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Point symmetries in the Hartree-Fock approach. I. Densities, shapes, and currents
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Three mutually perpendicular symmetry axes of the second order, inversion, and time reversal can be used
to construct a double point group denoted byD2h

TD . Properties of this group are analyzed in relation to the
symmetry and symmetry-breaking effects within the mean-field~Hartree-Fock! theories, both in even and odd
fermion systems. We enumerate space symmetries of local one-body densities, and symmetries of electromag-
netic moments, that appear when some or all of theD2h

TD elements represent self-consistent mean-field
symmetries.

PACS number~s!: 21.60.Jz, 21.10.Ky
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I. INTRODUCTION

Point-group symmetries play a very important role
nuclear mean-field theories. Two distinct aspects of this r
can be singled out. First, the point symmetries of a Ham
tonian provide good quantum numbers that can convenie
be used to label its eigenstates. They help to formulate
lection rules for electromagnetic and/or other types of tr
sitions, and allow for solving the stationary problems in su
spaces rather than in the complete Hilbert space of
problem in question. In that respect the use of point symm
tries in nuclear physics resembles their use in other bran
of physics. Second, however, and this aspect is more spe
to nuclear structure domain, the use of the self-consis
Hartree-Fock~HF! or Hartree-Fock-Bogoliubov~HFB! mean
field approximations invariably leads to the problem of se
consistent symmetries and related spontaneous symm
breaking mechanisms@1#.

In this article we aim at describing properties of nucle
one-body densities under the action of point symmetries.
the time-even densities we calculate the electric multip
moments which give information about nuclear shapes. V
ous point symmetries obeyed by the Hamiltonian lead the
various types of allowed shapes. In addition, for the time-o
densities we calculate magnetic multipole moments wh
give information about current distributions in nuclei, i.e
about the ‘‘shapes’’ of matter flow. Again, various conserv
symmetries restrict these flow patterns in different ways t
are studied in this paper.

Numerous experiments indicate that a great numbe
nuclei are deformed in their ground states. Interpretation
the corresponding results shows that most often the sh
involved are axially symmetric. Many realistic calculation
e.g., those based on the nuclear mean-field approxima
reproduce these experimental data. However, the same
culations suggest that the excited nuclear states often c
spond to the nucleonic mass distributions that have the
called triaxial shapes. It thus becomes clear that in a real
description of the nuclear properties, the spontaneous s
metry breaking leading to the triaxially symmetric objec
must be given attention.

The classical point group that contains three mutually p
pendicular symmetry axes of the second order pas
through a common point is denotedD2 ~see, e.g., Refs
0556-2813/2000/62~1!/014310~13!/$15.00 62 0143
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@2–5#!. Attaching to D2 the three mutually perpendicula
symmetry planes spanned on the symmetry axes gives
D2h point group which contains all the spatial symmetries
interest in the present paper.

As is well known, the classical~single! point groups can
be applied to spinless particles and/or systems of an e
number of fermions, and thus to even-even nuclei. Howev
for odd fermion systems and, in particular, in the sing
nucleon space, these have no faithful irreducible represe
tions. There exist two methods to remedy this problem. O
is to extend the notion of the group representation and
introduce projective or ray representations@2,6,7#. Another
one, which is employed in the present work, is to enlarge
single groups by adjoining the rotation through angle 2p and
all its products with the original group elements, and
double in this way the order of the group@5#.

Physically, the need of such an extension is related to
fact that in the space of spinors the rotation through angle
2p necessarily changes the sign of the wave function of
odd-fermion system. Since within the group theory a mu
plication of a group element by a number is not defined,
change of sign must be introduced as an extra group elem
The point group enlarged in this way is called thedouble
point group and usually denoted with the superscriptD ~see,
e.g., Refs.@4,5#!, although some authors~see, e.g., Ref.@3#!,
denote single and double point groups by the same symb
Here we follow the former convention, and thus the dou
group corresponding to single groupD2h is denoted byD2h

D .
In the case of classical objects the elements of a symm

point group are real orthogonal coordinate transformatio
In quantum mechanics it is often of advantage to take i
consideration both the spatial symmetries and the tim
reversal operator explicitly and treat them as elements o
common ensemble of symmetry operators. Time-reve
symmetry operator~antilinear! and the space symmetrie
~linear! have usually been considered separately~cf., e.g.,
Ref. @3#!. Here we follow Ref.@8# and add the time-reversa
operator to the set of group elements, thus obtaining n
groups denotedD2h

T and D2h
DT . Hence, theD2h group is a

subgroup ofD2h
T composed of its linear elements, and sim

larly, the D2h
D group is composed of the linear elements

D2h
TD .
©2000 The American Physical Society10-1
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Gauge symmetries, which pertain to pairing correlatio
of nucleons, can be added independently and are not con
ered in the present study. In particular, neutron-proton c
relations are not discussed. Therefore, the isospin degre
freedom is irrelevant in the discussion and can be dis
garded to simplify the notation.

In this paper our goal is threefold. First, in Sec. II, w
present and discuss properties of the single groupD2h

T and
double groupD2h

TD that are appropriate for a description
even and odd fermion systems, respectively. In particular,
recall the classification of representations of both groups,
classify properties of the group elements when they are
resented in fermion Fock space. Second, in Sec. III,
present explicit symmetry properties of local densities w
respect to the operators in theD2h

TD group. This problem has
been solved in particular applications@9,10#; however, it can
be solved in many different ways, and it is useful to hav
systematic approach which enumerates all available opti
Although the local densities are most important for appli
tions using the local density approximation~LDA !, or those
using the Skyrme effective interaction~see, respectively
Refs.@11,12# or Ref. @13# for reviews!, they also define gen
eral properties of average values of any local one-body
erator. Finally, in Sec. IV, we discuss symmetries of mu
pole moments which define the nuclear shapes and curr
and in Sec. V we present conclusions which can be dra
from our study. In the companion paper@14#, we discuss
physical aspects of the symmetry-breaking schemes per
ing to the point groups in question.

II. SYMMETRY OPERATORS

The point groups of interest in this paper can be int
duced in two ways. The first one consists in defining
abstract point group by giving its table of multiplication, an
then classifying the states and operators in the fermion F
space according to the relevant irreducible representat
~irreps!. The second one, which we follow below, is mo
intuitive, and consists in defining the symmetry operators
the Fock space first, and then identifying their multiplicati
tables and the corresponding group structures.

A. Fock-space representations

It will be convenient to use the Cartesian representation
the symmetry operators. LetÎ k for k5x,y,z denote the Car-
tesian components of the total angular momentum oper
~generators of the group of rotations!. In the coordinate-
space representation these operators read (\51)

Î k[ (
n51

A

ĵ k
(n)5L̂k1Ŝk5 (

n51

A

~ l̂ k
(n)1 1

2 ŝk
(n)!, ~1!

where ĵ k
(n) , l̂ k

(n) , and 1
2 ŝk

(n) are operators of the total, orbita
and intrinsic angular momenta, respectively, of particle nu
bern. By definition, operators~1! act in the Hilbert spaceHA
of A-particle states, and the number of particlesA appears
explicitly in their definitions.
01431
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One can use another representation ofÎ k , the so-called
second quantized, or Fock-space form

Î k5(
mn

^mu ĵ kun&am
1an , ~2!

where ^mu ĵ kun& are the matrix elements of the angula
momentum operators in the single-particle basis defined
the fermion creation and annihilation operatorsam

1 and an .

OperatorsÎ k in the form of Eq.~2! do not explicitly depend
on A, and act simultaneously in all theA-particle spaces, i.e.
they act in the Fock spaceH,

H[H0% H1% •••% HA% ••• . ~3!

