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Point symmetries in the Hartree-Fock approach. II. Symmetry-breaking schemes
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We analyze breaking of symmetries that belong to the double point groupD2h
TD ~three mutually perpendicular

symmetry axes of the second order, inversion, and time reversal!. Subgroup structure of theD2h
TD group

indicates that there can be as many as 28 physically different, broken-symmetry mean-field schemes — starting
with solutions obeying all the symmetries of theD2h

TD group, through 26 generic schemes in which only a
nontrivial subgroup ofD2h

TD is conserved, down to solutions that break all of theD2h
TD symmetries. Choices of

single-particle bases and the corresponding structures of single-particle Hermitian operators are discussed for
several subgroups ofD2h

TD .

PACS number~s!: 21.60.Jz, 21.10.Ky
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I. INTRODUCTION

One of the salient features of the mean-field approac
many-fermion ~e.g., nuclear! systems is the spontaneou
symmetry breaking. The symmetry of a mean-field state
called broken, if the solution of the Hartree-Fock~HF! or
Hartree-Fock-Bogoliubov~HFB! self-consistent equation
do not obey symmetries of the original many-body Ham
tonian @1#. This happens when the calculated mean-field
ergy of the system is lower for states which break a symm
try than that for unbroken symmetries. Such a mechan
depends on the physical situation and is governed by
Jahn-Teller effect@2#. Without going into details, let us reca
that the spontaneous breaking of an original symmetry
usually accompanied by a significant decrease in the sin
particle level density at the Fermi energy. Hence, the dou
magic nuclei can be safely described by imposing conse
tion of the spherical symmetry, while this symmetry shou
be allowed to be broken in the open-shell systems.

One of the simplest examples in this context is that of
breaking of the translational symmetry. The related mec
nism is present, e.g., in the nuclear shell model. Inde
within the framework of the shell model, interacting nucl
ons are assumed to move in a common mean field tha
localized in space and consequently they cannot be desc
by eigenstates of the momentum operator~plane waves!. In
other words, the wave functions of a nucleus cannot be
proximated by uncorrelated single-particle plane wave
this can only be attempted for an infinite system, i.e., for
nuclear matter. The use of a shell-model, space-local
wave function simply reflects the correlations present in
system. In this example, the correlations ensure that i
improbable to find two nucleons of a nucleus at large rela
distances apart.

In nuclear structure physics one can easily identify the
of various broken symmetries in a description of we
defined, observable effects. For instance the rotational,
ity, time-reversal, and gauge symmetry breaking were in
duced to describe the deformations, octupole correlatio
nuclear rotation and pair correlations, and combined effe
thereof. At present, we approach the situation where
mean-field calculations can be performed without explic
using any of the mean-field symmetries. Several such
0556-2813/2000/62~1!/014311~10!/$15.00 62 0143
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proaches have already been implemented@3–5#, although
very few calculations for specific physical problems ha
been done to date.

One could, in principle, perform the mean-field calcu
tions without assuminga priori any symmetry, and let the
dynamics choose those discrete symmetries which are,
specific situation, broken, and those which remain obey
Obviously, by choosing such an approach we cannot pr
from simplifications possible when it is known beforeha
that some symmetries are obeyed or disobeyed. Howe
following the general guidelines provided by the Jahn-Te
mechanism one usually can make a reasonable choic
obeyed or disobeyed symmetries. Such a choice is dict
by the properties of the many-body Hamiltonian and by
classes of phenomena which one wants to describe—it
ally facilitates the calculations markedly. In all those cas
the analysis presented in this article provides us with
mathematical means for constructing the algorithms o
mally adapted to the symmetries of the problem in questi

In the preceding article@6#, we have presented propertie
of the single point groupD2h

T and double point groupD2h
TD ,

that can be built from operators related to the three mutu
perpendicular symmetry axes of the second order, invers
and time reversal. We have also discussed their roles in
description of even and odd fermion systems, respectiv
their representations, and the symmetry conditions indu
by the conservedD2h

T or D2h
TD symmetries on the local den

sities and electromagnetic moments.
By considering theD2h

TD double point group we focus on
quantum objects that are in general nonspherical, but
have one or more symmetry axes and/or symmetry pla
Obviously, any nuclear many-body Hamiltonian of an is
lated system is time-even and rotationally invariant. In t
present paper we do not aim at analyzing the conditions
der which these symmetries are broken spontaneously,
one or another symmetry element of theD2h

TD group still
being conserved in the HF solution. Instead, we presen
classification of all such possibilities, and discuss the res
ing properties of the mean-field Hamiltonians and sing
particle wave functions. For a review of applications of po
symmetries to a description of rotating nuclei see the rec
study in Ref.@7#.
©2000 The American Physical Society11-1
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Our goal is thus twofold. First, in Sec. II we discuss
possible physically meaningful subgroups ofD2h

TD , and clas-
sify the corresponding physical situations from the vie
point of the conservedD2h

TD symmetries. In many applica
tions to date, specific choices of conserved and brokenD2h

TD

symmetries have been made@8–14#, however, here we aim
at a complete description of all achievable symmet
breaking schemes. Second, in Sec. III we review and disc
practical aspects of structure of the mean-field operators
der specificD2h

TD group operations. This essential questi
has been explicitly or tacitly addressed in most approac
using the deformed mean-field theory; our aim here is
present exhaustive list of options pertaining to all theD2h

TD

symmetry conditions. Finally, conclusions are presented
Sec. IV.

