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Exact dynamical approach to spherical ground-state proton emitters
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The proton emission from ground-state spherical nuclei is investigated exactly through the numerical solu-
tion of the time-dependent Schiinger equation for initial single-proton quasistationary states. Contrary to
common belief, it is shown that such calculations can be performed for any proton half-life ranging from
10 22-20's, the longest proton lifetime observed at present. The important and careful choice of the initial
metastable state is clarified. Applied to the calculation of the decay width of several ground-state spherical
emitters, this method gives comparable results with the distorted wave-Born approximation and therefore
justifies its use.

PACS numbse(s): 23.50+2, 02.60-%, 24.10-i

The search for and study of proton emitters is a verywidths, typically of the order of 10?°°MeV, could not be
active field in nuclear physics nowadays. The very richreached within the TDSE scheme, except in going towards
nuclear structure information which can be extracted fromhighly accurate computer codes which would, therefore, be
this phenomenon at the proton dripline and the new prosprohibitively expensive in computer time. The second argu-
pects offered by radioactive ion beam facilities contribute toment is related to the coexistence of two drastically different
the current wealth of this field. characteristic times in the decaying system. Indeed, its life-

The decay of a nucleus by emission of one proton is dime is typically a fraction of a second, many orders of mag-
simple example of a quantum tunneling process. If thenitude larger than typical oscillations of the proton wave
nucleus is deformed, the proton feels an anisotropic potentidlinction inside the metastable well. The critical question of
barrier and therefore undergoes a multidimensional tunnelhow one can get a stable numerical solution of the Schro
ing. Ground-state proton emitters are commonly described adinger equation that describes simultaneously these two dif-
single-particle quasistationary states which decay with derent dynamics has been raised recently by Bertugarail.
rather long but finite lifetime. Theoretical approach#s3]  [11], while applying a similar scheme to the study of the
have mainly dealt with the determination of the main observbremsstrahlung by a tunneling particle.
able of this phenomenon, i.e., the half-life of the proton de- It is the purpose of this paper to show how these two
cay. These approximate, stationary, schemes have been agrguments can be overcome, and that the TDSE approach is
plied quite successfully to interpret the fast growing amounindeed able to provide reliable results for the half-lives of
of experimental data for spherical as well as deformed nulong-lived metastable proton states. It will also be argued
clei. It has also been argued that the observation of the prdhat this method presents many advantages compared to the
ton decay of a deformed nucleus can bring reliable informaexisting stationary methods to treat more difficult problems
tion about its deformatiof4—7. (fine structure in proton decay from deformed nudl€],

In spite of these efforts, one still lacks a direct, exact,proton emission from a deformed parent nucleus to a spheri-
fully time-dependent approach to encompass the richness ofl daughter nucleud 2,13, etc).
the dynamical tunneling process which lies at the heart of the For now, let us briefly describe the TDSE approdftir
proton emission. Such a method has in fact been proposedore details, se8,10]). As explained above, the idea of this
recently to treatr [8] andp decayd9]. It consists of solving method is to solve numerically the time-dependent Schro
numerically the time-dependent ScHiaoger equation dinger equation for initial single-proton quasistationary
(TDSB for initial quasistationary single-particle states. Thisstates. In one-dimensiofspherical decaying nucleysthis
approach is exadup to the numerical accuragyintuitive,  equation reads
and fully dynamic(one follows the wave function in time
Moreover, its multidimensional counterpart is straightfor-
ward [10]. .

The question now is why such a method is not more com- 'ﬁﬁ'pp(r’t):
monly used. We believe that the answer is built on two main
arguments which have been raised against this approach.

One is of a numerical nature, the other one has a more physivhere #,(r,t) represents the quasistationary proton state,
cal tone. Until now, it was believed that the numerical accu-andV(r,t) is the interaction between the emitted proton and
racy required to localize tiny single-proton quasistationarythe core daughter nucleus. In this paper, we will assume that
this interaction is static, i.e{V(r,t))=V(r). The initial
wave function ¢,(r,0) is chosen as a quasistationary, or
*Electronic address: talou@lanl.gov metastable, state. The commonly used method to prepare
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. o o ground-state proton emitters.
FIG. 1. Importance of the choice of the initial quasistationary

state for its half-life calculation. Note the removal of the “bump”

in the early stage of the decay between the M) curves. Following the wave function in time, one has access to

the probability Ptun(rB,t)=f§°B|¢//(r,t)|2dr that the proton
such a state is the Gurvitz and Kalbermann proceflisié has tunneled at time From this quantity, the decay rate can
i.e., a quasistationary state is defined as an eigenstate ofeasily be computed

modified Hamiltonian

[H(r)+e(r)]d/qs(r):Eqslﬁqs(r)- 2 ANt)=

In the original Gurvitz procedure, the modification of the
potential reads

1 dPyn(t,rg) (4)
1-Pyn(rg,t) dt ’