In each subspaceHA , operators~2! are equal to Eq.~1!.
Since both act in different domains, one should, in princip
denote them with different symbols. However, one usua
understands definition~1! as a prescription to constructÎ k for
all values of A simultaneously~adjoined by Î k[0 for A
50). With this extension, operators~1! and~2! are equal. In
this section we understand that all operators act in the F
space~3!, while the corresponding definitions are given
the coordinate-space representation.

We introduce three standard transformations of rotat
around three mutually perpendicular axes,Ox, Oy, andOz,
through the angles ofp as

R̂k[e2 ip Î k5 ^
n51

A

e2 ip ĵ k
(n)

. ~4!

Similarly, we introduce three operators of reflection in plan
yz, zx, and xy, for k5x,y,z, respectively, which can be
written as

Ŝk[ P̂R̂k , ~5!

where the inversion operator is denoted byP̂. The order of
operators in Eq.~5! is unimportant because

@ P̂,R̂k#50. ~6!

Finally, the ~antilinear! time-reversal operator in the
coordinate-space representation is defined as@15#

T̂[ ^
n51

A

~2 i ŝy
(n)!K̂, ~7!

whereK̂ is the complex conjugation operator associated w
the coordinate representation.

In what follows it will be convenient to denote with sep
rate symbols the products ofT̂ with P̂, R̂k , andŜk @16#, i.e.,
the seven additional~apart fromT̂ itself! antilinear operators
read

P̂T[ P̂T̂ ~8a!

R̂k
T[R̂kT̂, ~8b!
0-2
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Ŝk
T[ŜkT̂. ~8c!

The order of multiplications in the above definitions is irre
evant since

@ P̂,T̂#5@R̂k ,T̂#5@Ŝk ,T̂#50. ~9!

In nuclear physics applications the linear operatorsP̂, R̂k ,
and Ŝk are usually referred to as inversion, signature, a
simplex. The antilinear operatorsP̂T, R̂k

T , and Ŝk
T will be

calledT inversion,T signature, andT simplex, respectively.
For completeness, yet two other operators must be ad

to the above symmetry operators. One of them is, of cou
the identity operatorÊ, which can be treated as the rotatio
through angle equal to 0 or 4p about an arbitrary axis. The
second one is the rotation through angle 2p about an arbi-
trary axis, i.e.,

Ē[e2 i2p Î k5e2 i2pL̂k ^
n51

A

~2ŝ0
(n)!5~21!AÊ, ~10!

whereŝ0 is the unity 232 matrix. We see that only for eve
systemsĒ is equal to identity, while for odd systems it
equal to the minus identity. We should keep in mind, that
the group theory there is no such notion as a change of s
Operators such as (21)A may appear in representations,
they appear in the Fock-space representation here, how
one cannot use them when defining the group structure
Secs. II B and II C below.

To investigate multiplication rules of the symmetry ope
tors introduced above one explicitly calculates products
them. For example, the products of two signatures are

R̂kR̂m5e2 ipL̂ke2 ipL̂m^
n51

A

~2ŝk
(n)ŝm

(n)!, ~11!

and the square of the time reversal reads

T̂25 ^
n51

A

@2~ ŝy
(n)!2#5Ē. ~12!

It is obvious that these results depend on whetherA is even
or odd.

Therefore, in what follows we introduce notation whic
explicates whether the operators act in even or odd ferm
spacesH1 or H2 ,

H1[H0% H2% •••% HA52p% •••, ~13a!

H2[H1% H3% •••% HA52p11% ••• . ~13b!

Any Fock-space operatorÛ:H→H, which conserves the
particle number, is split into two parts with different do
mains, i.e.,

Û5Û1Û, ~14!
01431
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where the bold symbols denote operators which act in
even-A spaces, while the script symbols denote those ac
in the odd-A spaces, i.e.,

Û:H1→H1 , ~15a!

Û:H2→H2 . ~15b!

With these definitions we are now in a position to investig
the group structures appearing for the introduced operat

B. Single groupD2h
T for even systems

For even fermion numbers we consider the Fock-sp
operators defined in Sec. II A, and restrict them toH1 , Eqs.
~14! and~15a!. Then, the complete multiplication table rea

R̂k
25Ŝk

25T̂25Ê, ~16a!

~R̂k
T!25~Ŝk

T!25P̂25Ê, ~16b!

R̂kŜk5ŜkR̂k5P̂, ~16c!

R̂k
TŜk

T5Ŝk
TR̂k

T5P̂, ~16d!

R̂kR̂k
T5R̂k

TR̂k5ŜkŜk
T5Ŝk

TŜk5T̂, ~16e!

R̂kŜk
T5Ŝk

TR̂k5R̂k
TŜk5ŜkR̂k

T5P̂T, ~16f!

for k5x,y,z, and

R̂kR̂l5ŜkŜl5R̂k
TR̂l

T5Ŝk
TŜl

T5R̂m , ~17a!

R̂kŜl5ŜkR̂l5R̂k
TŜl

T5Ŝk
TR̂l

T5Ŝm , ~17b!

R̂kR̂l
T5R̂k

TR̂l5ŜkŜl
T5Ŝk

TŜl5R̂m
T , ~17c!

R̂k
TŜl5ŜkR̂l

T5R̂kŜl
T5Ŝk

TR̂l5Ŝm
T , ~17d!

for (k,l ,m) being anarbitrary permutation of (x,y,z).
We see that the 16 operators acting in the even-A fermion

spaces constitute an Abelian single group which we den
by D2h

T ,

D2h
T : $Ê,P̂,R̂k ,Ŝk ,T̂,P̂T,R̂k

T ,Ŝk
T%, ~18!

for k5x,y,z. The half of the elements in Eq.~18! are linear
operators and the other half are antilinear.

It follows from the multiplication table of theD2h
T opera-

tors, Eqs.~16! and ~17!, that the whole group can be gene
ated by its four elements only. These elements are called
group generators. Various possibilities of choosing the g
erators are discussed in Ref.@14#; here we only mention that
e.g., the subset$T̂, P̂, R̂x , R̂y% can be used to obtain all th
operators that belong toD2h

T .
The D2h

T group has two important subgroups, the eig
element Abelian groupD2h composed of all the linearD2h

T

operators
0-3
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D2h : $Ê,P̂,R̂k ,Ŝk%, ~19!

and the four-element Abelian groupD2,

D2 : $Ê,R̂k%. ~20!

Obviously, theD2h subgroup ofD2h
T , being an Abelian

group of order eight, has eight one-dimensional irreps. Th
can be labeled by eigenvalues equal to either11 or 21 of
three of its generators, say,P̂, R̂x , andR̂y .

We introduce names for the~one-dimensional! bases of
the associated irreps according to the following conventi
First, a basis is calledinvariant if it remains unchanged~be-
longs to eigenvalue11! under all three signature operato
R̂k , and it is called eitherx, or y, or z covariantif it trans-
forms under the signature operators like thex, y, or z coor-
dinates, respectively. Secondly, prefixpseudois added for
bases which are odd, i.e., belong to eigenvalue21 with re-
spect to the inversionP̂.

Since T̂ is an antilinear operator and also an involuti
operator@i.e., its square is equal to identity, Eq.~16a!#, we
can always choose the phases of all the basis states so
they belong to the eigenvalueT511 of T̂ @15# ~see Sec. II E
below!. In this way we construct eight irreducible on
dimensional corepresentations~ircoreps! of D2h

T , all being
even with respect to the time reversal. After Wigner@8#, we
call the representations of a group containing antilinear
eratorscorepresentationsto emphasize the fact that they a
not the representations in the usual sense~see the Appendix
for details!. By a suitable change of phases of the basis st
we can obtain another set of eight ircoreps ofD2h

T , all of
them odd~i.e., belonging to the eigenvalueT521) with
respect to the time reversal. We use prefixanti to name these
time-odd ircoreps. Obviously, time-even and time-odd
coreps are pairwise equivalent~see Ref.@3#!.

