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Nucleon pair approximation of the nuclear collective motion
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The nucleon pair shell model calculation is performed in terms of theSDcollective pairs which are obtained
in a suitable way to obtain the maximum collectivity. The method is applied to even-even Sn, Te, Xe, Ba, and
Ce isotopes near theA5130 region employing the~monopole and quadrupole! pairing plus quadrupole-
quadrupole-type interaction with a very few parameters. The structure of energy levels for the quasi-g band as
well as the ground band is well reproduced in each nucleus. Other properties such asE2 transition rates and
binding energies also agree with experimental data very well. The overall fit with the experimental data is
superior to the previous calculations.

PACS number~s!: 21.10.Re, 21.60.Ev, 23.20.Js, 27.60.1j
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I. INTRODUCTION

A central problem in nuclear structure theory is how
describe the collective and low-lying excitations in terms
the spherical shell model. As is well known, the dimens
of the configuration space of the shell model increases v
fast with the valence nucleon number, and becomes proh
tatively huge for medium-heavy nuclei. As a consequen
one needs to seek a judicious truncation scheme, i.e., to
lect the collective configurations from the whole shell mod
space. During the past 20 years, countless calculations w
the framework of the interacting boson model~IBM ! have
been done, and the model has proved to be a valuably in
pretive and predictive aid in understanding the nuclear st
ture and its evolution. Through the great success of the I
@1#, it was recognized that the collective angular moment
zero ~S! and two~D! pairs play a dominant role in the co
lective motions. In the IBM, theSD pairs are approximated
assd bosons. Another similar model, the fermion dynamic
symmetry model~FDSM! @2#, constructs the collectiveSD
subspace using the SP~6! or SO~8! symmetry-dictatedSD
pairs. Besides the above two truncations, there were o
truncation schemes along the same line, such as the br
pair approximations~BPA! @3#, the favored pair approxima
tions ~FPA! @4#, etc.

Recently, Chen generalized the Wick theorem which n
applies to fermion pairs@5#. Based on this technique, he pr
posed a nucleon-pair shell model~NPSM! @6#. In the NPSM,
nucleon pairs with various angular momenta are used as
building blocks of the truncated shell model space. T
NPSM has several advantages. First, it is flexible enoug
include the BPA, the FPA, and the FDSM as its spec
cases, i.e., the nucleon pairs in the NPSM may be arbitra
constructed if necessary. Second, the Hamiltonian in
NPSM can take the single particle~s.p.! term H0 into con-
sideration, which is usually treated as a constant in the F
and the FDSM. It is meaningful to include theH0 term in the
Hamiltonian H because theH0 comes from the dominan
part, namely, mean-field part inH. Third, since calculations
are carried out within the nucleon pair subspace, one
0556-2813/2000/62~1!/014315~10!/$15.00 62 0143
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properly take into account the Pauli effect, which can
treated only by adjusting interaction strengths in the bo
models. Fourth, through earlier investigations@13# it is
proper to useS and D pairs in vibrational and transitiona
regions whereas we may needG pairs in deformed areas.

In this paper, we apply the NPSM to the Sn, Te, Xe, B
and Ce isotopes using theSandD pairs as its basic building
blocks. In Sec. II we describe how to construct the multi-p
basis states using the collectiveS andD pairs. We assume a
monopole and quadrupole pairing, and quadrupo
quadrupole interaction between like valence nucleons,
quadrupole-quadrupole interactions between valence pro
and neutrons. In Sec. III theS pair is determined by solving
the Bardeen-Cooper-Schriefer~BCS! equation, and theD
pair is related to theS pair via a commutation with quadru
pole operator. Calculational results are given and compa
with experimental data in Sec. IV. In Sec. V a discussion and
conclusions are given. In Appendix A we discuss some
our innovative methods to improve our numerical calcu
tions. In Appendix B we note the strengths of multipole pa
ing interaction and quadrupole-quadrupole force.

II. MULTIPAIR BASIS AND HAMILTONIAN

The collective pair of angular momentumr with its pro-
jection m is defined as

Am
r†5(

ab
y~abr!~Ca

†3Cb
†!m

r ,

~1!
y~abr!52~2 !a1b1ry~bar!,

wherer 50,2 corresponds to theSandD pairs, respectively.
Ca

† and Cb
† are single-particle creation operators.a and b

denote all quantum numbers~except the magnetic quantum
number! necessary to specify a state@a[(nl j )#. We also
use them to denote the angular momentum of the single
ticle orbit in case there is no confusion~i.e.,a is used to label
the single particle orbit as well as denote the correspondij
value.!. y(abr) are structure coefficients of the collectiv
©2000 The American Physical Society15-1
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pair, which should be determined via an appropriate pro
dure to maximize the collectivity of theSandD pairs. These
nucleon pairs are coupled step by step to yield anN-pair
basis

