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The validity of theSD-pair truncation of the shell model is tested in a singihell and in many shells
within the framework of the nucleon pair shell model. It is found that 8i@pair truncation is a good
approximation of the shell model in the singlease when the Hamiltonian consists(ofonopole and quad-
rupole pairing plus quadrupole-quadrupole-type interaction. T$i@pair truncation deteriorates if the
guadrupole-quadrupole interaction is artificially large compared with the monopole pairing interaction. For
multi-j shells, schematic calculations in the degenesdtef, andsdgshells are performed for the extreme case
of a pure quadrupole-quadrupole interaction. There is a large difference between the binding energies in the
SD-pair-truncated subspace and those calculated in the full shell model space as in the case of atsétigle-
However, it is found that the basic properties of the band structure remain intact, and that the difference in
energy levels, i.e., moments of inertia, can be easily absorbed by adjusting interaction strengths without
changing the transition rates.

PACS numbgs): 21.10.Re, 21.60.Cs, 21.60.Ev, 23.20.Js

[. INTRODUCTION in this paper is that we go to open shells for mijiltiases of
up to three pairs. In previous studies, comparisons of calcu-
The interacting boson modéBM) [j_] has proved to be a lations within the SDpalr subspace and the shell model
great success in describing the low-lying nuclear collectivesPace were presented only for up to three pairs for thej two-
motion in medium and heavy mass nuclei. Since the invenc@se of a single closed shell, or two proton pairs and two
tion of the IBM, many efforts have been made to understand@utron pairs of open shells. The myltease was rather
the microscopic foundation of the IBM. In the IBM, the dlfflCUllt to tackle in the past. One qf the reasons for'thls is
Hamiltonian and the configuration space are constructed udhat without the technique of Ref2] it would be very diffi-
ing s andd bosons. These bosons are interpreted as coheref!t t0 calculate the matrix elements in t6®-pair configu-
SD nucleon pairs with angular momenta of 0 and 2, respectations when th® pair number is equal to or greater than 3.
tively. Therefore, in order to derive the IBM Hamiltonian !N this paper, we present a comparison betweerS@air
from the shell model, one first needs to check the validity oféPProximation and the full shell model calculation through-
nucleon pair approximation of the shell model. It is veryout the whole schematic singjetnlj=55%") shell, where
interesting to study how well the diagonalization of thewe assume a residual interaction of pairing plus a
Hamiltonian in theSD-pair-truncated subspace, which are quadrupole-quadrupole interaction which simulates vibra-
determined to maximize the nuclear collectivity, can repro-tional nuclei. In the degenerat pf, and sdg shells, we
duce the results of full shell modésM). assume that the Hamiltonian consists of pure quadrupole-
Recently, the authors of Ref2] generalized the Wick quadrupole interaction since this is the case where Elliott’s
theorem, which works efficiently for coupled fermion pairs. SU(3) model is applied, and exact results are known analyti-
Based on this technique, they proposed a nucleon-pair shaihlly. Here it is expected that tH&D-pair approximation is
model(NPSM) [3]. In the NPSM, nucleon pairs with various rather poor, since earlier works indicated that we need higher
angular momenta are used as the building blocks of the trurengular momentum pairs such @spairs[4]. In this paper,
cated shell model space. If these building blocks are rehowever, we show that essential properties such as band
stricted toSD pairs, the NPSM is reduced to the SD pair structures are kept intact within tiD subspace, and that the
approximation of the shell model. Using an ordinary per-difference in moment of inertia can be absorbed by adjusting
sonal computer, one can calculate up to four or even fivénteraction strength.
proton and neutron pairs outside the inert core for njulti-  This paper is organized as follows. In Sec. I, we specify
shells. In this paper, we test tf&D-pair approximation for our definition ofSandD pairs and the Hamiltonian. In Sec.
both a single closed shell and an open shell by comparing thiél, we study a doubly even proton-neutron system which is a
calculated results in th8D-pair subspace and results in the singlej shell using the(monopole and quadrupdlgairing
full SM space. If calculated results of low-lying states areplus QQ interaction. In Sec. IV, we study degeneratk pf,
very consistent with or close to the results in the full SMandsdgshells assuming pure a quadrupole-quadrupole inter-
space, thesD-pair truncation is said to be a good approxi- action in the Hamiltonian. Then we compare the results of
mation of the SM. the SD-pair truncation with analytical results of Elliott’s
Prior to this work, many papefg.g., Ref[4]) tested(the ~ SU(3) model. Discussions and a conclusion are given in Sec.
SD-pair truncation of the shell model space. The differencev.
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Il. SD-PAIR APPROXIMATION AND THE HAMILTONIAN TABLE |. Parameters used in the Hamiltoniga,, is in MeV,
, _ o and G2, «,, and « are in MeV/inf. GZ=G? and «,=«, for
. The CO!IeCt'V,e pair of angular momentumwith its pro- simplicity. The sign ofx is negative if the valence shells of both
jection u, is defined as protons and neutrons are half-filled before or half-filled afterward;
otherwise it is positive.

