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We analyze breaking of symmetries that belong to the double point @éﬁpﬁthree mutually perpendicular
symmetry axes of the second order, inversion, and time reyeiSabgroup structure of thBEhD group
indicates that there can be as many as 28 physically different, broken-symmetry mean-field schemes — starting
with solutions obeying all the symmetries of tﬁb}? group, through 26 generic schemes in which only a
nontrivial subgroup oD} is conserved, down to solutions that break all of (g symmetries. Choices of
single-particle bases and the corresponding structures of single-particle Hermitian operators are discussed for
several subgroups @, .

PACS numbegps): 21.60.Jz, 21.10.Ky

[. INTRODUCTION proaches have already been implemeni@db5], although

One of the salient features of the mean-field approach tyery few calculations for specific physical problems have
many-fermion (e.g., nuclear systems is the spontaneous been done to date.
symmetry breaking. The symmetry of a mean-field state is One could, in principle, perform the mean-field calcula-
called broken, if the solution of the Hartree-Fo@iF) or ~ tions without assuming priori any symmetry, and let the
Hartree-Fock-Bogoliubov(HFB) self-consistent equations dynamics choose those discrete symmetries which are, in a
do not obey symmetries of the original many-body Ham"_speqmc situation, bquen, and those which remain obeyeq.
tonian[1]. This happens when the calculated mean-field en©PViously, by choosing such an approach we cannot profit
ergy of the system is lower for states which break a symmetrom simplifications _p035|ble when it is known beforehand
try than that for unbroken symmetries. Such a mechanisrif’@t Some symmetries are obeyed or disobeyed. However,
depends on the physical situation and is governed by thgnllowmg the general guidelines provided by the Jahn—TQIIer
Jahn-Teller effeci2]. Without going into details, let us recall Mechanism one usually can make a reasonable choice of
that the spontaneous breaking of an original symmetry i@Peyed or disobeyed symmetries. Such a choice is dictated
usually accompanied by a significant decrease in the singldy the properties of the many-body Hamiltonian and by the
particle level density at the Fermi energy. Hence, the doublylasses of phenomena which one wants to describe—it usu-
magic nuclei can be safely described by imposing conserva@lly facmtayes the calculguon_s markedly. In all those cases
tion of the spherical symmetry, while this symmetry shoulgthe analys_ls presented in this art|c_:Ie provides us with th.e
be allowed to be broken in the open-shell systems. mathematical means for constructing the algor_lthms opti-

One of the simplest examples in this context is that of théMally adapted to the symmetries of the problem in question.
breaking of the translational symmetry. The related mecha- N the preceding artmlé(TS], we have presented prorT)grtles
nism is present, e.g., in the nuclear shell model. Indeed?f the single point grou,;, and double point group,,
within the framework of the shell model, interacting nucle- that can be built from operators related to the three mutually
ons are assumed to move in a common mean field that igerpendicular symmetry axes of the second order, inversion,
localized in space and consequently they cannot be describédnd time reversal. We have also discussed their roles in the
by eigenstates of the momentum operafdane waves In description of even and odd fermion systems, respectively,
other words, the wave functions of a nucleus cannot be agheir representations, and the symmetry conditions induced
proximated by uncorrelated single-particle plane waves—by the conserved3, or D7 symmetries on the local den-
this can only be attempted for an infinite system, i.e., for thesities and electromagnetic moments.
nuclear matter. The use of a shell-model, space-localized By considering theD;']3 double point group we focus on
wave function simply reflects the correlations present in theqguantum objects that are in general nonspherical, but can
system. In this example, the correlations ensure that it iflave one or more symmetry axes and/or symmetry planes.
improbable to find two nucleons of a nucleus at large relativeDbviously, any nuclear many-body Hamiltonian of an iso-
distances apart. lated system is time-even and rotationally invariant. In the

In nuclear structure physics one can easily identify the us@resent paper we do not aim at analyzing the conditions un-
of various broken symmetries in a description of well- der which these symmetries are broken spontaneously, with
defined, observable effects. For instance the rotational, pabne or another symmetry element of tBg group still
ity, time-reversal, and gauge symmetry breaking were introbeing conserved in the HF solution. Instead, we present a
duced to describe the deformations, octupole correlationglassification of all such possibilities, and discuss the result-
nuclear rotation and pair correlations, and combined effecting properties of the mean-field Hamiltonians and single-
thereof. At present, we approach the situation where th@article wave functions. For a review of applications of point
mean-field calculations can be performed without explicitlysymmetries to a description of rotating nuclei see the recent
using any of the mean-field symmetries. Several such apstudy in Ref[7].
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Our goal is thus twofold. First, in Sec. Il we discuss all S|m||ar|y, the Fock- Space Operat(ﬁjs as We” as the odd-
possible physically meaningful subgroupsify’, and clas-  termion.-number operatofs, form the groupDJP which is a
sify the corresponding physical sit.uations from the.viewnon Abelian group of 32 elements. Apart from the 16 opera-
Po'm of the conse_rye(ﬂ);,? symmetries. In many applica- 45 enumerated fab,;,, it contains their partners obtained
tions to olate, specific choices of conserved and brdké?t by multiplying every one of them by the operatcEsor z
symmetries have been mafie-14), however, here we aim respectively. These operators can be identified with the rota-

