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Three mutually perpendicular symmetry axes of the second order, inversion, and time reversal can be used
to construct a double point group denoted mQhD. Properties of this group are analyzed in relation to the
symmetry and symmetry-breaking effects within the mean-figlattree-Fock theories, both in even and odd
fermion systems. We enumerate space symmetries of local one-body densities, and symmetries of electromag-
netic moments, that appear when some or all of Dﬁ’ elements represent self-consistent mean-field
symmetries.

PACS numbdis): 21.60.Jz, 21.10.Ky

[. INTRODUCTION [2-5]). Attaching to D, the three mutually perpendicular

Point-group symmetries play a very important role insymmetry planes spanned on the symmetry axes gives the
nuclear mean-field theories. Two distinct aspects of this rold®,,, point group which contains all the spatial symmetries of
can be singled out. First, the point symmetries of a Hamil-interest in the present paper.
tonian provide good quantum numbers that can conveniently As is well known, the classicdkingle point groups can
be used to label its eigenstates. They help to formulate sese applied to spinless particles and/or systems of an even
lection rules for electromagnetic and/or other types of trannumber of fermions, and thus to even-even nuclei. However,
sitions, and allow for solving the stationary problems in sub-for odd fermion systems and, in particular, in the single-
spaces rather than in the complete Hilbert space of th@ycleon space, these have no faithful irreducible representa-
problem in question. In that respect the use of point symmeions. There exist two methods to remedy this problem. One
tries in nuclear physics resembles their use in other branchgs 1o extend the notion of the group representation and to
of physics. Second, however, and this aspect is more specifigiyoquce projective or ray representatidi®s, 7). Another

E) nuclezér str::lgtureHdomainl,: thﬁ Ingse (I)'f tt,he ?:eEI)f-consisteane’ which is employed in the present work, is to enlarge the
artree-FocKHF) or Hartree-Fock-Bogoliubo(HFB) mean single groups by adjoining the rotation through angte&hd

]::Iglr?sg?gr:?xslmrﬁ%);?iégvzrr%bIr)éllg{ae %S éogﬂfaﬁ[a%tﬂg”; or;fift'ral_l its products with the original group elements, and to
y P y double in this way the order of the gro(ip].

breaking mechanisis]. Physically, the need of such an extension is related to the

In this article we aim at describing properties of nuclearf hat in th f Spi h ion th h le of
one-body densities under the action of point symmetries. FoCt that in the space of spinors the rotation through angle o
7 necessarily changes the sign of the wave function of an

the time-even densities we calculate the electric multipol@ X g e X
moments which give information about nuclear shapes. Varipdd-fgrmlon system. Since within the group theory a multi-
ous point symmetries obeyed by the Hamiltonian lead then tg!Ication of a group element by a number is not defined, the
various types of allowed shapes. In addition, for the time-odd'ange Of sign must be introduced as an extra group element.
densities we calculate magnetic multipole moments whichl '€ POInt group enlarged in this way is called ttieuble
give information about current distributions in nuclei, i.e., POt group and usually denoted with the supersdipisee,
about the “shapes” of matter flow. Again, various conserved®-9- Refs[4,5)), although some authofsee, e.g., Ref3)),
symmetries restrict these flow patterns in different ways thafl€n0te single and double point groups by the same symbols.
are studied in this paper. Here we follow thg formgr conventlon., and thus the I;jouble
Numerous experiments indicate that a great number o$'0UP corresponding to single groy, is denoted byD3,
nuclei are deformed in their ground states. Interpretation of N the case of classical objects the elements of a symmetry
the corresponding results shows that most often the shap®9int group are real orthogonal coordinate transformations.
involved are axially symmetric. Many realistic calculations, N guantum mechanics it is often of advantage to take into
e.g., those based on the nuclear mean-field approximatiogonsideration both the spatial symmetries and the time-
reproduce these experimental data. However, the same cdgversal operator explicitly and treat them as ellements of a
culations suggest that the excited nuclear states often corr€ommon ensemble of symmetry operators. Time-reversal
spond to the nucleonic mass distributions that have the sgymmetry operator(antilineaj and the space symmetries
called triaxial shapes. It thus becomes clear that in a realistiginean have usually been considered separately, e.g.,
description of the nuclear properties, the spontaneous syniRef-[3]). Here we follow Ref[8] and add the time-reversal

metry breaking leading to the triaxially symmetric objectsOPerator to the sTet of group elements, thus obtaining new

must be given attention. groups denoted,, and D5 . Hence, theD,,, group is a

The classical point group that contains three mutually persubgroup ofD, composed of its linear elements, and simi-
pendicular symmetry axes of the second order passintarly, the D5, group is composed of the linear elements of
through a common point is denoted, (see, e.g., Refs. DJP.
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Gauge symmetries, which pertain to pairing correlations  One can use another representation af the so-called
of nucleons, can be added independently and are not considecond quantized, or Fock-space form

ered in the present study. In particular, neutron-proton cor-

relations are not discussed. Therefore, the isospin degree of - A n

freedom is irrelevant in the discussion and can be disre- 'k:#EV (ulidva,a,, @
garded to simplify the notation.

In this paper our goal is threefold. First, in Sec. Il, we where (u|j,|v) are the matrix elements of the angular-
present and discuss properties of the single gdpand  momentum operators in the single-particle basis defined by
double groupD;’ that are appropriate for a description of the fermion creation and annihilation operatars anda, .
even and odd fermion systems, respectively. In particular, wi peratord , in the form of Eq.(2) do not explicitly depend

recall the classification of representations of both groups, an nA, and act simultaneously in all theparticle spaces, i.e
classify properties of the group elements when they are req'hey'act in the Fock spack T

resented in fermion Fock space. Second, in Sec. Ill, we
present explicit symmetry properties of local densities with H=Ho®H® - OHAD - - - . (3)
respect to the operators in tBg,> group. This problem has

been solved in particular applicatiof10]; however, it can In each subspace(,, operators(2) are equal to Eq(1).

be solved in many different ways, and it is useful to have aSince both act in different domains, one should, in principle,
systematic approach which enumerates all available optionglenote them with different symbols. However, one usually
Although the local densities are most important for applica-understands definitiofl) as a prescription to construfq;tfor
tions using the local density approximatidDA), or those )| values of A simultaneously(adjoined byi,=0 for A
using the Skyrme effective interactiofsee, respectively, — o) with this extension, operatof8) and(2) are equal. In
Refs.[11,12 or Ref.[13] for reviews, they also define gen- this section we understand that all operators act in the Fock
eral properties of average values of any local one-body 0pgyace(3), while the corresponding definitions are given in
erator. Finally, in Sec. IV, we discuss symmetries of multi- e coordinate-space representation.

pole moments which define the nuclear shapes and currents, \ye introduce three standard transformations of rotation

and in Sec. V we present conclusions which can be drawi,qnd three mutually perpendicular ax€, Oy, andOz,
from our study. In the companion papgt4], we discuss through the angles of as

physical aspects of the symmetry-breaking schemes pertain-

ing to the point groups in question. R . A -
g p group q RkEe"”'kz ® e_m](km_ @
n=1

IIl. SYMMETRY OPERATORS

. . N , Similarly, we introduce three operators of reflection in planes
The point groups of interest in this paper can be intro-