II. SUBGROUPS OF D2h
T AND D2h

TD AND THE SYMMETRY
BREAKING

The single groupD2h
T and double groupD2h

TD @6# can be
built from three rotations through anglep about the coordi-
nate axesk5x,y,z, called the signature operators

R̂k5e2 ip Î k, ~1!

to which one adds the inversion operatorP̂ and the time
reversal

T̂5 ^
n51

A

~2 i ŝy
(n)!K̂, ~2!

whereÎ k5(n51
A ĵ k

(n) is the total angular momentum operato

ĵ k
(n) and ŝk

(n) are the angular momenta and the Pauli s

matrices for the particle numbern, respectively, andK̂ is the
complex-conjugation operator in the coordinate represe
tion.

Following the convention introduced in Ref.@6#, with ro-
man symbols, likeÛ5R̂k or T̂, we denote operators acting i
the Fock spaceH[H0% H1% . . . % HA% . . . . Moreover,
in order to help the reader in distinguishing between prop
ties of these operators when they act in even,H1[H0
% H2% •••% HA52p% •••, or odd, H2[H1% H3% •••

% HA52p11% •••, fermion spaces, we denote the form
ones with bold symbols, and the latter ones with script sy
bols, i.e., we formally split the Fock-space operatorsÛ5Û
1Û into two parts according to their domains.

It follows Refs.@15,16,6# thatD2h
T is an Abelian group of

16 elements, which contains: the identityÊ, inversion P̂,
time-reversalT̂, their productP̂T5P̂T̂, three signaturesR̂k ,
three simplexesŜk5P̂R̂k , threeT signaturesR̂k

T5T̂R̂k , and

threeT simplexesŜk
T5T̂Ŝk , i.e.,

D2h
T : $Ê,P̂,R̂k ,Ŝk ,T̂,P̂T,R̂k

T ,Ŝk
T%, ~3!

where all these operators act in even-fermion-number sp
H1 .
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Similarly, the Fock-space operatorsÛ, as well as the odd-
fermion-number operatorsÛ, form the groupD2h

TD which is a
non-Abelian group of 32 elements. Apart from the 16 ope
tors enumerated forD2h

T , it contains their partners obtaine

by multiplying every one of them by the operatorsĒ or Ē,
respectively. These operators can be identified with the r
tion operators through angle 2p about an arbitrary axis. The
partner operators are denoted by replacing the hats with b
i.e., the group of operators acting inH2 reads

D2h
TD :

$Ê,P̂,T̂,P̂T,R̂k ,Ŝk ,R̂k
T ,Ŝk

T ,Ē,P̄,T̄,P̄T,R̄k ,S̄k ,R̄k
T ,S̄k

T%.

~4!

The completeD2h
T and D2h

TD multiplication tables have
been given and discussed in Ref.@6#, and will not be re-
peated here. We only recall a few properties of theD2h

TD

group that are essential in the following analysis, namely

R̂k
25Ŝk

25T̂ 25 Ē, ~5a!

~R̂k
T!25~ Ŝk

T!25P̂25 Ê, ~5b!

for k5x,y,z,

R̂kR̂l5ŜkŜl5R̂k
TR̂l

T5Ŝk
TŜl

T5R̂m , ~6!

for (k,l ,m) being anevenpermutation of (x,y,z), and

R̂kR̂l5ŜkŜl5R̂k
TR̂l

T5Ŝk
TŜl

T5R̄m , ~7!

for (k,l ,m) being anodd permutation of (x,y,z).
The multiplication table ofD2h

T is obtained by replacingĒ
andR̄m by Ê andR̂m , respectively, and using all bold sym
bols in Eqs.~5!–~7!. Obviously, a product of conserved sym
metries is a conserved symmetry, and consequently, the
served symmetries form groups that are subgroups ofD2h

T or
D2h

TD . Therefore, in order to analyze various physica
meaningful subsets of the conservedD2h

T or D2h
TD operators,

we should first consider the subgroup structure of th
groups.

Suppose that in a given physical problem, the mean-fi
states obey the symmetries of a given subgroup rather
those of the wholeD2h

T or D2h
TD groups. In such a case tha

subgroup contains the maximal set of operators represen
the symmetry of the problem, i.e., allD2h

T andD2h
TD operators

which do not belong to such subgroup are the broken s
metries. From the view point of physics, we are more int
ested in the symmetries which are broken~which is related to
interesting dynamical correlations!, than in those which are
conserved. It then follows that the physically interesting
formation will be attached to the operators thatdo notbelong
to the subgroup studied, butdo belongto D2h

T or D2h
TD ; those

latter ones do not necessarily form a group.
First we consider the single groupD2h

T , because~i! it is a

smaller and simpler group thanD2h
TD and ~ii ! the operatorĒ
1-2
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TABLE I. Nontrivial subgroups of the singleD2h
T group, classified according to the types described in

text. The second column gives the generators. The third column gives numbers of different sub
irrespective of names of Cartesian axes, and the fourth column gives the total number of subgroups
type.