utJNMN&[AMN

JN†~r i ,Ji !u0&,

~2!
AMN

JN†~r 1r 2 ...r N ,J1J2 ...JN!5@¯~Ar 1†3Ar 2†!J23¯

3Ar N†#MN

JN ,

where J15r 1 , JN is the total angular momentum of th
aboveN-pair operator, andMN is the z projection of JN .
Here t is an abbreviation for all the necessary intermedi
quantum numbers. Details of choosing a complete set of
multipair basis states were discussed in Refs.@6,7#. It should
be noted that for a fixed total number ofS and D pairs the
number of linear independent basis states for a given ang
momentumJN is definite, and is actually equal to that of th
sd boson states, but there are various ways to choose in
mediate angular momentaJi ( i 52,...,N21) to make those
basis states. For a givenJN , it would be better to choose th
possiblesmallestvalue for eachJi for the sake of saving
computing time~while in Ref. @7# possible largest values fo
Ji were taken!. There are other techniques to save the co
puting time, which are presented in Appendix A.

The time inversal of the aboveN-pair operator is

ÃMN

JN ~r 1r 2r 3 ...r N ,J1J2J3 ...JN!5$¯@~Ãr 13Ãr 2!J23Ãr 3#J3

3•••3Ãr N%MN

JN

[ÃMN

JN ~r i ,Ji !. ~3!

Ãr i is defined as

Ãr i5~2 !(
ab

y~abri !~C̃a3C̃b!
r i, ~4!

whereC̃am5C̃(nl j )m5(2) j 2mCa2m , andCam is the annihi-
lation operator.

In this paper, the Hamiltonian is chosen as

H5H01HP1kQp•Qn . ~5!

The first part is the spherical single-particle energy term

H05(
as

easCas
† Cas , ~6!

wherea denotes all quantum numbers necessary to spec
state,a[(nl jm), and s5p, n corresponds to degree o
freedom for protons and neutrons, respectively. The rem
ing two terms are residual interactions, and they are assu
to consist of the pairing plus quadrupole-quadrupoleP
1Q) interaction@8#. HP denotes monopole and quadrupo
pairing, and quadrupole-quadrupole interaction between
valence nucleons, which is denoted as
01431
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HP5V01V21VQ , ~7!

whereV0 is the monopole pairing interaction:

V05
1

4 (
s5p,n

(
ag

GssassgsCas
† Cās

† CāsCgs . ~8!

sa here is a signsas5(2) j s
2ms, which is related to the

time-reversal properties of the states,ā5(nl j 2m). V0 can
be rewritten as

V05GpPp
† Pp1GnPn

†Pn , ~9!

where

Ps
†5(

as

ĵ s

2
~Cas

† 3Cas
† !0

0, ~10!

with ĵ 5(2 j 11)1/2. V2 in Eq. ~7! is a quadrupole pairing
force,

V25(
s

Gs
2Ps

~2!†
•Ps

~2! , ~11!

wherePs
(2)† is defined as

PsM
~2!†5 (

asbs

q~asbs!~Cas
† 3Cbs

† !M
2 , ~12!

with M50,61,62; q(asbs) is the same as what appears
the Qs operator in Eq.~14!, which is defined as

QM5(
ag

^aur 2YM
2 ug&Ca

†Cg , ~13!

whereg[(nl8 j 8m8)5(bm8). Note that the scripts5p or
n is omitted in the above definition sinceQ is just r 2YM

2 , and
it has the same form for protons and neutrons. Via so
recoupling techniques of angular momentum, it is easy
rewrite Q as

QM5(
ab

q~ab!~Ca
†3C̃b!M

2 , ~14!

with

q~ab!5
~2 ! j 11/2

A20p
ĵ ĵ 8Cj 1/2,j 821/2

20 ^nlur 2unl8&,

whereCj 1/2j 821/2
20 is the Clebsch-Gordan coefficient. The m

trix elements ofr 2 are given in@9#:

^nlur 2unl8&

5H ~n13/2!r 0
2, l 5 l 8

~n1 l 81261!1/2~n2 l 81171!1/2r 0
2, l 5 l 862,

~15!
5-2
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where r 0
25\/MNv051.012 Å1/3 fm2. MN is the mass of a

nucleon, andv0 is the harmonic-oscillator frequency. We d
not use the actual value ofr 0

2 when we calculate the excita
tion energies and binding energies in this paper, but qua
pole pairing and quadrupole interaction strengths are gi
in unit of MeV/r 0

4. The matrix elements ofr 2 are used in
calculatingE2 transitions.

VQ in Eq. ~7! is a quadrupole-quadrupole interaction b
tween like valence nucleons,

VQ5(
s

ksQs•Qs . ~16!

The E2 transition operator is

T~E2!5epQp1enQn , ~17!

whereen and ep are effective charges of valence neutro
and protons which include their bare charges, respective

The numerical code of theSD pair shell model for even-
even nuclei was written inC language@10,11#. The input
includes the single-particle energies, the parameters of
Hamiltonian, and effective charges. The output includes
energies for the ground state, low-lying excitation states,
the E2 (M1) transition rates among these states, radii
nuclei, and so on.