at a _complete description .Of all ach|evab_le symmetry- tion operators through anglen2about an arbitrary axis. The
breaking schemes. Second, in Sec. Il we review and discuss

practical aspects of structure of the mean-field operators url artner operators are denoted by replacing the hats with bars,

e : . ) . _l.e., the group of operators acting Hi_ read
der spemﬂcDEhD group operations. This essential questlonI group P fs acting S
has been explicitly or tacitly addressed in most approachegTD.
. . . . h -
using the deformed mean-field theory; our aim here is to

present exhaustive list of options pertaining to all &> {EP.TP R, S, RY S LEP, TP Ry, S, Ry ,Sp)-
symmetry conditions. Finally, conclusions are presented in
Sec. IV. 4)

. . The completeDJ, and D, multiplication tables have
Il. SUBGROUPS OF D;;, AND D;; AND THE SYMMETRY been given and discussed in REB], and will not be re-

BREAKING peated here. We only recall a few properties of Ehé?
The single grOUFDZh and double grou@ [6] can be  9roup that are essential in the following analysis, namely,
built from three rotations through angte about the coordi-

52_Q2_AF2_¢
nate axek=x,y,z, called the signature operators Ri=Si=T"=¢, (5a)
Re=e 7k, (1) (Rp)?=(80)*=P*=E, (5b)
to which one adds the inversion opera®rand the time OF K=X.y.Z,
reversal TAT_ aTaT_
RR=8S=RIR] =518 = (6)
A
= (oMK, (2 for (k,I,m) being anevenpermutation of X,y,z), and
y
n=1
R 7A2k7A2| = $k3| = 7,\217%,?- = 313?-: ﬁm y (7)
wherel =% lj(”) is the total angular momentum operator,

i and cr(”) are the angular momenta and the Pauli spino" (k.I,m) being anodd permutation of §,y,2).

matrices for the particle number respectively, and is the The multiplication table 0D3, is obtained by replacing
complex-conjugation operator in the coordinate representeﬁndR by E andR,,, respectively, and using all bold sym-
tion. bols in Eqs(5)—(7). Obviously, a product of conserved sym-
Following the convention introduced in R¢6], with ro- ~ metries is a conserved symmetry, and consequently, the con-
man symbols, liké) = R, or T, we denote operators acting in Served symmetries form groups that are subgroui;gfor
the Fock space{=HoGH,® ... ®Ha® ... . Moreover, D, . Therefore, in order to analyze various physically
in order to help the reader in dlstlngwshmg between propermeaningful subsets of the conserviég, or D37 operators,
ties of these operators when they act in evéh,=H, Wwe should first consider the subgroup structure of these
OH,® - - @HA op®---, or odd, H =H,®Hz®--- groups. ' . ' '
®Ha=2p+1® -+, fermion spaces, we denote the former Suppose that in a given physical problem, the mean-field
ones with bold symbols and the latter ones with script symstates obey the symmetnes of a given subgroup rather than
bols, i.e., we formally split the Fock-space operatdrs ) those of the whold3;, or D37 groups. In such a case that
+1{ into two parts according to their domains. S#bgrOUp contafms the rEIaxmel seé;)lcT)f opgr[:)at%rs representing
It follows Refs.[15,16, thatD}, is an Abelian group of € Symmetry of the problem, i.e., &y, andDo, operators

| hich he id which do not belong to such subgroup are the broken sym-
16 elements, which contains: the idently inversionP.  ovies. From the view point of physics, we are more inter-

time-reversalf, their productP”=PT, three signatureR,  ested in the symmetries which are brokeich is related to
three simplexe$, = PRy, threeT signatureR] =TR,, and interesting dynamical correlationshan in those which are
threeT simplexesSI =TS, i.e., conserved. It then follows that the physically interesting in-
formation will be attached to the operators ttiatnotbelong
DI.: {EPR,S. TP RIS 3 the subgroup studied, bdo belongto D}, or D2°; those

latter ones do not necessarily form a group.

where all these operators act in even-fermion-number space First we consider the single grouy, , becausgi) it is a
H. . smaller and simpler group thab;? and (ii) the operato
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TABLE I. Nontrivial subgroups of the singlgh group, classified according to the types described in the
text. The second column gives the generators. The third column gives numbers of different subgroups
irrespective of names of Cartesian axes, and the fourth column gives the total number of subgroups in each

type.
Type Generators Generic Total
1-04: {T}, {P}, {PT} 3 3
Lol {Re}, {84, {8 3 9
1-lg: (R} 1 3
Total number of one-generator subgroups: 7 15
2-04: {T.P} 1 1
25 {S.Th {S0.P} {Re.PT} 8 9
2-lg: {R¢. T}, {R«.P}, {Ry.PT} 3 9
2-11p: {§,8" 1 6
2-lllg - {Ri.Rub {RLSq (RS 8 9
2-llp: {R/ R} 1 1
Total number of two-generator subgroups: 12 35
3-lg: {F‘gk,fﬁ} 1 3
Sl R80T (RSP R REPT) 3 9
3-lllp: {Ri\Rm T} {R1 R P}, {R Ry PT} 3 3
Total number of three-generator subgroups: 7 15
Total number of subgroups: 26 65