Note that all operators acting in the even fermion spa
H1 can also be classified according to the same set of
teen ircoreps ofD2h

T . All these ircoreps are listed in Table II
together with explicit transformation properties of seve
examples of one-particle operators belonging to each irco

C. Double group D2h
TD for odd systems

For odd fermion numbers we consider the Fock-space
erators defined in Sec. II A, and restrict them toH2 , Eqs.
~14! and ~15b!. Since operatorĒ @odd-fermion-number par
of Ē of Eq. ~10!# is now an independent group elemen
additionalpartneroperators should be introduced in order
construct the double groupD2h

TD , i.e.,

P̄5 ĒP̂, T̄5 ĒT̂, P̄T5 ĒP̂T, ~21!

and

R̄k5 ĒR̂k , S̄k5 ĒŜk , R̄k
T5 ĒR̂k

T , S̄k
T5 ĒŜk

T , ~22!

for k5x,y,z. Now the group multiplication table reads
01431
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R̂k
25Ŝk

25T̂25 Ē, ~23a!

~R̂k
T!25~ Ŝk

T!25P̂25 Ê, ~23b!

R̂kŜk5ŜkR̂k5P̄, ~23c!

R̂k
TŜk

T5Ŝk
TR̂k

T5P̂, ~23d!

R̂kR̂k
T5R̂k

TR̂k5ŜkŜk
T5Ŝk

TŜk5T̄, ~23e!

R̂kŜk
T5Ŝk

TR̂k5R̂k
TŜk5ŜkR̂k

T5P̄T ~23f!

for k5x,y,z, and

R̂kR̂l5ŜkŜl5R̂k
TR̂l

T5Ŝk
TŜl

T5R̄m , ~24a!

R̂kŜl5ŜkR̂l5R̂k
TŜl

T5Ŝk
TR̂l

T5S̄m , ~24b!

R̂kR̂l
T5R̂k

TR̂l5ŜkŜl
T5Ŝk

TŜl5R̄m
T , ~24c!

R̂k
TŜl5ŜkR̂l

T5R̂kŜl
T5Ŝk

TR̂l5S̄m
T ~24d!

for (k,l ,m) being anodd permutation of (x,y,z), while re-
lations identical to Eq.~17! hold for anevenpermutation of
(x,y,z). After multiplying relations~23! and~24! by Ē once
or twice, one can easily obtain the remaining elements of
multiplication table, i.e., those which pertain to products
volving one or two partner operators~22!.

The D2h
TD group is thus composed of 32 operators:

D2h
TD : $Ê,P̂,T̂,P̂T,R̂k ,Ŝk ,R̂k

T ,Ŝk
T ,

Ē,P̄,T̄,P̄T,R̄k ,S̄k ,R̄k
T ,S̄k

T%. ~25!

One can see that this double group is not Abelian, beca
relations ~24! now do depend on whether the permutati
(k,l ,m) of (x,y,z) is even or odd, whereas for the sing
group, relations~17! are independent of that.

One may note that the Fock-space operatorsÛ of Sec.
II A and the odd-fermion-space operatorsÛ of Eqs.~14! and
~15b! obey exactly the same multiplication rules of th
doubleD2h

TD group. Therefore, one might, in principle, con
sider only the double groupD2h

TD and refrain from studying
the group structures in even and odd spaces separately. H
ever, at the level of representations, one would then h
been deprived of important properties of operators such
T̂25Ê or T̂ 252 Ê ~see Sec. II E!, neither of which holds in
the whole Fock space, see Eqs.~12! and ~10!.

Since the squares of the time reversal, signatures,
simplexes, Eq.~23a!, are equal toĒ, the whole double group
D2h

TD can be generated by the same operators which gene
the single group in even systems, Sec. II B. So the dou
group also needs four generators; for instance, the set of
elements,T̂, P̂, R̂x , andR̂y , can be used to obtain the entir
double group of theD2h

TD operators.
0-4
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The linear operators of theD2h
TD double group form the

16-element double groupD2h
D ,

D2h
D : $Ê,P̂,R̂k ,Ŝk ,Ē,P̄,R̄k ,S̄k%. ~26!

This group has ten equivalence classes~see Refs.@2,3,5#!.
There are six classes composed of two elements each,

$R̂k ,R̄k% and$Ŝk ,S̄k% for k5x,y,z, while the remaining el-
ements$Ê%, $Ē%, $P̂%, and$P̄% form four one-element classe
by themselves. The group is not Abelian and possesses,
from the 8 one-dimensional irreps already known for t
single group, another two two-dimensional spinor irreps. T
spinor irreps can be labeled by the parities~the eigenvalues
p511 or 21 of the inversion operatorsP̂), see the Appen-
dix.

The time reversalT̂ is an antilinear and also an ant
involutive operator@i.e., its representations give the minu
identity when squared, Eq.~23a!#, and therefore it cannot b
diagonalized@15# ~see Sec. II E below!, and used for labeling
theD2h

TD ircoreps. A Hermitian antilinear involutive operato
i.e., either aT signature or aT simplex@see Eq.~23b!# should
be chosen to serve this purpose. For instance, a pair of c
muting Hermitian operatorsP̂ and R̂y

T can be used to labe
the D2h

TD ircoreps. As for the single groupD2h
T , ircoreps be-

ing either even or odd with respect toR̂y
T can be obtained

one from another by a suitable change of phase, and
therefore equivalent. In analogy to the one-dimensional
coreps, the bases of spinor ircoreps belonging to pairs
eigenvalues of$P̂,R̂y

T% equal to $11,11%, $21,11%,
$11,21%, and$21,21% can be called the spinor, pseudo
pinor, antispinor, and antipseudospinor bases, respective

Note that only spinor ircoreps ofD2h
TD appear in the clas

sification of states of systems with odd numbers of fermio
However, the operators acting inH2 can all be classified
according to the one-dimensional ircoreps ofD2h

TD , similarly
as operators acting inH1 can all be classified according t
the corresponding one-dimensional ircoreps ofD2h

T . ~This is
completely analogous to the fact that fermion-number c
serving operators can carry only integer angular mome
i.e., they are integer-rank tensors.! Therefore, whenever we
consider the action of theD2h

T or D2h
TD operators on fermion

states we always specify whether they act in evenH1 or odd
H2 spaces, and use for them the corresponding notationÛ
andÛ of Eqs.~15a! and~15b!. On the other hand, wheneve
we consider transformation propertiesÛ†ÔÛ of operatorsÔ
with respect to theD2h

TD group, we do not make this distinc

tion, and use for them notationÛ of Sec. II A.

D. Cartesian harmonic oscillator basis

One often uses the Cartesian harmonic oscillator~HO!
basis to solve the self-consistent equations when nei
spherical nor axial symmetry is assumed, see, e.g., R
@17,10#. The Cartesian HO states are identified by the nu
bers of oscillator quanta,nx , ny , andnz , in the three Car-
tesian directions, and by the spin projectionsz56 1

2 on thez
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axis. For the standard HO phase convention, this basi
real, K̂unxnynz ,sz&5unxnynz ,sz&, where according to our
standard convention the script symbolK̂ denotes the
coordinate-space complex-conjugation operator acting in
odd-fermion-number spaceH2 , see Sec. II A.

For the HO states the following relations hold@18#:

P̂unxnynz ,sz&5~21!nx1ny1nzunxnynz ,sz&, ~27a!

T̂unxnynz ,sz&5~21!
1
2 2szunxnynz ,2sz&, ~27b!

R̂xunxnynz ,sz&5 i ~21!ny1nz11unxnynz ,2sz&, ~27c!

