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Exact dynamical approach to spherical ground-state proton emitters
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The proton emission from ground-state spherical nuclei is investigated exactly through the numerical solu-
tion of the time-dependent Schro¨dinger equation for initial single-proton quasistationary states. Contrary to
common belief, it is shown that such calculations can be performed for any proton half-life ranging from
10222–20 s, the longest proton lifetime observed at present. The important and careful choice of the initial
metastable state is clarified. Applied to the calculation of the decay width of several ground-state spherical
emitters, this method gives comparable results with the distorted wave-Born approximation and therefore
justifies its use.

PACS number~s!: 23.50.1z, 02.60.2x, 24.10.2i
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The search for and study of proton emitters is a v
active field in nuclear physics nowadays. The very r
nuclear structure information which can be extracted fr
this phenomenon at the proton dripline and the new pr
pects offered by radioactive ion beam facilities contribute
the current wealth of this field.

The decay of a nucleus by emission of one proton i
simple example of a quantum tunneling process. If
nucleus is deformed, the proton feels an anisotropic poten
barrier and therefore undergoes a multidimensional tun
ing. Ground-state proton emitters are commonly describe
single-particle quasistationary states which decay with
rather long but finite lifetime. Theoretical approaches@1–3#
have mainly dealt with the determination of the main obse
able of this phenomenon, i.e., the half-life of the proton d
cay. These approximate, stationary, schemes have bee
plied quite successfully to interpret the fast growing amo
of experimental data for spherical as well as deformed
clei. It has also been argued that the observation of the
ton decay of a deformed nucleus can bring reliable inform
tion about its deformation@4–7#.

In spite of these efforts, one still lacks a direct, exa
fully time-dependent approach to encompass the richnes
the dynamical tunneling process which lies at the heart of
proton emission. Such a method has in fact been propo
recently to treata @8# andp decays@9#. It consists of solving
numerically the time-dependent Schro¨dinger equation
~TDSE! for initial quasistationary single-particle states. Th
approach is exact~up to the numerical accuracy!, intuitive,
and fully dynamic~one follows the wave function in time!.
Moreover, its multidimensional counterpart is straightfo
ward @10#.

The question now is why such a method is not more co
monly used. We believe that the answer is built on two m
arguments which have been raised against this appro
One is of a numerical nature, the other one has a more ph
cal tone. Until now, it was believed that the numerical ac
racy required to localize tiny single-proton quasistation

*Electronic address: talou@lanl.gov
0556-2813/2000/62~1!/014609~4!/$15.00 62 0146
y

s-
o

a
e
ial
l-
as
a

-
-
ap-
t
-

o-
-

,
of
e
ed

-

-
n
ch.
si-
-
y

widths, typically of the order of 10220MeV, could not be
reached within the TDSE scheme, except in going towa
highly accurate computer codes which would, therefore,
prohibitively expensive in computer time. The second arg
ment is related to the coexistence of two drastically differ
characteristic times in the decaying system. Indeed, its l
time is typically a fraction of a second, many orders of ma
nitude larger than typical oscillations of the proton wa
function inside the metastable well. The critical question
how one can get a stable numerical solution of the Sch¨-
dinger equation that describes simultaneously these two
ferent dynamics has been raised recently by Bertulaniet al.
@11#, while applying a similar scheme to the study of th
bremsstrahlung by a tunnelinga particle.

It is the purpose of this paper to show how these t
arguments can be overcome, and that the TDSE approa
indeed able to provide reliable results for the half-lives
long-lived metastable proton states. It will also be argu
that this method presents many advantages compared t
existing stationary methods to treat more difficult proble
~fine structure in proton decay from deformed nuclei@7#,
proton emission from a deformed parent nucleus to a sph
cal daughter nucleus@12,13#, etc.!.