which makes the difference between the single and théors, three products of pairs of generators, and the product of
double group is always a conserved symmetry. The analysisll three generators. Hence, to choose the generators we may
below is based on identifying sets of the so-called subgroufirst pick any pair out of seven nonidentity elemerigl
generators, i.e, operators from which the whole given subpossibilities, and next pick any other subgroup element, ex-
group can be obtained by their successive multiplicationsgept the product of the first twidour possibilities. Since the
Choices of generators are, of course, nonunique, and henggder in which we pick the generators is irrelevant, one has
in each case we discuss and enumerate all the available pogrogether 28 possibilities of choosing the three generators in
sibilities. each of the eight-element, three-generator subgroups,pf
In the same way one can calculate that there are 168 dif-
A. Subgroups of D, ferent choices of the four generators of the WHDE&, group;
Since the square of every elementD§,, is proportional  one of them is, e.g., the sgf,P,R,,R}. This illustrates the
to the identity operatoE, we have fifteen two-element, one- degree of arbitrariness in implementing calculations for
generator subgroups, each of them composed of the identityhich the whole grouD},, is conserved. Similar freedom,
and one of the otheDJ, operators. We denote these sub-although to a lesser degree, is available when conserving any
groups by{G,}, whereG; is the generic symbol correspond- Of the subgroups dD;h Of course, the freedom of choosing
ing to one of the nonidentity elements Bf}, . Obviously, ~generators cannot influence the final results, however, it al-
only one choice of the generator is possible for every of thdoWS using different quantum numbers, phase conventions,
two-element subgroups. and struct_u_re qf matrix elements, as.dllscussed in Sec. lll.
Similarly, groupD3,, has 35 different four-element sub- A classification of all the 65 nontrlAwaI subgroups Df,
groups, which can be called the two-generator subgroupgwe do not include trivial subgroupE} and Dy, itself) is
and are denoted by symbof&,,5,}. pertaining to their Presented in Table I. Every subgroup is assigned to a certain

generators. The two-generator subgroups contain, in additiolyP€. and described by a symbol given in the first column of
to él and éz also the identity and the producéléz. the table. The types are defined accordinditdhe number

. X . T of generators in the subgroup, 2, or 3, (ii) the number of
Slnce this product is also one of thy, operators, we have Cartesian axes involved in the subgra@p |, or 11l standing
in each of the four-element, two-generator subgroups thre

possibilities to select the generators. for 0, 1, or 3, and(iii) the number of signature operators in

. . . the subgrougA, B, or D standing for O, 1, or 3
Finally, there are 15 different eight-element, three- The classification is based on two important characteris-

generator subgroups @f;,, denoted b{{él:ézyés}- Each tics of each subgroup. As shown in RE8], every conserved
of these subgroups contains the identitythe three genera- symmetry, labeled by one of the Cartesian directiong or
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TABLE Il. Same as in Table I, but for additional subgroups of from Table I, are the same. For example, they lead to exactly

the doubleD; group. the same symmetry properties of the density matr{&s
The difference between them consists in the fact that the
Type Generators Generic  Total |atter ones have no irreps in the spinor space, whereas the
20, (P8 1 1 former ones have one-dimensiona_l irrep_s with spinor bases
SO (see Ref[15]). However, from the viewpoint of the symme-
2-lp: {Re. &}, {5%.& 2 6 try breaking, they lead to exactly the same schemes, and thus
Total number of two-generator subgroups: 3 7 the additional subgroups shown in Table Il can be called

trivial. Note, that the single-particle operatofs.g., the
mean-field Hamiltonian are classified according to one-
dimensional representatiofi§], and hence, from the view-
Total number of subgroups: 4 10 point of the symmetry breaking it is irrelevant whether or not
a given subgroup has spinor representations.

Apart from the phase relations of electromagnetic mo-

z, induces a specific symmetry of local densities, related tgn€nts[6] (note that the standard multipole operators are de-
this particular direction. Therefore, the number of Cartesiar{in®d by singling out the axis), the three Cartesian direc-
axes involved in the subgroup gives us the number of Sym'gons are, of course, entirely equivalent. .Therefore, even
metries of local densities induced by the given subgroup. mhough cha?gmg names of axes leads to different subgroups
addition, the number of signature operators illustrates th®f D2, or Dy, they are identical from the point of view of
way in which the given subgroup is located with respect toPhysically important features. In Tables | and Il, we give in
the standard, subgroup, which is composed of the threethe third columns the numbers of generic subgroups, i.e.,
signatures. those which are different irrespective of names of axes, and
Classification of the subgroups of the single grdnbﬂ in the fourth column—the total numbers of subgroups of

allows us to discuss conserved and broken—symmetrgaCh type. Index always denotes one of the axes, ilecan
schemes in even-fermion systems. e equal tx, y, or z, while indicesl andm, | #m, denote one

of the three pairs of different axes.