. i S e z, zx, and xy, for k=x,y,z, respectively, which can be
duced in two ways. The first one consists in defining ar\¥vritten as y y P y

abstract point group by giving its table of multiplication, and

then classifying the states and operators in the fermion Fock ékE I5I32k (5)
space according to the relevant irreducible representations ’

(irreps. The second one, which we follow below, is more \yhere the inversion operator is denoted By The order of

intuitive, and consists in defining the symmetry operators irbperators in Eq(5) is unimportant because
the Fock space first, and then identifying their multiplication

tables and the corresponding group structures. [P,R.]=0. (6)

Finally, the (antilineay time-reversal operator in the
coordinate-space representation is definefll&§

It will be convenient to use the Cartesian representation of R
the symmetry operators. L&t for k=x,y,z denote the Car- T= ® (—ioMK 7
tesian components of the total angular momentum operator oo

A. Fock-space representations

=1
(generators of the group of rotationdn the coordinate- )
space representation these operators réad1() whereK is the complex conjugation operator associated with
A the coordinate representation.
= (0=, +3,=> IM4+15M), (1) In what follows it will be convenient to denote with sepa-
n=1 n=1 rate symbols the products dfwith P, R,, andS, [16], i.e.,

the seven additiondhpart fromT itself) antilinear operators
wherej (", T(" 'andc{" are operators of the total, orbital, read
and intrinsic angular momenta, respectively, of particle num-

bern. By definition, operatorgl) act in the Hilbert space(, PT=PT (8a)
of A-particle states, and the number of partickegppears R
explicitly in their definitions. Re=RT, (8b)
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é[(rEASk'T'. (8¢ where the bold symbols denote operators which act in the
evenA spaces, while the script symbols denote those acting

The order of multiplications in the above definitions is irrel- iN the oddA spaces, i.e.,

evant since -
UH,—H,, (153

[P, T1=[Ry.T1=[5. T1=0. (9) .
UH_—H_. (15b)

In nuclear physics applications the linear operatrsiy, With these definitions we are now in a position to investigate

and S are usually referred to as inversion, signature, andne group structures appearing for the introduced operators.
simplex. The antilinear operato®", Ry, and S will be
called T inversion,T signature, and simplex, respectively. B. Single groupDJ,, for even systems

For completeness, yet two other operators must be added _ .
to the above symmetry operators. One of them is, of course, ©f éven fermion numbers we consider the Fock-space

. . - . . operators defined in Sec. Il A, and restrict thento, Eqgs.
the identity operatoE, which can be treated as the rotation T
. . 14 153. Th h I Itipl |
through angle equal to 0 or about an arbitrary axis. The (14) and(153. Then, the complete multiplication table reads

second one is the rotation through angle about an arbi- R2=&=T2=F, (163
trary axis, i.e.,

A 3 (RO*=(5)?=P=E, (16b)

EEe7'2W|k:e7|27Lk® (_O'E)n)):(_l)AE, (10)

n=1 QKASKZQQKZ IS, (16(:)
wherea is the unity 2< 2 matrix. We see that only for even RISI=8IR[ =P, (160
systemsE is equal to identity, while for odd systems it is
equal to the minus identity. We should keep in mind, that in RRI=RIR=55=585=T, (160
the group theory there is no such notion as a change of sign.
A H H nA A A ~~n ~A A N

Operators such as<1)" may appear in representations, as RkS{:S—(rRk:RISK:S(RI: pT (16f)

they appear in the Fock-space representation here, however,
one cannot use them when defining the group structures ig), = y,z, and
Secs. 11 B and Il C below. "’

Tq investigate multiplication rL_Jles of the symmetry opera- RR =85 = F}IF}IT: gl(”‘Tz R, (179
tors introduced above one explicitly calculates products of
them. For example, the products of two signatures are S a_apn _BTaT_aTaT_ a
xamp progucts oTtwo signatt RS=SR=RIS=§R'=5,, (17b)
. . A A R A A
RRp=e"""ke” ") (~o{o), (12) RRI=RIR =55 =8§=R" (179
n=1
@T" _c éTzﬁ AT:"TQ :"T, 17
and the square of the time reversal reads S=SRIZRS =SR=5, (7d
A for (k,I,m) being anarbitrary permutation of k,y,z).
2= ® [— ((}(n))z]:E (12) We see that the 16 operators acting in the efeermion
o1 y spaces constitute an Abelian single group which we denote
by D;h!

It is obvious that these results depend on whethé even T foa s A alaT ot
or odd. Don: {EP,R.S.,T,P', RS} (18
Therefore, in what follows we introduce notation which

explicates whether the operators act in even or odd fermiofP" k=X.y,z. The half of the elements in E¢L8) are linear
spacesH, or H_, operators and the other half are antilinear.

It follows from the multiplication table of th®J, opera-

Hi=Ho®Hy® - & Hpopp® - - -, (13a  tors, Eqgs.(16) and(17), that the whole group can be gener-
ated by its four elements only. These elements are called the
Ho=H1®H3® - OHp_gps1® . (13p  group generators. Various possibilities of choosing the gen-

erators are discussed in REt4]; here we only mention that,

Any Fock-space operatod:—7H, which conserves the €.0., the subsdfT, P, Ry ,Tﬁy} can be used to obtain all the
particle number, is split into two parts with different do- operators that belong 0, .

mains, i.e., The Dgh group has two important subgroups, the eight-
o element Abelian groufp,, composed of all the Iineail’)lh
U=U+U, (14 operators
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Don: {E.P.R. S, (19 RI=&2=T=¢, (233
and the four-element Abelian group,, (R1)?=(8N2=P*=¢, (23b)
D,: {E.Rd. (20) RiS=SR="7P, (230
Obviously, theD,, subgroup ongh, being an Abelian TaT_ oTaT_
group of order eight, has eight one-dimensional irreps. These R S = Sk Ry =P, (230
can be labeled by eigenvalues equal to eitftdror —1 of .. S
RiRg=RiRi=SS=SiS=T, (239

three of its generators, saly, Ry, andR, .

We introduce names for th@ne-dimensionalbases of S
the associated irreps according to the following convention. RiSg= SER= Ry Se= SRy =P" (23f)
First, a basis is callethvariant if it remains unchangecbe-
longs to eigenvalue+1) under all three signature operators for k=x,y,z, and

Ry, and it is called eithex, ory, or z covariantif it trans-

forms under the signature operators like e, or z coor- RiR=88= RTRT STST ' (243
dinates, respectively. Secondly, prefiseudois added for
bases which are odd, i.e., belong to eigenvatue with re- RS =SSR =RIS =8I R =5, (24b)
spect to the inversioR.

SinceT is an antilinear operator and also an involutive RRI=RyR =SS =SiS =R}, (249
operator[i.e., its square is equal to identity, E4.6a], we
can always choose the phases of all the basis states so that RIS =S R =R ST =8I R = ST (240

they belong to the eigenvalile= +1 of T [15] (see Sec. Il E

below). In this way we construct eight irreducible one- for (k,I,m) being anodd permutation of %,y,z), while re-
dimensional corepresentatiofiscoreps of DJ,, all being lations identical to Eq(17) hold for anevenpermutation of
even with respect to the time reversal. After Wigh&f, we  (x,y,z). After multiplying relations(23) and (24) by £ once

call the representations of a group containing antilinear opor twice, one can easily obtain the remaining elements of the
eratorscorepresentationto emphasize the fact that they are multiplication table, i.e., those which pertain to products in-
not the representations in the usual se(see the Appendix yolving one or two partner operato(g2).

for detaily. By a suitable change of phases of the basis states The DIP group is thus composed of 32 operators:

we can obtain another set of eight ircoreps,, all of

them odd(i.e., belonging to the eigenvalué=—1) with D2 {&EP TP RS RYLSE,
respect to the time reversal. We use prefiti to name these -
time-odd ircoreps. Obviously, time-even and time-odd ir- EP,T,P Ri.Sc. Ry .St} (25)

coreps are pairwise equivalefsee Ref[3]).