For now, let us briefly describe the TDSE approach~for
more details, see@8,10#!. As explained above, the idea of th
method is to solve numerically the time-dependent Sch¨-
dinger equation for initial single-proton quasistationa
states. In one-dimension~spherical decaying nucleus!, this
equation reads

i\
]

]t
cp~r ,t !5F2

\2

2m

d2

dr2
1V~r ,t !Gcp~r ,t !, ~1!

where cp(r ,t) represents the quasistationary proton sta
andV(r ,t) is the interaction between the emitted proton a
the core daughter nucleus. In this paper, we will assume
this interaction is static, i.e.,̂V(r ,t)&5V(r ). The initial
wave functioncp(r ,0) is chosen as a quasistationary,
metastable, state. The commonly used method to pre
©2000 The American Physical Society09-1
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such a state is the Gurvitz and Kalbermann procedure@14#,
i.e., a quasistationary state is defined as an eigenstate
modified Hamiltonian

@H~r !1e~r !#cqs~r !5Eqscqs~r !. ~2!

In the original Gurvitz procedure, the modification of th
potential reads

e~r !5H VB2V~r ! if r>r B

0 elsewhere,
~3!

wherer B denotes the position of the top of the barrier, a
VB5V(r B). This form of e(r ) implies that only the tail of
the wave function is significantly perturbed. We solved t
stationary Schrödinger equation for the Hamiltonian (H
1e)(r ), discretized on a spatial grid characterized by anr max
ranging from 30 to 100 fm, and a typical mesh ranging fro
0.1 to 0.5 fm. The resulting, quasistationary, wave funct
is then introduced as the initial wave function in Eq.~1!. This
TDSE is integrated using a time propagator method ca
MSD2 @15#, which is simply the predictor-corrector ‘‘leap
frog’’ method @16# without the correction step~this step is
only necessary for nonlinear potentials!. The integration has
been performed on a discretized space-time, with a typ
mesh (Dr ,Dt)5(0.5 fm, 10225 s), and r max52000 fm,
Tmax54310220 s. Typical computation times on a CRAY
J901 are of the order of a few minutes for a one-dimensio
calculation.

1All the computations presented here have been performed on
CRAY J90 computers at NERSC, Berkeley.

FIG. 1. Importance of the choice of the initial quasistationa
state for its half-life calculation. Note the removal of the ‘‘bump
in the early stage of the decay between the twol(t) curves.
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Following the wave function in time, one has access
the probability Ptun(r B ,t)5* r B

` uc(r ,t)u2dr that the proton

has tunneled at timet. From this quantity, the decay rate ca
easily be computed

l~ t !5
1

12Ptun~r B ,t !

dPtun~ t,r B!

dt
. ~4!

As shown in@8#, the ‘‘asymptotic,’’ constant value of this
quantity does not depend on the arbitrary valuer B ~in the
following calculations, the border has been chosen to be
classical outer turning point!. Moreover, it has been demon
strated that the choice of the modificatione(r ) does not
modify the results obtained for physical quantities at lar
times. This point is indeed crucial to the validity of th
TDSE scheme.

In Refs @8–10# we have shown the feasibility of suc
calculations for high-lying initial quasistationary states, p
paredà la Gurvitz. Studying deep sub-barrier decaying sta
brings new difficulties. Besides common numerical accura
details, one has to pay attention to another unexpected p
lem: the introduction of a constant potential at the top of
barrier~Gurvitz procedure! shifts the energy spectrum of th
resulting state toward its higher components. These h
energy components leave the well first, during the nonex
nential stage of the decay. Two dramatic numerical con
quences arise: first, the tunneling probabilityPtun quickly
increases toward unity, drowning any subsequent slow de
into the round-off errors of the machine. Second, these h
energy components reach the boundary of the discret
spatial grid very quickly, get reflected, and finally go bac
unphysically, into the metastable well. A first look at th
problem would suggest to either use larger spatial grids
use an absorbing imaginary wall. Unfortunately, the first

he

FIG. 2. Time evolution of the decay rates for several obser
ground-state proton emitters.
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TABLE I. Half-lives of known ground-state proton emitters. DWBA, WKB, and WKB1 estimates
from @1#, while TDSE gathers results from the current approach.Q is the laboratory proton energy correcte
for electron screening and recoil of the daughter nucleus.