Subgroups in type 0 do not depend on the Cartesian axes
and, therefore, for them the numbers of generic subgroups

In order to discuss the conserved and broken symmetriegre equal to the total numbers of subgroups. Those in type |
in odd-fermion systems, we now proceed to the discussion diave one generic form each, and three forms in total, depend-
the subgroups of the double gro@g? . In fact, the classi- ing on which Cartesian axis is chosen. Finally, for subgroups
fication of Table | can now be repeated almost withoutin type lIl, the total numbers of subgroups can be the same,
change. Indeed, whenever a gi\,@’g—h subgroup contains the three times larger, or six times larger (2z)llthan the num-

time reversall, signature}, , or simplexS, , at least one of bers of generic subgroups.

those, the corresponding subgroup[b},? containsT, R, TIDn practical application;, conservati_on of differem}h or
or &, and it automatically becomes a doubl@@{f sub- D, subgroups may require considering either only the ge-

roup, with exactly the same generators. This is so becausneric subgroup, or all the subgroups with changed names of
group, y 9 : ! es. For example, if one considers a triaxially deformed

in theD,,; group the squares of the time reversal, 5'9naturesystem with 0% y=60°, the lengths of principal axes,

and simplex operators are equal §0Eq. (5a), and hence < <a, define the orientation of the nucleus. Then, con-
whenever one of these operators is present in the subgroup,g'érved[);h or D, subgroups with different names of axes
generat$g the appropriate double subgroup of the doublgay ead to different physical consequences. On the other
groupD;y, . On the other hand, when none of these generanang, it can be advantageous to consider only one generic
tors are present in a gived,, subgroup, this subgroup be- subgroup, with a fixed orientation, and allow for various ori-
comes the subgroup @ ;P without doubling. entations of the physical system by extending allowed values
Therefore, all theDgh subgroups listed in Table | are of y deformation beyond the standard first sector o0/

simultaneously subgroups @, , provided the generators <60°.

denoted with bold symbols are replaced by the correspond-

3-lpc {8 P& 1 3
Total number of three-generator subgroups: 1 3

B. Subgroups ofD P

ing script generators. Most of tH2, subgroups have twice IIl. SINGLE-PARTICLE BASES AND MATRIX

more elements than the correspondDg, subgroups, with ~ STRUCTURE OF THE SINGLE-PARTICLE HERMITIAN

few exceptions: subgroud®, {Ry}, {St}, {St,P} do not OPERATORS

double, and contain the same number of elements as the Throughout this section we restrict our analysis to Her-
corresponding subgroups Bty . mitian single-particle operators, and we study their matrix

In addition, these few exceptional subgroups can belements in the single-particle space. Therefore, we are here
doubled explicitly by adding to the set of generators. For concerned with the odd number of particlesie), and hence
completeness, these additional subgroupDgf are enu- we have to consider the double groDg? . As discussed in
merated in Table Il. However, the physical contents of theRef.[6], theD? operators are either linear or antilinear, and
additional, and of the corresponding not doubled subgroupthey can have squares equal to either unity or minus unity, as
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summarized in Table Il of Re[G] This giveS us four cat- It fo”ows’ that the matrix Corresponding f@ reads
egories of operators with markedly different properties,

which here will be used for different purposes.
In the discussion which follows, we assume that the 0=
single-particle basis is composed of pairs of time-reversed

states, and in addition we assume that the spatial wave fungghere A is Hermitian. andy is antisymmetric or symmetric
tions are real, i.e., not affected by the time reversal for e;=+1 and e;=—1, respectively. No block-diagonal

structure appears. Nevertheless, only two, instead of four,

(12

A Y),

- ETY* GTA*

TInd)=¢In—9), (8  submatricesA andY, complex in general, have to be calcu-
lated.
where/= *1 represents the intrinsic-spin degree of freedom
andn represents the set of quantum numbers corresponding 2. T signature or T simplex

to space coordinates. In particular, for the harmonic- ) , .
oscillator (HO) basis, n=(n,,n,,n,) are the numbers of T’g‘s is well kn.own [17'63’ for eag? of the_ SIX arltlTllnear
quanta in three Cartesian directions. Assump(Rrdoes not Dy, operators, i.e., foil signatureR, or T simplexs , k
preclude whether or not the time-reversal is a conserved op=x,y,z, which have squares equal to unitg3= &, whereZz
erator; it only defines the property of the single-particle basigienotes one of theynone can construct a basis composed of
in which the dynamic problem is to be solvéth principle, eigenvectors ofZz with eigenvalue equal to 1,

the discussion below can lmutatis mutandisepeated with

T replaced byP", however, the use of the time-reversal op- 2|ng):|ng>, (13
erator is more appropriate in practical applicatipns.