III. PARAMETERS IN THE HAMILTONIAN

Now we come to the question of the structure coefficie
of the collectiveS and D pairs. For given pairing strength
Gn andGp we solve the BCS equation to obtainua andva ,
the empty and occupied amplitudes, respectively, for orbia.
Then the collectiveS pair is defined to be@12#

S†5(
a

y~aa0!~Ca
†3Ca

†!0, y~aa0!5â
va

ua
. ~18!

The D pair is obtained by using the commutator@12#

D†5 1
2 @Q,S†#5(

ab
y~ab2!~Ca

†3Cb
†!2. ~19!

Here operatorQ is defined in Eq.~14!. From Eq.~19!, it is
easy to obtain~after symmetrization!

y~ab2!52 1
2 q~ab!F y~aa0!

â
1

y~bb0!

b̂
G . ~20!

There are also other ways to defineD pair @13#, but it is
expected that Eq.~19! is one of the best ways when th
quadrupole-quadrupole interaction between protons and
trons are strong. In some magic or near magic nuclei wh
interactions between like particles are important compa
with those between unlike particles, we must seek for ot
methods. Note that we omitted the scripts in Eqs.~18!–~20!
since we determine theSD pairs separately for protons an
neutrons in the same way, and this omission does not c
confusion.
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Prior to this work, there were some calculations of t
nuclei in the same region, e.g., microscopic calculations@14#
by the IBM using OAI mapping@15#, and several tentative
calculations in theSD pair shell model using similarSD
nucleon pairs@7,16,17#. The main difference of this work
with @14# is that only twoD pairs were involved in theSD
pair subspace in Ref.@14#, since the boson mapping require
only up to twoD pairs, and here we haveD pairs as many as
possible, that is, we have taken into account the entireSD
subspace. The difference from Refs.@7,17# is that of theSD
truncation procedure and the form of the Hamiltonian. T
difference from Ref.@16# is the form of the Hamiltonian, and
the procedures in adjusting parameters, which leads to
stantial improvements of the agreement with experimen
data, and will be explained below.

In Ref. @7#, Chen and co-workers used several methods
truncate the shell model space to theSD subspace, then car
ried out calculations on the nucleus134Ba in the SD sub-
space. They used two kinds of interactions between like
lence nucleons, the monopole pairing or the surface d
interaction~SDI! VSDI . In Ref. @17# the authors usedVSDI
between like valence nucleons, and the collectiveS and D
pairs were constructed by diagonalizing the SDI Hamilton
(HSDI5SaeaCa

†Ca1VSDI) in the basis (Ca
†3Cb

†) r u0&, that
is, in the two-particle space. As a consequence, the ma
body effect on the structure of theSandD pairs was ignored,
i.e., the structure coefficientsy(abr)’s of the collectiveS
and D pairs do not change with the pair numbers. Anoth
point is that in Ref.@17# the parameters changed rapidly as
function of neutron pairs. In Refs.@7,17# the parameters for
the interactions were quite different for protons and neutro
the strength of the quadrupole-quadrupole interaction
tween protons and neutrons is too strong~e.g., k5
20.212 MeV/r 0

4 for the nuclues134Ba!. In Ref. @7# a smaller
value of k was taken for the so-called ‘‘SDI-B,’’ ‘‘HFB,’’
and ‘‘BCS’’ truncations, but theE2 transitions for these
truncations completely contradicted with the experimen
data. In Refs.@11,16# parameters of the pairing strengthsGp

andGn in the monopole pairing@Eq. ~9!# were rather weak in
order to obtain reasonable agreement with the experime
data. The reason for this is that the contribution from t
quadrupole pairing and the quadrupole-quadrupole inte
tions between like nucleons, which are not negligible, w
omitted therein. Even if the pairing parameters of the Ham
tonian were ‘‘modified’’ in this way, the fit of energy level
and the electromagnetic transition rates among them w
experimental data was not good@11,16#. In fact, if one uses
the Hamiltonian, excluding the quadrupole pairing and
quadrupole-quadrupole force between like nucleons,
meanwhile uses the guide values for the parameters of
BCS equation, for example,20.18 MeV for Gp and20.13
MeV for Gn , as done in Ref.@6#, one would obtain very
large excitation energies for the low-lying states@e.g., E2

1
1

51.845, E4
1
153.800, andE6

1
155.933 ~in MeV! for the

nucleus134Ba if k50.08 MeV/r 0
4#. In order to have a reason

able excitation, one has to use much smaller monopole p
ing strengths, as done in Refs.@11,16#. For these reasons, th
above SD truncation of the shell model was almost co
5-3
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cluded@7# not to be a good candidate of theSD truncation
scheme, although it was suggested to be in previous stu
@12#. In addition, the BCS equation is unstable for sm
~<0.01! and largeN (N>4) pairing strengths, which make
the SD truncation method in this paper completely inapp
cable for largeN if one uses the BCS pair as theS pair and
uses a Hamiltonian without quadrupole pairing interact
and quadrupole-quadrupole interaction between like vale
nucleons at the same time. Another disadvantage of the
culations neglecting the quadrupole pairing and quadrup
quadrupole interaction between like valence nucleons@16# is
that it is difficult to obtain ‘‘reasonable’’ systematics withi
the ‘‘valence correlation scheme’’ defined by Casten a
Zamfir @18#. The calculatedE2

