
pan

PHYSICAL REVIEW C, VOLUME 62, 014316
Validity of the SD-pair truncation of the shell model
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The validity of theSD-pair truncation of the shell model is tested in a singlej shell and in manyj shells
within the framework of the nucleon pair shell model. It is found that theSD-pair truncation is a good
approximation of the shell model in the single-j case when the Hamiltonian consists of~monopole and quad-
rupole! pairing plus quadrupole-quadrupole-type interaction. TheSD-pair truncation deteriorates if the
quadrupole-quadrupole interaction is artificially large compared with the monopole pairing interaction. For
multi-j shells, schematic calculations in the degeneratesd, pf, andsdgshells are performed for the extreme case
of a pure quadrupole-quadrupole interaction. There is a large difference between the binding energies in the
SD-pair-truncated subspace and those calculated in the full shell model space as in the case of a single-j shell.
However, it is found that the basic properties of the band structure remain intact, and that the difference in
energy levels, i.e., moments of inertia, can be easily absorbed by adjusting interaction strengths without
changing the transition rates.

PACS number~s!: 21.10.Re, 21.60.Cs, 21.60.Ev, 23.20.Js
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I. INTRODUCTION

The interacting boson model~IBM ! @1# has proved to be a
great success in describing the low-lying nuclear collect
motion in medium and heavy mass nuclei. Since the inv
tion of the IBM, many efforts have been made to understa
the microscopic foundation of the IBM. In the IBM, th
Hamiltonian and the configuration space are constructed
ing s andd bosons. These bosons are interpreted as cohe
SD nucleon pairs with angular momenta of 0 and 2, resp
tively. Therefore, in order to derive the IBM Hamiltonia
from the shell model, one first needs to check the validity
nucleon pair approximation of the shell model. It is ve
interesting to study how well the diagonalization of t
Hamiltonian in theSD-pair-truncated subspace, which a
determined to maximize the nuclear collectivity, can rep
duce the results of full shell model~SM!.

Recently, the authors of Ref.@2# generalized the Wick
theorem, which works efficiently for coupled fermion pair
Based on this technique, they proposed a nucleon-pair s
model~NPSM! @3#. In the NPSM, nucleon pairs with variou
angular momenta are used as the building blocks of the t
cated shell model space. If these building blocks are
stricted toSD pairs, the NPSM is reduced to the SD pa
approximation of the shell model. Using an ordinary p
sonal computer, one can calculate up to four or even
proton and neutron pairs outside the inert core for muj
shells. In this paper, we test theSD-pair approximation for
both a single closed shell and an open shell by comparing
calculated results in theSD-pair subspace and results in th
full SM space. If calculated results of low-lying states a
very consistent with or close to the results in the full S
space, theSD-pair truncation is said to be a good approx
mation of the SM.

Prior to this work, many papers~e.g., Ref.@4#! tested~the
SD-pair truncation of the shell model space. The differen
0556-2813/2000/62~1!/014316~9!/$15.00 62 0143
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in this paper is that we go to open shells for multi-j cases of
up to three pairs. In previous studies, comparisons of ca
lations within the SD-pair subspace and the shell mod
space were presented only for up to three pairs for the twj
case of a single closed shell, or two proton pairs and t
neutron pairs of open shells. The multi-j case was rathe
difficult to tackle in the past. One of the reasons for this
that without the technique of Ref.@2# it would be very diffi-
cult to calculate the matrix elements in theSD-pair configu-
rations when theD pair number is equal to or greater than
In this paper, we present a comparison between theSD-pair
approximation and the full shell model calculation throug

out the whole schematic single-j (nl j 55511
2 ) shell, where

we assume a residual interaction of pairing plus
quadrupole-quadrupole interaction which simulates vib
tional nuclei. In the degeneratesd, pf, and sdg shells, we
assume that the Hamiltonian consists of pure quadrup
quadrupole interaction since this is the case where Ellio
SU~3! model is applied, and exact results are known anal
cally. Here it is expected that theSD-pair approximation is
rather poor, since earlier works indicated that we need hig
angular momentum pairs such asG pairs @4#. In this paper,
however, we show that essential properties such as b
structures are kept intact within theSDsubspace, and that th
difference in moment of inertia can be absorbed by adjus
interaction strength.

This paper is organized as follows. In Sec. II, we spec
our definition ofS andD pairs and the Hamiltonian. In Sec
III, we study a doubly even proton-neutron system which i
single-j shell using the~monopole and quadrupole! pairing
plus QQ interaction. In Sec. IV, we study degeneratesd, pf,
andsdgshells assuming pure a quadrupole-quadrupole in
action in the Hamiltonian. Then we compare the results
the SD-pair truncation with analytical results of Elliott’s
SU~3! model. Discussions and a conclusion are given in S
V.
©2000 The American Physical Society16-1
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II. SD-PAIR APPROXIMATION AND THE HAMILTONIAN

The collective pair of angular momentumr, with its pro-
jection m, is defined as

Am
r†5(

ab
y~abr!~Ca

†3Cb
†!m

r , ~1!