From now on we also assume that the basis is ordered ifjoreover, since every operatdé commutes with the time-
such a way that its first half corresponds to fhe+1 states, o 6r5a17; such basis can always be chosen so as to fulfil
and the second half is composed of their time-revegsed  .,hition (8) at the same time. Table Il lists examples of
—1 partners. In fact, we are entirely free to choose states iQ .4 pases. constructed for the HO statga,n,,s,= *+ 1)

. . - . l ytizoz — .
the first half of the basis{(= +1), and then Eq(8) defines A gimilar construction is possible for any other single-
those which belong to the second half—1). In such  aricle basis, and has the explicit form shown in Table IlI
basis, the single-particle matrix elements corresponding to arovided the space and spin degrees of freedom are sepa-

arbitrary Hermitian operatad have the form rated. Note that any linear combination of stales=+ 1)
and|nZ=—1), with real coefficients, is another valid eigen-
O:( AT Y), 9 State of Z with eigenvalue 1. )
Y B For operators even or odd with respectZp

whereA andB are Hermitian matrices is arbitrary, and all O z= fz© e=+1 (14)
submatrices are, in general, complex. ' ’

one then has
A. Single-particle bases for conserved " operators

We may now separately consider several cases corre- (nZ|OIn"{") = e2(ng|OIn"{7)*. (19
sponding to different subgroups of conser@;f operators,
Table |, and to the four different categories of operattrs
ear or antilinear, and Hermitian or anti-Hermitjain Secs.

Il A 1-11l A 4, we consider cases of variou3, generators

Hence, in bases fulfilling Eq98) and (13), matrix O is
purely real €z=+1) or purely imaginary é,=—1). This
gives matrixQ in the form(tilde stands for the transpositipn

being separately conserved, and in Secs. Il A5-III A8, A Y A’ Y’
cases of pairs of generators being simultaneously conserved. _ or _ /) , (16)
Three-generator subgroups are briefly discussed in Sec. Y B -Y -B

lAQ9.

for ez=+1 andez=—1, respectively, where all submatri-

1. Time reversal ces are realA andB are symmetricA’ andB’ are antisym-

metric, andY and Y' are arbitrary. Note that in order to
diagonalize® one only needs to diagonalize a real matrix
with unrestricted eigenvaludfor e,= + 1), or an imaginary
matrix with pairs of opposite nonzero eigenval(és e,=
-1).

Let us first consider operato@ which are either even
(invariany or odd (anti-invarian} with respect to the time
reversal:

TTOT=€;0, e;=+1. (10)

3. Signature or simplex
From Egs.(8) and(10) one gets

Let us now consider operatdt which is even or odd with
(nZ|O|n" 'Y= erl ' (n—¢|OIn" = £')*. (11)  respect to one of the six line&r"> operators, signature,
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TABLE lIl. Examples of eigenstatetnxnynzgﬁ of the T signaturesz, orT simplex:S‘I operatorsk
=X, Yy, or z, with eigenvalue 1[see Egs.8) and (13)], determined for the harmonic oscillator states

Innyn,,s,= *3). Symbols (N, ,N,,N,) refer to (1,,ny,n,) for S operators, and tor{,+n,,n,+n,,n,
+ny) for R operators.

k s nenyn )i
+1 PN i 1
X (+1i) xexp<—|z)|nxnynz,sz=+§)
. . 7T
X -1 (—I)Nxexp(ﬂZ)Inxnynz.sz:—%)
y +1 (+)Nnayn, s=+3)
y -1 (_i)Ny+1|nxnynz S %)
+1 ! Iy 4i N :
z Eqnxnynz:sz: §>+|(_1) Z|n><nynzvsz= _§>)
i(—DMN: .
. 4 Tdnxnynz,sz: $)—i(=1)Nnnyn,,s,= - 3))

or simplexesSy, k=x,y,z, which have squares equal to mi- where againy=*1, sor=(i==*i is the signaturefor X
nus unity (=£=—&, whereX denotes one of thelni.e.,  =7Ry) or simplexs=¢{i==*i (for X=&,) quantum number.
Table IV lists such bases constructed for the HO states

PPN - Inynyn, ,s, =+ 3). A similar construction is possible for any
X'OX=ex0, ex=*1. (17 other single-particle basis. Note that one can arbitrarily

change the phases of stateg=+1), and still fulfill Egs.

(8) and (18); we shall use this freedom in Secs. Ill A8 and

1 B.

From Egs.(17) and(18) one gets

Since every operatat’ commutes with the time-reversd]
one can always choose a basis in which 8).holds, and

Ang)=igng), (18) (nZ|OIn" ¢y = exz'(ngOIN' ', (19)

TABLE IV. Eigenstates*fnxnyng)k of the signature or simplex operato?%k or S‘k for k=x, y, orz [see
Egs. (8) and (18)], determined for the harmonic oscillator stafegn,n,,s,= +2). Symbols (Nyx.Ny N,
refer to (n,,ny ,n,) for 3k operators, and ton(,+n,,n,+n,,n,+n,) for 7A€k operators. Phases of eigenstates
are fixed so as to fulfill conditio36).