Type Generators Generic Total

1-0A : $T̂%, $P̂%, $P̂T% 3 3

1-IA : $R̂k
T%, $Ŝk%, $Ŝk

T% 3 9

1-IB : $R̂k% 1 3

Total number of one-generator subgroups: 7 15

2-0A : $T̂,P̂% 1 1

2-IA : $Ŝk ,T̂%, $Ŝk
T ,P̂%, $R̂k

T ,P̂T% 3 9

2-IB : $R̂k ,T̂%, $R̂k ,P̂%, $R̂k ,P̂T% 3 9

2-IIIA : $Ŝl ,Ŝm
T % 1 6

2-IIIB : $R̂l ,R̂m
T %, $R̂l ,Ŝm%, $R̂l ,Ŝm

T % 3 9

2-IIID : $R̂l ,R̂m% 1 1

Total number of two-generator subgroups: 12 35

3-IB : $R̂k ,T̂,P̂% 1 3

3-IIIB : $R̂l ,Ŝm ,T̂%, $R̂l ,Ŝm
T ,P̂%, $R̂l ,R̂m

T ,P̂T% 3 9

3-IIID : $R̂l ,R̂m ,T̂%, $R̂l ,R̂m ,P̂%, $R̂l ,R̂m ,P̂T% 3 3

Total number of three-generator subgroups: 7 15
Total number of subgroups: 26 65
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which makes the difference between the single and
double group is always a conserved symmetry. The anal
below is based on identifying sets of the so-called subgr
generators, i.e, operators from which the whole given s
group can be obtained by their successive multiplicatio
Choices of generators are, of course, nonunique, and h
in each case we discuss and enumerate all the available
sibilities.

A. Subgroups ofD2h
T

Since the square of every element ofD2h
T is proportional

to the identity operatorÊ, we have fifteen two-element, one
generator subgroups, each of them composed of the ide
and one of the otherD2h

T operators. We denote these su

groups by$Ĝ1%, whereĜ1 is the generic symbol correspond
ing to one of the nonidentity elements ofD2h

T . Obviously,
only one choice of the generator is possible for every of
two-element subgroups.

Similarly, groupD2h
T has 35 different four-element sub

groups, which can be called the two-generator subgro
and are denoted by symbols$Ĝ1 ,Ĝ2%. pertaining to their
generators. The two-generator subgroups contain, in add
to Ĝ1 and Ĝ2, also the identityÊ and the productĜ1Ĝ2.
Since this product is also one of theD2h

T operators, we have
in each of the four-element, two-generator subgroups th
possibilities to select the generators.

Finally, there are 15 different eight-element, thre
generator subgroups ofD2h

T , denoted by$Ĝ1 ,Ĝ2 ,Ĝ3%. Each

of these subgroups contains the identityÊ, the three genera
01431
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tors, three products of pairs of generators, and the produc
all three generators. Hence, to choose the generators we
first pick any pair out of seven nonidentity elements~21
possibilities!, and next pick any other subgroup element, e
cept the product of the first two~four possibilities!. Since the
order in which we pick the generators is irrelevant, one h
altogether 28 possibilities of choosing the three generator
each of the eight-element, three-generator subgroups ofD2h

T .
In the same way one can calculate that there are 168

ferent choices of the four generators of the wholeD2h
T group;

one of them is, e.g., the set$T̂,P̂,R̂x ,R̂y%. This illustrates the
degree of arbitrariness in implementing calculations
which the whole groupD2h

T is conserved. Similar freedom
although to a lesser degree, is available when conserving
of the subgroups ofD2h

T . Of course, the freedom of choosin
generators cannot influence the final results, however, it
lows using different quantum numbers, phase conventio
and structure of matrix elements, as discussed in Sec. II

A classification of all the 65 nontrivial subgroups ofD2h
T

~we do not include trivial subgroups$Ê% and D2h
T itself! is

presented in Table I. Every subgroup is assigned to a cer
type, and described by a symbol given in the first column
the table. The types are defined according to~i! the number
of generators in the subgroup~1, 2, or 3!, ~ii ! the number of
Cartesian axes involved in the subgroup~0, I, or III standing
for 0, 1, or 3!, and~iii ! the number of signature operators
the subgroup~A, B, or D standing for 0, 1, or 3!.

The classification is based on two important characte
tics of each subgroup. As shown in Ref.@6#, every conserved
symmetry, labeled by one of the Cartesian directionsx, y, or
1-3



t
ia
ym
. I
th
t

ee

et

tri
n

u

u
re

up
ub
ra
-

e
s
n

t

b
r

th
up

ctly

the
the

ses
-
thus
led

-
-
ot

o-
de-
-
en
ups
f
in
i.e.,
and
of

xes
ups
pe I
nd-
ps

me,

ge-
s of
ed

n-
s

ther
eric
ri-
ues

er-
rix
here

nd
, as

of

l
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z, induces a specific symmetry of local densities, related
this particular direction. Therefore, the number of Cartes
axes involved in the subgroup gives us the number of s
metries of local densities induced by the given subgroup
addition, the number of signature operators illustrates
way in which the given subgroup is located with respect
the standardD2 subgroup, which is composed of the thr
signatures.

Classification of the subgroups of the single groupD2h
T

allows us to discuss conserved and broken-symm
schemes in even-fermion systems.

B. Subgroups ofD2h
TD

In order to discuss the conserved and broken symme
in odd-fermion systems, we now proceed to the discussio
the subgroups of the double groupD2h

TD . In fact, the classi-
fication of Table I can now be repeated almost witho
change. Indeed, whenever a givenD2h

T subgroup contains the

time reversalT̂, signatureR̂k , or simplexŜk , at least one of
those, the corresponding subgroup ofD2h

TD containsT̂, R̂k ,

or Ŝk , and it automatically becomes a doubledD2h
TD sub-

group, with exactly the same generators. This is so, beca
in the D2h

TD group the squares of the time reversal, signatu

and simplex operators are equal toĒ, Eq. ~5a!, and hence
whenever one of these operators is present in the subgro
generates the appropriate double subgroup of the do
groupD2h