R̂yunxnynz ,sz&5~21!nx1nz1
1
2 2szunxnynz ,2sz&,

~27d!

R̂zunxnynz ,sz&5 i ~21!nx1ny1
1
2 1szunxnynz ,sz&,

~27e!

Ēunxnynz ,sz&52unxnynz ,sz&, ~27f!

from where one can find similar equations for all the rema
ing operators of groupD2h

TD . Since the HO Hamiltonian is
symmetric underD2h

TD , its eigenstates can be classified a
cording to the ircoreps ofD2h

TD . It is easily seen that the HO
statesunxnynz ,sz& form bases of the spinor, pseudospino
antispinor, and antipseudospinor ircoreps for$N5nx1ny
1nz , Ny5nx1nz% being $even, odd%, $odd, odd%, $even,
even%, and$odd, even%, respectively~see the Appendix!. The
entire HO basis would have belonged to the spinor and ps
dospinor ircoreps only, if the basis states and phase con
tion were chosen differently, see Ref.@14#.

E. Properties of theD2h
T and D2h

TD operators

In this section we recall properties of theD2h
T and D2h

TD

operators when they are represented in the fermion F
space. Within representations, apart from the correspon
multiplication tables, Eqs.~16!–~17! and ~23!–~24!, these
operators are characterized by their Hermitian-conjuga
properties. Since all the Fock-space representations of
D2h

T and D2h
TD operators are unitary, they are Hermitian

TABLE I. Properties of theD2h
T operatorsÛ in even fermion

spaces.

Linear Antilinear

Hermitian (Û25Ê) P̂, R̂k , Ŝk R̂k
T , Ŝk

T , T̂, P̂T

TABLE II. Properties of theD2h
TD operatorsÛ in odd fermion

spaces.

Linear Antilinear

Hermitian (Û25 Ê) P̂ R̂k
T , Ŝk

T

Anti-Hermitian (Û252 Ê) R̂k , Ŝk T̂, P̂T
0-5
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anti-Hermitian depending on whether they are involutive
anti-involutive, respectively. Properties of these operat
are very different depending on whether they are linear
antilinear. These characteristics are summarized in Tab
and II, where theD2h

T andD2h
TD operators are split into two o

four subsets, respectively. Below we review the propertie
operators in each such subset.

For each linearD2h
T or D2h

TD operator one can attribut
quantum numbers to fermion states. These quantum num
can be equal to61 or 6 i for Hermitian ~involutive! or
anti-Hermitian ~anti-involutive! operators, respectively
Therefore, the parity operatorsP̂ or P̂ give the parity quan-
tum numbers,p561, the signature operatorsR̂k give the
signature quantum numbers,r 561, in even systems and th
signature operatorsR̂k give r 56 i in odd systems. Likewise
the simplex operatorsŜk and Ŝk give the simplex quantum
numbers,s561 ands56 i , respectively.

Antilinear operators do not give good quantum numbe
and their role is very different, depending on whether th
are Hermitian or anti-Hermitian, Tables I and II. For ea
Hermitian antilinearD2h

T or D2h
TD operator, i.e., forR̂k

T , Ŝk
T ,

T̂, P̂T, R̂k
T , or Ŝk

T one can find a basis consisting solely of
eigenstates with the common eigenvalue equal to 1@15#. In-
deed, if stateuC& is an eigenstate of, e.g.,R̂k

T , the corre-

sponding eigenvalue must be a phase, i.e.,R̂k
TuC&

5e2ifuC&. In such a case, stateuC8&5eifuC& is an eigen-
state ofR̂k

T with eigenvalue 1. This demonstrates explicit

that properties of eigenstates ofR̂k
T are, of course, phas

dependent. In the case when stateuC& is not an eigenstate o
R̂k

T , one can transform the two linearly independent sta

uC& andR̂k
TuC& into eigenstates ofR̂k

T with eigenvalue 1 by
symmetrization and antisymmetrization of the two:

uCs&5uC&1R̂k
TuC&, ~28a!

uCa&5 i uC&2 iR̂k
TuC&, ~28b!

which also requires a specific phase. Therefore, ph
convention properties of states are essential for a discus
of bases of eigenstates of the Hermitian antilinear operat
and in Ref.@14# a special discussion is devoted to this pro
lem.

One should also remember, that only linear combinati
of basis states withreal coefficients remain eigenstates
any Hermitian antilinear operator. This is in contrast to pro
erties of linear operators, for which a linear combination
eigenstates, corresponding to the same eigenvalue, withar-
bitrary coefficients, is also an eigenstate with the same
genvalue.

Very special properties characterize the anti-Hermit
antilinear operators. Within theD2h

T or D2h
TD groups only the

T̂ and P̂T operators in odd systems belong to such a sub
~Table II!. For each anti-Hermitian antilinearD2h

TD operator
the space of fermion states can be arranged in pairs o
thogonal states (uC(1)&,uC(2)&) @15#, such that, for ex-
ample,
01431
r
s
r
I

f

ers

,
y

s

e-
on
rs,
-

s

-
f

i-

n

et

r-

T̂ uC~6 !&56uC~7 !& ~29!

or

P̂TuC~6 !&56uC~7 !&. ~30!

Therefore, theT̂ andP̂T operators cannot be diagonalized.
particular, there is no odd fermion state which would
invariant with respect toT̂ or P̂T.

III. SYMMETRIES OF LOCAL DENSITIES

Suppose that the Fock-space operatorÛ or Û, belonging
to D2h

T or D2h
TD , respectively, represents a symmetry co

served by a mean-field many-particle stateuC1& or uC2&, in
even or odd fermion spaces, i.e.,

ÛuC1&5uuC1&, ~31a!

ÛuC2&5uuC2&. ~31b!

As discussed in Sec. II E, eigenvalueu can be equal to61
or 6 i , and moreover, in odd fermion systemsÛ cannot be
equal to eitherT̂ or P̂T, i.e., neither the time reversal nor th
product of inversion and time reversal can be a conser
symmetry in odd systems. According to conventions int
duced in Sec. II C, in odd systems the hat always deno
one of theD2h

TD operators introduced in Sec. II A, and not

one of their partners@Eqs.~21! and~22!#. Of course, ifÛ is a
symmetry ofuC2& thenŪ is a symmetry as well, so from th
point of view of conserved symmetries, any extra study
partner operators is unnecessary.

Mean-field stateuC& can be characterized by the singl
particle density matrixr ~see Ref.@1# for the definition!, for
which the symmetry properties~31! imply

Û†rÛ5r, ~32!

independently of eigenvalueu. @Symmetry property~32!
does not depend on whether the mean-field state belong
the even or odd fermion space, and therefore, we use
Fock-space notationÛ for the symmetry operators, see de
nitions in Sec. II A and discussion in Sec. II C.# It then fol-
lows that the single-particle self-consistent Hamiltonianh@r#

is also symmetric with respect to operatorÛ @1#, namely,

Û†h@r#Û5h@r#. ~33!

Equation~33! implies that ifw is a normalized single-particle
eigenfunction ofh@r#, thenÛw is also a normalized eigen
function, both belonging to the same eigenvalue. As a c
sequence, it can be shown@19# that the symmetry is pre
served during the standard self-consistent iteration, provi
the entire multiplets of states belonging to the same eig
value ofÛ are either fully occupied, or fully empty. In suc
0-6
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TABLE III. Symmetry properties of space-spin one-particle operatorsÔ belonging to different one-dimensional ircoreps of theD2h
T and

D2h
TD groups. The first column gives names of different ircoreps, the second column lists examples of operatorsÔ, and the remaining columns

give signs in the expressionÛ†ÔÛ56Ô, for operatorsÛ given in the column headers. Note that these results do not depend on wh

operatorsÛ act in even or odd spaces, and therefore the Fock-space notation is used for them.