As shown in[8], the “asymptotic,” constant value of this

Va—V(r) ifr=r quantity does not depend on the arbitrary vatge(in the
ery=1 ° B 3)  following calculations, the border has been chosen to be the
0 elsewhere, classical outer turning pointMoreover, it has been demon-

. ) strated that the choice of the modificati@r) does not
whererg denotes the position of the top of the barrier, andpy, iy the results obtained for physical quantities at large
Vg=V(rg). This form of (r) implies that only the tail of ines™ This point is indeed crucial to the validity of the
the wave functlllon is significantly perturbed. We solved therpse scheme.
stationary Schr@linger equat.ion for the Hamiltonian?—z( In Refs [8-10] we have shown the feasibility of such
+€)(r), discretized on a spatial grid characterized by @ cajculations for high-lying initial quasistationary states, pre-
ranging from 30 to 100 fm, and a typical mesh ranging fromyreqa 1a Gurvitz. Studying deep sub-barrier decaying states
Q.l to Q.5 fm. The result!ng_, quasistationary, wave fo_‘Ctlorbrings new difficulties. Besides common numerical accuracy
is then _mt_roduced as th_e |n|t|al_ wave function in Ef). This details, one has to pay attention to another unexpected prob-
TDSE s integrated using a time propagator method callegem; the introduction of a constant potential at the top of the
MSD2 [15], which is simply the predictor-corrector “leap- parrier(Gurvitz procedurgshifts the energy spectrum of the
frog” method [16] without the correction stefthis step is  egylting state toward its higher components. These high-
only necessary for nonlinear potential$he integration has  energy components leave the well first, during the nonexpo-
been performed on a d|scret|§5ed space-time, with a typicglengial stage of the decay. Two dramatic numerical conse-
mesh @r,A_tz)Oz(O.S fm, 10°®s), and rm=2000 fm,  guences arise: first, the tunneling probabily,, quickly
Tmg=4x10""s. Typical computation times on a CRAY increases toward unity, drowning any subsequent slow decay
J90 are of the order of a few minutes for a one-dimensionaliyg the round-off errors of the machine. Second, these high-
calculation. energy components reach the boundary of the discretized
spatial grid very quickly, get reflected, and finally go back,
unphysically, into the metastable well. A first look at this
IAll the computations presented here have been performed on tHeroblem would suggest to either use larger spatial grids or
CRAY J90 computers at NERSC, Berkeley. use an absorbing imaginary wall. Unfortunately, the first so-
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TABLE |. Half-lives of known ground-state proton emitters. DWBA, WKB, and WKB1 estimates are
from [1], while TDSE gathers results from the current appro&is the laboratory proton energy corrected
for electron screening and recoil of the daughter nucleus.

Nucleus Q (keV) Orbit DWBA WKB WKB1 TDSE
$9°sh 491 1ds), 20s 24's 19s (1960.1) s
s 977 ds, 540 ns 640 ns 510 ns (530.1) ns
m 1132 g, 210us 260us 210us (206.80-0.05) us
Bhu 1255 thyyp 60 ms 90 ms 63 ms (58#0.1) ms
Ta 947 21 220 ms 170 ms 210 ms (222) ms
i 1611 Xy 3.2us 2.5us 3.1us (3.17:0.01) us

lution implies a big cost in computation time, while the sec-tionary state studied, namely on the value of the outer turn-
ond destroys the unitarity of the wave function. ing point(which can be as much as 110 fm for some ground-
Another solution consists of modifying the procedure ofstate proton emitteysNevertheless, it is clear that one does
the preparation of the initial state in order to create a stat@ot need to calculate until,,,,=Ty, to infer the decay rate
closer to the so-called Gamow state, i.e., an eigenstate of the hence the half-lifeT ;,,=0.693\ ~* of the decaying state.
full Hamiltonian with outgoing boundary conditions. Such a Thjs |ast point renders TDSE calculations accessible to cur-
state is characterized by a complex eigenvalue, in which thgant common computers. In the case of a time-dependent
imaginary part is proportional to its decay widteee, for  ihteraction, though, one should in practice push the calcula-

example[17]). A word of caution is required at this stage. ions until the potential reaches a stationary regifeee
As stated above, the “asymptotic” value of the decay rate o a[13])

a quasistationary state does not depend on its initial form
tion. Nevertheless, thewumerical observation of such a
value, constrained by space-time meshes, dimensions of t