‘ d [nenynad)x
+1 1 . | .
X Eqnxnynz,szz §>—(—1) x|nxnynZ,sZ: _§>)
_(*1)Nx 1 N 1
X -1 NG (Ingnyn, ,s,= )+ (= 1)Mn,nyn, ,s,= — 1))
1 i 1 - N .
y + E(Inxnynz,sﬁ H-i(=1)Mnnyn,,s,=—3))
N1
y -1 _\/E (Ingnyn, ,s,= %>+i(_l)Ny|anynzsz:_%»
v
z +1 +i Nzex% —i Z) In,nyn, ,s,=+ L—1yNery
“itexg] +i 2 I, = — Y- DY
’ -t 4 1"y 3
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so the matrixO has the form Oc(u+iv)=w(u+iv), (24)
A0 or U § (20) one gets two degenerate real eigenvector®of
0 B Yt o
u v
for ex=+1 andex=—1, respectively, withA and B Her- (U and ( — u) :

mitian, andY arbitrary complex matrix. Note that in order to

diagonalize© one only needs to diagonalizéi) for ex= |t (s the mean-field Hamiltonian, such a form of eigenvec-

+1, two Hermltlan matrices W|th_ compl_ex, in general, _SUb'tors simplifies expressions for densities.

matrices in twice smaller dimension, which gives real eigen-

values with no additional restrictions @r) for ex=— 1, one 6. Time reversal, and signature or simplex

Hermitian matrix Y'Y, again with complex submatrices in . .

twice smaller dimension, which gives pairs of real nonzero For operator), for which both Egs(10) and(17) hold,

eigenvalues with opposite signs. matrix O in Eqg. (12) can be additionally simplified, and
Comparing result20) with that obtained in Sec. Ill A2, reads

one sees that the antilinear symmetries allow for using real

matrices, while linear symmetries give special block- A 0 0 Y -
diagonal forms for complex matrices. 0 erA* or | _ erY* 0 (29
4. Parity for ex=+1 and ex=—1, respectively, withA Hermitian,

Standard simplification always occurs for operators whichendY antisymmetric €r=+1) or symmetric r=—1). Of
are even with respect to the parity operafor course, this case is |dent|cal to that descrlped in Sec. II! A5,
because whenever the time reversal, and signature or simplex
DOP=0. 1) are conserved, the correspondifigsignature orfT simplex
are also conserved, arg=e,e. Therefore, we may now
All matrices and submatrices introduced above or below acySe two different bases, and obtain two different forms of the

quire a block-diagonal form, provided the single-particleMatrix O, Egs.(22) or (25), which lead either to real, or to
bases consist of states with well defined pafitych as, e.g., block-dlagonal matrices. Note that. in ordgr to dla_gonallze
bases listed in Tables Il or IV Therefore, apart from Sec. Matrix O for ex=+1, one has to diagonalize only its Her-
Il A 7, we do not separately discuss cases when the parity iglitian submatrixA, which has dimension twice smaller than
one of the conserve®]P operators, and we note that the ©» Similarly as in Eq.(24).

effect of the parity conservation can be easily included on _ . .
top of any other symmetry conditions. 7. Parity, and signature or simplex

In the D, group, the possibility of having at one’s dis-

5. Time reversal, and T signature or T simplex posal two different quantum numbers simultaneously is very
For operator®), for which both Eqs(10) and (14) hold, limited. Indeed inD}_ one ha§ orlly three pairs of commut-
matrix O in Eq. (12) can be additionally simplified, and ing linear operators, namelyR(,P) for k=X, y, or z For
reads each such pair, the corresponding simplex oper§tas also
conserved, but it does not give any additional quantum num-
A Y or i A Y 22) ber. Only one generic two-generator subgro{jfﬁk,f?}, see
—erY €A erY —eA')’ 2-lg in Table I, allows, therefore, for two quantum numbers.

Similarly, only three generic three-generator subgroups al-
for e;=+1 ande;=—1, respectively, where all submatri- |o\ for two guantum numbers, namel§) {'fzk,i’,'f)}, which

ces are realA is symmetric, A" is antisymmetric,Y= " ajlows only for stationary solutionsii) {R,Rm, P}, which
—erY,andY' =—eY'. does not allow for nonzero average values of the angular-
In particular, wither=e;= + 1, the matrix from Eq(22)  momentum, andiii) {R,,S}, P}, which is the only two-
reduces to quantum-number subgroup which allows for rotating mean-
field states. Needless to say, this latter case is most often
O=< A Y) 23) used in cranking calculations to date, see Sec. Il C.
-Y A’