Ircorep Space-spin one-particle operatorsÔ T̂ P̂ R̂x R̂y

invariants x2,y2,z2,¹x
2 ,¹y

2 ,¹z
2 ;xi¹yŝz ,yi¹zŝx ,zi¹xŝy

1 1 1 1

pseudoinvariants xyz,xi¹yi¹z ,yi¹zi¹x ,zi¹xi¹y ; i¹xŝx ,i¹yŝy ,i¹zŝz
1 2 1 1

anti-invariants xi¹x ,yi¹y ,zi¹z ;xyŝz ,yzŝx ,zxŝy
2 1 1 1

antipseudoinvariants xyi¹z ,yzi¹x ,zxi¹y ;xŝx ,yŝy ,zŝz
2 2 1 1

x covariants x; i¹yŝz ,i¹zŝy
1 2 1 2

y covariants y; i¹xŝz ,i¹zŝx
1 2 2 1

z covariants z; i¹xŝy ,i¹yŝx
1 2 2 2

x pseudocovariants yz;xi¹yŝy ,i¹xyŝy ,ŝxyi¹y
1 1 1 2

y pseudocovariants xz;yi¹zŝz ,i¹yzŝz ,ŝyzi¹z
1 1 2 1

z pseudocovariants xy;zi¹xŝx ,i¹zxŝx ,ŝzxi¹x
1 1 2 2

x anticovariants i¹x ;yŝz ,zŝy
2 2 1 2

y anticovariants i¹y ;xŝz ,zŝx
2 2 2 1

z anticovariants i¹z ;xŝy ,yŝx
2 2 2 2

x antipseudocovariants yi¹z ,zi¹y ;ŝx
2 1 1 2

y antipseudocovariants xi¹z ,zi¹x ;ŝy
2 1 2 1

z antipseudocovariants xi¹y ,yi¹x ;ŝz
2 1 2 2
-
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a case Eqs.~32! and ~33! are fulfilled repeatedly in the suc
cessive steps of iteration, andÛ is a self-consistent symme
try.

Since the one-body density is a fermion-number conse
ing one-body operator, it can be classified according to o
dimensional ircoreps ofD2h

T or D2h
TD , and this can be done

both in even and odd systems. This means that either
given operatorÛ is a conserved symmetry, Eqs.~31! and
~32!, and the density matrix belongs to the given on
dimensional ircorep of the subgroup generated byÛ, or Û is
a broken symmetry and the density matrix has two nonz
components in two different such one-dimensional ircore
It follows that in odd systems the density matrix has alwa
nonzero components in two ircoreps corresponding to
time reversal.

This classification procedure is used below to enume
properties of the density matrix when one or moreD2h

T or
D2h

TD operators are conserved symmetries. Note also, tha
like for the many-body statesuC&, one does not have a free
dom to change the phase of the density matrix, because
a Hermitian operator independent of the phase of the me
field state it corresponds to. Therefore, if the density ma
has non-zero components in two ircoreps correspondin
two different eigenvalues of an antilinearD2h

T or D2h
TD opera-

tor, it cannot be transformed to the form in which it wou
have been either even or odd with respect to this operat

A definite symmetry of the density matrix, Eq.~32!, im-
plies certain symmetries for local densities and their deri
tives. These symmetries are discussed and enumerated
present section.
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The spin structure of the density matrix is given by

r~rs,r8s8!5 1
2 r~r,r8!dss81

1
2 (

k5x,y,z
sk~r,r8!^suŝkus8&,

~34!

where r5(x,y,z) and r85(x8,y8,z8) represent three-
dimensional position vectors. When the rotational symme
is preserved one often refers tor(r,r8) and sk(r,r8) as the
scalar and vector densities, respectively. In our case, th
rotational symmetry is broken, and we will avoid using the
terms. Instead, we classify the densities according to the
coreps of theD2h

T or D2h
TD group. As discussed above, for th

one-body operators only the one-dimensional ircoreps
relevant for the classification. There are 16 characteri
transformation properties of the bases for one-dimensio
ircoreps. In Table III we list all these ircoreps, illustrated
examples of space-spin operators of interest, e.g., powe
coordinates,x, y, z and gradients,¹x , ¹y , ¹z .

The table also lists explicitly the transformation propert
of operators belonging to every type of symmetry. For e
ample, the minus sign which appears in row denoted by

covariants and column denoted byR̂x means thatR̂x
†yR̂x5

2y. It can be easily checked that the Pauli matricesŝx , ŝy ,
ŝz transform under the signatures as thex,y,z coordinates,
respectively, do not change under the inversion, and cha
their signs under the time reversal. Therefore, these can
classified ask-antipseudocovariants fork5x,y,z, respec-
tively. Spin-dependent operators belonging to other ircor
can also be constructed from the Pauli matrices. Theref
0-7
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TABLE IV. Symmetry properties of various local densities belonging to different one-dimensional ircoreps of theD2h
T or D2h

TD groups.
For instructions on using the table see the text explaining Eq.~41!.

Ircorep Local densities P̂ P̂T R̂k R̂k
T Ŝk Ŝk

T R̂l R̂l
T Ŝl Ŝl

T R̂m R̂m
T Ŝm Ŝm

T

invariants r,t i i ,¹ i
2r,¹kJlm r,t,Dr,“•J 1 1 1 1 1 1 1 1 1 1 1 1 1 1

pseudoinvariants Jii J 2 2 1 1 2 2 1 1 2 2 1 1 2 2

anti-invariants Tklm ,¹ i j i ,¹k¹ lsm “• j 1 2 1 2 1 2 1 2 1 2 1 2 1 2

antipseudoinvariants ¹ isi “•s 2 1 1 2 2 1 1 2 2 1 1 2 2 1

k covariants Jlm ,¹kr (J)k ,(JJ) lm ,(“r)k
2 2 1 1 2 2 2 2 1 1 2 2 1 1

k pseudocovariants t lm ,¹ l¹mr,¹kJii , (“J)k , 1 1 1 1 1 1 2 2 2 2 2 2 2 2

¹ iJki ,¹ iJik (“•JJ)k ,(“3J)k

k anticovariants j k ,¹ lsm ( j)k ,(“3s)k 2 1 1 2 2 1 2 1 1 2 2 1 1 2

k antipseudocovariantssk ,Tiik ,Tkii ,¹ l j m , (s)k ,(T)k ,(“3 j)k 1 2 1 2 1 2 2 1 2 1 2 1 2 1

¹k¹ isi ,¹ i
2sk (“(“•s))k ,(Ds)k

(ek ,e l ,em)5 (222) (122) (211) (212) (121) (221) (112)
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examples of spin-dependent operators are also listed in
table. In Table III we have introduced the same names
operators as for the bases of one-dimensional ircoreps~see
Sec. II B!.

Similarly as in Ref.@20#, we consider the following loca
densities:
particle and spin densities:

r~r!5r~r,r!, ~35a!

sk~r!5sk~r,r!; ~35b!

kinetic and spin-kinetic densities:

tkl~r!5@¹k¹ l8r~r,r8!# r5r8 , ~36a!

Tklm~r!5@¹k¹ l8sm~r,r8!# r5r8 ; ~36b!

current and spin-current densities:

j k~r!5
1

2i
@¹k2¹k8!r~r,r8!] r5r8 , ~37a!

Jkl~r!5
1

2i
@~¹k2¹k8!sl~r,r8!# r5r8 ; ~37b!

where each indexk, l, or m may refer to either ofx, y, or z.
It follows from the Hermiticity of the density matrixr that
all the above local densities are real functions ofr. Usually
only the traces of kinetic densities,

t~r!5(
k

tkk~r!, ~38a!