Nucleus Q ~keV! Orbit DWBA WKB WKB1 TDSE

51
105Sb 491 1d5/2 20 s 24 s 19 s (19.660.1) s

55
113Cs 977 1d5/2 540 ns 640 ns 510 ns (53460.1) ns

69
147Tm 1132 1d3/2 210ms 260ms 210ms (206.8060.05)ms

71
151Lu 1255 0h11/2 60 ms 90 ms 63 ms (58.460.1) ms

73
157Ta 947 2s1/2 220 ms 170 ms 210 ms (22762) ms

83
185Bi 1611 2s1/2 3.2ms 2.5ms 3.1ms (3.1760.01)ms
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lution implies a big cost in computation time, while the se
ond destroys the unitarity of the wave function.

Another solution consists of modifying the procedure
the preparation of the initial state in order to create a s
closer to the so-called Gamow state, i.e., an eigenstate o
full Hamiltonian with outgoing boundary conditions. Such
state is characterized by a complex eigenvalue, in which
imaginary part is proportional to its decay width~see, for
example,@17#!. A word of caution is required at this stag
As stated above, the ‘‘asymptotic’’ value of the decay rate
a quasistationary state does not depend on its initial for
tion. Nevertheless, thenumerical observation of such a
value, constrained by space-time meshes, dimensions o
spatial grid, etc., can be strongly hindered by the proced
of Gurvitz if one looks at very low-lying energy states. Th
effect is illustrated in Fig. 1 where we have represented
differently prepared initial states, along with their decay ra
calculated according to Eq.~4!.

The decay rate corresponding to the ‘‘Gurvitz state’’ do
not reveal any ‘‘asymptotic’’ stationary behavior, while i
partner corresponding to ae50 state shows a clean an
accurate constant value. Note also that the ‘‘bump’’ obser
in the early stage of the decay~which goes up to 10 orders o
magnitude higher than the asymptotic stationary rate! and
which is due to the high-energy components of the me
stable state, is not present on the solid curve. The in
wave function corresponding to this latter decay rate
been obtained by solving the stationary Schro¨dinger equation
with e(r )50. Nevertheless, the boundary conditionc(r
5r max)50 wherer max corresponds to the end of the spat
grid used in the initial stationary problem, still implies th
the resulting state is not an eigenstate of the hamiltonianH
on the full spatial grid used in TDSE (r @r max). The value of
r max is chosen such that only the far tail of the wave functi
is modified~for which uc(r )u2<10220). This procedure then
enables us to calculate accurately the decay width of
quasistationary low-energy state.

From the observation of the same figure, one can a
dismiss the second argument raised against the TDSE
proach. Indeed, the initialtransient timeduring which the
decay does not follow the usual exponential law is mu
shorter than the half-life of the decaying state. These de
tions from the exponential law are predicted by quant
mechanics, and have actually been observed recentl
atomic physics@18#. The initial delay of the onset of the
exponential decay law does depend slightly on the quas
01460
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tionary state studied, namely on the value of the outer tu
ing point~which can be as much as 110 fm for some groun
state proton emitters!. Nevertheless, it is clear that one do
not need to calculate untilTmax5T1/2 to infer the decay rate
l, hence the half-lifeT1/250.693l21 of the decaying state
This last point renders TDSE calculations accessible to c
rent common computers. In the case of a time-depend
interaction, though, one should in practice push the calc
tions until the potential reaches a stationary regime~see
@13#!.

Finally, we would like to emphasize that this initialtran-
sienttime during which the decay deviates from an expon
tial law is physical and is a signature of the early formati
process of the compound nucleus and consequently of
quasistationary state. Our calculations confirm the hypoth
of Goldberger and Watson@19# that the long-time behavio
of a metastable state does not depend on its initial forma
process. In addition, our time-dependent calculations en
the study of this nonexponential decaying stage and to re
it to the physics of the metastable state formation.

