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Collective states in nuclei and many-body random interactions
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Low-lying collective states in nuclei are investigated in the framework of the interacting boson model using
an ensemble of random many-body interactions. It is shown that whenever the number of bosons is sufficiently
large compared to the rank of the interactions, the spectral properties are characterized by a dominance of
LP501 ground states and the occurrence of both vibrational and rotational band structures. This indicates that
these features represent a general and robust property of the collective model space.

PACS number~s!: 21.10.Re, 21.60.Ev, 21.60.Fw, 24.60.Lz
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I. INTRODUCTION

Random matrix ensembles provide a powerful tool
study generic spectral properties of complex many-body s
tems@1#. Most applications in the literature have centered
global characteristics such as first neighbor energy distr
tions, which typically involve states with the same quantu
numbers ~angular momentum, parity, isospin, . . . !. Re-
cently, the relation between low-lying states in even-ev
nuclei with different quantum numbers was examined us
Hamiltonians with random interactions in the nuclear sh
model ~SM! @2–5# and the interacting boson model~IBM !
@6,7#. These studies have given rise to several surprising
sults. In both cases it was found that for a large variety
conditions there is a dominance (*60%) ofLP501 ground
states despite the random nature of the interactions. In a
tion, in the SM strong evidence was found for the occurre
of pairing properties@4#, and in the IBM for both vibrational
and rotational band structures@6#. These results are not onl
based on energies, but also involve the behavior of the w
functions via the pair transfer amplitudes in the case of p
ing, and the quadrupole transitions for the collective ban
The use of random interactions~both in size and in sign!
show that these regular features arise for a much wider c
of Hamiltonians than are usually considered to be realis
These results are in qualitative agreement with the empir
observations of very robust features in the low-lying spec
of medium and heavy even-even nuclei and a tripartite c
sification in terms of a seniority, vibrator, and rotor regim
@8,9#. The conventional wisdom in nuclear structure phys
is that the observed properties of nuclei can be explained
specific features of the SM~or IBM! Hamiltonian. The stud-
ies with random interactions, however, seem to imply t
some of the generic characteristics of these systems ma
ready be encoded in the corresponding shell model~or sd
boson model! space. This is particularly striking in the cas
of the IBM, for which the model space corresponds to
drastic truncation of the original~shell model! Hilbert space
to that composed of like-nucleon pairs with angular mom
tum L50 and L52 @10,11#. The selection of such a re
stricted subspace seems to impose strong constraints o
possible spectral properties.

These considerations lead naturally to the question
what are the specific causes of this behavior, given that
0556-2813/2000/62~1!/014303~6!/$15.00 62 0143
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ingredients of the calculations are the preservation of fun
mental symmetries of the Hamiltonian~hermiticity, rota-
tional invariance, time-reversal invariance!, the one- and
two-body nature of the Hamiltonian, a given number of a
tive particles, and the structure of the model space. In R
@5# it was shown that the preponderance ofLP501 ground
states in the nuclear shell model is not due to the tim
reversal symmetry of the interactions. The purpose of t
paper is to address explicitly the role of the particle num
and the rank of the random many-body interactions on
systematics of collective states in nuclei.

II. RANDOM INTERACTIONS IN THE IBM

To study the global features of low-lying collective stat
in nuclei we carry out an analysis of the IBM with rando
interactions. In the IBM, collective nuclei are described a
system ofN interacting monopole and quadrupole boso
@10#. We consider all possible one-, two-, and three-bo
interactions. The one-body Hamiltonian contains the bo
energies

H15e0 s†s1e2(
m

dm
† dm . ~1!

The two-body interactions can be expressed as

H25 (
L50,2,4

(
i< j

zLi j

PLi

†
• P̃L j

1PL j

†
• P̃Li

11d i j
, ~2!

with P̃LM5(21)L2MPL,2M . Here PL
† denotes the creation

operator of a pair of bosons coupled to angular momentuL

P01

† 5
1

A2
~s†3s†!(0),

P02

† 5
1

A2
~d†3d†!(0),

P21

† 5~s†3d†!(2),
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P22

† 5
1

A2
~d†3d†!(2),

P41

† 5
1

A2
~d†3d†!(4). ~3!