Afz% y(abr)(Cixch)!, (1)

G, G, G2 Ky K

whereC] andC| are single-particle creation operators, and —0-131 —0.180 —0.023 —0.020 +0.07

r=0 and 2 correspond to tHeD pairs, respectivelya andb

denote all quantum numbe(except the magnetic quantum -

numbej necessary to specify a stata=(nlj)]. We also (Mr<ni")

use them to denote the angular momentum of the single- (n+3/2)r2 =]

particle orbit, where there is no confusire., a is used to = o ’

label the single-particle orbit as well as to denote the corre- (n+1"+2:)Yn=1"+15 1)V, I=1"=2,

spondingj valug. y(abr) are structure coefficients of the (6)

collective pairs. Thes8D pairs are coupled step by step to

yield a complete set of thBl SD-pair subspace, which has where rgzﬁ/MNwozl_()lgql/FJ fm2, and the harmonic-

the same dimension as tisel IBM boson space in general oscillator wave function is usedll is nucleon mass and,

except for few cases where some states are Pauli forbidder; the harmonic-oscillator frequency_ In this paper, we fix
In this paper, the Hamiltonian is chosen as ro=1fm for the sake of simplicity.

H=H_+H, + . 2
T HHRQAQ, @ lll. SINGLE- | CASE
The aboveH . andH, are Hamiltonians for valence protons
and valence neutrons, respectively, which consist of single-nIy one kind ofS pair andD pair, i.e.,y(abr)= 8, 5;
particle energy, monopole and quadrupole pairing, and quad- Lo aj%bj

N epll . _
rupole quadrupole particle-hole interaction. Their explicit 1€7€ We choosen(j)=(557), with €;3,=0. One set of
Hamiltonian parameters, which simulates vibrational nuclei,

The singlef shell is the simplest case because one has

forms are o . ) X ;
is listed in Table I. Figure 1 presents a detailed comparison
H U': E EQ(TCL(TCCKO'+ G(TPI'P(T+ Gi'(PETZ)TP((TZ) + KU’Q(TQU’ ’ 4 o
)
whereo stands forr or v, and
i
Py= (CL,CL),
Pai= 20 a(a,0,)(Co, X Ch,)i, 4

with j,=(2j,+1)*2 and M=0,+1,+2; q(a,b,) is the
same factor as that which appears in @g operator, which
is defined as

QUM=aEb q(a,b,)(Cl,xCpp)Z

1 2v2 TR )2
= _a o E<a0’”r Y ||b0'>(Ca(r><Cb(r)M' (5)
It is easy to show that FIG. 1. Total binding energie¥ and contribution to binding
energiedin MeV) from the monopole pairing terrl, quadrupole
(— jr1z 20 pairing term(QP), and quadrupole-quadrupdl@Q) interactions for
g(ab)= 2—\/Tjj "Clip; ,,1,2(nl|r2| nl’y, the single} case. The abscissal,, and the ordinate is the binding
T energy(or the contribution to the binding energ\N . andN, are

20 ) o numbers of proton and neutron pairs, respectively. The dotted lines
Wherecjl/zyjffl/z is the Clebsch-Gordan coefficient. The ma- are results calculated in the full shell model space, and the solid

trix elements for? are given in[5]: lines are results calculated using tBB-pair truncation.

014316-2



VALIDITY OF THE SD-PAIR TRUNCATION OF THE.. .. PHYSICAL REVIEW C 62 014316

of calculated binding energy from each term within BB
pair subspace and that in the whole SM space. Note that th
single-particle contribution is omitted, since this term is not I =2
interesting in a singl¢-shell. The total binding energies are I -5
almost perfectly reproduced. It is easy to notice from Fig. 1 = = e _
4
2

that among the contributions to binding energies from all I
terms in the Hamiltonian the quadrupole pairing contribution . —
within the SD-pair subspace agrees well with that within the i .
whole SM space. In the open shell, the contribution from I A N
monopole pairing interaction calculated in the SM space is el moael o truncation
slightly and systematically smaller than that from the corre- 2
sponding term using th&D-pair truncation. On the other
hand, contributions from the quadrupole-quadrupole interac ___ | 6" _
tion and the quadrupole pairing interaction using Sipair >t s —or=="
truncation are systematically smaller than those from the cor g | =4
responding terms in the SM space. Because the above tw <& | -
:
0