whereCa
† andCb

† are single-particle creation operators, a
r 50 and 2 correspond to theSDpairs, respectively.a andb
denote all quantum numbers~except the magnetic quantum
number! necessary to specify a state@a[(nl j )#. We also
use them to denote the angular momentum of the sin
particle orbit, where there is no confusion~i.e., a is used to
label the single-particle orbit as well as to denote the co
spondingj value!. y(abr) are structure coefficients of th
collective pairs. TheseSD pairs are coupled step by step
yield a complete set of theN SD-pair subspace, which ha
the same dimension as thesd IBM boson space in genera
except for few cases where some states are Pauli forbid

In this paper, the Hamiltonian is chosen as

H5Hp1Hn1kQpQn . ~2!

The aboveHp andHn are Hamiltonians for valence proton
and valence neutrons, respectively, which consist of sin
particle energy, monopole and quadrupole pairing, and qu
rupole quadrupole particle-hole interaction. Their expli
forms are

Hs5(
a

easCas
† Cas1GsPs

†Ps1Gs
2Ps

~2!†Ps
~2!1ksQsQs ,

~3!

wheres stands forp or n, and

Ps
†5

ĵ s

2
~Cas

† Cas
† !0

0,

PsM
~2!†5 (

asbs

q~asbs!~Cas
† 3Cbs

† !M
2 , ~4!

with ĵ s5(2 j s11)1/2, and M50,61,62; q(asbs) is the
same factor as that which appears in theQs operator, which
is defined as

QsM5 (
asbs

q~asbs!~Cas
† 3C̃bs!M

2

52 (
asbs

1

A5
^asir 2Y2ibs&~Cas

† 3C̃bs!M
2 . ~5!

It is easy to show that

q~ab!5
~2 ! j 11/2

A20p
ĵ ĵ 8Cj 1/2,j 821/2

20 ^nlur 2unl8&,

whereCj 1/2,j 821/2
20 is the Clebsch-Gordan coefficient. The m

trix elements forr 2 are given in@5#:
01431
e-

-

n.

e-
d-
t

^nlur 2unl8&

5H ~n13/2!r 0
2, l 5 l 8,

~n1 l 81261!1/2~n2 l 81171!1/2r 0
2, l 5 l 862,

~6!

where r 0
25\/MNv051.012A1/3 fm2, and the harmonic-

oscillator wave function is used.MN is nucleon mass andv0
is the harmonic-oscillator frequency. In this paper, we
r 0[1 fm for the sake of simplicity.

III. SINGLE- j CASE

The single-j shell is the simplest case because one
only one kind ofS pair andD pair, i.e., y(abr)5da jdb j .

Here we choose (nl j )5(5511
2 ), with e11/250. One set of

Hamiltonian parameters, which simulates vibrational nuc
is listed in Table I. Figure 1 presents a detailed compari

TABLE I. Parameters used in the Hamiltonian.Gs is in MeV,
and Gs

2, ks , and k are in MeV/fm4. Gp
2 5Gn

2 and kp5kn for
simplicity. The sign ofk is negative if the valence shells of bot
protons and neutrons are half-filled before or half-filled afterwa
otherwise it is positive.

Gn Gp Gs
2 ks k

20.131 20.180 20.023 20.020 60.07

FIG. 1. Total binding energiesT and contribution to binding
energies~in MeV! from the monopole pairing termM, quadrupole
pairing term~QP!, and quadrupole-quadrupole~QQ! interactions for
the single-j case. The abscissa isNn , and the ordinate is the binding
energy~or the contribution to the binding energy!. Np andNn are
numbers of proton and neutron pairs, respectively. The dotted l
are results calculated in the full shell model space, and the s
lines are results calculated using theSD-pair truncation.
6-2



t t
o
e
.
a

ion
he
m

re
r
a

co
t
in
ca
g

t i
ng
au
e-
el

st
he
m

s
ha

a
ng

tly
fo

th
f
t
n

he
e

th

rm
-
fo
le
ic
u
fe

in
nt

are
in
are
ra-
its

s

he

he

ll

del

VALIDITY OF THE SD-PAIR TRUNCATION OF THE . . . PHYSICAL REVIEW C 62 014316
of calculated binding energy from each term within theSD-
pair subspace and that in the whole SM space. Note tha
single-particle contribution is omitted, since this term is n
interesting in a single-j shell. The total binding energies ar
almost perfectly reproduced. It is easy to notice from Fig
that among the contributions to binding energies from
terms in the Hamiltonian the quadrupole pairing contribut
within the SD-pair subspace agrees well with that within t
whole SM space. In the open shell, the contribution fro
monopole pairing interaction calculated in the SM space
slightly and systematically smaller than that from the cor
sponding term using theSD-pair truncation. On the othe
hand, contributions from the quadrupole-quadrupole inter
tion and the quadrupole pairing interaction using theSD-pair
truncation are systematically smaller than those from the
responding terms in the SM space. Because the above
opposite disagreements cancel each other out, the total b
ing energy calculated in the shell model space and that
culated in theSD-pair truncation are almost the same in ma
nitude @6#.