TD . On the other hand, when none of these gene
tors are present in a givenD2h

T subgroup, this subgroup be
comes the subgroup ofD2h

TD without doubling.
Therefore, all theD2h

T subgroups listed in Table I ar
simultaneously subgroups ofD2h

TD , provided the generator
denoted with bold symbols are replaced by the correspo
ing script generators. Most of theD2h

TD subgroups have twice
more elements than the correspondingD2h

T subgroups, with

few exceptions: subgroups$P̂%, $R̂k
T%, $Ŝk

T%, $Ŝk
T ,P̂% do not

double, and contain the same number of elements as
corresponding subgroups ofD2h

T .
In addition, these few exceptional subgroups can

doubled explicitly by addingĒ to the set of generators. Fo
completeness, these additional subgroups ofD2h

TD are enu-
merated in Table II. However, the physical contents of
additional, and of the corresponding not doubled subgro

TABLE II. Same as in Table I, but for additional subgroups
the doubleD2h

TD group.

Type Generators Generic Tota

2-0A : $P̂,Ē% 1 1

2-IA : $R̂k
T ,Ē%, $Ŝk

T ,Ē% 2 6

Total number of two-generator subgroups: 3 7

3-IA : $Ŝk
T ,P̂,Ē% 1 3

Total number of three-generator subgroups: 1 3

Total number of subgroups: 4 10
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from Table I, are the same. For example, they lead to exa
the same symmetry properties of the density matrices@6#.
The difference between them consists in the fact that
latter ones have no irreps in the spinor space, whereas
former ones have one-dimensional irreps with spinor ba
~see Ref.@15#!. However, from the viewpoint of the symme
try breaking, they lead to exactly the same schemes, and
the additional subgroups shown in Table II can be cal
trivial. Note, that the single-particle operators~e.g., the
mean-field Hamiltonian! are classified according to one
dimensional representations@6#, and hence, from the view
point of the symmetry breaking it is irrelevant whether or n
a given subgroup has spinor representations.

Apart from the phase relations of electromagnetic m
ments@6# ~note that the standard multipole operators are
fined by singling out thez axis!, the three Cartesian direc
tions are, of course, entirely equivalent. Therefore, ev
though changing names of axes leads to different subgro
of D2h

T or D2h
TD , they are identical from the point of view o

physically important features. In Tables I and II, we give
the third columns the numbers of generic subgroups,
those which are different irrespective of names of axes,
in the fourth column—the total numbers of subgroups
each type. Indexk always denotes one of the axes, i.e.,k can
be equal tox, y, or z, while indicesl andm, lÞm, denote one
of the three pairs of different axes.

Subgroups in type 0 do not depend on the Cartesian a
and, therefore, for them the numbers of generic subgro
are equal to the total numbers of subgroups. Those in ty
have one generic form each, and three forms in total, depe
ing on which Cartesian axis is chosen. Finally, for subgrou
in type III, the total numbers of subgroups can be the sa
three times larger, or six times larger (2-IIIA) than the num-
bers of generic subgroups.

In practical applications, conservation of differentD2h
T or

D2h
TD subgroups may require considering either only the

neric subgroup, or all the subgroups with changed name
axes. For example, if one considers a triaxially deform
system with 0°<g<60°, the lengths of principal axesay
<ax<az define the orientation of the nucleus. Then, co
servedD2h

T or D2h
TD subgroups with different names of axe

may lead to different physical consequences. On the o
hand, it can be advantageous to consider only one gen
subgroup, with a fixed orientation, and allow for various o
entations of the physical system by extending allowed val
of g deformation beyond the standard first sector of 0°<g
<60°.

III. SINGLE-PARTICLE BASES AND MATRIX
STRUCTURE OF THE SINGLE-PARTICLE HERMITIAN

OPERATORS

Throughout this section we restrict our analysis to H
mitian single-particle operators, and we study their mat
elements in the single-particle space. Therefore, we are
concerned with the odd number of particles~one!, and hence
we have to consider the double groupD2h

TD . As discussed in
Ref. @6#, theD2h

TD operators are either linear or antilinear, a
they can have squares equal to either unity or minus unity
1-4
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summarized in Table II of Ref.@6#. This gives us four cat-
egories of operators with markedly different propertie
which here will be used for different purposes.

In the discussion which follows, we assume that t
single-particle basis is composed of pairs of time-rever
states, and in addition we assume that the spatial wave f
tions are real, i.e., not affected by the time reversal

T̂ unz&5zun2z&, ~8!

wherez561 represents the intrinsic-spin degree of freed
andn represents the set of quantum numbers correspon
to space coordinates. In particular, for the harmon
oscillator ~HO! basis, n5(nx ,ny ,nz) are the numbers o
quanta in three Cartesian directions. Assumption~8! does not
preclude whether or not the time-reversal is a conserved
erator; it only defines the property of the single-particle ba
in which the dynamic problem is to be solved.~In principle,
the discussion below can bemutatis mutandisrepeated with
T̂ replaced byP̂T, however, the use of the time-reversal o
erator is more appropriate in practical applications.!

From now on we also assume that the basis is ordere
such a way that its first half corresponds to thez511 states,
and the second half is composed of their time-reversedz5
21 partners. In fact, we are entirely free to choose state
the first half of the basis (z511), and then Eq.~8! defines
those which belong to the second half (z521). In such
basis, the single-particle matrix elements corresponding t
arbitrary Hermitian operatorÔ have the form

O5S A Y

Y† BD , ~9!

whereA andB are Hermitian matrices,Y is arbitrary, and all
submatrices are, in general, complex.