Tm~r!5(
k

Tkkm~r!, ~38b!

are used in applications.
When operatorÛ represents a conserved symmetry of t

density matrix, Eq.~32!, the transformation rules for grad
ents and spin operators, given in Table III, imply defin
01431
he
r
transformation rules for the local densities. These are lis
in Table IV, for all the one-dimensional ircoreps ofD2h

T or
D2h

TD as indicated in the first column. In the second colum
we show the local densities in forms defined by Eqs.~35!–
~37!, while the third column gives, when possible, the loc
densities in the traditional vector-tensor notation, e.g.,

s5~sx ,sy ,sz!, ~39a!

T5~Tx ,Ty ,Tz!, ~39b!

J5(
k

Jkk , ~40a!

~ JJ !kl5
1

2
~Jkl1Jlk!2

1

3
Jdkl , ~40b!

~J!k5(
lm

«klmJlm . ~40c!

Derivatives of densities up to the second order are also
cluded in the table.

From Table IV one can read off the symmetry propert
of various densities. Supposed(x,y,z) is a generic name o
one of the densities listed in the second or third column, a
Û is a generic name of one of theD2h

T or D2h
TD operators

listed in the first row. We use the convention that indei
may take any value amongx, y or z, while indiceskÞ lÞm

are arbitrary permutations ofx, y, and z. If Û represents a
conserved symmetry, one has the following symmetry r
for the densityd(x,y,z):

d~exx,eyy,ezz!5ed~x,y,z!, ~41!

wheree is the sign listed in Table IV in the row denoted b
d and column denoted byÛ. Signs (ex ,ey ,ez) are given in
the last row of Table III, and pertain to twoD2h

T or D2h
TD

operators~viz. Û and ÛT) in two adjacent columns. Thes
latter signs give changes of coordinates (x,y,z) under the
action of Û. As the time reversal does not affect spatial c
ordinates, these signs are the same for any pair of opera
0-8
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TABLE V. Symmetry properties of electric multipole operatorsQ̂lm with respect to operators of theD2h
T

or D2h
TD groups. The results of the symmetry operatorÛ†Q̂lmÛ are given for three spatial directionsk5x, y,

z. Where applicable, the upper part of the table gives expressions in terms of changed signs of m
components, and the lower part gives the equivalent expressions in terms of the complex conjugatio

k R̂k R̂k
T Ŝk Ŝk

T

x (21)lQ̂l,2m (21)l1mQ̂lm Q̂l,2m (21)mQ̂lm

y (21)l2mQ̂l,2m (21)lQ̂lm (21)2mQ̂l,2m Q̂lm

z (21)mQ̂lm Q̂l,2m (21)l1mQ̂lm (21)lQ̂l,2m

x (21)l1mQ̂lm* (21)l1mQ̂lm (21)mQ̂lm* (21)mQ̂lm

y (21)lQ̂lm* (21)lQ̂lm Q̂lm* Q̂lm

z (21)mQ̂lm (21)mQ̂lm* (21)l1mQ̂lm (21)l1mQ̂lm*
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Û andÛT. One generic table of signs determines, therefo
symmetry properties of any local density for any of theD2h

T

or D2h
TD symmetries being preserved.

For example, symmetry properties of densityJxy can be
found by using indicesl 5x and m5y ~which requiresk
5z) in the row pertaining tok covariants. For the conserve
R̂z5R̂k symmetry we then find in the corresponding colum
e51 and ex5e l52, ey5em52, and ez5ek51, which
givesJxy(2x,2y,z)5Jxy(x,y,z).

It is worth noting that symmetry properties~41! which
correspond to variousD2h

T or D2h
TD operators, are related t

one another only by the corresponding group multiplicat
rules. Therefore, a specific choice of the conserved gen
tors, either for the completeD2h

T or D2h
TD groups or for any of

their subgroups@14#, leads to a specific set of symmet
properties of local densities.

Symmetry properties~41! can be used for the purpose of
continuation of densities from one semispace into the sec
semispace, i.e., one can use only space points for, e.gx
>0. For two symmetry properties~41!, coming from two
different symmetry operators~but not from the pairÛ and
ÛT), one can restrict the space to a quarter-space, where
coordinates have definite signs, e.g.,x>0 andy>0. Finally,
three conserved symmetries allow for a restriction to o
eighth of the full space with all the coordinates having de
nite signs, e.g.,x>0, y>0, and y>0. The time-reversa
symmetry does not lead to restrictions on the space pro
ties of densities, but, when conserved, gives the vanishin
all the anti-invariant, antipseudoinvariant, anticovariant, a
antipseudocovariant densities, viz.,sk , j k ,Tklm for arbitrary
k,l ,m as well as their derivatives~see Table IV!. The possi-
bilities of simultaneously conserving one, two, three, or fo
symmetry operators from theD2h

T or D2h
TD groups will be

discussed in Ref.@14#.
Since density matrixr and single-particle Hamiltonian

h@r# are always simultaneously invariant under any co
served symmetryÛ, Eqs.~32! and~33!, the discussion above
can be repeated for self-consistent local fields appearing
local mean-field Hamiltonian. Explicit formulas for symm
try properties of local fields are identical to those listed
Table IV, and will not be repeated here. In application
these symmetries appear automatically when the s
01431
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consistent mean fields are calculated in terms of densi
see Ref.@20#.

IV. SYMMETRIES OF SHAPES, CURRENTS, AND
AVERAGE ANGULAR MOMENTA

In this section we discuss properties of average value
various operators, calculated for the HF many-particle s
uC&. In particular, we consider the electromagnetic multipo
operators and the total angular momentum; the quant
which are used to characterize properties of investigated
tems. First of all, we enumerate transformation properties
these operators under theD2h

T or D2h
TD operators. Similarly as

for the density matrix~Sec. III!, the one-body operators dis
cussed in this section belong to one-dimensional ircorep
D2h

T or D2h
TD , and therefore, their properties do not depend

whether the system contains even or odd number of fer
ons.

A. Transformation properties of angular momentum and
multipole operators

The k component of total angular momentumÎ k trans-
forms obviously ask antipseudocovariant underD2h

T or D2h
TD ,

and its transformation rules can be easily read off from Ta
III.

For l even~odd!, the electric multipole operatorsQ̂lm are
even ~odd!, respectively, under the action of the inversio
and are all even with respect to the time reversal, i.e.,

P̂†Q̂lmP̂5~21!lQ̂lm , ~42a!

T̂†Q̂lmT̂5Q̂lm* . ~42b!

The magnetic multipole operatorsM̂lm have opposite trans
formation properties

P̂†M̂lmP̂52~21!lM̂lm , ~43a!

T̂†M̂lmT̂52M̂lm* . ~43b!