1

opposite disagreements cancel each other out, the total bine = -
ing energy calculated in the shell model space and that cal ]
culated in theSD-pair truncation are almost the same in mag- I chell el <D rumcotion N.=
nitude[6]. i N=2
According to the above calculation, it is expected that if 2 F
the strengthx is gradually enlarged the agreement of binding !
energy between these two calculations deteriorate becaus '® [
the contribution to binding energy from quadrupole- .
qguadrupole interaction which is calculated in the full shell 'r
model space is larger than that calculated inSBepair trun- .
cation. On the other hand, however, because the ground sta  °° [
in the SD-pair truncation can never be lower than that in the :
SM calculation, and the contribution to binding energy from °or
monopole pairing in th&D-pair truncation is larger than its i Shell model SD truncation N
contribution calculated in the SM calculation, we expect that —°°
the agreement between calculated binding energies iSBEhe
subspace and those calculated in the full shell model space fiG. 2. Excitation energiein MeV) in the singlej case. The
should not deteriorate if we artificially increase the pairingjeft-hand side presents the results calculated in the full shell model
interaction strength. We note that in the single clo§esl,  space, and the right-hand side gives results in the trunGDeghir
N,=0, hereN, means number of proton pairsase, the subspace. Refer to Table | for the parameters.
contribution of binding energies from every term is exactly ) ) ) . ,
the same as that from the shell model calculation. In fact, fo® COmparison between low-lying excited energies which are
the single closed shell gf= 11/2, the dimension of 0 states calculated in theSD-pair subspace and those calculated in
in the SD-pair subspace is always the same as that in th&€ full SM space for three typical cases. The other cases are
shell model space. As a consequence, the calculati@v-of Omitted to save space in this paper. Although the configura-

ery term in theSD-pair subspacenustbe equivalent to that t'cg' spacebof the srllell rlnpdel Its thCh Ia+rg§4r+thant that of its
in the shell model space. The eigenvalues and wave funcSD-pair subspace, low- ying states, €.g,,,2%, , €lc., are
tions for all the 0" states in theSD-pair subspace arielen- reasonably reproduced if they belong to tBe-pair sub-

tical as those in the shell model. In the case of an open shelftp%ce' . 5 - b low-Ivi
the situation is different, since the dimension of the shell S°Me importanE2 transitions between low-lying states

model space is much larger than that of ®B-pair sub- 1" the SD-pair subspace are calculated usig=1.32 and

space. From Fig. 1, it is also easy to notice that when th&»—0-%. A comparison between these? transition rates
nucleon pair number is more than ©p=1/2(j +1/2)=3 calculated in th(_aSD s_ubspace and thos_e calculated in the
andN,=1 or 2, the agreement between the term by ternt '€/l model is given in Table Il. According to Table B2
contribution calculated in th8D-pair truncation and that cal- ransitions beEvveen Iow-lyulg states such 8s-20; , 2;
culated in the full SM space is not satisfactory, especially for~0z » 41 —21 , and Z —2; agree well in the two calcu-
the contribution from monopole pairing and quadrupole-lations (the SM and itsSD-pair truncation. The calculated
quadrupole force. The differences of these two terms, whiclfansitions of 4 —2; and 4, —2, in the SD-pair trunca-
are comparable in magnitude and opposite in sign, are quitéon sometimes do not fit well with results calculated in the
large. An unexpected phenomenon is that the above differffull shell model space. The reason is that thetate in the
ences become very small for the casedNgf=3 or N,=3.  shell model does not necessarily correspond to thestate
This behavior of the half-filled case is even more surprisingn the SD-pair truncation(the energy density of the shell
in the schematic mulficase in Sec. IV. In Fig. 2, we present model is much larger than that of tf&D-pair subspace in
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TABLE Il. Some typicalE2 transition strength&singlej cas¢. We usee,=1.3e ande,=0.%. TheE2
transition strengths are ief fm?.

N, N, 27 —0; 25 —05 2;—27 N 4527 4525

0 2(SM) 8.8452 2.2645 10.7132 10.2204 2.1271 1.0256
0 2(SD) 8.8449 2.6486 10.8173 6.5606 - -

1 3(SM) 14.3868 0.0580 2.9370 22.9947 0.0459 10.0865
1 3(SD) 13.8129 0.0985 3.3962 16.5084 1.6374 2.6001
2 O(SM) 4.2304 1.0924 5.1663 5.0031 0.8968 0.5128
2 0(SD) 4.2301 1.2716 5.2178 3.1239 - -

2 2(SM) 18.8828 3.8025 10.7182 27.4768 1.8276 1.4833
2 2(SD) 16.8025 4.5778 9.7368 19.8780 2.1620 0.5085
3 1(SM) 14.0455 1.3931 12.2893 19.2383 0.2273 5.5107
3 1(SD) 12.3957 1.5299 11.9986 13.6100 0.0000 3.4772
3 3(SM) 21.4689 8.5278 31.7663 30.1148 0.0000 16.5408
3 3(SD) 19.5008 7.0591 26.9541 23.4722 0.7646 12.1028

many cases There is a possibility that§4 is related to the H=-x(Q,+Q,)(Q,+Q,)
hexadecapole degree of freedom.