According to the above calculation, it is expected tha
the strengthk is gradually enlarged the agreement of bindi
energy between these two calculations deteriorate bec
the contribution to binding energy from quadrupol
quadrupole interaction which is calculated in the full sh
model space is larger than that calculated in theSD-pair trun-
cation. On the other hand, however, because the ground
in the SD-pair truncation can never be lower than that in t
SM calculation, and the contribution to binding energy fro
monopole pairing in theSD-pair truncation is larger than it
contribution calculated in the SM calculation, we expect t
the agreement between calculated binding energies in theSD
subspace and those calculated in the full shell model sp
should not deteriorate if we artificially increase the pairi
interaction strength. We note that in the single closed~i.e.,
Np50, hereNp means number of proton pairs! case, the
contribution of binding energies from every term is exac
the same as that from the shell model calculation. In fact,
the single closed shell ofj 511/2, the dimension of 01 states
in the SD-pair subspace is always the same as that in
shell model space. As a consequence, the calculation oev-
ery term in theSD-pair subspacemustbe equivalent to tha
in the shell model space. The eigenvalues and wave fu
tions for all the 01 states in theSD-pair subspace areiden-
tical as those in the shell model. In the case of an open s
the situation is different, since the dimension of the sh
model space is much larger than that of theSD-pair sub-
space. From Fig. 1, it is also easy to notice that when
nucleon pair number is more than 1/2V j51/2(j 11/2)53
and Np51 or 2, the agreement between the term by te
contribution calculated in theSD-pair truncation and that cal
culated in the full SM space is not satisfactory, especially
the contribution from monopole pairing and quadrupo
quadrupole force. The differences of these two terms, wh
are comparable in magnitude and opposite in sign, are q
large. An unexpected phenomenon is that the above dif
ences become very small for the cases ofNp53 or Nn53.
This behavior of the half-filled case is even more surpris
in the schematic multi-j case in Sec. IV. In Fig. 2, we prese
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a comparison between low-lying excited energies which
calculated in theSD-pair subspace and those calculated
the full SM space for three typical cases. The other cases
omitted to save space in this paper. Although the configu
tion space of the shell model is much larger than that of
SD-pair subspace, low-lying states, e.g., 21

1, 41
1 , etc., are

reasonably reproduced if they belong to theSD-pair sub-
space.

Some importantE2 transitions between low-lying state
in the SD-pair subspace are calculated usingep51.3e and
en50.9e. A comparison between theseE2 transition rates
calculated in theSD subspace and those calculated in t
shell model is given in Table II. According to Table II,E2
transitions between low-lying states such as 21

1→01
1 , 22

1

→02
1 , 41

1→21
1 , and 22

1→21
1 agree well in the two calcu-

lations ~the SM and itsSD-pair truncation!. The calculated
transitions of 42

1→21
1 and 42

1→22
1 in the SD-pair trunca-

tion sometimes do not fit well with results calculated in t
full shell model space. The reason is that the 42

1 state in the
shell model does not necessarily correspond to the 42

1 state
in the SD-pair truncation~the energy density of the she
model is much larger than that of theSD-pair subspace in

FIG. 2. Excitation energies~in MeV! in the single-j case. The
left-hand side presents the results calculated in the full shell mo
space, and the right-hand side gives results in the truncatedSD-pair
subspace. Refer to Table I for the parameters.
6-3
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TABLE II. Some typicalE2 transition strengths~single-j case!. We useep51.3e anden50.9e. TheE2
transition strengths are ine2 fm2.

Nn Np 21
1→01

1 22
1→02

1 22
1→21

1 41
1→21

1 42
1→21

1 42
1→22

1

0 2~SM! 8.8452 2.2645 10.7132 10.2204 2.1271 1.0256
0 2(SD) 8.8449 2.6486 10.8173 6.5606 - -
1 3~SM! 14.3868 0.0580 2.9370 22.9947 0.0459 10.0865
1 3(SD) 13.8129 0.0985 3.3962 16.5084 1.6374 2.6001
2 0~SM! 4.2304 1.0924 5.1663 5.0031 0.8968 0.5128
2 0(SD) 4.2301 1.2716 5.2178 3.1239 - -
2 2~SM! 18.8828 3.8025 10.7182 27.4768 1.8276 1.4833
2 2(SD) 16.8025 4.5778 9.7368 19.8780 2.1620 0.5085
3 1~SM! 14.0455 1.3931 12.2893 19.2383 0.2273 5.5107
3 1(SD) 12.3957 1.5299 11.9986 13.6100 0.0000 3.4772
3 3~SM! 21.4689 8.5278 31.7663 30.1148 0.0000 16.5408
3 3(SD) 19.5008 7.0591 26.9541 23.4722 0.7646 12.1028
ee
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many cases!. There is a possibility that 42
1 is related to the

hexadecapole degree of freedom.
Although the agreement of higher states does not s

very good in cases of open shells, the results indicate tha
this small single-j shell the SD-pair truncation is an ex-
tremely good approximation of the full shell model for th
low-lying states, because the calculation within theSD-pair
subspace reasonably reproduces most of the physical qu
ties. In other words, although theSD-pair subspace is muc
smaller than the full shell model space in the above calc
tions, it includes most important parts of the shell mod
space for low-lying excitations in the above single-j shell.
We emphasize here that the good agreement in this ca
partly due to the facts that we have a moderate pair
strength and thatj is very small. In the case of deforme
nuclei where quadrupole-quadrupole interaction is stro
and thej value is large, the results might not be so good