Table V gives transformation properties@21# of Q̂lm with
respect to operators of theD2h

T or D2h
TD groups, other thanT̂
0-9
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TABLE VI. Conditions fulfilled by the electric and magnetic multipole momentsQlm andMlm , for conservedD2h
T or D2h

TD operators.
Where applicable, the upper part of the table gives expressions in terms of changed signs of magnetic components, and the lowe
equivalent expressions in terms of the complex conjugation.

k R̂k R̂k
T Ŝk Ŝk

T

x Qlm5(21)lQl,2m Qlm5(21)lQl,2m Qlm5Ql,2m Qlm5Ql,2m

x Mlm5(21)lMl,2m Mlm52(21)lMl,2m Mlm52Ml,2m Mlm5Ml,2m

y Qlm5(21)l2mQl,2m Qlm5(21)l2mQl,2m Qlm5(21)2mQl,2m Qlm5(21)2mQl,2m

y Mlm5(21)l2mMl,2m Mlm52(21)l2mMl,2m Mlm52(21)2mMl,2m Mlm5(21)2mMl,2m

z Qlm5(21)mQlm Qlm5(21)mQlm Qlm5(21)l1mQlm Qlm5(21)l1mQlm

z Mlm5(21)mMlm Mlm52(21)mMlm Mlm52(21)l1mMlm Mlm5(21)l1mMlm

x Qlm5(21)l1mQlm* Qlm5(21)l1mQlm* Qlm5(21)mQlm* Qlm5(21)mQlm*
x Mlm5(21)l1mMlm* Mlm52(21)l1mMlm* Mlm52(21)mMlm* Mlm5(21)mMlm*
y Qlm5(21)lQlm* Qlm5(21)lQlm* Qlm5Qlm* Qlm5Qlm*
y Mlm5(21)lMlm* Mlm52(21)lMlm* Mlm52Mlm* Mlm5Mlm*
z Qlm5(21)mQlm Qlm5(21)mQlm Qlm5(21)l1mQlm Qlm5(21)l1mQlm

z Mlm5(21)mMlm Mlm52(21)mMlm Mlm52(21)l1mMlm Mlm5(21)l1mMlm
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andP̂. One may note that the electric multipole operators
invariant with respect to theŜy

T symmetry. This is of course
a consequence of the standard phase convention for th
tational irreducible tensor operators@21,22#,

Q̂lm* 5~21!2mQ̂l,2m , ~44a!

M̂lm* 5~21!2mM̂l,2m , ~44b!

which ensures that the antilinear operatorŜy
T acts as an iden

tity upon any irreducible spherical tensor operator.

B. Average values

The electric and magnetic moments are defined as

Qlm5^CuQ̂lmuC&5E qlm~r! d3r, ~45a!

Mlm5^CuM̂lmuC&5E mlm~r! d3r, ~45b!

whereuC& is a many-body mean-field state, andqlm(r) and
mlm(r) are the corresponding moment densities:

qlm~r!5er~r!Qlm~r!, ~46a!

mlm~r!5mN (
k5x,y,z

S gssk¹kQlm~r!

2
2

l11
gl j k@r3“Qlm~r!#kD , ~46b!

ande, gs , andgl are the elementary charge, and the spin a
orbital gyromagnetic factors, respectively@1#. In definitions
~46!, multipole functions@21# ~solid harmonics! have the
standard formQlm(r)5r lYlm(u,f).
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Similarly, the mean value of thek-component of total
angular momentum~in units of \) reads

I k5^Cu Î kuC&5E @«klmr l j m~r!1 1
2 sk~r!#d3r. ~47!

We may now combine symmetry properties of densitiesr, s,
and j, Table III, with those of multipole operators, Table V
to obtain symmetry conditions obeyed by the electric a
magnetic moments, and by the average angular momenta
given conserved symmetries of theD2h

T or D2h
TD groups. In

doing so, we have to remember that since the electric mu
pole operators are time even, the corresponding electric
ments depend only on the time-even component of the d
sity matrix, as given in Eq.~46a!. This is so irrespective of
whether the time reversal is, or is not a conserved symme
or whether the system contains even or odd number of
mions. Therefore, the time reversal does not impose any c
dition on the electric multipole moments. On the other ha
with the time-reversal symmetry conserved, which may
cur only for even systems, all magnetic moments and av
age angular momenta must vanish, because they depend
on the time-odd component of the density matrix, Eqs.~46b!
and ~47!.

For the conserved parity, one obtains the standard co
tions

Qlm5~21!lQlm , ~48a!

Mlm52~21!lMlm , ~48b!

i.e., odd electric and even magnetic moments must van
Similar symmetry properties with respect to other symm
tries of theD2h

T or D2h
TD groups are collected in Table VI.

Within the standard phase convention of Eq.~44!, only a
conservation of they-T-simplex symmetryŜy

T enforces the
reality of all multipole electric and magnetic moments.
such a case, the lower part of Table VI gives at a glance
0-10
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TABLE VII. Properties of electric multipole momentsQlm , magnetic multipole momentsMlm , and average angular momentaI k for
conservedD2h

T or D2h
TD operators. SymbolsC, R, I, or 0 denote values which can be, in general, complex, real, imaginary, or

respectively.

Ê T̂ P̂ P̂T R̂x R̂x
T Ŝx Ŝx

T R̂y R̂y
T Ŝy Ŝy

T R̂z R̂z
T Ŝz Ŝz

T

Q10,Q30,Q50 . . . R R 0 0 0 0 R R 0 0 R R R R 0 0
Q11,Q31,Q33 . . . C C 0 0 R R I I I I R R 0 0 C C
Q20,Q40,Q60 . . . R R R R R R R R R R R R R R R R
Q21,Q41,Q43 . . . C C C C I I I I R R R R 0 0 0 0
Q22,Q42,Q44 . . . C C C C R R R R R R R R C C C C
Q32,Q52,Q54 . . . C C 0 0 I I R R I I R R C C 0 0
M10,M30,M50 . . . R 0 R 0 0 R 0 R 0 R 0 R R 0 R 0
M11,M31,M33 . . . C 0 C 0 R I R I I R I R 0 C 0 C
M20,M40,M60 . . . R 0 0 R R 0 0 R R 0 0 R R 0 0 R
M21,M41,M43 . . . C 0 0 C I R R I R I I R 0 C C 0
M22,M42,M44 . . . C 0 0 C R I I R R I I R C 0 0 C
M32,M52,M54 . . . C 0 C 0 I R R R I R I R C 0 C 0
I x R 0 R 0 R 0 R 0 0 R 0 R 0 R 0 R
I y R 0 R 0 0 R 0 R R 0 R 0 0 R 0 R
I z R 0 R 0 0 R 0 R 0 R 0 R R 0 R 0
n
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ym-
the multipole moments which must vanish whenever a
other symmetry is additionally conserved; these are those
which the phase factors are negative. On the other han
conservation of thex-T-simplex symmetryŜx

T enforces the
equality of negative and positive magnetic components
this case, a conservation of any additional symmetry put
zero the multipole moments with negative phase factors
pearing in the upper part of the table. Of course, numer
other combinations of conserved symmetries can be con
ered, for example, a conservation of they-simplex symmetry
Ŝy gives real electric moments and imaginary magnetic m
ments.

Since conditions listed in Table VI depend only on t
parity of l and on the parity ofm, and since condition~44!
allows us to consider only non-negative values ofm, one has
only six types of the symmetry properties of multipole m
ments with respect to theD2h

T or D2h
TD operators. These six

types are listed in Table VII for electric and magnetic m
ments. Column denoted by the identity operatorÊ gives the
properties resulting solely from condition~44!, while the re-
maining columns give properties of moments when one
the nonidentityD2h

T or D2h
TD operators is conserved.

In the same table we also give symmetry properties of
Cartesian components of the average angular momentI k
~47!. Although the symmetry properties of the angular m
mentum are identical to those of the dipole magnetic m
ment, explicit values shown for its Cartesian compone
allow for a simple visualization of a direction taken by th
angular-momentum vector when variousD2h

T or D2h
TD opera-

tors are conserved. In particular, one can see that a con
vation of any of the signature or simplex operators for
given axis enforces the angular-momentum direction al
that axis, while a conservation of anyT-signature or
T-simplex operators allows for a tilted angular momentum
the plane perpendicular to the given axis, see Ref.@23#. On
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the other hand, none of these operators may be conserv
the angular momentum is to be tilted beyond any of thex-y,
y-z, and z-x planes. Note, however, that the above tiltin
conditions pertain to the reference frame, and not to the p
cipal axes of the mass distribution. An appropriate choice
the reference frame, as discussed below, has to be perfo
in order to relate the conservedD2h

T or D2h
TD operators to the

direction of I k with respect to the mass principal axes.
Independently of anyD2h

T or D2h
TD symmetry breaking, the

reference frame in the space coordinates can be chose
such way that some of the moments have simple forms.
example, a shift of the reference frame can bring all elec
dipole moments to zero~this corresponds to using the cente
of-mass system of reference!, i.e.,

Q105ReQ115Im Q1150. ~49!