1
1 would drop withNpNn at a

‘‘speed’’ @16# which is much slower than the behavior of th
experimental data. Effective charges were rather large~ep

5en52.1e in Refs.@7,17#, for example! to obtain a reason
able agreement with one or two nuclei, but the calculatedE2
transitions rates increased very slowly with the neutron p
number, which contradicted the experimental data. Anot
important difference between this work and the previous c
culations within the SD nucleon pair shell mode
@7,11,16,17# is that we use positive neutron-proto
quadrupole-quadrupole strengthk in this paper because w
treat neutron-deficient nuclei. This is different from the p
vious calculations@7,11,16,17#, where a negativek was used.
The reason is that the operatorQn changes its sign due to th
particle-hole transformation, or equivalently, one should
positive k in the parameterization of the shell model calc
lations. Another interesting point is on the proton-neutr
quadrupole-quadrupole interaction strength,k. We note that
the best-fitk changes very little for nuclei involved here. I
order to reduce the number of parameters, we use a fi
value (k50.06 MeV/r 0

4) throughout this paper.
The neutron single-particle energies are taken from

perimental data@19#, and the proton single-particle energi
are obtained from an extension of available experime
data@20#, as shown in Table I. The parameters of the Ham
tonian in this paper are listed in Table II. It is interesting
note that the parameters for quadrupole pairing and
quadrupole-quadrupole force are comparable with the ef
tive interaction in Ref.@21# if the difference in definitions for
quadrupole pairing and the quadrupole operator is taken
consideration. In this paper, we setGp

2 5Gn
2 andkp5kn for

the sake of simplicity. These are the only two independ
parameters which are varied in a reasonable range for nu
under consideration in this paper. Other parameters suc
the monopole pairing strengths are fixed for all nuclei. F
the sake of conveniences, different definitions on pairing

TABLE I. Single-particle energies for protons~particlelike! and
neutrons~holelike! adopted from Refs.@18,19#.

j s1/2 d3/2 d5/2 g7/2 h11/2

ep ~MeV! 2.990 2.690 0.963 0 2.76
en ~MeV! 0.332 0.000 1.655 2.434 0.242
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teraction and quadrupole-quadrupole interaction are
plained and compared in Appendix B.

IV. CALCULATIONAL RESULTS

A. Energy spectra andB„E2…

Hamiltonian ~5! is believed to include all the essenti
ingredients of physics, and it is expected to describe the g
eral features of the low-lying excitations well if theSD trun-
cation is good. A comparision between the calculated1

1

state and the experimental data for the Sn isotopes is give
Fig. 1, and the calculational spectra of other isotopes
compared with the experimental data in Fig. 2. It is easy
notice that the low-lying energy levels on the ground ba
and the quasi-g band are reasonably reproduced. The quasb
bandhead energies are also nicely reproduced. In most s
ies of the previousSD nucleon pair shell model calculation
@7,11,16,17#, the level sequences in the quasi-g band were

TABLE II. Parameters (Gs
2,ks) in (MeV/r 0

4) used in the
Hamiltonian. We setGp520.180 MeV, Gn520.131 MeV, and
k50.06 MeV/r 0

4 for all the nuclei. The parameters in this work a
comparable to those of theP1Q model, where Gsm f
20.150 MeV,Gs

2;0.03 MeV/r 0
4, anduku; 1

2 uksu;0.07 MeV/r 0
4.

Nucl. 132Sn 130Sn 128Sn 126Sn 124Sn

Gs
2 - 20.013 20.014 20.016 20.015

ks - 20.015 20.015 20.015 20.020

Nucl. 134Te 132Te 130Te 128Te 126Te

Gs
2 20.024 20.020 20.020 20.023 20.025

ks 20.025 20.017 20.021 20.024 20.025

Nucl. 136Xe 134Xe 132Xe 130Xe 128Xe

Gs
2 20.024 20.022 20.025 20.028 20.029

ks 20.025 20.025 20.026 20.028 20.029

Nucl. 138Ba 136Ba 134Ba 132Ba 130Ba

Gs
2 20.018 20.021 20.025 20.030 20.032

ks 20.045 20.045 20.045 20.045 20.045

Nucl. 140Ce 138Ce 136Ce 134Ce 132Ce

Gs
2 20.019 20.021 20.025 20.030 20.032

ks 20.045 20.045 20.045 20.040 20.045

FIG. 1. The 21
1 states of Sn isotopes.
5-4
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FIG. 2. The spectra of Te~a!, Xe ~b!, Ba ~c!, and Ce~d! isotopes. Left-hand side, experimental data~taken from Ref.@22#!; right-hand
side, calculated spectra.
C

nt

f the
r

ei
not correctly reproduced. The only exception is that the B
truncation in Ref.@7# predicted the correct position of the 31

1

state, but theE2 properties therein were completely differe
from the experimental data. In the case ofNpNn<3, theSD
01431
Ssubspace was not believed to be a good approximation o
shell model space@7#, where the contribution from the othe
configurations such as the collectiveG pair may not be neg-
ligible. The 61 state on the ground band for the nucl
5-5
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TABLE III. The relative B(E2) values for130,132,134Ba and128,130Xe. The experimental data are take
from Ref. @16#. O~6! means the relativeB(E2) transitions of the IBM prediction in the O~6! limit. In this
table we use effective chargesep52en51.6e.