A. Single-particle bases for conservedD2h
TD operators

We may now separately consider several cases co
sponding to different subgroups of conservedD2h

TD operators,
Table I, and to the four different categories of operators~lin-
ear or antilinear, and Hermitian or anti-Hermitian!. In Secs.
III A 1–III A 4, we consider cases of variousD2h

TD generators
being separately conserved, and in Secs. III A 5–III A
cases of pairs of generators being simultaneously conser
Three-generator subgroups are briefly discussed in
III A 9.

1. Time reversal

Let us first consider operatorsÔ which are either even
~invariant! or odd ~anti-invariant! with respect to the time
reversal:

T̂ †ÔT̂5eTÔ, eT561. ~10!

From Eqs.~8! and ~10! one gets

^nzuÔun8z8&5eTzz8^n2zuÔun82z8&* . ~11!
01431
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It follows, that the matrix corresponding toÔ reads

O5S A Y

2eTY* eTA* D , ~12!

whereA is Hermitian, andY is antisymmetric or symmetric
for eT511 and eT521, respectively. No block-diagona
structure appears. Nevertheless, only two, instead of f
submatricesA andY, complex in general, have to be calc
lated.

2. T signature or T simplex

As is well known @17,6#, for each of the six antilinear
D2h

TD operators, i.e., forT signatureR̂k
T or T simplex Ŝk

T , k

5x,y,z, which have squares equal to unity (Ẑ25 Ê, whereẐ
denotes one of them!, one can construct a basis composed
eigenvectors ofẐ with eigenvalue equal to 1,

Ẑunz&5unz&. ~13!

Moreover, since every operatorẐ commutes with the time-
reversalT̂, such basis can always be chosen so as to fu
condition ~8! at the same time. Table III lists examples
such bases, constructed for the HO statesunxnynz ,sz56 1

2 &.
A similar construction is possible for any other singl
particle basis, and has the explicit form shown in Table
provided the space and spin degrees of freedom are s
rated. Note that any linear combination of statesunz511&
andunz521&, with real coefficients, is another valid eigen
state ofẐ with eigenvalue 1.

For operators even or odd with respect toẐ,

Ẑ†ÔẐ5eZÔ, eZ561, ~14!

one then has

^nzuÔun8z8&5eZ^nzuÔun8z8&* . ~15!

Hence, in bases fulfilling Eqs.~8! and ~13!, matrix O is
purely real (eZ511) or purely imaginary (eZ521). This
gives matrixO in the form~tilde stands for the transposition!

S A Y

Ỹ BD or i S A8 Y8

2Ỹ8 2B8
D , ~16!

for eZ511 andeZ521, respectively, where all submatr
ces are real,A andB are symmetric,A8 andB8 are antisym-
metric, andY and Y8 are arbitrary. Note that in order to
diagonalizeO one only needs to diagonalize a real mat
with unrestricted eigenvalues~for eZ511), or an imaginary
matrix with pairs of opposite nonzero eigenvalues~for eZ5
21).

3. Signature or simplex

Let us now consider operatorÔ which is even or odd with
respect to one of the six linearD2h

TD operators, signaturesR̂k
1-5
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TABLE III. Examples of eigenstatesunxnynzz&k
T of the T signatureR̂k

T , or T simplex Ŝk
T operators,k

5x, y, or z, with eigenvalue 1@see Eqs.~8! and ~13!#, determined for the harmonic oscillator stat

unxnynz ,sz56
1
2 &. Symbols (Nx ,Ny ,Nz) refer to (nx ,ny ,nz) for Ŝk

T operators, and to (ny1nz ,nx1nz ,nx

1ny) for R̂k
T operators.

k z unxnynzz&k
T

x 11 ~1i!Nx expS2i
p

4Dunxnynz ,sz51
1
2&

x 21 ~2i!Nx expS1i
p

4Dunxnynz ,sz52
1
2&

y 11 ~1i!Ny11unxnynz ,sz51
1
2&

y 21 ~2i!Ny11unxnynz ,sz52
1
2&

z 11
1

A2
~ unxnynz ,sz5

1
2 &1 i ~21!Nzunxnynz ,sz52

1
2 &)

z 21
i~21!Nz

A2
~ unxnynz ,sz5

1
2 &2 i ~21!Nzunxnynz ,sz52

1
2 &)
i-

tes
y
rily

d

or simplexesŜk , k5x,y,z, which have squares equal to m
nus unity (X̂25 Ē52 Ê, whereX̂ denotes one of them!, i.e.,

X̂†ÔX̂5eXÔ, eX561. ~17!

Since every operatorX̂ commutes with the time-reversalT̂,
one can always choose a basis in which Eq.~8! holds, and

X̂unz&5 i zunz&, ~18!
01431
where againz561, so r 5z i 56 i is the signature~for X̂
5R̂k) or simplexs5z i 56 i ~for X̂5Ŝk) quantum number.
Table IV lists such bases constructed for the HO sta
unxnynz ,sz56 1

2 &. A similar construction is possible for an
other single-particle basis. Note that one can arbitra
change the phases of statesunz511&, and still fulfill Eqs.
~8! and ~18!; we shall use this freedom in Secs. III A 8 an
III B.