Note that all operators acting in the even fermion space®ne can see that this double group is not Abelian, because
H. can also be classified according to the same set of sixelations (24) now do depend on whether the permutation
teen ircoreps oD}, . All these ircoreps are listed in Table Il (k,I,m) of (x,y,z) is even or odd, whereas for the single
together with expllcit transformation properties of severalgroup, relationg17) are independent of that.
examples of one-particle operators belonging to each ircorep. one may note that the Fock-space operatdref Sec.

Il A and the odd-fermion-space operatéf®f Egs.(14) and
C. Double group D for odd systems (15b) obey exactly the same multiplication rules of the

For odd fermion numbers we consider the Fock-space opdoubleD 3y group. Therefore, one might, in principle, con-
erators defined in Sec. Il A, and restrict them?#a , Eqs.  sider only the double group .- and refrain from studying
(14) and (15b). Since operatoE [odd-fermion-number part the group structures in even and odd spaces separately. How-

ever, at the level of representations, one would then have
of E of Eq. (10)] is now an independent group element, been deprlved of important properties of operators such as
additionalpartner operators should be introduced in order to )
construct the double groUD =E or 7 2= — & (see Sec. Il E neither of which holds in
the whole Fock space, see E@$2) and(10).
P=EP, T=ET P=P (21) Since the squares of the time reversal, signatures, and
simplexes Eq(23a), are equal tde, the whole double group
and D can be generated by the same operators which generate
the single group in even systems, Sec. Il B. So the double
Ri=ERy, S=E8, Ri=ER), Si=&5), (220  group also needs four generators; for instance, the set of four
elements7; P, R,, andR,, can be used to obtain the entire
for k=x,y,z. Now the group multiplication table reads double group of thé®]P operators
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The linear operators of th;,? double group form the TABLE |. Properties of theDJ, operatorsU in even fermion
16-element double group3),, spaces.
DD - >2DHD o epp < Linear Antilinear
2h - {g,P,Rk,Sk,E,P,Rk,Sk} (26)
Hermitian (02=E) P, R, S Ry, S, T, P

This group has ten equivalence classese Refs[2,3,5)).
There are six classes composed of two elements each, i.e.,

{fgk,ﬁk} and{Sk,gk} for k=x,y,z, while the remaining el- axis. for the standard HO phase convention, this basis is
ements(&}, {€}, {P}, and{P} form four one-element classes "eal, K[nynyn;,s;)=|n,nyn, ,s;), where according to our
by themselves. The group is not Abelian and possesses, apatandard convention the script symbdl denotes the
from the 8 one-dimensional irreps already known for thecoordinate-space complex-conjugation operator acting in the
single group, another two two-dimensional spinor irreps. Thendd-fermion-number spack_ , see Sec. Il A.

spinor irreps can be labeled by the paritié®e eigenvalues For the HO states the following relations hgtt8]:

7=+1 or —1 of the inversion operatorfg), see the Appen- -

dix. P|nxnynz Sy =(— 1)nx+ny+nz| nynyn, /S2)s (279
The time reversal7 is an antilinear and also an anti- . 1

involutive operatori.e., its representations give the minus Tngnyn,,s)=(-1)2 " nnyn,, —s,),  (27b

identity when squared, Eq23a)], and therefore it cannot be

diagonalized 15] (see Sec. Il E beloyyand used for labeling 7AQ)(|anynZ S)=i(—1)W " n,nn,, —s,), (270

the D P ircoreps. A Hermitian antilinear involutive operator,

i.e., either & signature or & simplex[see Eq(23b)] should fgy| NN, S,)=(—1)™" nz+%—3z| Ny, , —Sy),

be chosen to serve this purpose. For instance, a pair of com- (270

muting Hermitian operator@ and 7@; can be used to label .

the D, ircoreps. As for the single group3,,, ircoreps be- Rnynyn,,s)=i(— 1) 2 Sn non, s,),

ing either even or odd with respect fb)T, can be obtained 279

one from another by a suitable change of phase, and are _

therefore equivalent. In analogy to the one-dimensional ir- &nynyn;,s,)=—[nynyn; ,s,), (271)

coreps, the bases of spinor ircoreps belonging to pairs

o)
eigenvalues of{f?,f%;} equal to {+1+1}, {—1+1}, ffrom where one can find similar equations for all the remain-

. ing operators of grou.°. Since the HO Hamiltonian is
{+1,-1}, and{~1,~1} can be called the spinor, pseudos- ¢ gmrr?etric undergTD rﬂiiSZhei enstates can be classified ac-
pinor, antispinor, and antipseudospinor bases, respectively. ymr - 2he TDg . .

cording to the ircoreps dD,,, . It is easily seen that the HO

Note that only spinor ircoreps dii;? appear in the clas- tat p b f th . dosDi
sification of states of systems with odd numbers of fermions> @ es|nynyn, ;) form bases of the spinor, pseudospinor,

However, the operators acting iH_ can all be classified antispinor, and antipseudospinor ircoreps {¥=n,+n,

. : . ; e +n,, Ny=n,+n,} being {even, od¢ {odd, odd, {even,
according to the one-dimensional wcorepd‘.‘(gf,?, similarly oy X ;
as operators acting i, can all be classified according to ever}, and{odd, evei, respectivelysee the Appendjx The

; : : X . tire HO basi Id h bel dtoth i d -
the corresponding one-dimensional wcorepi)éﬁ. (This is enire asts woud have belonged 1o e spinor and psed

letel | he f hat fermi b dospinor ircoreps only, if the basis states and phase conven-
completely analogous to the fact that fermion-number cong"\vare chosen differently, see Rg14].

serving operators can carry only integer angular momenta,

i.e., they are integer-rank tensor3herefore, whenever we

consider the action of thBJ, or D4 operators on fermion

states we always specify whether they act in exenor odd In this section we recall properties of ti}, and DJP

H_ spaces, and use for them the corresponding notations operato\r;_t\r/]v_hen they atret' represeniefd in ttr:]e fermion F(;)_Ck
~ space. Within representations, apart from the corresponding

andi( of Egs.(159 and(15h). On the other hand, whenever o i ovion tables. Eqs(16)-(17) and (23—(24), these

we consider transfogrg]atlon propertieSOU of operator)  gherators are characterized by their Hermitian-conjugation

with respect to thd;; group, we do not make this distinc- properties. Since all the Fock-space representations of the

E. Properties of the D, and D operators

tion, and use for them notatidd of Sec. Il A. D,, and D3P operators are unitary, they are Hermitian or
D. Cartesian harmonic oscillator basis TABLE II. Properties of theD,P operators{ in odd fermion
. . . spaces.
One often uses the Cartesian harmonic oscilldtd®)

basis to solve the self-consistent equations when neither Linear Antilinear
spherical nor axial symmetry is assumed, see, e.g., Refs: — - —
[17,10. The Cartesian HO states are identified by the numHermitian (= ¢) P RY, S

bers of oscillator quantay,, ny, andn,, in the three Car-  Anti-Hermitian (2= — &) Res S T Pr

tesian directions, and by the spin project&s + 5 on thez
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anti-Hermitian depending on whether they are involutive or 7’|\If(t))= +|W(F)) (29)
anti-involutive, respectively. Properties of these operators
are very different depending on whether they are linear o
antilinear. These characteristics are summarized in Tables |
and Il, where thd ], andD P operators are split into two or
four subsets, respectively. Below we review the properties of

operators in each such subset.