Although the agreement of higher states d_oe_s not seem _ _ i E()\2+)\M+Mz+3)\+3#)_ §L(L+1) ,
very good in cases of open shells, the results indicate that in 2\ 2 8
this small singlg- shell the SD-pair truncation is an ex- 7

tremely good approximation of the full shell model for the

low-lying states, because the calculation within Sig-pair  where 3(A?+\u+ u?+ 3N+31)=Cgsyazn, IS the eigen-
subspace reasonably reproduces most of the physical quaniialue of the Casimir operator for the 8)._, group, andk is
ties. In other words, although tH&D-pair subspace is much chosen to be 1w5(MeV) for the sake of simplicity. It
smaller than the full shell model space in the above calculashould be noted that this Hamiltonian depends only on the
tions, it includes most important parts of the shell modelorhital angular momentum, and is completely free from the

space for low-lying excitations in the above singlshell.  spin degree of freedom. The single-particle levels are de-
We emphasize here that the good agreement in this case igted by

partly due to the facts that we have a moderate pairing

strength and that is very small. In the case of deformed (nlj)=(20%),(222),(22%)
nuclei where quadrupole-quadrupole interaction is strong SO
and thej value is large, the results might not be so good.

for the sd shell,

(nlj)=(313),(312),(333),(33%) for the pf shell,
8
IV. MULTI- j CASES

Y= (40L 3 5 z ]
Calculation in a multj shell is much more complicated (nlj)=(403),(423),(423),(443),(443)

and time consuming than that in a singlskell, both for the for the sdg shell.

SM calculation and itsSD-pair approximation. In the SM

calculation in a multi-shell, up to 68 particles can be tack- Tpere are several tabl§g] of irreducible representations for
led in a single closed sheltiepending on the degeneracy of 4 SUK) D SU3)D0(3) for the sdandsdgshells. In Table

:he STeﬂd_flfO t?te realistic case c')lf)lant open sheltl,tg is r?xl-l 11, we list several low-lying SUB).., irreducible representa-
remely difficult or even impossible to carry out the shell y o " s\ ySe(\ S which are interesting in
model calculation when particle numbers of both valence dorati TF]T P v s th ) |
protons and valence neutrons go up to 6 for medium angugnﬁg:timera lon. The sufhs represents the spin angular

heavy nuclei, because the dimension of the configuratioﬁn . .
Now we come to the question of tH&D pair structures.

space is tremendously or even prohibitively huge. _ : !
Fortunately, for deformed nuclei one can apply Elliott's FirSt we solve the BCS equation to obtaig andv,, the
SU(3) model for the degenerate, pf, andsdgshells when gmpty and occupied amplitudes for orhifor a certain pair-

the Hamiltonian is assumed to be pure quadrupolelng interaction, respectively. Because we use the degenerate

quadrupole interaction. In this section, the Hamiltonian isSingle-particle levels, these, andu, are independent on the
chosen to be symmetric between protons and neutrons, amfiliNg strengths. The collecti@pair is defined to b¢s]

to be written in terms of the Casimir operators of the group

chain SUK) D SU(3)D0(3) (K=86, 10, and 15 for thed, pf, ST:E y(aaO)(CTXCT)O

andsdgshells, respectively7]). H is written as a anTany
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TABLE Ill. In this table, we list several SU(3), irreducible representations which correspond to the low-lying excitation bands.
(N, )% and ()5 and their direct products are sufficient to presemitleast low-lying bands, although they are incompldte
complete table is too largeThe superscriptS,. andS, are spins corresponding to irreducible representations of proton and neutron degrees
of freedom, respectively. The total spgiis determined using=S,+S,. The caseéSs=0 corresponds t&,.=S,=0; S=1 corresponds to
S,.(S,)=0(1) orS,(S,)=1(0); andS=0,1,2 corresponds 18,=S,= 1. From the reduction rule of S8)—SQ(3) [7] it is easy to obtain
the orbital angular momentuin. The total angular momentum is determineddsyL +S. In k()\,,u)f”,, k denotes the number of times that
the irreducible representatiom,(u)iv appearsk is omitted for the sake of simplicity in the caselof 1.