IV. MULTI- j CASES

Calculation in a multi-j shell is much more complicate
and time consuming than that in a single-j shell, both for the
SM calculation and itsSD-pair approximation. In the SM
calculation in a multi-j shell, up to 6–8 particles can be tac
led in a single closed shell~depending on the degeneracy
the shell!. In the realistic case of an open shell, it is e
tremely difficult or even impossible to carry out the sh
model calculation when particle numbers of both valen
protons and valence neutrons go up to 6 for medium
heavy nuclei, because the dimension of the configura
space is tremendously or even prohibitively huge.

Fortunately, for deformed nuclei one can apply Elliot
SU~3! model for the degeneratesd, pf, andsdgshells when
the Hamiltonian is assumed to be pure quadrupo
quadrupole interaction. In this section, the Hamiltonian
chosen to be symmetric between protons and neutrons,
to be written in terms of the Casimir operators of the gro
chain SU(K).SU~3!.O~3! ~K56, 10, and 15 for thesd, pf,
andsdgshells, respectively@7#!. H is written as
01431
m
in

nti-

-
l

is
g

g

l
e
d
n
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s
nd
p

H52k~Qp1Qn!~Qp1Qn!

52k
5

2p S 1

2
~l21lm1m213l13m!2

3

8
L~L11! D ,

~7!

where 1
2 (l21lm1m213l13m)5CSU~3!pn is the eigen-

value of the Casimir operator for the SU~3!pn group, andk is
chosen to be 16p/5~MeV! for the sake of simplicity. It
should be noted that this Hamiltonian depends only on
orbital angular momentum, and is completely free from t
spin degree of freedom. The single-particle levels are
noted by

~nl j !5~201
2 !,~223

2 !,~225
2 ! for the sd shell,

~nl j !5~311
2 !,~313

2 !,~335
2 !,~337

2 ! for the p f shell,
~8!

~nl j !5~401
2 !,~423

2 !,~425
2 !,~447

2 !,~449
2 !

for the sdg shell.

There are several tables@7# of irreducible representations fo
the SU(K).SU~3!.O~3! for thesdandsdgshells. In Table
III, we list several low-lying SU~3!pn irreducible representa
tions (l,m)pn

S 5(l,m)p
Sp3(l,m)n

Sn which are interesting in
our consideration. The suffixS represents the spin angula
momentum.

Now we come to the question of theSD pair structures.
First we solve the BCS equation to obtainua and va , the
empty and occupied amplitudes for orbita for a certain pair-
ing interaction, respectively. Because we use the degene
single-particle levels, theseua andva are independent on th
pairing strengths. The collectiveS pair is defined to be@8#

S†5(
a

y~aa0!~Ca
†3Ca

†!0,
6-4
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TABLE III. In this table, we list several SU(3)pn irreducible representations which correspond to the low-lying excitation ba
(ln ,mn)Sn and (lp ,mp)Sp and their direct products are sufficient to present~at least! low-lying bands, although they are incomplete~a
complete table is too large!. The superscriptsSp andSn are spins corresponding to irreducible representations of proton and neutron de
of freedom, respectively. The total spinS is determined usingS5Sp1Sn . The caseS50 corresponds toSp5Sn50; S51 corresponds to
Sp(Sn)50(1) orSn(Sp)51(0); andS50,1,2 corresponds toSp5Sn51. From the reduction rule of SU~3!→SO~3! @7# it is easy to obtain
the orbital angular momentumL . The total angular momentum is determined byJ5L1S. In k(l,m)pn

S , k denotes the number of times tha
the irreducible representation (l,m)pn

S appears.k is omitted for the sake of simplicity in the case ofk51.

Np Nn (lp ,mp)Sp (ln ,ln)Sn (l,m)pn
S

sd shell

1 1 (4,0)0, (2,1)1 (4,0)0, (2,1)1 (8,0)0, (6,1)0, 2(6,1)1

1 2 (4,0)0, (2,1)1 (4,2)0, (5,0)1 (8,2)0, (6,3)0, (6,3)1, (9,0)1, (7,1)0,1,2

1 3 (4,0)0, (2,1)1 (6,0)0, (3,3)1, (4,1)1 (10,0)0, (8,1)0, 2(8,1)1, (7,3)1

2 2 (4,2)0, (5,0)1 (4,2)0, (5,0)1 (8,4)0, (6,5)0, 2(9,2)1, (10,0)0,1,2

2 3 (4,2)0, (5,0)1 (6,0)0, (3,3)1, (4,1)1 (10,2)0, (8,3)0, (11,0)1, (9,1)0,1,2

(7,5)1, 2(8,3)1, (8,3)0,1,2

3 3 (6,0)0, (0,6)0, (3,3)0,1 (6,0)0, (0,6)0, (3,3)0,1 (12,0)0, (0,12)0, (10,1)0, 2(9,3)0,1, 2(3,9)0,1