N ~1 i i
For each IineaDEh or D;hD operator one can attribute Therefore, theZ andP' operators cannot be diagonalized. In

guantum numbers to fermion states. These quantum numbeﬁ’é‘rt"?mar’ .there is no odd J‘?rm|on state which would be
can be equal tat1 or +i for Hermitian (involutive) or  invariant with respect t@ or 7.
anti-Hermitian (anti-involutive operators, respectively.
Therefore, the parity operatoBsor P give the parity quan- . SYMMETRIES OF LOCAL DENSITIES
tum numbers7=*+ 1, the signature operatoR, give the
signature quantum numbers= =1, in even systems and the T ™ ;

to D,, or D, , respectively, represents a symmetry con-

S|gnqture operator 9|ver=Ai| |_n odd sy§tems. Likewise, served by a mean-field many-particle state. ) or |[W ), in
the simplex operator§, and S give the simplex quantum eyen or odd fermion spaces, i.e.,

numberss==*=1 ands= =i, respectively.
and theit ol 1 very cifteront deponding on whether they Opr)=ulv.), 319
are Hermitian or anti-Hermitian, Tables | and Il. For each
Hermitian antilinearD}, or D1° operator, i.e., foR}, S,
T, PT, R}, or & one can find a basis consisting solely of its
eigenstates with the common eigenvalue equal fd5]. In-

PIW(+))==|W(F)). (30)

Suppose that the Fock-space operaioor I/, belonging

Uw_y=ulw_). (31b

As discussed in Sec. Il E, eigenvaluean be equal tat 1
deed, if statd V) is an eigenstate of, e.gl?{{, the corre- or 1, anq mqreovAeTr, .in odd.fermion §ystertjscannot be

. . AT equal to eithefZ or P, i.e., neither the time reversal nor the
Spoznd'ng eigenvalue must be a phase, "Rk_lq'> product of inversion and time reversal can be a conserved
=€ I¢|q’)' In such a case, staf#')=e'?|¥) is an eigen- symmetry in odd systems. According to conventions intro-
state ofR; with eigenvalue 1. This demonstrates explicitly duced in Sec. Il C, in odd systems the hat always denotes
that properties of eigenstates Bf are, of course, phase one of theD ] operators introduced in Sec. Il A, and not
dependent. In the case when staky is not an eigenstate of one of their partnerfEgs.(21) and(22)]. Of course, ifi/is a
R}, one can transform the two linearly independent statesymmetry of| ¥ _) theni/ is a symmetry as well, so from the
| ¥y and ﬁﬂ\lf} into eigenstates dﬂ with eigenvalue 1 by point of view of conserved symmetries, any extra study of

symmetrization and antisymmetrization of the two: partner operators is unnecessary.
A Mean-field statg¥') can be characterized by the single-
|y =|P)+Ri|P), (289  particle density matrip (see Ref[1] for the definition), for

which the symmetry propertig81) imply
W) =i|W)—iRg[ W), (28b) o
UtpU=p, (32)
which also requires a specific phase. Therefore, phase-
convention properties of states are essential for a discussiqdependently of eigenvalue. [Symmetry property(32)
Of baseS Of eigenstates Of the Hermitian antilinear Operatorﬁoes not depend on Whether the mean_fie'd state be'ongs to
and in Ref[14] a special discussion is devoted to this prob-the even or odd fermion space, and therefore, we use the

lem. . .. Fock-space notatiod for the symmetry operators, see defi-
One should also remember, that only linear combinations,i: o< 'in Sec. Il A and discussion in Sec I1]at then fol-

of basis states witheal coefficients remain eigenstates of ||\ 112t the single-particle self-consistent Hamiltorfiép]
any Hermitian antilinear operator. This is in contrast to prop-,

erties of linear operators, for which a linear combination ofiS &lS0 Symmetric with respect to operator{1], namely,
eigenstates, corresponding to the same eigenvalue,amith . .
bitrary coefficients, is also an eigenstate with the same ei- UTh[p]U=h[p]. (33
genvalue.

Very special properties characterize the anti-HermitianEquation(33) implies that if¢ is a normalized single-particle
antilinear operators. Within thB 3, or D] groups only the  eigenfunction ofn[p], thenUe is also a normalized eigen-
T and P" operators in odd systems belong to such a subsdtinction, both belonging to the same eigenvalue. As a con-
(Table 1l). For each anti-Hermitian antilinedd]P operator ~sequence, it can be show9] that the symmetry is pre-
the space of fermion states can be arranged in pairs of Qﬁ.erVEd during the standard self-consistent iteration, provided
thogonal states|®(+)),|w(—))) [15], such that, for ex- the entirg multiplets of states belonging to the same eigen-
ample, value ofU are either fully occupied, or fully empty. In such
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TABLE Ill. Symmetry properties of space-spin one-particle operaﬁ)belonging to different one-dimensional ircoreps of m};] and
D,P groups. The first column gives names of different ircoreps, the second column lists examples of o@emhdrme remaining columns
give signs in the expressidﬁTOU: =0, for operatorsf.l given in the column headers. Note that these results do not depend on whether
operatorst act in even or odd spaces, and therefore the Fock-space notation is used for them.

Ircorep Space-spin one-particle operat@s T P R, Ry
invariants x2,y2,2,V2 V2 V2:xiV 0, ,yiV,05,2iV, 0y + + + +
pseudoinvariants XyzxiV,iV,,yiV,iV,,ziV,iV,;iV,0,,iV,0,,iV,0, + - + +
anti-invariants XiV,,yiV,,ziV,;xyo, yzo,, zxa, - + + +
antipseudoinvariants xyiv,,yziv,,zxiV,;xoy yoy ,zo, - - + +
X covariants x;iVyt}Z,in&y + - + —
y covariants ViV, 0,,iV,0, + _ _ +
z covariants Z;iVX(}y,iVyfrx + - — _
X pseudocovariants YZXiV, 0, ,iV,ya,,0yiv, + + + —
y pseudocovariants XZ;yiVZ&Z,iVyz&Z,&yziVZ + + — +
z pseudocovariants XY;ZIV 0y iV X0, 0, X1V + + - —
X anticovariants iVx;yc}z,Z&y - - + —
y anticovariants iVy;X(}zyZ(}x - - — +
z anticovariants iV, X0y, Yoy — - - _
X antipseudocovariants yiVZ.ZiVy;(}X - + + —
y antipseudocovariants XiV,,ziV,;a, — + _ +
z antipseudocovariants xiVy,yiVX;&Z - + - —

a case Eq932) and(33) are fulfilled repeatedly in the suc- The spin structure of the density matrix is given by

cessive steps of iteration, afitlis a self-consistent symme-
try. ’or 1 ’ 1 ’ - ’
. T . ro,r =3p(r,r')0,5+3 r,r