Similarly, a suitable rotation of the reference frame can br
the electric quadrupole momentsQ2m to the principal axes,
where

ReQ215Im Q215Im Q2250. ~50!

On the other hand, for some conserved symmetries, th
conditions can be automatically satisfied. For example, c
servation of theD2h group ~i.e., simultaneous invarianc
with respect to operatorsP̂, R̂x , and R̂y) ensures that the
center-of-mass~49! and principal-axes~50! conditions are
automatically satisfied, see Table VII. Therefore, the bre
ing of the D2h

T or D2h
TD symmetries may have nontrivia

physical consequences only for higher electric mome
starting fromQ30, if the parity is broken, or starting from
Q41, for example, if the parity is conserved. In other word
the D2h

T or D2h
TD symmetry breaking will not lead to new

classes of low-multipolarity shapes. Nevertheless, such s
0-11
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metry breaking will immediately be reflected in values
magnetic moments, whenever the time reversal is bro
too.

V. CONCLUSIONS

In the present study we have presented applications
point groups based on the three mutually perpendicular s
metry axes of the second order, inversion, and time reve
to nuclear structure problems. We have discussed prope
of the corresponding singleD2h

T and doubleD2h
TD groups in

describing even and odd fermion systems, respectively.
have enumerated their representations, both for many-b
states and for the single-particle operators, and revie
properties of group operators when they are represente
the fermion Fock space.

Consequences of conserving individualD2h
T or D2h

TD sym-
metries have been enumerated for~i! space symmetries o
local one-body densities,~ii ! electric and magnetic multipole
moments, and~iii ! average values of the angular-momentu
operators. This gives information about the nuclear sha
and matter-flow currents in states obeying one or more of
D2h

T or D2h
TD symmetries, and allows for selecting appropria

conserved symmetries in descriptions aiming at vari
physical phenomena.
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APPENDIX

In this appendix we explicitly construct irreducible repr
sentations of theD2h

TD group by using the example of the H
basis~Sec. II D!, and we illustrate the Wigner classificatio
of groups that contain antilinear operators~see Chap. 26 of
Ref. @8#!. The results of such an analysis were used in Sec

We consider here only the two-dimensional spinor rep
sentations, appropriate for the odd-fermion systems an
particular for the single-particle states. From Eqs.~27! one
finds representation matricesG(Û) ~where operatorsÛPD2h

D

of Sec. II C form the double groupD2h
D ), in the two-

dimensional invariant subspace spanned byunxnynz ,sz5
1 1

2 & and unxnynz ,sz52 1
2 &. We have

G~ Ê!52G~ Ē!5s0 , ~A1a!

G~P̂!52G~P̄!5~21!nx1ny1nzs0 , ~A1b!

G~R̂k!52G~R̄k!52 i ~21!Nksk , ~A1c!

G~ Ŝk!52G~ S̄k!52 i ~21!nksk , ~A1d!

wheres0 is the identity 232 matrix,sk for k5x,y,z are the
standard Pauli matrices, and symbolsNx , Ny , andNz refer
to ny1nz , nx1nz , andnx1ny , respectively.
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The characters of the classes are

x~ Ê!52x~ Ē!52, ~A2a!

x~P̂!52x~P̄!52~21!nx1ny1nz, ~A2b!

x~$R̂x ,R̄x%!5x~$Ŝx ,S̄x%!50, ~A2c!

x~$R̂y ,R̄y%!5x~$Ŝy ,S̄y%!50, ~A2d!

x~$R̂z ,R̄z%!5x~$Ŝz ,S̄z%!50. ~A2e!

One can see, that only the characters ofP̂ andP̄ depend on
quantum numbersnx , ny , and nz that define the invarian
subspaces; more precisely, they depend only on the parit
the sumnx1ny1nz , i.e., on the total parity of basis state
Therefore, the only two spinor representations ofD2h

TD can be

labeled by the eigenvalues of the parity operatorP̂. Let us
also note that all characters are real.

If we introduce the time reversal,T̂, into the ensemble of
the linear operators belonging toD2h

D we obtain theD2h
TD

group with 16 new antilinear elementsÛT[ÛT̂, Sec. II C. To
study properties of the representations of theD2h

TD group, one
has to consider representations provided by matrices

Ğ~ Û!5G~Â21ÛÂ!* , ~A3!

whereÂ is one of the antilinear elements ofD2h
TD ~see Ref.

@8#!. It is most convenient to takeT̂ itself asÂ; we then have
simply

Ğ~ Û!5G~ Û!* , ~A4!

as T̂ commutes with allÛPD2h
D . In such a case, matrice

Ğ(Û) are just complex conjugates ofG(Û), and therefore the

characters of representationĞ are exactly the same as thos
of G, because they are all real, see Eqs.~A2!. Therefore these
two representations are equivalent, and a matrixb exists
which brings by a similarity transformation all matrice

G(Û) to Ğ(Û)5G(Û)* ,

b21G~ Û!b5G~ Û!* , ÛPD2h
D . ~A5!

Now, as shown by Wigner@8#, there are only two case
possible: either

bb* 51G~ T̂ 2! ~A6!

or

bb* 52G~ T̂ 2!. ~A7!

Matrix b can easily be found from the explicit expressio
for matricesG(Û) given in Eqs.~A1!, and it reads
0-12
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b5eifS 0 21

1 0D 52 ieifsy . ~A8!

Choosing the phase factoreifÞ1 in Eq.~A8! is equivalent to
a change of phase of theunxnynz ,sz51 1

2 & states, and to a
change in the phase convention in Eq.~27b!.

It is easy to demonstrate that with this form of the mat
b, Eq. ~A6!, and not Eq.~A7! holds. In Wigner’s classifica-
tion this case leads to what is called the corepresentation
the ‘‘first kind’’: any representationG of the groupD2h

D can
be completed to a corepresentation of the fullD2h

TD group by
defining

G~ ÛT!5G~ Û!b. ~A9!

Note that takingÛ5 Ê one getsG(T̂ )5b, sob is, of course,
just the matrix representingT̂ itself.

After Wigner, the termcorepresentationis used here be
cause the representations of groups containing antilinear
erators arenot representations in the usual sense. To see
let us consider an orthonormal set of states$uf i&% constitut-
ing a basis of a representationG. Let Û be any linear, andÛ8
any element of the group. Then, because of antilinearity
ÛT one has
,

,

-

e
,

f

-

01431
of

p-
is,

f

~ ÛT
•Û8!uf j&5(

i
ÛTG~ Û8! i j uf i&5(

i
G~ Û8! i j* ÛTuf i&

5(
ik

G~ Û8! i j* G~ ÛT!kiufk&

5(
k

@G~ ÛT!G~ Û8!* #k jufk& ~A10!

and, consequently,

G~ ÛT
•Û8!5G~ ÛT!G~ Û8!* , ~A11!

to be compared with

G~ Û•Û8!5G~ Û!G~ Û8!, ~A12!

which holds for the ‘‘usual’’ representations. The presen
of complex conjugation on the right-hand side of Eq.~A11!
implies that the homomorphism between the group multip
cation and the multiplication of representation matrices
longer holds when the group contains antilinear operat
This is not surprising in view of the fact that matrices, b
construction, always act on vectors~columns of numbers!
linearly. In conclusion, there are only two spinor corepres
tations ofD2h

TD , and they can be labeled, as is also the c
for the D2h

D group, by one quantum number only~parity!.
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