From Eqs.~17! and ~18! one gets

^nzuÔun8z8&5eXzz8^nzuÔun8z8&, ~19!
es
TABLE IV. Eigenstatesunxnynzz&k of the signature or simplex operators,R̂k or Ŝk for k5x, y, or z, @see
Eqs. ~8! and ~18!#, determined for the harmonic oscillator statesunxnynz ,sz56

1
2 &. Symbols (Nx ,Ny ,Nz)

refer to (nx ,ny ,nz) for Ŝk operators, and to (ny1nz ,nx1nz ,nx1ny) for R̂k operators. Phases of eigenstat
are fixed so as to fulfill condition~36!.

k z unxnynzz&k

x 11
1

A2
~ unxnynz ,sz5

1
2 &2~21!Nxunxnynz ,sz52

1
2 &)

x 21
~21!Nx

A2
~ unxnynz ,sz5

1
2 &1~21!Nxunxnynz ,sz52

1
2 &)

y 11
iNy

A2
~ unxnynz ,sz5

1
2 &2 i ~21!Nyunxnynz ,sz52

1
2 &)

y 21
iNy21

A2
~ unxnynz ,sz5

1
2 &1 i ~21!Nyunxnynz ,sz52

1
2 &)

z 11 1iNzexpS2i
p

4Dunxnynz ,sz51
1
2~21!Nz11&

z 21 2iNzexpS1i
p

4Dunxnynz ,sz52
1
2~21!Nz11&
1-6
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so the matrixO has the form

S A 0

0 BD or S 0 Y

Y† 0 D ~20!

for eX511 andeX521, respectively, withA and B Her-
mitian, andY arbitrary complex matrix. Note that in order t
diagonalizeO one only needs to diagonalize:~i! for eX5
11, two Hermitian matrices with complex, in general, su
matrices in twice smaller dimension, which gives real eig
values with no additional restrictions or~ii ! for eX521, one
Hermitian matrixY†Y, again with complex submatrices i
twice smaller dimension, which gives pairs of real nonze
eigenvalues with opposite signs.

Comparing result~20! with that obtained in Sec. III A 2,
one sees that the antilinear symmetries allow for using
matrices, while linear symmetries give special bloc
diagonal forms for complex matrices.

4. Parity

Standard simplification always occurs for operators wh
are even with respect to the parity operatorP̂,

P̂†ÔP̂5Ô. ~21!

All matrices and submatrices introduced above or below
quire a block-diagonal form, provided the single-partic
bases consist of states with well defined parity~such as, e.g.
bases listed in Tables III or IV!. Therefore, apart from Sec
III A 7, we do not separately discuss cases when the parit
one of the conservedD2h

TD operators, and we note that th
effect of the parity conservation can be easily included
top of any other symmetry conditions.

5. Time reversal, and T signature or T simplex

For operatorsÔ, for which both Eqs.~10! and ~14! hold,
matrix O in Eq. ~12! can be additionally simplified, and
reads

S A Y

2eTY eTAD or i S A8 Y8

eTY8 2eTA8
D , ~22!

for eZ511 andeZ521, respectively, where all submatr
ces are real,A is symmetric, A8 is antisymmetric,Ỹ5

2eTY, andỸ852eTY8.
In particular, witheT5eZ511, the matrix from Eq.~22!

reduces to

O5S A Y

2Y AD , ~23!

whereA is symmetric,Y antisymmetric, and both are real. I
order to diagonalize such matrix, one can consider a sma
problem, by constructing a complex matrixOC5A 2 iY
which has the size twice smaller than the original matrixO.
After diagonalizingOC , and separating real and imagina
parts of its complex eigenvectors,
01431
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OC~u1 iv !5v~u1 iv !, ~24!

one gets two degenerate real eigenvectors ofO:

S u

v D and S v

2uD .

If Ô is the mean-field Hamiltonian, such a form of eigenve
tors simplifies expressions for densities.

6. Time reversal, and signature or simplex

For operatorsÔ, for which both Eqs.~10! and ~17! hold,
matrix O in Eq. ~12! can be additionally simplified, and
reads

S A 0

0 eTA* D or S 0 Y

2eTY* 0 D ~25!

for eX511 and eX521, respectively, withA Hermitian,
andY antisymmetric (eT511) or symmetric (eT521). Of
course, this case is identical to that described in Sec. III A
because whenever the time reversal, and signature or sim
are conserved, the correspondingT signature orT simplex
are also conserved, andeX5eZeT . Therefore, we may now
use two different bases, and obtain two different forms of
matrix O, Eqs.~22! or ~25!, which lead either to real, or to
block-diagonal matrices. Note that in order to diagonal
matrix O for eX511, one has to diagonalize only its He
mitian submatrixA, which has dimension twice smaller tha
O, similarly as in Eq.~24!.

7. Parity, and signature or simplex

In the D2h
TD group, the possibility of having at one’s dis

posal two different quantum numbers simultaneously is v
limited. Indeed inD2h

TD one has only three pairs of commu

ing linear operators, namely, (R̂k ,P̂) for k5x, y, or z. For
each such pair, the corresponding simplex operatorŜk is also
conserved, but it does not give any additional quantum nu
ber. Only one generic two-generator subgroup,$R̂k ,P̂%, see
2-IB in Table I, allows, therefore, for two quantum numbe
Similarly, only three generic three-generator subgroups
low for two quantum numbers, namely,~i! $R̂k ,T̂,P̂%, which
allows only for stationary solutions,~ii ! $R̂l ,R̂m ,P̂%, which
does not allow for nonzero average values of the angu
momentum, and~iii ! $R̂l ,Ŝm

T ,P̂%, which is the only two-
quantum-number subgroup which allows for rotating me
field states. Needless to say, this latter case is most o
used in cranking calculations to date, see Sec. III C.