Since the one-body density is a fermion-number conserv- plror' o) =2p(1, 1) 80 Zk;x;yl sdrr){aloa’),
ing one-body operator, it can be classified according to one- (34)
dimensional ircoreps obJ,, or DJP, and this can be done
both in even and odd systems. This means that either thehere r=(x,y,z) and r'=(x’,y’,z") represent three-
given operatorl is a conserved symmetry, Eg@1) and dimensional position vectors. When the rotational symmetry
(32), and the density matrix belongs to the given one-iS Preserved one often refers pgr,r') ands(r.r’) as the

. . . ~ ~ scalar and vector densities, respectively. In our case, the
dimensional ircorep of the subgroup generatedlhyr U is . : ; : .
; . rotational symmetry is broken, and we will avoid using these
a broken symmetry and the density matrix has two nonzer . o . :
: . . ; . erms. Instead, we classify the densities according to the ir-
components in two different such one-dimensional ircoreps

: T D ;
It follows that in odd systems the density matrix has alwayscorer)S of theD,;, or D5y, group. As discussed above, for the

nonzero components in two ircoreps corresponding to thgne-body operators 0_n]y the one-dimensional rcoreps are
time reversal relevant for the classification. There are 16 characteristic

This classification procedure is used below to enumeratgansformation propertieg of the basgs for on'e-dimensional
properties of the density matrix when one or m@g, or ircoreps. In Table Il we list all these ircoreps, illustrated by

. examples of space-spin operators of interest, e.g., powers of
D/P operators are conserved symmetries. Note also, that u b ’ pin op g- P

. IE'oordinatesx, y, zand gradientsy,, V,, V,.

like for the many-body statesl’), one does not have a free- rpg tapie aiso lists explicitly the trar%sformation properties

dom to _c_hange the phase of the density matrix, because it Ise operators belonging to every type of symmetry. For ex-

a Herm'“a'." operator independent of the_ phase of _the meaf%{mple, the minus sign which appears in row denotedyby

field state it corresponds to. Therefore, if the density matrix . ~ Ay

has non-zero components in two ircoreps corresponding tgevarnants and cglumn denoted By means thaﬁxy%_

two different eigenvalues of an antilineBg,, or D3 opera- Y- It can be easily checked that the Pauli matriags o,

tor, it cannot be transformed to the form in which it would o, transform under the signatures as thg,z coordinates,

have been either even or odd with respect to this operator.respectively, do not change under the inversion, and change
A definite symmetry of the density matrix, E@2), im-  their signs under the time reversal. Therefore, these can be

plies certain symmetries for local densities and their derivaclassified ask-antipseudocovariants fok=x,y,z, respec-

tives. These symmetries are discussed and enumerated in ttieely. Spin-dependent operators belonging to other ircoreps

present section. can also be constructed from the Pauli matrices. Therefore,
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TABLE IV. Symmetry properties of various local densities belonging to different one-dimensional ircorepsj,tloe D> groups.
For instructions on using the table see the text explaining(£&L).

Ircorep Local densities P PT R RI & § R R § § R, RL S, &
invariants 2,71, VP, Vidim p,7,Ap, V-] + + + + + + + + + 4+ + + + +
pseudoinvariants Jii J - - 4+ + - - 4+ + - - + + - -
anti-invariants Tuim,Vili ,ViViSm V.j + - 4+ - + - o+ - 4+ =+ =+ =
antipseudoinvariants Visi Vs -+ + - - + + - - 4+ + - - +
k covariants Jim Vo D (D (Vo) = — + + — — — — + + - - + +
k pseudocovariants 7,V Vo, Vidii (VI),, + + + + + 4+ - - - = - = = =
Vidii s Vidik (V-3 (VX
k anticovariants jk:ViSm (D, (VX9)g -+ + - - 4+ - 4+ + - - + + -
k antipseudocovariants,, Tiik . Tii s Viim, (k. (M (VXj)y + - + - + - - + — + — + — +
Y Visi, Vise (V(V-9)k.(As)k
(e.€,em)= (———) (+==) (=++) (=+-) (+-+) (=—+) (++-)

examples of spin-dependent operators are also listed in theansformation rules for the local densities. These are listed
table. In Table 1ll we have introduced the same names foin Table IV, for all the one-dimensional ircoreps Bf,, or
operators as for the bases of one-dimensional ircofepe  D]P as indicated in the first column. In the second column

Sec. Il B. _ _ _ we show the local densities in forms defined by E@$)-
Similarly as in Ref[20], we consider the following local  (37), while the third column gives, when possible, the local
densities: densities in the traditional vector-tensor notation, e.g.,
particle and spin densities:
S=(Sx,Sy Sz)s (393
p(r)=p(r,r), (353
T=(T,,T,.T), (39b)
Sk(r)=sy(r.r); (35
kinetic and spin-kinetic densities: ‘]:; Jude (409
(N =[ViVip(r,r )=, (362 | 1
(J)k|=§(3k|+3|k)_ 399, (40b)
Tam(D =V Sm(r,r") J=p; (36b)
current and spin-current densities: (J)kzz erimdim - (400
Im
1 N . .
JKN=5 Vi Vidp(r )=, (379  Derivatives of densities up to the second order are also in-
[

cluded in the table.
1 From Table IV one can read off the symmetry properties

()= —[(Ve— V)11 )]s 37b of various dens!t[es. Supppskéx,y,z) is a generic name of

() 2i [(Vim Vidsi(nr) = (370 one of the densities listed in the second or third column, and
U is a generic name of one of te}, or D> operators
listed in the first row. We use the convention that index
may take any value among y or z, while indicesk#1#m
are arbitrary permutations of, y, andz If 0 represents a
conserved symmetry, one has the following symmetry rule
for the densityd(x,y,2):

where each indek, |, or m may refer to either ok, y, or z.
It follows from the Hermiticity of the density matrip that
all the above local densities are real functiong.obsually
only the traces of kinetic densities,

(=2 7(r), (38a
kK d(eX, €y, €,2)=€d(X,y,2), (42
wheree is the sign listed in Table IV in the row denoted by
Tm(r)=2k Tikkm(T), (38D d and column denoted by. Signs €x. €y . €;) are given in
the last row of Table Ill, and pertain to twDJ, or D3>
are used in applications. operators(viz. U andUT) in two adjacent columns. These

When operatob) represents a conserved symmetry of thelatter signs give changes of coordinatesy(z) under the
density matrix, Eq(32), the transformation rules for gradi- action of U. As the time reversal does not affect spatial co-
ents and spin operators, given in Table Ill, imply definite ordinates, these signs are the same for any pair of operators
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TABLE V. Symmetry properties of electric multipole operat@,sﬂ with respect to operators of tr[e;h
or D1P groups. The results of the symmetry operaﬁﬁfgmo are given for three spatial directioRs-x, vy,
z. Where applicable, the upper part of the table gives expressions in terms of changed signs of magnetic
components, and the lower part gives the equivalent expressions in terms of the complex conjugation.

k Ry Ri S S

X (—1)"Qy -, (=1 HQ,, Qnp (—1)"Qy,
y (—D *Qu—u (—1)*Qy. (=1) *Qy - Qu

z (—1)*Qy, Q- (—1)M#Qy, (—1)Q\ -,
X (—1)M Q% (—1)#Qy, (—1)*Q%, (—1)"Qyu
y (—1)*Q}, (—1)'Qu, Qr, Quu

z (—1)"Qy, (—1)*Q%, (—1)HQy, (—1)M4Q},

U andUT. One generic table of signs determines, thereforeconsistent mean fields are calculated in terms of densities,
symmetry properties of any local density for any of b, ~ See Ref[20].
or D, symmetries being preserved.
For example, symmetry properties of density, can be IV. SYMMETRIES OF SHAPES, CURRENTS, AND
found by using indices=x and m=y (which requiresk AVERAGE ANGULAR MOMENTA

