of 1 atk25mp

2 . This leads to

Lp̂5
1

2
Zp̂]mp* ]mp* 1c1

1

f̂ p
2

Zp̂
2
~]mp* !~]mp* !p* p*

2
1

2
Zp̂mp

2 p* 21c2Zp̂
2 mp

2

f̂ p
2

p* 41•••. ~23!

A redefinition of the coupling constant and mass,

mp* 5mpZp̂
1/2, f p* 5 f̂ pZp̂

21/2, ~24!

FIG. 4. In-mediumf̂ p in the RCW~dashed lines! and BR~solid
lines! framework.
01520
s

e

then gives

Lp* 5
1

2
Zp̂]mp* ]mp* 1c1Zp̂

1

f p*
2 ~]mp* !~]mp* !

3p* p* 2
1

2
mp*

2p* 21c2

mp*
2

f p*
2

p* 41•••. ~25!

A proper normalization of the kinetic term can be recover
by introducing a scale transformation

x→x85Zp̂
21/2

x,

so that we obtain

Lp* 5
1

2
]mp* ]mp* 1c1

1

f p*
2 ~]mp* !~]mp* !

3p* p* 2
1

2
mp*

2p* 21c2

mp*
2

f p*
2

p* 41Lsb1•••.

~26!

However, since our sobar Lagrangian cannot be expecte
be fully scale invariant~as opposed to a Lagrangian exhib
ing BR scaling@1#!, there appear both terms correspondi
to those of BR scaling as well as stemming from brok
scale invariance~denoted byLsb). Carrying out the same
procedure for vector mesons, we find

mr* 5Zr
1/2m̂r , ma* 5Za

1/2m̂a ,

grpp* 5ĝrppZr
1/2Zp̂

1/2. ~27!

Using Eqs.~24! and~27! and neglectingLsb , Eq.~14! finally
becomes

f p*
2'

2

g* 2

mr*
2

ma*
2 ~ma*

22mr*
2!, ~28!

where we have approximatedZa1
'Zr ~cf. lower panel of

Fig. 1!. Note thatmp* 5mp̂Zp̂
1/2 does not imply large change

for the in-medium pion mass, sinceZp̂ does not vary appre
ciably with density~see, e.g., Ref.@17#!.

These observations indicate that the effective fields of
scaling could be identified with a coherent linear combin
tion of the resonance-nucleon-hole degrees of freedom
some relevant density. Similar arguments have been
sented in Ref.@18# where the authors identified the sigm
field in the Walecka model with the degrees of freedom
sociated with theD(1232) in the context of quantum hadro
dynamics. However, we repeat that—as opposed to a
grangian leading to BR scaling@1#—our effective meson-
sobar Lagrangian is not invariant under scale transforma
symmetry. A possible extension to restore scale invaria
might be the introduction of appropriate dilaton fields.
2-6
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IV. IN-MEDIUM WEINBERG SUM RULES

In this section we will pursue a somewhat different str
egy to assess the degree of chiral restoration realized w
the schematic model of Sec. II. Rather than imposing
mean-field approximation, we here account for the full sp
tral shape of bothr anda1 spectral functions. A rather direc
way of doing so is provided by the Weinberg sum rules@19#,
one of which relates the pion decay constant~being one of
the order parameters of chiral restoration! to the~integrated!
difference in the spectral shapes between the vector (rV) and
axialvector (rA) correlators, i.e.,

f p
2 5E

0

`ds

s
@rV~s!2rA~s!#. ~29!

A second Weinberg sum rule applies to the next higher m
ment of the correlator difference according to

05E
0

`

ds@rV~s!2rA~s!#. ~30!

Whereas the first one, Eq.~29!, is firmly established in its
given form with no known corrections, the second one, E
~30!, is likely to be modified away from the chiral limit@20#
and due to UA(1) symmetry breaking@21#. From a practical
point of view, it is clear that within the scope of our low
energy effective model, the first sum rule is the more r
evant one.

In the low-mass region the correlators can be accura
saturated within the~axial-!vector dominance model~VDM !
by the spectral function of the lowest-lying resonancesr and
a1 according to

rV,A~q0 ,q!52
~mV,A

(0) !4

pgV,A
2

Im DV,A~q0 ,q!, ~31!

with mV,A
(0) denoting the bare pole masses andgV,A the

~axial-!vector coupling constants. However, ther and a1
spectral functions account for two- and three-pion sta
only. Therefore, at higher masses, the contributions fromn-
and (2n11)-pion states~with n.1) have to be included
This can be done by an appropriate continuum ansatz c
acterized by an onset threshold and~asymptotic! plateau
value governed by perturbative QCD, e.g.,@22#,

rV,A
cont~s!5

s

8p2

1

11exp@~EV,A
thr 2As!/dV,A#

3S 11
0.22

ln@11As/~0.2GeV!#
D , ~32!

with dV5dA50.2 GeV and EV
thr.1.3 GeV, EA

thr

.1.45 GeV. The merging of the continuum plateaus in
their perturbative form is crucial to ensure the converge
of the sum rules~one-gluon exchanges do not distingui
between vector and axial-vector channels!.
01520
-
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e
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The in-medium extensions of these sum rules have b
derived in Ref.@23#. In the zero-momentum limit to which
we restrict ourselves here, one has

f p*
25E

0

`dq0
2

q0
2 @rV~q0 ,qW 50!2rA~q0 ,qW 50!# ~33!