pf shell

1 1 (6,0)0, (4,1)1 (6,0)0, (4,1)1 (12,0)0, (10,1)0, 2(10,1)1

1 2 (6,0)0, (4,1)1 (8,2)0, (9,0)1 (14,2)0, (12,3)0, (12,3)1, (15,0)1,
(13,1)1, (13,1)0,1,2

1 3 (6,0)0, (4,1)1 (12,0)0, (6,6)0,
(9,3)1, (10,1)1

(18,0)0, (16,1)0, (12,6)1, (15,3)1,
2(16,1)1, (10,7)1, (13,4)0,1,2, (14,2)0,1,2,

1 4 (6,0)0,(4,1)1 (10,4)0, (11,2)1 (16,4)0, (14,5)0, (14,5)1, (17,2)1,
(15,3)0,1,2

2 2 (8,2)0, (9,0)1 (8,2)0, (9,0)1 (16,4)0, (14,5)0, 2(17,2)1, (18,0)0,1,2,

2 3 (8,2)0, (9,0)1 (12,0)0, (6,6)0,
(9,3)1, (10,1)1

(20,2)0, (14,8)0, (18,3)0, (21,0)1,
(19,1)1, (15,6)1, (18,3)0,1,2, (19,1)0,1,2

2 4 (8,2)0, (9,0)1 (10,4)0, (11,2)1 (18,6)0, (16,7)0, 2(19,4)1, (20,3)0,1,2

3 3 (12,0)0, (6,6)0

(9,3)1, (10,1)1
(12,0)0, (6,6)0

(9,3)1, (10,1)1
(24,0)0, (22,1)0, (12,12)0, 2(21,3)1,
2(22,1)1, 2(15,9)1, 2(16,7)1, (18,6)0,1,2

3 4 (12,0)0, (6,6)0,
(9,3)1, (10,1)1

(10,4)0, (11,2)1 (22,4)0, (20,5)0, (16,10)0, (14,11)0, (19,7)1

(20,5)1, (23,2)1, (21,3)1, (21,3)0,1,2, (20,5)0,1,2

4 4 (10,4)0, (11,2)1 (10,4)0, (11,2)1 (20,8)0, (18,9)0, 2(21,6)1,2 (19,7)1, (22,4)0,1,2

sdgshell

1 1 (8,0)0, (6,1)1 (8,0)0, (6,1)1 (16,0)0, (14,1)0, 2(14,1)1, 2(12,2)1, (12,2)0,1,2

1 2 (8,0)0, (6,1)1 (12,2)0, (13,0)1 (20,2)0, (18,3)0, (18,3)1, (21,0)1, (19,1)0,1,2

1 3 (8,0)0, (6,1)1 (18,0)0, (15,3)0, (15,3)1 (26,0)0, (24,1)0, (23,3)0, (23,3)1, (24,1)1,
(21,4)1, (21,4)0,1,2

1 4 (8,0)0, (6,1)1 (18,4)0, (20,0)0, (19,2)1 (26,4)0, (24,5)0, (28,0)0, (27,2)1,
(24,5)1, (26,1)1

2 2 (12,2)0, (13,0)1 (12,2)0, (13,0)1 (24,4)0, (22,5)0, 2(25,2)1, (26,0)0,1,2,

2 3 (12,2)0, (13,0)1 (18,0)0, (15,3)0, (15,3)1 (30,2)0, 2(28,3)0, (27,5)0, (27,5)1, 2(28,3)1,
(31,0)1, (28,3)0,1,2

2 4 (12,2)0, (13,0)1 (18,4)0, (20,0)0, (19,2)1 (30,6)0, (28,7)0, (32,2)0, (30,3)0, (31,4)1,
(33,0)1, (31,4)1, (32,2)0,1,2

3 3 (18,0)0, (15,3)0, (15,3)1,
(16,1)1

(18,0)0, (15,3)0, (15,3)1,
(16,1)1

(36,0)0,2(33,3)0, (34,1)0, (30,6)0, 2(33,3)1,
2(30,6)1, 2(34,1)1, (30,6)0,1,2

3 4 (18,0)0, (15,3)0, (15,3)1 (18,4)0, (20,0)0, (19,2)1 (36,4)0, (34,5)0, (33,7)0, (38,0)0, (35,3)0,
(33,7)1, (35,3)1, (37,2)1, (34,5)1, (34,5)0,1,2

4 4 (18,4)0, (20,0)0, (19,2)1 (18,4)0, (20,0)0, (19,2)1 (36,8)0, 2(38,4)0, (40,0)0, 2(37,6)1, 2(39,2)1,
(38,4)0,1,2
014316-5
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y~aa0!5â
va

ua
5âAS N

V2ND 1/2

, ~9!

and theD pair is obtained by using the commutator@8#

D†5
1

2
@Q,S†#5(

ab
y~ab2!~Ca

†3Cb
†!2. ~10!