=2) inthe row pertaining td covariants. For the conserved |, this section we discuss properties of average values of
R,=R, symmetry we then find in the corresponding columnvarious operators, calculated for the HF many-particle state
e=+ and e,=€=—, €y=€,=—, and €,= ,=+, which  |¥), In particular, we consider the electromagnetic multipole
gives Jyy(—X, —Y,2) = Jyy(X,Y,2). operators and the total angular momentum; the quantities
It is worth noting that symmetry propertigd1) which  which are used to characterize properties of investigated sys-
correspond to variouBJ,, or D3 operators, are related to tems. First of all, we enumerate transformation properties of
one another only by the corresponding group multiplicationthese operators under tmé{h or DLE’ operators. Similarly as
rules. Therefore, a specific choice of the conserved generder the density matrixSec. lll), the one-body operators dis-
tors, either for the complellbgh or D;hD groups or for any of cussed in this section belong to one-dimensional ircoreps of
their subgroupg14], leads to a specific set of symmetry D,, orD}7, and therefore, their properties do not depend on
properties of local densities. whether the system contains even or odd number of fermi-
Symmetry propertie&41) can be used for the purpose of a ons.
continuation of densities from one semispace into the second
semispace, i.e., one can use only space points for, .g., A Transformation properties of angular momentum and
=0. For two symmetry propertiegtl), coming from two multipole operators

different symmetry operatoréut not from the paitJ and

UT), one can restrict the space to a quarter-space, where t\'\f8 ;

coordinates have definite Signs, €350 andy 0. Elnally, and its transformation rules can be easily read off from Table
three conserved symmetries allow for a restriction to ong,
eighth of the full space with all the coordinates having defi- .F \ (odd), the electri Hinol ofs
nite signs, e.g.x=0, y=0, andy=0. The time-reversal orA evenload, the electric multipolé operatotg, , are
symmetry does not lead to restrictions on the space prope?—vzn (Odd)|,| respect.n;]ely, under thﬁ action of the I|n.verS|on,
ties of densities, but, when conserved, gives the vanishing gt"d are all even with respect to the time reversal, i.e.,

all the anti-invariant, antipseudoinvariant, anticovariant, and

The k component of total angular momentulp trans-
ms obviously ak antipseudocovariant undexy,, or D

antipseudocovariant densities, Vigy,, ], Txm for arbitrary PTQMP:(_ 1)}\QM“ (423
k,I,m as well as their derivativesee Table V. The possi- fia A a

bilities of simultaneously conserving one, two, three, or four T Q\uT=Qx,- (42b)
symmetry operators from thBJ, or D> groups will be _ _ . _
discussed in Ref14]. The magnetic multipole operatok8, , have opposite trans-

Since density matrixp and single-particle Hamiltonian formation properties
h[p] are always simultaneously invariant under any con-

~ DTN BD— _(_1\\\J
served symmetryJ, Egs.(32) and(33), the discussion above P'My.P (=1)"My,., (433
can be repeated for self-consistent local fields appearing in a fi A ~
local mean-field Hamiltonian. Explicit formulas for symme- T'M,, T=—MJ,. (43b)

try properties of local fields are identical to those listed in _ . _ A _
Table IV, and will not be repeated here. In applications,Table V gives transformation properti¢g1] of Q,, with

these symmetries appear automatically when the selfrespect to operators of tr[e;h or D;,? groups, other thait
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TABLE VI. Conditions fulfilled by the electric and magnetic multipole momeQig, andM, ,,, for conservedj, or D3 operators.
Where applicable, the upper part of the table gives expressions in terms of changed signs of magnetic components, and the lower part gives
equivalent expressions in terms of the complex conjugation.

‘ R Rl 5, S

X Q)\,u:(_l)}\Q)\,—,u Qw:(_l))\Qx,—# Qnu=0Qn, 4 Q=0 4

X M}\/[.:(_l))\M)\,*,u. Mm:_(_l))\Mx,—M My, =—My . My, =My —,

y QA,L:(_]-))\_#QA,—M Qm:(_l)}\_“Qx,—,u QM:(_]-)_”QA,—,L Qm:(_l)_”Qx,—M
y MAMZ(_]-))\_#MA,—M MAHZ_(_]-)}\_#M)\,—H MAMZ_(_J-)_MMA,—M MAMZ(_]-)_#MA,—,L
z sz(_l)MQm QM=(_1)MQW QM=(_1)H”Q>\M Q)\,LL=(_1))\+MQ}\/.L
z My, =(=1)*My, My,=—(=1)*M,, My,=— (=1 "*M,, My,=(=1)"*M,,
X Quu=(—1)M"*Qy, Qu=(—D*Q}, Quu=(—1)"Q}, Quu=(—1)*Q},
X My, =(=1)*"“M3, My,=—(=1)*"#M}, M\,=—(=1)"MJ, My, =(=1)*M},
y Quu=(-1)"Qy, Qu=(—1)'Q}, Quu=Q%, Quu=Q%,

y My, =(—1)"M3, My,=—(=1)*M}, My,=—MJ}, My, =M3,

r4 Qm:(_l)“QML Q)\ﬂ:(_l)MQM Q)\ﬂ:(_l)H“Qm Q)\M:(_l)HMQM
z Mm:(_l)”Mm M}\/.L:_(_l)#M)\/J, Mx#:_(_l)H’MMW Mw:(_l)H#Mm

andP. One may note that the electric multipole operators are Similarly, the mean value of th&-component of total

invariant with respect to thé; symmetry. This is of course angular momentunfin units of#) reads
a consequence of the standard phase convention for the ro-

tational irreducible tensor operatdra1,22, |k:<\p|ik|qf):f [ewmfim(D)+3sc(n)]d3. (47
Q;u: (=1 7*Qx > (443 We may now combine symmetry properties of densipies,
R R andj, Table Ill, with those of multipole operators, Table V,
MY, =(=1)"*My _,, (44b  to obtain symmetry conditions obeyed by the electric and

magnetic moments, and by the average angular momenta, for

which ensures that the antilinear operafi§racts as an iden- given conserved symmetries of tig,, or D, groups. In

tity upon any irreducible spherical tensor operator. doing so, we have to remember that since the electric multi-
pole operators are time even, the corresponding electric mo-
ments depend only on the time-even component of the den-

B. Average values . ; . . T . .
sity matrix, as given in Eq46a. This is so irrespective of

The electric and magnetic moments are defined as whether the time reversal is, or is not a conserved symmetry,
or whether the system contains even or odd number of fer-
Qm:<q’|é>\u|q’>: f (1) d3r, (453 mions. Therefore, the time reversal does not impose any con-

dition on the electric multipole moments. On the other hand,
with the time-reversal symmetry conserved, which may oc-
M. =(W|M. W)= dr, 45b cur only for even systems, all magnetlc moments and aver-
a= (W IMLIWP) f M) A7 (450 age angular momenta must vanish, because they depend only
on the time-odd component of the density matrix, E¢6b)
where|¥) is a many-body mean-field state, angd,(r) and  and(47).