Finally, we would like to emphasize that this initiahn-
I%enttime during which the decay deviates from an exponen-

spatial grid, etc., can be strongly hindered by the procedurgal law is physical and is a signature of the early formation
of Gurvitz if one looks at very low-lying energy states. This P'O¢€SS of the compound nucleus and consequently of the

effect is illustrated in Fig. 1 where we have represented twdluasistationary state. Our calculations confirr_n the hypojchesis
differently prepared initial states, along with their decay ratef Goldberger and Watsofi9] that the long-time behavior
calculated according to E¢4). of a metastable state does not depend on its initial formation
The decay rate corresponding to the “Gurvitz state” doesProcess. In addition, our time-dependent calculations enable
not reveal any “asymptotic” stationary behavior, while its f[he study of th|s nonexponential decaying stage and to relate
partner corresponding to a=0 state shows a clean and It 10 the p'hyS|cs of the metastable state formation.
accurate constant value. Note also that the “bump” observed Returning, let us now apply the TDSE scheme to the com-
in the early stage of the decéwhich goes up to 10 orders of Putation of the decay widths of known spherical ground-state
magnitude higher than the asymptotic stationary)rated ~ Proton emitter€.In order to determine the half-lives of these
which is due to the high-energy components of the metastates, nuclear structure effects need to be included through
stable state, is not present on the solid curve. The initialhe use of the so-called spectroscopic factors. These quanti-
wave function corresponding to this latter decay rate haé€s can be evaluated within the independent-quasiparticle
been obtained by solving the stationary Scinger equation ~ @pproximationBCS) [1]. In the present work, we are mainly
with €(r)=0. Nevertheless, the boundary conditigr(r interested in providing exact results for the barrier penetra-
=1 ma) =0 Wherer .., corresponds to the end of the spatial tion part of the process. Hence, we did not include such
grid used in the initial stationary problem, still implies that Structural effects and constrained ourselves to compare our
the resulting state is not an eigenstate of the hamiltopian "esults to the ones obtained within more traditional ap-
on the full spatial grid used in TDSE % ,5,). The value of proaches. Figure 2 shows t_he time evolutlc_m of sever_al decay
I max IS Chosen such that only the far tail of the wave function’@t€s of known proton emitters, the half-lives of which are
is modified (for which | 4(r)|?<10~2%). This procedure then spread over several orders of magnitude. The half-lives in-

enables us to calculate accurately the decay width of anfgrred through this approach are gathered in Table | along
quasistationary low-energy state. with results taken fronj1], using the distorded wave-Born

From the observation of the same figure, one can als@PProximationDWBA) formalism and the usual semiclassi-
dismiss the second argument raised against the TDSE af@ estimates WKB-WKBL(see[1] for detail. Our exact
proach. Indeed, the initidransient timeduring which the calculations demonstrate that DWBA results are accurate and

decay does not follow the usual exponential law is mucHan be considered as a reference for the calculation of ex-
shorter than the half-life of the decaying state. These devia-

tions from the exponential law are predicted by quantum

mechanics, and have actually been observed recently in?The form and the parameters of the interacting potential have
atomic physicg18]. The initial delay of the onset of the been taken fronil]. The set WS1 of parameters has been used
exponential decay law does depend slightly on the quasistdi]).
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perimental spectroscopic factors. Note that the numerical adime dependent. For the special case of stationary, one-
curacy obtained in TDSE depends mainly on the space-timdimensional interacting potentialspherical nuclgi we have

mesh (r,At) used for the integration of the Schilinger  shown that the distorted wave-Born approximation provides
equation. The present accuracy could indeed be improvedccurate results for the half-lives of the ground-state proton
requiring a necessary trade-off with larger computationemitters observed at present. Nevertheless, this latter ap-

times. . _ proach, unlike TDSE, is applicable only to time-independent
In conclusion, we have shown that solving theproblems.

time-dependent Schdinger equation for initial “good”

quasistationary states is a reliable and very powerful method P.T.would like to thank J. M. Hyma(ir-7, Los Alamos

to study particle emission from nuclei. It is exact, intuitive, for valuable discussions about the numerical code used in the
and fully dynamic. It can be applied to any energy state. ltabove calculations. Also, P.T. thanks P. B. Semmes for his
can also be extended to any space dimension, and can treggtdicated help in providing and discussing the proton poten-
complex phenomena for which the interacting potential istial parameters used iri] and in this work.
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