Nucl.
Ji→Jf O~6!

132Ba 134Ba 130Xe 130Ba 128Xe

Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal. Expt. Cal.

22
1→21

1 100 100 100 100 100 100 100 100 100 100 100
→01

1 0 0.2 ,0.1 0.6 0.5 8 ,0.1 5.7 ,0.1 1.2 0.2
31

1→22
1 100 100 100 100 100 100 100 100 100 100 100

→41
1 40 73 34.4 40 31.5 25 36.1 30 35.9 37 35.4

→21
1 0 0.2 ,0.1 1.0 1.3 1.4 1.2 1.5 ,0.1 1 1.1

42
1→22

1 100 100 100 100 100 100 100 100 100 100 100
→31

1 0 - ,0.1 14.5 9.2 - ,0.1 - 4.5 - 9.6
→41

1 91 75 97.1 77 84.1 107 111.0 89 101.6 133 108
→21

1 0 2.2 1.4 2.5 5.6 3.2 4.9 3.9 1.7 1.7 5.6
51

1→31
1 100 100 100 100 100 100 100 100 100 100 100

→42
1 46 - 53.9 - 67.8 - 35.1 <57 64.4 88 45.0

→61
1 45 - 41.2 - 49.0 - 28.7 381 43.9 204 29.2

→41
1 0 - 0.6 - 3.0 - 9.5 6.7 1.0 3.7 7.2

02
1→22

1 100 100 100 100 100 100 100 100 100 100 100
→21

1 0 0 1.0 4 11.1 2.6 2.6 - 0.3 14 0.2
s
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we
. In
130,128Te, 132Te, 136Ba, and138Ce is not reproduced in thi
paper because it is a precollective state, namely, a s
where seniority scheme works rather well and nuclear c
lectivity is not dominant. TheJ>8 states of the nucle
134,136Ce are not satisfactorily reproduced, where the cal
lated levels are higher than the experimental data. Th
states are not highly collective excitations.

In order to fit the experimental data of theE2 transition
rates, one may adjust the effective charges. In this pape
fix the ep51.6e anden521.6e for all nuclei. Note thaten

is in opposite sign to proton effective charge because
choose the holelike picture for the neutronSDsubspace. The
calculated relativeB(E2)’s are compared with the exper
mental data@23# and the predictions of the IBM O~6! limit in
Table III. The behavior of relativeB(E2) is interesting since
it can be used to examine the main features of the w
function for these nuclei. It is easy to notice that main fe
tures for the nuclei134,132Ba and130Xe, which were pointed
out to display the O~6! symmetry of the IBM@23#, are nicely
reproduced by adjusting onlyks and Gs

2. Compared with
previous results@7,11,16,17#, the fit between the calcula
tional results and experimental data is substantially
proved. Particularly, theE2 transition rates ofB(E2,01

1

→21
1) for most nuclei are reasonably reproduced using c

stant and reasonable parameters of the effective cha
while the previous calculations within theSD-pair subspace
@7,11,16,17# could not. We would like to mention that w
have tested different sets of effective charges~e.g., ep /en

;1.5!, and found the calculated relativeE2 transition rates
have very weak dependence on the specific choice of
ratio ep /en . In order to see how good the nucleon pair a
proximation can be in the nuclear collective motion we a
justed the proton and neutron effective charges using
least-square-fitting method. The best proton effective cha
01431
te
l-

-
se

e

e

e
-

-

-
e,

e
-
-
e
e

is ep51.73035e. and the best neutron effective charge
en521.41201e. The calculated results are shown in Tab
IV, labeled by Cal. 2. Like all the studies of theB(E2)
values using local, regional, and global systematics edite
Ref. @24#, the abnormal ‘‘jump’’ ofB(E2,01

1→21
1) from the

nucleus134Ce to the nucleus132Ce is not reproduced, and w
excluded the experimental data in our least-square-fit
procedure. Here we say there is an abnormalB(E2) ‘‘jump’’
in the experimental data of the nucleus132Ce because the
experimentalB(E2) value of the nucleus132Ce (1.77e2b2) is
much larger than that of the nucleus134Ce and is even large
than that of the nucleus130Ce (1.73e2b2). It is also interest-
ing to note that parameterks affects the calculational spectr
slightly but it cannot be neglected in order to reproduce
relativeE2 transition rates. We point out that the experime
tal data for the E2 transition are still scarce. Th
B(E2) data of 51

1→31
1 , 61

1 , 41
1 , and 42

1 will be very
useful not only for further identification of the O~6! property
for the nuclei134,132Ba and132Xe, but also for checking the
exactness of theSD truncation of the nuclear shell model i
this paper.