m, ,(r) are the corresponding moment densities: For the conserved parity, one obtains the standard condi-
tions
Or (1) =ep(r)Qy (1), (463
Q)\M:(_l))\Q}\,u! (483
My (1) = MNk:;y‘Z ( 958KV kQy () My,=—(—1)*M,,, (48b)

i.e., odd electric and even magnetic moments must vanish.
' (46b) Similar symmetry properties with respect to other symme-
tries of theD3J;, or D4 groups are collected in Table VI.

ande, g5, andg, are the elementary charge, and the spin and Within the standard phase convention of E¢4), only a
orbital gyromagnetic factors, respectivély]. In definitions  conservation of the-T-simplex symmetrysj enforces the
(46), multipole functions[21] (solid harmonics have the reality of all multipole electric and magnetic moments. In
standard fornQM(r)zr”YM(e,cb). such a case, the lower part of Table VI gives at a glance all

2
- mgljk[rXVQm(r)]k
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TABLE VII. Properties of electric multipole momeng, ,,, magnetic multipole momentsl, ,, and average angular momerfafor
conservedD,, or DJP operators. Symbol€, R, I, or 0 denote values which can be, in general, complex, real, imaginary, or zero,
respectively.

E ¥ P P R R 5§ & R R § § R R §5 §
Q10,Q30,Qs0. - - R R 0 0 0 0 R R 0 o R R R R 0 0
Q11,Q31,Qa3. . . C Cc 0 o0 R R | [ [ [ R R O 0 C C
Q20,Q40.Qc0 - - - R R R R R R R R R R R R R R R R
Q21,Q41,Qu3. . - C Cc Cc cC | | | | R R R R O 0 0 0
Q22,Q42.Qus.. . - c ¢ ¢ ¢ R R R R R R R R Cc c ¢ c
Q32,Q52,Qs4.. . - C Cc 0 o0 | | R R [ [ R R C C 0 0
M10,M30,Msgp. . . R 0 R 0 0 R 0O R 0 R 0 R R 0O R 0
M1, M3, Mas. .. C 0 C o0 R [ R [ | R | R O C o0 ¢C
M0,M 0. Mgo. . . R 0 0O R R 0 0 R R 0 0 R R 0 0 R
My, M1, Mys. .. C 0 0 C | R R [ R [ | R 0O C C 0
My Mz Mg .. cC 0 0 <¢Cc R [ | R R [ [ R C 0 0o C
M, Msp,Ms,. . . C 0 C o0 | R R R [ R [ R C 0 <C o
Iy R 0 R 0 R 0 R 0O 0 R 0 R 0 R 0 R
I R 0 R 0 0 R 0O R R 0 R 0 0 R 0 R
I, R 0 R 0 0 R 0 R 0 R 0O R R 0 R 0

the multipole moments which must vanish whenever anythe other hand, none of these operators may be conserved if
other symmetry is additionally conserved; these are those fahe angular momentum is to be tilted beyond any ofxhe
which the phase factors are negative. On the other hand, yaz, and zx planes. Note, however, that the above tilting
conservation of the-T-simplex symmetrnyI enforces the conditions pertain to the reference frame, and not to the prin-
equality of negative and positive magnetic components. Ii¢ipal axes of the mass distribution. An appropriate choice of
this case, a conservation of any additional symmetry puts téhe reference frame, as discussed below, has to be performed
zero the multipole moments with negative phase factors aph order to relate the conservéf, or D} operators to the
pearing in the upper part of the table. Of course, numeroudirection of I, with respect to the mass principal axes.
other combinations of conserved symmetries can be consid- Independently of anp},, or D, symmetry breaking, the
ered, for example, a conservation of tasimplex symmetry reference frame in the space coordinates can be chosen in
§, gives real electric moments and imaginary magnetic moSuch way that some of the moments have simple forms. For
ments. example, a shift of the reference frame can bring all electric
Since conditions listed in Table VI depend only on thedipole moments to zer@his corresponds to using the center-
parity of A and on the parity ofx, and since conditioid4) ~ Of-mass system of reference.e.,
allows us to consider only non-negative valuesfone has
only six types of the symmetry properties of multipole mo- Q10=ReQ1;=ImQy;=0. (49
ments with respect to thBJ, or D> operators. These six
types are listed in Table VII for electric and magnetic mo- Similarly, a suitable rotation of the reference frame can bring

ments. Column denoted by the identity operdfogives the € €lectric quadrupole momeng,, to the principal axes,
properties resulting solely from conditiqd4), while the re- where

maining columns give properties of moments when one of

the nonidentityDJ, or DJP operators is conserved. ReQ21= 1M Q2= 1M Q2,=0. (50)

In the same table we also give symmetry properties of the .
Cartesian components of the average angular momignta ©ON the other hand, for some conserved symmetries, these
(47). Although the symmetry properties of the angular mo_condltl_ons can be automatlcally sa_tlsfled. For e>_<amp_|e, con-
mentum are identical to those of the dipole magnetic moServation of theD,, group (i.e., simultaneous invariance
ment, explicit values shown for its Cartesian componentsvith respect to operatorB, Ry, andRy) ensures that the
allow for a simple visualization of a direction taken by the center-of-masg49) and principal-axeg50) conditions are
angular-momentum vector when Varid[)éh or D12—hD opera- automatically satisfied, see Table VII. Therefore, the break-
tors are conserved. In particular, one can see that a consdpg of the D3, or D7 symmetries may have nontrivial
vation of any of the signature or simplex operators for aphysical consequences only for higher electric moments;
given axis enforces the angular-momentum direction alongtarting fromQs, if the parity is broken, or starting from
that axis, while a conservation of any-signature or Qai, for example, if the parity is conserved. In other words,
T-simplex operators allows for a tilted angular momentum inthe D}, or D2 symmetry breaking will not lead to new
the plane perpendicular to the given axis, see R&8]. On  classes of low-multipolarity shapes. Nevertheless, such sym-
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metry breaking will immediately be reflected in values of The characters of the classes are
magnetic moments, whenever the time reversal is broken

too. x(&=—-x(6=2, (A2a)
V. CONCLUSIONS x(P)=—x(P)=2(— 1)y, (A2b)
In the present study we have presented applications of o o
point groups based on the three mutually perpendicular sym- X{Ry, Ry})=x({S,S:})=0, (A20)
metry axes of the second order, inversion, and time reversal,
to nuclear structure problems. We have discussed properties X({fzy .Ry})=x({3y,8y})=0, (A2d)

of the corresponding singlBJ,, and doubleD " groups in

describing even and odd fermion systems, respectively. We P U
have enumerated their representations, both for many-body X(Rz. R = x(15;.57) =0
states and for the single-particle operators, and reviewed

properties of group operators when they are represented fAn€ can see, that only the characters’adnd 7 depend on
the fermion Fock space. quantum numbers,, ny, andn, that define the invariant

Consequences of conserving individij,, or D12 sym- subspaces; more precisely, they depend only on the parity of
metries have been enumerated for space symmetries of the sumn,+n,+n,, ie., on the total parlty of basis states.
local one-body densitiesii) electric and magnetic multipole Therefore, the only two spinor representatlonﬁ)éf can be
moments, andiii ) average values of the angular-momentumlabeled by the eigenvalues of the parity operafor_et us
operators. This gives information about the nuclear shapealso note that all characters are real.
and matter-flow currents in states obeying one or more of the |f we introduce the time reversdl, into the ensemble of
D3y, or D3y, symmetries, and allows for selecting appropriatethe linear operators belonging @5, we obtain theD?
cons_erved symmetries in descriptions aiming at variougy.oun with 16 new antilinear elemerit=7/7; Sec. Il C. To
physical phenomena. study properties of the representations oflﬂgq? group, one

has to consider representations provided by matrices

(A2e)