N N, ()\W,/.LW)Sﬂ ()\V,)\V)SV ()\’M)"SW
sd shell
1 1 (4.0f, (2.2)" (4,0, (2,1)" (8.0, (6.1, 2(6,1}
1 2 (4,00, (2,1 (4,2)°, (5,0)" (8,20, (6.3, (6.3)", (9.0} (7,102
1 3 (4.0F, (2,2 (6,0, (3,3)%, (4,1)* (10,00, (8.1%. 2(8.1}. (7.3)"
2 2 (4.2, (5,0 (4,20, (5,0 (8.4, (6.5F. 2(9.2)- (10,0012
2 3 (4.2f, (5.0 (6,00, (3.3, (4,1)" (10.2F, (8.3F, (11,01, (9,102
(7,5), 2(8,3), (8,312
3 3 (6,09, (0,6)°, (3,3)°1 (6,0, (0,6)°, (3,3)°1 (12,00, (0,12F, (10,1Y, 2(9,30%, 2(3,9/*
pf shell
1 (6,00, (4,1)" (6,0)°, (4,1)! (12,00, (10.1f, 2(10,1}
2 (6.0f, (4.1)" (8,2)°, (9,0)" (14,20, (12,30, (12,3}, (15,0},
(13,1}, (13,212
1 3 (6,00, (4,1 (12,00, (6,6, (18,00, (16,10, (12,6} (15.3).
(9,3)%, (10,1) 2(16,1)}, (10,7}, (13,4012 (14,2012
1 4 (6,0f,(4,1)" (10,4, (11,2} (16,40, (14,50, (1451, (17.2).
(15,3012
i i (8.2F. (9,07 (8,2)°, (9,0" (16,47, (14,50, 2(17,2}, (18,00*2
2 3 (8.2, (9,08 (12,00, (6.6)°, (20,20, (14,80, (18,3, (21,0),,
(9,3), (10,1} (19,1)}, (15,6}, (18,3012 (19,1 12
2 4 (8,2f, (9,05 (10,4, (11,2 (18,6Y, (16,7), 2(19,4}, (20,3*2
3 3 (12,09, (6,6)° (12,00, (6,6)° (24,00, (22,1f, (12,120, 2(21,3},
(9,3)4, (10,1)" (9,3)4, (10,1)" 2(22.1}, 2(15,9%, 2(16,7), (18,612
3 4 (12,08, (6.,6), (10.4Y, (11,2 (22,4, (20,50, (16,100, (14,119, (19,7)!
(9.3)%, (10,1)" (20,5, (23,2)", (21,3, (21,302 (20,512
4 4 (10,4f, (11,25 (104Y, (11,2 (20,8, (18,9f, 2(21,6},2 (19,7}, (22,4f*2
sdgshell
1 (8,0, (6,1)! (8,00, (6,1)" (16,0, (14,10, 2(14,1), 2(12,2}, (12,2P*?
2 (8.0f, (6.1)! (12,2, (13,0¢ (20,2, (18,30, (18,3)}, (21,0)}, (19,112
3 (8,0, (6.1)! (18,00, (15,3f, (15,3)! (26,0, (24,19, (23,30, (23,3}, (24,1},
(21,4), (21,412
1 4 (8,0%, (6,1)" (18,4Y, (20,00, (19,2)! (26,4, (24,50, (28,0f, (27,2},
(24,5), (26,1}
2 2 (12,2f, (13,0 (12,2, (13,0 (24,47, (22,5, 2(25,2), (26,002
i ’ (12,25, (130 (18,00, (15,30, (15,3)" (30,2, 2(28,3f, (27,50, (27,5}, 2(28,3},
(31,0)!, (28,312
2 4 (12,2f, (13,08 (18,4), (20,08, (19,2)" (30,6, (28,7f, (32,2, (30,30, (31,4},
(33,0}, (31,4}, (32,212
3 3 (18,09, (15,3f, (15,3, (18,00, (15,3f, (15,3, (36,0,2(33,3f, (34,1F, (30,6f, 2(33,3),
(16,1) (16,1 2(30,6)', 2(34,1}, (30,612
3 4 (18,08, (15,30, (15,3)" (18,4, (20,0¢, (19,2)" (36,4), (34,50, (33,7f, (38,0F, (35,30,
(33,7)}, (35,3}, (37,2)}, (34,5), (34,5012
4 4 (18,49, (20,00, (19,2} (18,4Y, (20,0¢, (19,2)" (36,8)°, 2(38,4Y, (40,00, 2(37,6}, 2(39,2),

(38,412
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TABLE IV. Comparison of binding energies\N(,=N,=3) for 1000
sd, pf andsdgshells. The unit is MeV.

sd shell pf shell sdgshell

Exact shell model 720 2592 5616
SD truncation 720 1946 3688 800 |

a N 1/2
y(aaO)zéZ—zé\/ m) : 9

a

40’

and theD pair is obtained by using the commuta{@i

L
L

L
<

427 8 127

N
<]
DT:;[Q,ST]=2b y(ab2)(ClxCl)2. (10) \E/ [ i
a = |

L

Here the operata® is defined in Eq(5). From Eq.(10), it is
easy to obtain F

N |12 |
y(ab2)=—q(ab) \/ m) , (11 e

200 |-

ao0° 40" 407

bbb b L4 ob
Bt b b L bk

There are other ways to defilepair, but it is expected that
the above way is one of the best ways when the quadrupole |
quadrupole interaction between protons and neutrons ar " L L =

strong. For nuclei with proton numbers and/or neutron num- . . .= .