8. T signature or T simplex, and signature or simplex
whereA is symmetric,Y antisymmetric, and both are real. In ) - L )
order to diagonalize such matrix, one can consider a smaller -t US now consider operatar which is even or odd with
problem, by constructing a complex matri?2c=A — iY respect to one of the six antilineag?=¢£, operators(see
which has the size twice smaller than the original matpix ~ Sec. lll A 2), and simultaneously even or odd with respect to
After diagonalizingO¢, and separating real and imaginary one of the six linear,A?=£=—¢&, operators(see Sec.
parts of its complex eigenvectors, A 3). In such a case, simplification of the single-particle
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basis is possible only for pairs & and X operators which 9. Three-generator subgroups

correspond to twalifferent Cartesian directions. Indeed, fo-  Apart from the unique case of the whdbg,> group being
cusing our attention on signature@{ commuteswith Ry, conserved, which amounts to conserving its four generators,
and therefore(being antilinear it flips the %, signature e also have 15 different three-generator subgrdijpble

. A I), which when conserved, may lead to physically different
quantum number. Therefore, the eigenstateR ptannot be mean-field solutions. Conserved three-generator subgroups

: BT i ; ; . . e
eigenstates oR, . We may then only work either in the basis gre exceptional in that they do not lead to further simplifica-
of eigenstates of?] , Sec. Il A 2, or in the basis of eigen- tions of the matrix elements of mean-field Hamiltonians.
states ofRy, Sec. Ill A 3. On the other hand, forek R This is so, because cases enumerated in Secs. Ill A 1-
anticommutesvith R, and therefore, it conserves the, ”ITADS exhaust dn‘ferer_n possibilities of using conserveq

anat um number. Hence. the ei enstatfﬁ(azbn D,y operators to simplify the structure of operators by suit-
signature quantum- - Hence, 9 _ able choices of the single-particle bases. Indeed, the type Ili
be rendered the eigenstates %f by a suitable choice of = syhgroups 0DIP, Table I, which involve operators for three

phases. o i _ different Cartesian axes, do not induce any new simplifica-
Itis easy to check that after multiplying eigenstates listetions, The signature or simplex operators for different axes

in Table 1V by the following phase factors: (theﬁ(operators of Sec. Ill ABdo not commute, and hence
cannot give independent quantum numbers of single-particle
states. Similarly;T signature ofT simplex operators for dif-

ferent axegthe Z operators of Sec. Ill ARdo not commute
either, and hence cannot simultaneously define phases of
single-particle states.
for 1<Kk, One should stress, however, that even if a given con-
served symmetry does not allow for any further simplifica-
(26D tion of the matrix elements of a mean-field Hamiltonian
(such as each third generator of a three-generator subgroup
its conservation or its nonconservation may induce entirely
different solutions of the mean-field problem.

,  for k<I, (263

a
(I>|k=expl’i§§(N|+l)

’

LomT T
(I)”(:ex |§Z+|§E(N|+Nk+1)

one obtains the basis states

[N =P |nd)x, (27)
which simultaneously fulfill Eqs(8), (13), and(18), i.e.,

B. Phase conventions

In Sec. Ill A we have shown how one can simplify the
~ matrix elements of operators by using a given phase conven-
TN n=ZIn=s (2839 tion, i.e, by fixing phases of single-particle basis states in a
given way. Whenever an antilined,? operator is con-
A served, one can always construct a phase convention for
ZInOu=Indc, (28D \yhich the matrix elements of the mean-field Hamiltonian are
real numbers. However, from technical point of view, it can
be more advantageous to fix the phase convention in yet
another way. Indeed, whenever the calculation of matrix el-
A AT a7 A n - ements is more time consuming than the diagonalization of
Here, Z, stands forR, or S, , andA) stands forR, or 5. In the Hamiltonian matrix, one may use the phase convention to
Egs.(26), symbols (\,,Ny,N;) refer to (0.,ny.n;) for the  ¢4qjjitate the former task, at the expense of diagonalizing
S/ or S operators, and ton(,+n,,n,+n,,n+ny) for the  complex matrices. Moreover, such a strategy allows for
R or R operators. Moreover, a circular ordering of Carte-keeping the simplicity of performing the former task even in
sian directions is assumed, i.&s\y<z<Xx, in order to de- cases when there is no antilinear conserved symmetry avail-
fine conditions <k andk<I. able, and when one has to diagonalize complex matrices any-
how. In the present section we show constructions of phase
conventions which facilitate calculations of the space-spin
matrix elements.

Representation{8), which separates space and spin de-
grees of freedom, is convenient in applications pertaining to
deformed single-particle states, as those discussed in the
present study. This is because, each Hermitian operator can

XdnOu=iZInd) . (280

For operators@ even or odd simultaneously with respect
to Z, and X, see Eqs(14) and(17), bases defined by Eq.
(27) allow for a very simple forms of matric&8. Combining
conditions(16) and(20) one obtains block diagonahdreal
matrix elements, e.g., for,=+1,

A O 0OY be represented as a sum of four components of the form
or | - , 29
(0 B) Y O @9 R o
OW=0Wg,, 1n=0123, (30)
for ex=+1 and ex=—1, respectively, withA and B real R R
symmetric, andy arbitrary real matrix. whereOE") acts in the coordinate space, angl are the Pauli
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TABLE V. Antilinear spin operatorsfi, , which can be used to
fix convenient phase conventions leading to conditi(8%.