B. Other properties

We have also calculated several other properties. Here
discuss two properties, nuclear radii and binding energies
this paper, ther s

2 is defined as

r s
25

1

Zs
F(

i 51

Zs
0

^F0ur i
2uF0&

1ds^01
1uS (

as

^asur 2uas&Cas

† CasD u01
1&G ,

~21!
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TABLE IV. The calculatedB(E2,01
1→21

1) ~in unit of e2b2) using theSandD pair approximations in this
paper. We usedep52en51.6e in Cal.1. To see how good theS andD pair approximations could be, we
adjusted the effective charges using a least-square-fitting procedure and recalculated theE2 transition rates,
which are shown in Cal.2. The new effective charges areep51.73035e anden521.41201e in Cal.2. The
mean standard errorx of the quantity 100@B(E2,01

1→21
1)/A2/3#1/2 in Cal.1 and Cal.2 is 1322e b and

1.018e b, respectively. The experimental data are taken from Ref.@24#.

Nucl. 134Te 132Te 130Te 128Te 126Te

Cal.1 0.117 0.251 0.432 0.565 0.652
Cal.2 0.138 0.217 0.371 0.483 0.554
Expt. - - 0.29560.007 0.38360.006 0.47560.010

Nucl. 136Xe 134Xe 132Xe 130Xe 128Xe

Cal.1 0.177 0.320 0.551 0.735 0.854
Cal.2 0.205 0.289 0.498 0.655 0.756
Expt. 0.1860.08 0.3460.06 0.4660.03 0.6560.05 0.7560.04

Nucl. 138Ba 136Ba 134Ba 132Ba 130Ba

Cal.1 0.231 0.414 0.717 0.946 1.117
Cal.2 0.278 0.398 0.667 0.872 1.065
Expt. 0.22660.009 0.40060.005 0.68060.016 0.8660.06 1.2960.14

Nucl. 140Ce 138Ce 136Ce 134Ce 132Ce

Cal.1 0.258 0.465 0.805 1.007 1.256
Cal.2 0.308 0.443 0.760 0.935 1.252
Expt. 0.29660.006 - - 1.0360.09 1.7760.14
-
r

e

ie
lu

ul
r.

e
t

ot
o

r

t

and
ex-

e

lated
data
whereZs ~s5p or n! is the proton number or neutron num
ber of the nucleus, andZs

0 is the nearest magic number fo
protons and neutrons;uF0& is the wave function of the core
and u01

1& is the wave function of the ground state within th
valenceSD subspace; andds511(21) if the correspond-
ing valence space is constructed by the particle-like~hole-
like! configurations. It is expected that the core be occup
completely, and the contribution from the core can be eva
ated one by one using Eq.~15!. The contribution from the
valence nucleons~holes! can be calculated by rewriting
Sas

^asur 2uas&Cas

† Cas
in second-quantized form:

(
as

^asur 2uas&Cas

† Cas
52(

as

ĵ S n1
3

2D r 0
2~Cas

† 3C̃as
!0.

~22!

r s5Ar s
2̄ are presented and compared with the RMF res

@26# in Table V. They are very consistent with each othe
The binding energiesB are defined as

B5B01^H0&1^HP&1^kQp•Qn&, ~23!

where the constant parameterB0 is determined so that th
binding energy of the nucleus132Sn is equal to 0. We presen
the relative binding energies of these nuclei in Fig. 3. N
that we use two additional parameters to fix the place
single-particle levels~or, in other words, Fermi energies fo
proton and neutron!. In this paper we sete7/2p

527.6 MeV

and e7/2n
527.8 MeV. From Fig. 3 it is easy to notice tha
01431
d
-

ts

e
f

the agreement between the calculated binding energies
the corresponding experimental data are reasonably good
cept for the nucleus132Ce. One possible explanation for th
difference in binding energy of the nucleus132Ce is that the

FIG. 3. The relative binding energiesB plotted vs the neutron
pair number for each isotope. The triangles represent the calcu
binding energies in this paper and the dots are experimental
taken from Ref.@25#.
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single-particle energies, which are very sensitive to the
culated binding energy but determined to be constants u
the experimental levels of the nucleus133Sb ~beginning-shell
single-particle energies for proton! and those of the nucleu
131Sn ~ending-shell single-particle energies for neutron!, are
not appropriate any more for the nucleus132Ce where there
are eight valence proton particles and eight neutron ho
Anyway, the agreement between the calculated binding
ergy and the experimental data for the nucleus132Ce could
be improved substantially if one adjusts the monopole p
ing strengths and neutron-proton quadrupole-quadrupole
teraction strength in a reasonable range.