8. T signature or T simplex, and signature or simplex

Let us now consider operatorÔ which is even or odd with
respect to one of the six antilinear,Ẑ25 Ê, operators~see
Sec. III A 2!, and simultaneously even or odd with respect
one of the six linear,X̂25 Ē52 Ê, operators ~see Sec.
III A 3 !. In such a case, simplification of the single-partic
1-7
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basis is possible only for pairs ofẐ and X̂ operators which
correspond to twodifferentCartesian directions. Indeed, fo
cusing our attention on signatures,R̂k

T commuteswith R̂k ,

and therefore~being antilinear! it flips the R̂k signature
quantum number. Therefore, the eigenstates ofR̂k cannot be
eigenstates ofR̂k

T . We may then only work either in the bas

of eigenstates ofR̂k
T , Sec. III A 2, or in the basis of eigen

states ofR̂k , Sec. III A 3. On the other hand, forlÞk R̂l
T

anticommuteswith R̂k , and therefore, it conserves theR̂k

signature quantum number. Hence, the eigenstates ofR̂k can
be rendered the eigenstates ofR̂l

T by a suitable choice o
phases.

It is easy to check that after multiplying eigenstates lis
in Table IV by the following phase factors:

F lk5expH i z
p

2
~Nl11!J , for k, l , ~26a!

F lk5expH i z
p

4
1 i z

p

2
~Nl1Nk11!J , for l ,k,

~26b!

one obtains the basis states

unz& lk5F lkunz&k , ~27!

which simultaneously fulfill Eqs.~8!, ~13!, and~18!, i.e.,

T̂unz& lk5zun2z& lk , ~28a!

Ẑl unz& lk5unz& lk , ~28b!

X̂kunz& lk5 i zunz& lk . ~28c!

Here,Ẑl stands forR̂l
T or Ŝl

T , andX̂k stands forR̂k or Ŝk . In
Eqs. ~26!, symbols (Nx ,Ny ,Nz) refer to (nx ,ny ,nz) for the
Ŝl

T or Ŝk operators, and to (ny1nz ,nx1nz ,nx1ny) for the

R̂l
T or R̂k operators. Moreover, a circular ordering of Car

sian directions is assumed, i.e.,x,y,z,x, in order to de-
fine conditionsl ,k andk, l .

For operatorsÔ even or odd simultaneously with respe
to Ẑl and X̂k , see Eqs.~14! and ~17!, bases defined by Eq
~27! allow for a very simple forms of matricesO. Combining
conditions~16! and~20! one obtains block diagonaland real
matrix elements, e.g., foreZ511,

S A 0

0 BD or S 0 Y

Ỹ 0 D , ~29!

for eX511 and eX521, respectively, withA and B real
symmetric, andY arbitrary real matrix.
01431
d

-

9. Three-generator subgroups

Apart from the unique case of the wholeD2h
TD group being

conserved, which amounts to conserving its four generat
we also have 15 different three-generator subgroups~Table
I!, which when conserved, may lead to physically differe
mean-field solutions. Conserved three-generator subgro
are exceptional in that they do not lead to further simplific
tions of the matrix elements of mean-field Hamiltonians.

This is so, because cases enumerated in Secs. III A
III A 8 exhaust different possibilities of using conserve
D2h

TD operators to simplify the structure of operators by su
able choices of the single-particle bases. Indeed, the typ
subgroups ofD2h

TD , Table I, which involve operators for thre
different Cartesian axes, do not induce any new simplifi
tions. The signature or simplex operators for different ax
~the X̂ operators of Sec. III A 3! do not commute, and henc
cannot give independent quantum numbers of single-par
states. Similarly,T signature orT simplex operators for dif-
ferent axes~the Ẑ operators of Sec. III A 2! do not commute
either, and hence cannot simultaneously define phase
single-particle states.

One should stress, however, that even if a given c
served symmetry does not allow for any further simplific
tion of the matrix elements of a mean-field Hamiltonia
~such as each third generator of a three-generator subgro!,
its conservation or its nonconservation may induce entir
different solutions of the mean-field problem.

B. Phase conventions

In Sec. III A we have shown how one can simplify th
matrix elements of operators by using a given phase conv
tion, i.e, by fixing phases of single-particle basis states i
given way. Whenever an antilinearD2h

TD operator is con-
served, one can always construct a phase convention
which the matrix elements of the mean-field Hamiltonian a
real numbers. However, from technical point of view, it c
be more advantageous to fix the phase convention in
another way. Indeed, whenever the calculation of matrix
ements is more time consuming than the diagonalization
the Hamiltonian matrix, one may use the phase conventio
facilitate the former task, at the expense of diagonaliz
complex matrices. Moreover, such a strategy allows
keeping the simplicity of performing the former task even
cases when there is no antilinear conserved symmetry a
able, and when one has to diagonalize complex matrices
how. In the present section we show constructions of ph
conventions which facilitate calculations of the space-s
matrix elements.

Representation~8!, which separates space and spin d
grees of freedom, is convenient in applications pertaining
deformed single-particle states, as those discussed in
present study. This is because, each Hermitian operator
be represented as a sum of four components of the form

Ô(m)5Ôr
(m)ŝm , m50,1,2,3, ~30!

whereÔr
(m) acts in the coordinate space, andŝm are the Pauli
1-8
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matrices acting in the spin space, withŝ0 defined as the 2
32 identity matrix. Then, the matrix elements ofÔ(m) can
be factorized into space and spin parts

^nzuÔ(m)un8z8&5^nuÔr
(m)un8&•^zuŝmuz8&, ~31!

and the spin part can be computed once for all. Usually m
of the spin matrix elementŝzuŝmuz8& vanish, thus making it
unnecessary to calculate the corresponding coordinate-s
matrix elementŝnuÔr

(m)un8&.
Matrix elements of operatorsÔ(m) can be made purely

real or purely imaginary if phases of single-particle ba
states are chosen in such a way that, for one Cartesian d
tion l 5x, y, or z, one has

K̂l unz&5unz&, ~32!

whereK̂l
25 Ê is the antilinear spin operator defined by

K̂l5T̂i ŝ l5 i ŝ l T̂. ~33!