Returning, let us now apply the TDSE scheme to the co
putation of the decay widths of known spherical ground-st
proton emitters.2 In order to determine the half-lives of thes
states, nuclear structure effects need to be included thro
the use of the so-called spectroscopic factors. These qu
ties can be evaluated within the independent-quasipar
approximation~BCS! @1#. In the present work, we are mainl
interested in providing exact results for the barrier pene
tion part of the process. Hence, we did not include su
structural effects and constrained ourselves to compare
results to the ones obtained within more traditional a
proaches. Figure 2 shows the time evolution of several de
rates of known proton emitters, the half-lives of which a
spread over several orders of magnitude. The half-lives
ferred through this approach are gathered in Table I al
with results taken from@1#, using the distorded wave-Bor
approximation~DWBA! formalism and the usual semiclass
cal estimates WKB-WKB1~see@1# for details!. Our exact
calculations demonstrate that DWBA results are accurate
can be considered as a reference for the calculation of

2The form and the parameters of the interacting potential h
been taken from@1#. The set WS1 of parameters has been used~see
@1#!.
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perimental spectroscopic factors. Note that the numerical
curacy obtained in TDSE depends mainly on the space-t
mesh (Dr ,Dt) used for the integration of the Schro¨dinger
equation. The present accuracy could indeed be impro
requiring a necessary trade-off with larger computat
times.

In conclusion, we have shown that solving th
time-dependent Schro¨dinger equation for initial ‘‘good’’
quasistationary states is a reliable and very powerful met
to study particle emission from nuclei. It is exact, intuitiv
and fully dynamic. It can be applied to any energy state
can also be extended to any space dimension, and can
complex phenomena for which the interacting potential
01460
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n

d

It
eat
s

time dependent. For the special case of stationary, o
dimensional interacting potentials~spherical nuclei!, we have
shown that the distorted wave-Born approximation provid
accurate results for the half-lives of the ground-state pro
emitters observed at present. Nevertheless, this latter
proach, unlike TDSE, is applicable only to time-independ
problems.

P.T. would like to thank J. M. Hyman~T-7, Los Alamos!
for valuable discussions about the numerical code used in
above calculations. Also, P.T. thanks P. B. Semmes for
dedicated help in providing and discussing the proton pot
tial parameters used in@1# and in this work.
s.

on

l
.

-

@1# S. Åberg, P.B. Semmes, and W. Nazarewicz, Phys. Rev. C56,
1762 ~1997!; 58, 3011~1998!.

@2# S.G. Kadmensky and V.P. Bugrov, Yad. Fiz.59, 402 ~1996!
@Phys. At. Nucl.59, 399 ~1996!#.

@3# E. Maglione, L.S. Ferreira, and R.J. Liotta, Phys. Rev. Lett.78,
1640 ~1997!.

@4# C.N. Davidset al., Phys. Rev. Lett.80, 1849~1998!.
@5# E. Maglione, L.S. Ferreira, and R.J. Liotta, Phys. Rev. C59,

R589 ~1999!.
@6# K. Rykaczewskiet al., Phys. Rev. C60, 011301~R! ~1999!.
@7# A.A. Sonzogniet al., Phys. Rev. Lett.83, 1116~1999!.
@8# O. Serot, N. Carjan, and D. Strottman, Nucl. Phys.A569, 562

~1994!.
@9# P. Talou, D. Strottman, and N. Carjan, Phys. Rev. C60,

054318~1999!.
@10# P. Talou, N. Carjan, and D. Strottman, Nucl. Phys.A647, 21

~1999!.
@11# C.A. Bertulani, D.T. de Paula, and V.G. Zelevinsky, Phy
Rev. C60, 031602~1999!.

@12# D. Rudolphet al., Phys. Rev. Lett.80, 3018~1998!.
@13# P. Talou, in Proceedings of the International Symposium

Proton-Emitting Nuclei, Oak Ridge, Tennessee, 1999~unpub-
lished!.

@14# S.A. Gurvitz and G. Kalbermann, Phys. Rev. Lett.59, 262
~1987!; S.A. Gurvitz, Phys. Rev. A38, 1747~1988!.

@15# T. Iitaka, Phys. Rev. E49, 4684~1994!.
@16# J.M. Hyman, inAdvances in Computer Methods for Partia

Differential Equations - III, edited by R. Vichevetsky and R.S
Stepleman~IMACS, Bethlehem, PA, 1979!, p. 313.

@17# L.D. Landau and E.M. Lifshitz,Quantum Mechanics - Non
Relativistic Theory~Oxford, Pergamon, New York, 1956!.

@18# S.R. Wilkinsonet al., Nature~London! 387, 575 ~1997!.
@19# M.L. Goldberger and K.M. Watson,Collision Theory~Wiley,

New York, 1964!.
9-4