bers near the magic numlgr where interactions between o |- > > T - > o

like particles are important compared with those betweer . © ot o ot SD

unlike particles, we must seek other methods. Note that w«

have omitted the subscript in Egs. (9)—(11) since we de-

termine theSD pairs separately for protons and neutrons in - g 3. Excitation energies in th&\(.=N,=3) sd, pf, andsdg

the same way, and this omission does not cause confusiorsells. “Elliot” means results of the Elliott model, and SD”
Within the subspace made of the abd&#® pairs, Hamil-  means results using tf&D-pair truncation. In thesd shell the two

tonian (7) is diagonalized to calculate the binding energies,jowest-lying bands are listed and comparéte corresponding en-

the excited levels, wave functions, aB® transition rates. ergies are equal to each other within a numerical &rfidre ground

Table IV lists a comparison between binding energies calcubands calculated using the Elliott model are compared with those
lated in the full SM spacghere we use analytical formulas of calculated using th&D-pair truncation for thepf and sdg shells.

the Elliott’'s SU3) model|, and those calculated within the Note that the ground band which corresponds to thé3glreduc-
framework of theSD nucleon pair shell model. We see that ible representation of thed shell, (\, )3, =(0,12)2,, is omitted

the binding energies calculated in t88&-pair subspace in all ~ for the sake of simplicity.

casegexceptN,.=N,=3 in thesdshell, where they are the

same are much smaller than those calculated in the full SM  Figure 3 presents the excited energies calculated in the
space. It is consistent with the above singtease where the SD-pair subspace, and those calculated within the framework
contribution to the binding energy from the quadrupole-of the Elliott model. From Table IV and Fig. 3, we see that in
quadrupole interaction in th&D subspace is smaller than the sdshell, the calculation of th&D truncation reproduces
that in the shell model space. This difference seems to bexact Elliott model results for the two lowest bands when
come larger and larger with the major quantomf the shell, N_=N,=3. We mention without presentation of further de-
or the number of single-particle levels. It is easy to note intails that all states of irreducible representations in the Elliott
Table Il that there are two degenerate“ground” bands formodel, (12,03 ,+(10,1)2,+(8,2)2,+(6,3)%,+ (4,4)2,,

the N,=N,=3 case of thesd shell; they belong to the +(2,5)°,+(0,6)%,=(6,00°x(6,0)°, are reproduced in the
(N, 1) ,=(12,0), and (0,12}, cases, respectively. For the sp-pair subspace with a precision of eight effective digits.
sake of simplicity, however, we refer to a band which corre-This means that all states in the lowest band for the single-
sponds to a (12,d), irreducible representation as the ground closedsdshell (N=3 casg, which correspond to the irreduc-
band in the following discussion of this paper for tNe,  ible representatiori6,0), are fully taken into account in the
=N, =3 case of thesd shell. The states corresponding to a above SD-pair subspace, and the behavior of the neutron-
(O,lZ)?w irreducible representation are not reproduced in theroton coupling termQ .- Q, in the SD-pair subspace is the
above SD-pair subspace, but it can be exactly reproducedsameas that in the full shell model space. It is an interesting
within the SDGpair subspace. guestion in mathematics to know why low-lying bands in the

the sd—shell the pf—shell the sdg—shell
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TABLE V. E2 transition strength&sd, pf, andsdgshel)) in the SD-pair subspace fox ,=N,=3. We use
e,=1.6e ande,=1.6e. The unit of theE2 transition strengths ig? fm?. In the first column of each shell we
list the E2 transition rates calculated in ti&D-pair subspace. The exdeR transition rates calculated in the
Elliott model are listed in the second column of each shell case.Eheransition rategin percentage
relative toB(E2, 2; —07) are listed in the third column, where the first half of the data corresponds to the
SDsubspace, and the data after the / correspond to the analytical results of the Elliott modekdstibé
someE?2 transition rates are exactly reproduced.

sd shell pf shell sdgshell

2707 368.6 368.6 100/100 873.3 1327.1 100/100 1641.2 2875.4  100/100
47 27 4974 497.4 134.9/134.9 1174.6 1866.5 134.5/134.9 2208.7 4078.4 134.6/141.2
6, —4; 489.8 489.8 132.9/132.9 1150.6 1997.9 131.8/132.9 2165.5 4434.0 131.9/154.2
8 —6; 425.0 425.0 115.3/115.3 991.5 2003.7 113.5/151.0 1867.5 4553.8 113.8/158.4
10/ —8; 318.7 318.7 86.5/86.5 737.6 1940.2 84.5/146.8 1389.7 4559.5 84.7/158.6
127 —10f 176.3 176.3 47.8/47.8 4043 18265 46.3/138.3 761.7 4370.0 46.4/156.2