V. DISCUSSION AND CONCLUSION

In this paper, the excitation energy levels on the grou
band and quasibands of doubly even nuclei of around
mass region are well described by the simpleSD truncation
with Hamiltonian~5! by adjusting only two parameters. Th
relative E2 transitions of the nuclei132,134Ba and 130Xe
which were assigned to display the IBM O~6! pattern@23#,
are reproduced in the calculation. The binding energies
very consistent with the experimental data. The calcula
nuclear radii agree well with the results of the RMF calcu
tion. ~Note that there are no adjustable parameters in
calculation of nucleus radii.! The strength parameters of th
monopole pairing Gs , quadrupole pairing Gs

2, and
quadrupole-quadrupole interaction between like nucle
ks , and the neutron-proton quadrupole-quadrupole forck
are comparable with theP1Q parameters@8,21# in this re-
gion. It is expected to improve the fitting if we relax th
constraints, such asGn

25Gp
2 andkn5kp , which are used to

reduce the number of free parameters. The nice agreem
between the calculated results~energy levels,E2 transitions,
binding energies, nuclear radii! and the experimental data~or
the RMF theory! indicates that theSD nucleon pair approxi-
mation is reasonable for most of these nuclei. More data
E2 transitions will be helpful to check the validity of theSD
approximation of the shell model, and the irregularity of t
61

1 states for several nuclei needs further studies.
The consistency of the above calculation encourages u

go further. Since the aboveSD pair approximation, like the
FDSM, carries out all the calculations in fermion space, i
meaningful to compare the results with the FDSM calcu
tion. The advantage of the calculation in this paper is tha
has no dynamical symmetry, as a consequence, it can
used to check some assumptions which are made in
FDSM. For example, how the single-particle energy te
~splittings! and the abnormal parity contribute to the nucle
collectivity, etc. It has been found@27# that the splittings of
single-particle levels would become significant in the lo
lying excitations of the nucleus132Ba if these splittings are
artificially enlarged to more than 1.5 times of those obser
experimentally, in which case the O~6! behavior of the
nucleus would be destroyed. This means that one shoul
careful in applying the FDSM to realistic nuclei because o
cannot be sure in advance that it will produce a correct c
lective structure. The contribution of the nucleons in the
normal parity level to nuclear collectivity depends on t
01431
l-
ng
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ent
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structure of the single-particle levels. However, if one us
degenerate single-particle energy levels, the ‘‘loss’’ due
the ignorance of the abnormal parity level can also be
stored by parametrizations. Details for these points will
published elsewhere@27#.
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APPENDIX A: SOME TECHNIQUES TO SAVE
COMPUTING TIME

The calculation in theSD subspace of the shell model
quite time consuming. The reason is that one cannot use
c.f.p. in theSD pair approximation because theSD pairs are
in general not symmetry-dictated nucleon pairs.Ss , Ds

† ,
Ss

† , Ds , Ps
† , Ps

(2) , and Qs do not form a closed algebra
For example, theN-pair overlap^t8JNMNutJNMN& can be
expressed in terms of many (N21)-pair overlaps, which

TABLE V. Root of mean-squared radii~ground state!. The units
are Fermis. The results of the RMF calculation are taken from Ta
A of Ref. @25#.

Nucl. 132Te 130Te 128Te 126Te

This work (r p) 4.705 4.693 4.681 4.662
RMF (r p) 4.688 4.679 4.670 4.659
This work (r n) 4.988 4.960 4.931 4.864
RMF (r n) 4.950 4.925 4.899 4.861

Nucl. 134Xe 132Xe 130Xe 128Xe

This work (r p) 4.740 4.728 4.716 4.707
RMF (r p) 4.730 4.723 4.715 4.706
This work (r n) 5.001 4.973 4.943 4.890
RMF (r n) 4.960 4.935 4.911 4.879

Nucl. 136Ba 134Ba 132Ba 130Ba

This work (r p) 4.774 4.762 4.750 4.741
RMF (r p) 4.770 4.763 4.754 4.745
This work (r n) 5.013 4.985 4.956 4.890
RMF (r n) 4.976 4.944 4.915 4.887

Nucl. 138Ce 136Ce 134Ce 132Ce

This work (r p) 4.806 4.793 4.792 4.788
RMF (r p) 4.804 4.789 4.799 4.792
This work (r n) 4.997 4.976 4.934 4.917
RMF (r n) 4.973 4.941 4.929 4.903
5-8
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were calculated independently from the beginning using
recursion formulas of Ref.@6#, since the subspace is ‘‘open
@7,16#. However, in the (N21)-pair overlaps involved in the
N-pair overlap calculation~or theN-pair overlaps involved in
the matrix element calculation of Hamiltonian!, there is only

one ‘pair’ @i.e., A(r i8)
†[Br i8† of Eq. ~2.12! in Ref. @6#, or

A(r i8)
† of Eqs. ~4.6! or ~5.3! in the same reference#, which

can be beyond the originalSDsubspace. The overlaps of th
(N21)-pair overlaps are closely related to each other. I
unnecessary to calculateevery (N21)-pair overlaps from
the beginning. This saves the computing time drastica
whenN becomes large.