Indeed, for time-even (eT511) or time-odd (eT521) op-
erators one obtains that

K̂l
†Ô(m)K̂l5em l T̂ †Ô(m)T̂5em leTÔ(m), em l561, ~34!

where coefficientsem l are given in Table V. Using Eqs.~32!

and ~34!, one gets for matrix elements ofÔ(m)

^nzuÔ(m)un8z8&5em leT^nzuÔ(m)un8z8&* , ~35a!

^nzuÔ(m)un8z8&5em lzz8^n2zuÔ(m)un82z8&, ~35b!

where Eq.~35a! tells us which elements are real, and whi
are imaginary, while Eq.~35b! gives the matrix elements
e.g., forz521 expressed through those forz511.

As is usual for antilinear operators, there is a lot of fre
dom in finding bases~32! of eigenstates ofK̂l . We can use
this freedom to fulfill other useful conditions. For examp
sinceK̂l and R̂k anticommute forlÞk, one can find base
~32! which are at the same time the eigenstates of signa
or simplex operators. In fact, phases of eigenstates liste
Table IV, has been chosen in such a way that,

TABLE V. Antilinear spin operatorsK̂l , which can be used to
fix convenient phase conventions leading to conditions~35!.

l K̂l
e0l e1l e2l e3l

x T̂i ŝx5 i ŝzK̂ 11 11 21 21

y T̂i ŝy5K̂ 11 21 11 21

z T̂i ŝz52 i ŝxK̂ 11 21 21 11
01431
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K̂l unz&k5unz&k , for k, l , ~36!

where again the circular ordering of Cartesian directionsx
,y,z,x, is assumed to definek, l .

C. Examples of previous cranking approaches

As argued in Sec. III A 7, there are good reasons to us
cranking calculations the subgroup$R̂l ,Ŝm

T ,P̂% ~Table I! of
conservedD2h

TD symmetries. This generic three-genera
subgroup appears in three space orientations, i.e., forl 5x, y,
or z, and each of these possibilities was employed in one
the HF~B! or phenomenological-mean-field cranking ana
ses to date.

In particular, traditionally thex axis was chosen as th
direction of the cranking angular momentum, see, e.g., R
@11#, and therefore, the standard Goodman basis@10# corre-
sponds to thel 5x subgroup, with phases of single-partic
states~and quasiparticle states, for that matter! fixed by using
the R̂z

T operator. Then, by dropping the parity operator fro

the symmetry group$R̂x ,Ŝz
T ,P̂%, most octupole-cranking

calculations were performed within the 2-IIIA subgroup

$Ŝx ,Ŝy
T% of Table I.

Another choice was made in the HO basis@9# and
coordinate-space@12,13# HF~B! calculations, where thez
axis was used as the cranking axis. Such choice was m
vated by the standard representation of spinors, that
eigenstates ofŝz , and hence thel 5z subgroup$R̂z ,Ŝy

T ,P̂%
was employed. In these approaches, phases of single-pa
states were fixed by using theŜy

T operator, and the parity

broken calculations were done within the$Ŝz ,Ŝy
T% subgroup.

Finally, in the recent Cartesian HO-basis HF approach
Ref. @14#, the codeHFODD was constructed for the conserve
l 5y subgroup$R̂y ,Ŝx

T ,P̂%, and they direction was used for
the cranking axis. The choice of this symmetry, and the
sulting choice of they cranking axis, was motivated by th
fact that it allows for using real electric multipole momen
see Ref.@6#. Phases of single-particle states were in Ref.@14#

fixed by using theK̂z operator~33!, and calculations were
performed within the basis of theŜy eigenstates, Table IV
The HFODD code allows for calculations with one symmet
plane, and this is done within the$Ŝy% conserved symmetry
group of Table I. The code can also optionally perform t
two-symmetry-plane cranking calculations for the 2-IIA

subgroups$Ŝy ,Ŝx
T% and$Ŝy ,Ŝz

T%.

IV. CONCLUSIONS

We have analyzed the ‘‘far end’’ of the symmetry brea
ing chain, namely, symmetries of mean-field nuclear sta
which range from time-even, parity-even, signature conse
ing states~nevertheless breaking the rotational and ax
symmetry!, to those which do not conserve any symmetr
at all. We have shown that intermediate cases, between
two extremes, correspond to conserved subgroups of theD2h

T

or D2h
TD point symmetry groups. A classification of all th
1-9
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subgroups has been proposed, and we have shown that
are 26 different nontrivial symmetry-breaking schem
when names of Cartesian axes are irrelevant, and 65 diffe
nontrivial symmetry-breaking schemes when names of a
are distinguished in the intrinsic frame of reference.

Consequences of conserving individualD2h
TD symmetries

have been enumerated for the construction of single-par
bases in which mean-field operators may have special
plified forms. We point out that the same forms of the me
field Hamiltonian may correspond to different conserv
symmetries, and hence to different physical consequence
u

y
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observables obtained in the mean-field methods. We h
also analyzed and compared various options for defin
phase conventions of single-particle basis states.
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