47 -27 <01 O - <0.1 0 - <0.1 0 -
2,50 <01 O - <0.1 0 - <0.1 0 -
2,27 <01 O - <0.1 0 - <0.1 0 -
6,4, <01 O - <0.1 0 - <0.1 0 -

case of arsd shell with six particles, which is a half-filled subspace are almost the same from s$deshell to thesdg
case, are exactly reproduced, although we diagonalize thehell, while those calculated in the full SM space change
Hamiltonian in a smaller configuration space. Up to now wequickly for higherJ states.
do not know whether this exact reproduction is accidental, or Another difference betweeSD truncation and the full
whether there are deep reasons lying behind it. ffaind  shell model is very parent in Fig. 3. The calculated energy
sdg shells, the agreement fdd,=N,=3 (which is not a |evels (moment of inertiz in the SD configuration are sys-
half-filled cas¢ does not become so good. For example, outematically higher (smalle), and binding energies are
result is just 66% of the total binding energy in the Elliott smaller than the full shell mode(Elliott mode) results.
model whenN,=N,=3 in the sdg shell. It is then worth  However, all the calculated intervals and the sequences
trying to see whether, in general, one obtains the analyticalithin each column of Fig. 3, and the transition probabilities
results of the Elliott model using the abo®®-pair trunca-  petween the states, exhibit definite band regularities of rota-
tion in the half-filled shell. For thedgshell,Ny,,=7 isnot  tional nuclei. This phenomenon was observed in the jtwo-
a half-filled case like the above, and we can skipNf.x  single-closed shell in previous papers, such as RéfThis
=5 for thepf shell is the only candidate to check the abovejs very important since th&D truncation does not lose the
ansatz, because thé,, of the next shell §=11) which  essential physics of the shell model. In particular the differ-
satisfies the above half-filled condition is 33. However, cal-ences in the moments of inertia and binding energies can be
culations of N=5 are so time consuming that one musteasily eliminated using different parametrizations. To show
modify the code using some novel techniq{@s.0]. this point, we present a typical example in Fig. 4, where we
In Table V we present a comparison betweenERetran-  use 24.2% of the original valueto obtain a best fit with the
sition rates calculated in theD-pair subspace and those cal- original Elliott model for the ground band. We see that the
culated using the analytical formulas of the Elliott model for agreement of the ground band is satisfactory. The difference
each shell case. In order to see the physics more clearly, ws that the band heads of ti8D truncation are much lower
list the E2 transition rates relative tB(E2,0; —27). Itis  than those in the Elliott model. Here we have omitted the
easy to note that we have numerically reproducedBRe details of theE2 transitions for the states in Fig. 4, because
transition rates between states of the ground band fosdhe there would be too many data in a talileote that theE2
shell case, and thE2 transition rates calculated in ti8D-  transition results remain untouched when we chaadgehus
pair subspace are systematically smaller than the exact rene can refer to Table V for the two lowest baydsut we
sults calculated in the full SM space for theandsdgshells.  would like to present a description of tl&2 transitions cal-
However, the relativdE2 transition rates are reasonably re- culated using the&sD-pair approximation. The intrabart2
produced for the lowest excitationd<£6). For the case of transitions are much stronger than the interb&2dtransi-
J=8 one needs cohere@ pairs. Although there are such tions (at least ten times except in one case which will be
differences, basic properties such as the band structure adéscussed below. This is a property of band structures in
kept very well. In the calculation of th8D-pair approxima-  well-deformed nuclei. Another interesting point is that these
tion the E2 transition rates from the other bands to thelevels within the band satisfactorily follow the rule b{L
ground band are seven orders smaller than the strengths be-1) as the Elliott model, and moments of inertia remain to
tween the ground band states. It is also interesting to notbe slightly changed for all bands. There are several “identi-
that the relativeE2 transition rates calculated in tl&D-pair ~ cal bands” which can be regarded as an image of the fact
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700 that essential properties of the Elliott model are well repro-
. . duced. This is important since it means that 8@ trunca-
M s tion can be a good approximation of the shell model for
so |- 7 TEE oo S rotational motion(after adjusting parameters
T BT ES g5 e 40
¢¢¢¢¢¢¢¢¢ -t M -9‘ -B‘-B‘ +
SEH LS TS S p LT 7 V. DISCUSSION AND CONCLUSION
500 - _4’_5._5._5,_4._5._5;4'_3‘ _4:.%:.‘1: o _23"8‘ B . '- = 5 ) . ] o
P wwssase D00 37 g jj.a'_e;s. In this paper, we carry out schematic calculations within
@ﬁ'jjﬂjj{jﬁﬁﬂl‘-f s 7 o the shell model space and collecti&D-pair subspace. A
gwo Y St P ™ ‘B.sj—“‘:;j:j; comparison between calculations in the full shell model
o 2(33,3) T b space and in thesD-pair subspace is presented and dis-
= 10 I cussed. In the singlgease, when the Hamiltonian consists of
A w00 | '7_4._4.:231_2.:5;:;1 monopole and quadrupole pairing plus quadrupole pairing
'5'.305;@ A—fg) o the SD-pair subspace satisfactorily reproduces the low-lying
) ’-5‘;)2'@ levels of the shell model and thE2 transitions between
I '5:‘; them. The contributions from the monopole pairing and
Shell Vodel 2 b truncotion quadrupole-quadrupole interaction are the reverse, and as a
B = Hece K consequence of this offset the total binding energies calcu-
o b lated in theSD-pair subspace agree well with results calcu-
. . lated in the full shell model space. Ti&D-pair truncation
) deteriorates if the quadrupole-quadrupole interaction is arti-
. . icially large compared wi e monopole pairing interac-
N 2 ficially | d with th I t
@ tion. On the other hand, the larger monopole pairing strength