Here the operatorQ is defined in Eq.~5!. From Eq.~10!, it is
easy to obtain

y~ab2!52q~ab!AS N

V2ND 1/2

, ~11!

There are other ways to defineD pair, but it is expected tha
the above way is one of the best ways when the quadrup
quadrupole interaction between protons and neutrons
strong. For nuclei with proton numbers and/or neutron nu
bers near the magic number~s! where interactions betwee
like particles are important compared with those betwe
unlike particles, we must seek other methods. Note that
have omitted the subscripts in Eqs. ~9!–~11! since we de-
termine theSD pairs separately for protons and neutrons
the same way, and this omission does not cause confus

Within the subspace made of the aboveSD pairs, Hamil-
tonian ~7! is diagonalized to calculate the binding energi
the excited levels, wave functions, andE2 transition rates.
Table IV lists a comparison between binding energies ca
lated in the full SM space@here we use analytical formulas o
the Elliott’s SU~3! model#, and those calculated within th
framework of theSD nucleon pair shell model. We see th
the binding energies calculated in theSD-pair subspace in al
cases~exceptNp5Nn53 in thesd shell, where they are the
same! are much smaller than those calculated in the full S
space. It is consistent with the above singlej case where the
contribution to the binding energy from the quadrupo
quadrupole interaction in theSD subspace is smaller tha
that in the shell model space. This difference seems to
come larger and larger with the major quantumn of the shell,
or the number of single-particle levels. It is easy to note
Table III that there are two degenerate‘‘ground’’ bands
the Np5Nn53 case of thesd shell; they belong to the
(l,m)pn5(12,0)pn

0 and (0,12)pn
0 cases, respectively. For th

sake of simplicity, however, we refer to a band which cor
sponds to a (12,0)pn

0 irreducible representation as the grou
band in the following discussion of this paper for theNp

5Nn53 case of thesd shell. The states corresponding to
(0,12)pn

0 irreducible representation are not reproduced in
aboveSD-pair subspace, but it can be exactly reproduc
within the SDG-pair subspace.

TABLE IV. Comparison of binding energies (Np5Nn53) for
sd, pf, andsdgshells. The unit is MeV.

sd shell pf shell sdgshell

Exact shell model 720 2592 5616
SD truncation 720 1946 3688
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Figure 3 presents the excited energies calculated in
SD-pair subspace, and those calculated within the framew
of the Elliott model. From Table IV and Fig. 3, we see that
the sd shell, the calculation of theSD truncation reproduces
exact Elliott model results for the two lowest bands wh
Np5Nn53. We mention without presentation of further d
tails that all states of irreducible representations in the Ell
model, (12,0)pn

0 1(10,1)pn
0 1(8,2)pn

0 1(6,3)pn
0 1(4,4)pn

0

1(2,5)pn
0 1(0,6)pn

0 5(6,0)p
0 3(6,0)n

0, are reproduced in the
SD-pair subspace with a precision of eight effective digi
This means that all states in the lowest band for the sin
closedsdshell~N53 case!, which correspond to the irreduc
ible representation~6,0!, are fully taken into account in the
aboveSD-pair subspace, and the behavior of the neutr
proton coupling termQp•Qn in the SD-pair subspace is the
sameas that in the full shell model space. It is an interesti
question in mathematics to know why low-lying bands in t

FIG. 3. Excitation energies in the (Np5Nn53) sd, pf, andsdg
shells. ‘‘Elliot’’ means results of the Elliott model, and ‘‘SD’ ’
means results using theSD-pair truncation. In thesd shell the two
lowest-lying bands are listed and compared~the corresponding en
ergies are equal to each other within a numerical error!. The ground
bands calculated using the Elliott model are compared with th
calculated using theSD-pair truncation for thepf and sdg shells.
Note that the ground band which corresponds to the SU~3! irreduc-
ible representation of thesd shell, (l,m)pn

S 5(0,12)pn
0 , is omitted

for the sake of simplicity.
6-6
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TABLE V. E2 transition strengths~sd, pf, andsdgshell! in theSD-pair subspace forNp5Nn53. We use
ep51.6e anden51.6e. The unit of theE2 transition strengths ise2 fm2. In the first column of each shell we
list theE2 transition rates calculated in theSD-pair subspace. The exactE2 transition rates calculated in th
Elliott model are listed in the second column of each shell case. TheE2 transition rates~in percentage!
relative toB(E2, 21

1→01
1) are listed in the third column, where the first half of the data corresponds to

SD subspace, and the data after the / correspond to the analytical results of the Elliott model. In thesd shell
someE2 transition rates are exactly reproduced.