and an analogous expression for the second one. The r
hand side ~RHS! of Eq. ~33! is now readily evaluated
employing ther and a1 spectral functions. As off-shel
properties are of potential relevance, we calculate the frer
self-energy microscopically using experimental data on
pion electromagnetic form factor andp-wave pp phase
shifts @3#. Similarly, we obtain the~imaginary part of the!
free a1 self-energy from decays intorp in terms of the free
r spectral function@3,24# @where possible energy depen
dences of the real part are neglected; that is, we t
(ma1

(0))21ReSa1
(s)[ma1

2 ; the remaining free paramete

ga1
57.8, has been fixed via Eq.~29! by requiring f p

.93 MeV#. The in-medium resonance-hole self-energ
are then introduced as described in Sec. II, i.e., Eq.~4! and
the analogous expression for thea1N* (1900)N21 excitation
@with microscopic free widths for bothN* (1520),
N* (1900), and including in-medium broadening#.

Figure 5 shows that the pion decay constant indeed
creases rather rapidly starting from low densities reachin
30–40 % reduction at normal nuclear density, depending
the precise value for thea1N* (1900)N coupling constant.
The uncertainty quickly increases towards higher densit
resulting in either a leveling-off or even a dropping to ze
However, the point here is not so much to predict quant
tively the critical density for chiral restoration but to demo
stratequalitatively that in-medium spectral functions base
on many-body excitations in the nuclear environment enc
an approach towards chiral restoration. To gain more ins
into the underlying mechanism we show in Fig. 6 the pe
nent vector and axial-vector spectral distributions in vacu

FIG. 5. Density dependence off p as extracted from the firs
Weinberg sum rule using in-mediumr and a1 spectral functions
within the schematic two-level model; the two curves correspond
branching ratios of 10%~solid line! and 15%~dashed line! for the
N* (1900)→Na1 decay.
2-7
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and at twice normal nuclear density: clearly, the chiral bre
ing in vacuum, mainly constituted through differentr anda1
pole positions, is much reduced in the medium due to
appearance of low-lying excitations as well as a smearing
the elementaryr/a1 peaks. The schematic two-level mod
employed here certainly lacks accuracy, but it is conceiva
that the inclusion of further excitations will reinforce th
tendency towards degeneration of the spectral densities.

V. SUMMARY AND CONCLUSION

The identification of experimental signatures as well
theoretical mechanisms associated with chiral symmetry
toration in hot and dense matter has become an impor
issue in~nonperturbative! strong interaction physics. In thi
article we have focused on the behavior of the vector
axial-vector correlators in cold nuclear matter which have
degenerate at the critical density. Using phenomenologic
well-motivated—albeit somewhat schematic—~two-level!
models based on low-lying resonance-hole~‘‘sobar’’ ! exci-

FIG. 6. r anda1 spectral functions~upper! andV/A correlators
divided byq0

2 ~lower! within the schematic resonance-hole mod
solid lines, freer (V); dotted lines, freea1 (A): long-dashed and
dashed lines,r (V) anda1 (A) at rN52r0.
01520
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tations, we have pursued two approaches to assess pos
avenues towards chiral restoration. In addition to the w
establishedp-sobar andr-sobar states, we have furthermo
included thea1 sobar based on theN(1900)N21 excitation
as a candidate for the chiral partner of theN(1520)N21

state.
In the first part, we constructed a chiral effective Lagran

ian for the ‘‘meson-sobar’’ fields supposed to be valid in t
medium, incorporating vector and axial-vector degrees
freedom within the massive Yang-Mills framework. The p
rameters entering this Lagrangian have been estimated
the schematic model. Within a mean-field approximatio
and imposing a general matching condition inherent in
MYM formalism, we found that the in-medium gauge co
pling ĝ and the~axial-!vector meson masses decrease w
density. Performing a rescaling of the meson-sobar fields,
argued that the latter might be identified with the fields
BR scaling.Our proposition is that these are the degrees
freedom that figure in effective Lagrangian field theory e
dowed with chiral symmetry and other flavor symmetries a
that are probed in the dilepton production experiments
high density.The fields that figure in BR scaling are ther
fore collective fields carrying the quantum numbers of m
sons and baryons treated as local fields and hence must
essarily be approximate, with their range of validi
depending on kinematics.

In the second part we have made use of the in-med
extension of the first Weinberg sum rule to evaluate the d
sity dependence of the pion decay constant. Employing
medium many-body spectral functions for both ther anda1
as arising from the two-level model, together with approp
ate ~density-independent! high energy continua,f p(rN) ex-
hibits an appreciable reduction of;30% at normal nuclear
matter density. The driving mechanism in this calculati
has been identified as a growing overlap of theV- and
A-spectral distributions due to both the appearance of
low-lying ‘‘sobar’’ excitations as well as an accompanyin
resonance broadening.

Although our modeling of the various effective intera
tions at finite density is far from complete, we expect that
qualitative features of our results will persist in a more elab
rate treatment. The latter might also provide a better estim
for the critical density with most of the uncertainty likely t
reside in thea1 channel where there is little empirical infor
mation available. QCD-based models@e.g., with instanton or
Nambu–Jona-Lasinio-~NJL-! type interactions# typically
give a rather low value forrc ~around 2r0), which might
well be due to the neglect of interactions at the compo
~hadronic! level. So far these are more reliably addressed
effective hadronic models as the one presented here.
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