ACKNOWLEDGMENTS

This research was supported in part by the Polish Com- T(@=T(AUA)*, (A3)
mittee for Scientific ReseardiKBN) under Contract Nos. 2
P0O3B 034 08 and 2 P03B 040 14, and by the French-Polistvhere A is one of the antilinear elements Bfy (see Ref.

integrated actions program POLONIUM. [8]). It is most convenient to tak&itself as.4; we then have
simply
APPENDIX
In this appendix we explicitly construct irreducible repre- I'(@=rn*, (A4)

sentations of th®]P group by using the example of the HO _ o _
basis(Sec. Il D, and we illustrate the Wigner classification as 7 commutes with all/e D,. In such a case, matrices

of groups that contain antilinear operatgsee Chap. 26 of f(zj{) are just complex conjugates B(Z:l), and therefore the

Ref.[8]). The results of such an analysis were used in Sec. Il.

We consider here only the two-dimensional spinor repre_characters of representatibhare exactly the same as those

sentations, appropriate for the odd-fermion systems and iR I'» because they are all real, see Hé). Therefore these
particular for the single-particle states. From E(2) one (WO representations are equivalent, and a ma#exists

. . . N - D which brings by a similarity transformation all matrices
finds representation matrice§l/) (where operatoré/e D3, . . ~

of Sec. IIC form the double groupDzDh), in the two- ') o IU)=T()*,

dimensional invariant subspace spanned |bynynz,sz=

+3) and|nynyn,,s,= — 3). We have BT (UB=T(U*, UeD3,. (AS)
r(g):_r(g)zgo, (Ala) Now, as shown by Wigne[8], there are only two cases
possible: either
T(P)=—T(P)=(~1)"""" "2y, (Alb) R
BB*=+T(T?) (AB)
L(Ry)==T(Ry)=—i(=1) oy, (Ale)
F(80=-T(S)=—i(-1) 0, (A1d) - )

whereo is the identity <2 matrix, oy for k=X,y,z are the _ . o _
standard Pauli matrices, and symbbls, N, andN, refer Matrix B8 can eAasHy be found from the explicit expressions
to ny+n,, n,+n,, andn,+ny, respectively. for matricesI’ (i) given in Egs.(Al), and it reads

014310-12
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0

_ -1
,8=e'¢(1 O)z—le Yy . (A8)

Choosing the phase factef’+ 1 in Eq.(A8) is equivalent to
a change of phase of tHeXnynz,sz= +3) states, and to a
change in the phase convention in E27b).

It is easy to demonstrate that with this form of the matrix

B, Eq. (A6), and not Eq(A7) holds. In Wigner's classifica-

tion this case leads to what is called the corepresentations

the “first kind”: any representatiol’ of the groupDzDh can
be completed to a corepresentation of the ﬂu}l’f group by
defining

LU =T@B. (A9)
Note that taking/= & one getd (7 )= 3, so is, of course,

just the matrix representing itself.
After Wigner, the termcorepresentations used here be-
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(U8 gj) = 20 U@ il di)= 2 T VS 1)

=§ T(U)ET (Uil i)

=2 [TENT @) 1l i) (A10)
%fnd, consequently,
T(U™-U)=TUHTU)*, (A11)
to be compared with
T(U-U)=T T WU, (A12)

which holds for the “usual” representations. The presence
of complex conjugation on the right-hand side of E411)

implies that the homomorphism between the group multipli-
cation and the multiplication of representation matrices no

cause the representationg, of groups containing antilinear Olonger holds when the group contains antilinear operators.
erators ar@otrepresentations in the usual sense. To see thisghis is not surprising in view of the fact that matrices, by

let us consider an orthonormal set of staffes;)} constitut-
ing a basis of a representatibn Let/ be any linear, anéf’

any element of the group. Then, because of antilinearity ofatijons ofDT,?,

U one has

construction, always act on vectotsolumns of numbejs
linearly. In conclusion, there are only two spinor corepresen-

on » and they can be labeled, as is also the case
for the D?h group, by one quantum number oryarity).

[1] P. Ring and P. SchuckThe Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980

[2] M. Hamermesh,Group Theory(Addison-Wesley, Reading,
MA, 1962).

[3] G.F. Koster, J.0. Dimmock, R.G. Wheeler, and H. StRtop-
erties of the Thirty-Two Point GrougMIT Press, Cambridge,
MA, 1963).

[4] L.D. Landau and E.M. LifschitzQuantum Mechanics (Non-
relativistic Theory)(Pergamon Press, New York, 1981

[5] J.F. CornwellGroup Theory in PhysicéAcademic Press, New
York, 1984.

[6] Ch.W. Curtis and |. RainefRepresentation Theory of Finite
Groups and Associative Algebradnterscience Publishers,
New York, 1962.

[7] C.J. Bradley and A.P. CracknelThe Mathematical Theory of
Symmetry in Solid&Clarendon Press, Oxford, 1972

[8] E.P. Wigner,Group Theory and Its Application to the Quan-
tum Mechanics of Atomic Spectrgcademic Press, New
York, 1959.

[9] P. Bonche, H. Flocard, and P.-H. Heenen, Nucl. PA67,
115(1987).

[10] J. Dobaczewski and J. Dudek, Comput. Phys. Commo0a,
166 (1997; 102 183(1997.

[11] J.W. Negele Lecture Notes in Physics 4(®pringer, Berlin,
1975, pp. 285, 288.

[12] R.M. Dreizler and E.K.U. GrosDensity Functional Theory
(Springer, Berlin, 1990

[13] P. Quentin and H. Flocard, Annu. Rev. Nucl. Part. 26j.523
(1978.

[14] J. Dobaczewski, J. Dudek, S.G. Rohasii and T.R. Werner,
Phys. Rev. (52, 014311(2000, the following paper.

[15] A. Messiah,Quantum MechanicéWViley, New York, 1962.

[16] In this article, superscripE always means that the correspond-
ing operator contains factor; this should not be confused
with the notation for the transposition operation.

[17] M. Girod and B. Grammaticos, Phys. Rev2@, 2317(1983.

[18] The phase convention implied by EQ7b) agrees with that of
Varshalowitchet al. [21], and thus it is opposite to the one
used by Bohr and Mottelsdi24].

[19] G. Ripka, Adv. Nucl. Physl, 183(1968.

[20] Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, and D. Vau-
therin, Nucl. PhysA249, 215 (1975.

[21] D.A Varshalovitch, A.N. Moskalev, and V.K. Kersonskii,
Quantum Theory of Angular MomentutiWorld Scientific,
Singapore, 1983

[22] we adopt the general phase convenfidh| valid for arbitrary
irreducible tensor operators. However, note that for the
integer-angular-momentum irreps, the signs of magnetic com-
ponents appearing in the phase factors can be arbitrarily
changed.

[23] S. Frauendorf, Rev. Mod. Phy&o be published

[24] A. Bohr and B.R. MottelsorNuclear Structure(Benjamin,
New York, 1969, Vol. I, p.19.

014310-13