I IAC| €ol €1 €2 €3
‘”}X:”}Z;‘C +1 +1 -1 -1

A,(}y:fc +1 -1 +1 -1

z To,=—iok +1 -1 -1 +1

matrices acting in the spin space, w'ﬁﬂa defined as the 2

X 2 identity matrix. Then, the matrix elements &“) can
be factorized into space and spin parts

(nZ|OWn' ¢y =(n|O™Wn") (o /¢y, (3D)

PHYSICAL REVIEW C 62014311

KiInd=|n), for k<lI, (36)
where again the circular ordering of Cartesian directions,
<y<z<X, is assumed to define<].

C. Examples of previous cranking approaches

As argued in Sec. lll A 7, there are good reasons to use in

cranking calculations the subgrogi, S5, P} (Table |) of
conservedDL']3 symmetries. This generic three-generator
subgroup appears in three space orientations, i.el. =far vy,
or z, and each of these possibilities was employed in one of
the HRB) or phenomenological-mean-field cranking analy-
ses to date.

In particular, traditionally thex axis was chosen as the
direction of the cranking angular momentum, see, e.g., Ref.

and the spin part can be computed once for all. Usually man{t1]; and therefore, the standard Goodman bgie corre-

of the spin matrix elementg|,|¢) vanish, thus making it

unnecessary to calculate the corresponding coordinate-sp

matrix elementgn|O*)|n’).

Matrix elements of operatoré)(“) can be made purely
real or purely imaginary if phases of single-particle basi

Sponds to thd =x subgroup, with phases of single-particle
stategand quasiparticle states, for that mattiered by using

ace .

the RI operator. Then, by dropping the parity operator from

the symmetry group{fex,:SI,f?}, most octupole-cranking
calculations were performed within the 2illsubgroup

S .

; s 2O ST
states are chosen in such a way that, for one Cartesian diretx .Sy} of Table 1.

tion I=x, y, or z, one has

Kilngy=|ng), (32

whereK?=£ is the antilinear spin operator defined by

k|:”j|’(}|:i(}|;j—. (33)
Indeed, for time-evene;=+1) or time-odd €= —1) op-
erators one obtains that

==*1,

(39

wul

fcl’f@(#)fcl = e#|§'T©(“)§'= €, ET@(M), €

where coefficients,, are given in Table V. Using Eq$32)
and (34), one gets for matrix elements G~

(nZ|OWIn" ¢y =€,1ex(n|OWIn"¢'y*, (358

(ng|OWIn' "y =€, (n—¢|OWIn" = ¢y, (35D

where Eq.(359 tells us which elements are real, and which
are imaginary, while Eq(35b gives the matrix elements,

e.g., for{=—1 expressed through those fo= + 1.

Another choice was made in the HO bas@] and
coordinate-spac¢12,13 HF(B) calculations, where the
axis was used as the cranking axis. Such choice was moti-
vated by the standard representation of spinors, that are
eigenstates of,, and hence thé=z subgroup{R,, S} , P}
was employed. In these approaches, phases of single-particle
states were fixed by using tIf%; operator, and the parity-
broken calculations were done within the,,S;} subgroup.

Finally, in the recent Cartesian HO-basis HF approach of
Ref.[14], the codedFoDD was constructed for the conserved
| =y subgroup{R,, Sy, P}, and they direction was used for
the cranking axis. The choice of this symmetry, and the re-
sulting choice of they cranking axis, was motivated by the
fact that it allows for using real electric multipole moments,
see Ref[6]. Phases of single-particle states were in [REf]
fixed by using thek, operator(33), and calculations were
performed within the basis of thféy eigenstates, Table IV.
The HFODD code allows for calculations with one symmetry
plane, and this is done within tf{é‘y} conserved symmetry
group of Table I. The code can also optionally perform the
two-symmetry-plane cranking calculations for the 2xlll

subgroupgS, S} and{S, ,S]}.

IV. CONCLUSIONS

We have analyzed the “far end” of the symmetry break-

As is usual for antilinear operators, there is a lot of free-jing chain, namely, symmetries of mean-field nuclear states

dom in finding base$32) of eigenstates ofC, . We can use which range from time-even, parity-even, signature conserv-
this freedom to fulfill other useful conditions. For example, ing states(nevertheless breaking the rotational and axial
sinceK; and R, anticommute forl #k, one can find bases Symmetry, to those which do not conserve any symmetries
(32) which are at the same time the eigenstates of Signatur@t all. We have shown that intermediate cases, between such
or simplex operators. In fact, phases of eigenstates listed w0 extremes, correspond to conserved subgroups ddfhe
Table IV, has been chosen in such a way that, or D;,? point symmetry groups. A classification of all the
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subgroups has been proposed, and we have shown that thereservables obtained in the mean-field methods. We have
are 26 different nontrivial symmetry-breaking schemesalso analyzed and compared various options for defining
when names of Cartesian axes are irrelevant, and 65 differephase conventions of single-particle basis states.
nontrivial symmetry-breaking schemes when names of axes
are distinguished in the intrinsic frame of reference.
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