sd shell pf shell sdgshell

21
1→01

1 368.6 368.6 100/100 873.3 1327.1 100/100 1641.2 2875.4 100/1
41

1→21
1 497.4 497.4 134.9/134.9 1174.6 1866.5 134.5/134.9 2208.7 4078.4 134.6/1

61
1→41

1 489.8 489.8 132.9/132.9 1150.6 1997.9 131.8/132.9 2165.5 4434.0 131.9/1
81

1→61
1 425.0 425.0 115.3/115.3 991.5 2003.7 113.5/151.0 1867.5 4553.8 113.8/1

101
1→81

1 318.7 318.7 86.5/86.5 737.6 1940.2 84.5/146.8 1389.7 4559.5 84.7/15
121

1→101
1 176.3 176.3 47.8/47.8 404.3 1826.5 46.3/138.3 761.7 4370.0 46.4/15

41
1→22

1 ,0.1 0 - ,0.1 0 - ,0.1 0 -
22

1→01
1 ,0.1 0 - ,0.1 0 - ,0.1 0 -

22
1→21

1 ,0.1 0 - ,0.1 0 - ,0.1 0 -
62

1→41
1 ,0.1 0 - ,0.1 0 - ,0.1 0 -
t
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case of ansd shell with six particles, which is a half-filled
case, are exactly reproduced, although we diagonalize
Hamiltonian in a smaller configuration space. Up to now
do not know whether this exact reproduction is accidental
whether there are deep reasons lying behind it. Forpf and
sdg shells, the agreement forNp5Nn53 ~which is not a
half-filled case! does not become so good. For example,
result is just 66% of the total binding energy in the Ellio
model whenNp5Nn53 in the sdg shell. It is then worth
trying to see whether, in general, one obtains the analyt
results of the Elliott model using the aboveSD-pair trunca-
tion in the half-filled shell. For thesdgshell,Nmax57 is not
a half-filled case like the above, and we can skip it.Nmax
55 for thepf shell is the only candidate to check the abo
ansatz, because theNmax of the next shell (n511) which
satisfies the above half-filled condition is 33. However, c
culations of N55 are so time consuming that one mu
modify the code using some novel techniques@9,10#.

In Table V we present a comparison between theE2 tran-
sition rates calculated in theSD-pair subspace and those ca
culated using the analytical formulas of the Elliott model f
each shell case. In order to see the physics more clearly
list the E2 transition rates relative toB(E2,01

1→21
1). It is

easy to note that we have numerically reproduced theE2
transition rates between states of the ground band for thsd
shell case, and theE2 transition rates calculated in theSD-
pair subspace are systematically smaller than the exac
sults calculated in the full SM space for thepf andsdgshells.
However, the relativeE2 transition rates are reasonably r
produced for the lowest excitations (J<6). For the case of
J>8 one needs coherentG pairs. Although there are suc
differences, basic properties such as the band structure
kept very well. In the calculation of theSD-pair approxima-
tion the E2 transition rates from the other bands to t
ground band are seven orders smaller than the strength
tween the ground band states. It is also interesting to n
that the relativeE2 transition rates calculated in theSD-pair
01431
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subspace are almost the same from thesd shell to thesdg
shell, while those calculated in the full SM space chan
quickly for higherJ states.

Another difference betweenSD truncation and the full
shell model is very parent in Fig. 3. The calculated ene
levels ~moment of inertia! in the SD configuration are sys-
tematically higher ~smaller!, and binding energies ar
smaller than the full shell model~Elliott model! results.
However, all the calculated intervals and the sequen
within each column of Fig. 3, and the transition probabiliti
between the states, exhibit definite band regularities of ro
tional nuclei. This phenomenon was observed in the twj
single-closed shell in previous papers, such as Ref.@4#. This
is very important since theSD truncation does not lose th
essential physics of the shell model. In particular the diff
ences in the moments of inertia and binding energies can
easily eliminated using different parametrizations. To sh
this point, we present a typical example in Fig. 4, where
use 24.2% of the original valuek to obtain a best fit with the
original Elliott model for the ground band. We see that t
agreement of the ground band is satisfactory. The differe
is that the band heads of theSD truncation are much lowe
than those in the Elliott model. Here we have omitted t
details of theE2 transitions for the states in Fig. 4, becau
there would be too many data in a table~note that theE2
transition results remain untouched when we changek. Thus
one can refer to Table V for the two lowest bands!, but we
would like to present a description of theE2 transitions cal-
culated using theSD-pair approximation. The intrabandE2
transitions are much stronger than the interbandE2 transi-
tions ~at least ten times!, except in one case which will be
discussed below. This is a property of band structures
well-deformed nuclei. Another interesting point is that the
levels within the band satisfactorily follow the rule ofL(L
11) as the Elliott model, and moments of inertia remain
be slightly changed for all bands. There are several ‘‘iden
cal bands’’ which can be regarded as an image of the
6-7
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that one irreducible representation may appear many tim
On the right-hand side of Fig. 4, bands~2! and ~3! can be
regarded as one example that one irreducible representa
appears twice. In this case, both the energy levels andE2
transitions are almost the same without any exception. T
other three examples are bands~6! and~7! ~twice!, bands~8!
and ~9! ~twice!, and bands~10! and ~11!. Bands~4! and ~5!
belong to another case. These two bands can be regarde
sequences of irreducible representation~l,2!. The states
21, 41, etc., within bands~4! and ~5! are almost identical,
and there are non-negligibleE2 transitions between inter-
band states as well as very strongE2 transitions between
intraband states. The calculated transition rates between
traband states are usually two or more times larger than th
between interband states. In this example 100 calcula
states are presented, and the lowest 60 states are exhaus
theSDsubspace. This means that the above discussion is
special but rather general. Although we are unable to rep
duce all the corresponding bands of the Elliott model usi
the SD truncation, the results in Fig. 4 clearly demonstra