does not deteriorate the agreement betweershpair trun-
o ) ~cation and the SM space. When the neutron pair number is
FIG. 4. Excitation levels in theN,=N,=3) sdgshell. The unit  greater than 3 antl,=1 or 2, among the contribution from
of energy is in MeV. Here higher states in the shell ma@liott g6y term of the Hamiltonian there are quite large differ-
mode) are omitted because they cannot exist in 8isubspace. g ceq petween the results calculated in the SM space and
on the left-hand side, the E.”'Ott notations of theSH, group ar€  thpse calculated in th&D-pair subspace for the monopole
given below the corresponding band heads. The number “2” befor airing term and quadrupole-quadrupole interaction. The dif-

the bra of some irreducible representations denotes that the corrg- . .
erences between the above two kinds of calculations for

sponding representations appear twice. Here, due to the "mitaﬂoﬂwese two terms are comparable in maanitude and opposite in
of space, we have omitted repetitions of energy levels which corre-, P 9 PP

spond to the same irreducible representatighand(b) correspond sign. These differences become very small for the cas_e_s of
to the SU3) irreducible representation®6,0y° and (34,19, re- N»=3 or N,=3. Because we use a moderate pairing
spectively. The right-hand side lists calculational results using thétrength and a quadrupole-quadrupole interaction for this

SD-pair truncation, where sequences of the bands are labeled belodmall singlej shell, the agreement of the binding energy be-
the corresponding bandheads. The parametds chosen to be tween the calculation in the full SM space and that in the

24.2% of the original value on the right-hand side. SD-pair subspace is extremely good in this paper. The agree-
ment of energy levels and tHe2 transitions between low-
that one irreducible representation may appear many time#/ing states are also good. This means that3Bepair trun-
On the right-hand side of Fig. 4, ban@®) and (3) can be cation for a singlg-shell is reasonable when the Hamiltonian
regarded as one example that one irreducible representatié@nsists of pairing and quadrupole-quadrupole interaction. In
appears twice. In this case, both the energy levelsiad the multij case, we assume the Hamiltonian is of pure
transitions are almost the same without any exception. Th@uadrupole-quadrupole type, and that the single-particle lev-
other three examples are bari@sand(7) (twice), bands(8) els are determined to be of three-dimensional harmonic vi-
and (9) (twice), and bandg10) and (11). Bands(4) and (5) brator type. In the half-filled case of thel shell, the exact
belong to another case. These two bands can be regardedrggroduction of some states within ti-pair subspace is
sequences of irreducible representation2). The states unexpected, and needs further investigation. From the calcu-
2%, 4", etc., within band€4) and (5) are almost identical, lation, we find that although th&D-pair subspace is much
and there are non-negligiblE2 transitions between inter- smaller than the original shell model space, essential proper-
band states as well as very stroR@ transitions between ties such as the band structure within the shell model space
intraband states. The calculated transition rates between igurvive in theSD-pair subspace. The differences in moments
traband states are usually two or more times larger than thog¥ inertia or binding energies can be easily eliminated using
between interband states. In this example 100 calculate@ifferent parameters. Note that it seems impossible to fit the
states are presented, and the lowest 60 states are exhauste@pments of inertia and binding energies at the same time by
the SD subspace. This means that the above discussion is n8gliusting « in the abovepf and sdg shells, because one
special but rather general. Although we are unable to reproshould use a smaller to fit the excited energieEf. largerx
duce all the corresponding bands of the Elliott model using© fit the binding energigs The difficulty can be overcome
the SD truncation, the results in Fig. 4 clearly demonstrateby introducingL? interaction in the Elliott model, and in that
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case we can fit both moments of inertia and binding energie$his can be regarded as a verification of 8ie-pair trunca-
using two different parameters. Despite the differences irion of the shell model in realistic cases.

parameters, essential properties of the Elliott model are kept
intact in theSD-pair truncation, because the introduction of

L2 does not cause any changes in the wave functions and
B(E2) transitions. Therefore, it would be interesting to ap- We would like to thank Professor Stuart Pittel and Pro-
ply the SD-pair truncation to realistic nuclei, and see how fessor V. K. B. Kota for valuable discussions and kind assis-
well the SD-pair truncation works. Recently, the(® prop- tance. One of the authof¥.M.Z.) gratefully acknowledges
erties of doubly even nuclei in thie~ 130 region have been the Science and Technology Agency of Jaf@ontract No.
successfully reproduced within th&D-pair subspacd9]. 297040 for supporting this project.
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