For Hamiltonian~5!, calculation ofVQ is most time con-
suming. We notice that the following algorithm to calcula
VQ is much more efficient than Eqs.~5.7! and ~5.8! in Ref.
@6#,

^t8JNMNuQ•QutJNMN&

5A5^t8JNMNu@~Q3Q!0,A†~tJN!#MN

JN u0&

5A5 (
t9JN8

^t8JNMNu@Q,A†~t9JN8 !#MN

JN u0&, ~A1!

where A†(t9JN8 )5@Q,A†(tJN)#JN8 . The reason why the
above formula saves computing time is that the ba
^t8JNMNu remains untouched, and only one summation
needed here. In Ref.@6# more summations are needed sin
both ^t8JNMNu and ut8JNMN& are operated byQ. For ex-
ample, in the calculation of̂DDD,246uQ•QuDDD,246& @2,
4, and 6 specifyJ1 , J2 , andJ3 , see Eq.~2!#, one needs to
calculate 4989 nonzero three-pair overlaps using the a
rithm of Ref.@6#, while only 1717 terms are needed if we u
the above equation.

Another improvement to save computing time is
choose the complete basis properly. As was mentione
Sec. II it is better to choose the possiblysmallestintermedi-
ate angular momentaJi in the N-pair basis. For theN53
case, it is shown that one can reduce the computing time
about 35% if one chooses the smallest intermediateJi in the
N-pair basis rather than the largestJi .

APPENDIX B: PARAMETRIZATIONS OF
HAMILTONIAN IN THE SD-PAIR

APPROXIMATION OF THE SHELL MODEL

In this appendix, we present a collection of parametri
tions of Hamiltonians which consists of multipole pairin
and quadrupole-quadrupole interactions between like vale
nucleons, and quadrupole quadrupole force between val
protons and neutrons.

~1! Strengths of the multipole pairing interaction. One
must be careful with the definition of the multipole pairin
force while talking about pairing strengths. One typical de
nition is presented in Eqs.~8! and ~10!. Another frequently
used definition of multipole interaction is
01431
e

s

y

is
s

o-

in

by

-

ce
ce
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Hl52
pGl

2l11 (
m

Plm
† PlM , ~B1!

where

Plm
† 5(

ab
^aiYlib&~Ca

†Cb
†!M

l . ~B2!

^aiYlib& is the reduced matrix element~Edmond conven-
tion! of the spherical harmonicsYM

l . The above definition
for monopole interaction is the same as Eq.~8!. For the
quadrupole~or higher-order! pairing interaction, the radia
form factorr l has been eliminated in the above definition.
was found@21# that the strengths of all the different mult
polarities of the pairing residual interaction are appro
mately the same and equal on average toGl;27/A MeV
~l50, 2, 4, and 6! if one uses the above definition. Fo
realistic cases, guidance values forGl for the proton degree
of freedom are a bit larger than those for the neutron deg
of freedom. For the nuclei calculated in this paper, theP
1Q model usually usesG0;20.18 MeV for the proton, and
20.13 MeV for the neutron.

The definition of quadrupole pairing in Eqs.~11! and~12!
has a radial dependence which induces a difference
^nlur 2unl8&2 in the strength, i.e.,̂nlur 2unl8&2Gs

2 @Eq. ~11!#
;pG2 ~the above!. For nuclei in theA;130 region of this
paper,Gs

2;0.2G2 (MeV/r 0
4). Gs

2 in Table II of this paper
and Table II of Ref.@14# are close to this value.

~2! Strengths of the quadrupole-quadrupole force. Here
we make a note on the strengths ofk in Eq. ~5! andks in Eq.
~16! for nuclei in this region using the empirical formulas.
one assumes that the deformation is the same for proton
neutron, and that the quadrupole-quadrupole force is a s
rable force for protons and neutrons, the quadrupo
quadrupole force is

HQ52 1
2 x~hpQp1hnQn!~hpQp1hnQn!, ~B3!

wherehs5(2Zs /A)2/3. For the sake of simplicity, we as
sume thaths51. Then the quadrupole-quadrupole force b
comes symmetric for the proton and neutron as follows:

HQ52
1

2
xQp•Qp2

1

2
xQnQn2xQpQn . ~B4!

There are several empirical formulas for the parametriza
of x. Here we list three of them~in units of MeV/r 0

4! @8#:

xA5/35186,

xA5/35242210.9A21/3~1920.36Z2/A!,

xA5/35242F11S 3

2
AD 21/3G210.9A21/3

3F112S 3

2
AD 21/3G~1920.36Z2/A!. ~B5!

For the nuclei in this paper,A;132 andZ;54. x;0.054,
5-9
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0.064, and 0.073 MeV/r 0
4, respectively, using the above thre

formulas. The average value can bek5x;2ks

;0.064 MeV/r 0
4. Note that like the multipole pairing inter

action, there are also definitions which has no radial fo
factors inQ. This causes a difference of the strength para
ry

s

.

g.

01431
-

eter like the multipole pairing interaction. Another mino
point is that one should be careful with the definition wh
A4p/(2l11)YM

l , when a value other thanYlm is in Eq.
~13!; in this case, there is an additional difference of a co
stant factor~4p/5!.
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