FIG. 4. Excitation levels in the (Np5Nn53) sdgshell. The unit
of energy is in MeV. Here higher states in the shell model~Elliott
model! are omitted because they cannot exist in theSD subspace.
On the left-hand side, the Elliott notations of the SU~3!pn group are
given below the corresponding band heads. The number ‘‘2’’ befo
the bra of some irreducible representations denotes that the co
sponding representations appear twice. Here, due to the limita
of space, we have omitted repetitions of energy levels which cor
spond to the same irreducible representation.~a! and~b! correspond
to the SU~3! irreducible representations(36,0)0 and (34,1)0, re-
spectively. The right-hand side lists calculational results using
SD-pair truncation, where sequences of the bands are labeled be
the corresponding bandheads. The parameterk is chosen to be
24.2% of the original value on the right-hand side.
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that essential properties of the Elliott model are well rep
duced. This is important since it means that theSD trunca-
tion can be a good approximation of the shell model
rotational motion~after adjusting parameters!.

V. DISCUSSION AND CONCLUSION

In this paper, we carry out schematic calculations with
the shell model space and collectiveSD-pair subspace. A
comparison between calculations in the full shell mod
space and in theSD-pair subspace is presented and d
cussed. In the single-j case, when the Hamiltonian consists
monopole and quadrupole pairing plus quadrupole pair
the SD-pair subspace satisfactorily reproduces the low-ly
levels of the shell model and theE2 transitions between
them. The contributions from the monopole pairing a
quadrupole-quadrupole interaction are the reverse, and
consequence of this offset the total binding energies ca
lated in theSD-pair subspace agree well with results calc
lated in the full shell model space. TheSD-pair truncation
deteriorates if the quadrupole-quadrupole interaction is a
ficially large compared with the monopole pairing intera
tion. On the other hand, the larger monopole pairing stren
does not deteriorate the agreement between theSD-pair trun-
cation and the SM space. When the neutron pair numbe
greater than 3 andNp51 or 2, among the contribution from
every term of the Hamiltonian there are quite large diffe
ences between the results calculated in the SM space
those calculated in theSD-pair subspace for the monopo
pairing term and quadrupole-quadrupole interaction. The
ferences between the above two kinds of calculations
these two terms are comparable in magnitude and opposi
sign. These differences become very small for the case
Np53 or Nn53. Because we use a moderate pairi
strength and a quadrupole-quadrupole interaction for
small single-j shell, the agreement of the binding energy b
tween the calculation in the full SM space and that in t
SD-pair subspace is extremely good in this paper. The ag
ment of energy levels and theE2 transitions between low
lying states are also good. This means that theSD-pair trun-
cation for a single-j shell is reasonable when the Hamiltonia
consists of pairing and quadrupole-quadrupole interaction
the multi-j case, we assume the Hamiltonian is of pu
quadrupole-quadrupole type, and that the single-particle
els are determined to be of three-dimensional harmonic
brator type. In the half-filled case of thesd shell, the exact
reproduction of some states within theSD-pair subspace is
unexpected, and needs further investigation. From the ca
lation, we find that although theSD-pair subspace is much
smaller than the original shell model space, essential pro
ties such as the band structure within the shell model sp
survive in theSD-pair subspace. The differences in momen
of inertia or binding energies can be easily eliminated us
different parameters. Note that it seems impossible to fit
moments of inertia and binding energies at the same time
adjusting k in the abovepf and sdg shells, because on
should use a smallerk to fit the excited energies~cf. largerk
to fit the binding energies!. The difficulty can be overcome
by introducingLW 2 interaction in the Elliott model, and in tha
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case we can fit both moments of inertia and binding ener
using two different parameters. Despite the differences
parameters, essential properties of the Elliott model are k
intact in theSD-pair truncation, because the introduction
LW 2 does not cause any changes in the wave functions
B(E2) transitions. Therefore, it would be interesting to a
ply the SD-pair truncation to realistic nuclei, and see ho
well the SD-pair truncation works. Recently, the O~6! prop-
erties of doubly even nuclei in theA;130 region have been
successfully reproduced within theSD-pair subspace@9#.
g.

gy
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This can be regarded as a verification of theSD-pair trunca-
tion of the shell model in realistic cases.
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