Similarly, the three-body interactions are given by

H35 (
L50,2,3,4,6

(
i< j

jLi j

PLi

†
• P̃L j

1PL j

†
• P̃Li

11d i j
, ~4!

with

P01

† 5
1

A6
~s†3s†3s†!(0),

P02

† 5
1

A2
~s†3d†3d†!(0),

P03

† 5
1

A6
~d†3d†3d†!(0),

P21

† 5
1

A2
~s†3s†3d†!(2),

P22

† 5
1

A2
~s†3d†3d†!(2),

P23

† 5
1

A6
~d†3d†3d†!(2),

P31

† 5
1

A6
~d†3d†3d†!(3),

P41

† 5
1

A2
~s†3d†3d†!(4),

P42

† 5
1

A6
~d†3d†3d†!(4),

P61

† 5
1

A6
~d†3d†3d†!(6). ~5!

The coefficientseL , zLi j
, and jLi j

correspond to the two
one-body, seven two-body, and 17 three-body matrix e
ments, respectively. They are chosen independently fro
Gaussian distribution of random numbers with zero me
and variancev2 as

^eLeL8&5dLL8 2 v2,

^zLi j
zL

i 8 j 8
8 &5dLL8 ~11d i j ,i 8 j 8! v2,
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^jLi j
jL

i 8 j 8
8 &5dLL8 ~11d i j ,i 8 j 8! v2,

^eL8zLi j
&5^eL8jLi j

&5^zLi j
jL

i 8 j 8
8 &50. ~6!

The choice of the ensembles is such that they are invar
under orthogonal basis transformations. The variance of
Gaussian distributionv2 sets the overall energy scale. Th
ensemble defined by Eq.~6! for Hk is called thek-body
random ensemble (k-BRE! @12#. For two-body interactions
H5H2 it reduces to the T~wo!BRE @12,13#. When the num-
ber of bosons is equal to the rank of the interactionsN5k,
the Hamiltonian matrix is entirely random and the ensem
coincides with the Gaussian orthogonal ensemble~GOE!.
For N.k the many-body matrix elements ofHk are corre-
lated via the appropriate reduction formulas and depend
principle, on all randomk-body matrix elements.

III. RESULTS

In Ref. @6# we used random one- and two-body intera
tions with N516 to study the systematics of low-lying co
lective states in the IBM. Here we wish to study how the
results depend on the boson number and the rank of
random interactions.

We first analyze the dependence on the total numbe
bosons. Hereto we take the HamiltonianH2 of Eq. ~2! with
random two-body matrix elements. In all calculations w
make 1000 runs. For each set of randomly generated t
body matrix elements we calculate the entire energy sp
trum and theB(E2) values between the yrast states. In F
1 we show the percentage ofLP501 ground states as a
function of N ~solid line!. For N52 the Hamiltonian matrix
is a real-symmetric random matrix. For each value of
angular momentumL the ensemble corresponds to GO
whose level distribution is a semicircle with radiusA4dv2

and width A(d11)v2 @1#. In this case, the percentage
ground states for a given value ofL is determined by the
dimensiond of the Hamiltonian matrix:d52 for L50,2 and
d51 for L54. For 3<N<16 the situation is completely

FIG. 1. Percentage ofLP501 ground states as a function of th
boson numberN for H5H2 for which the energy ratio of Eq.~7! is
given by 0,R,1 ~dashed line!, R>1 ~dotted line!, and R.0
~solid line!. The dashed-dotted line shows the percentage ofLP

501 states in the model space.
3-2



la
p

en
th

th

e
to

i

he
le
m

ula

m
ut
lu
ct

u
io

d

o,

e

-
o

d
’
n

for

all
-

ion

r

-
nd

sic
one

-
ther
r

the
ruc-

ial

um
re
e

COLLECTIVE STATES IN NUCLEI AND MANY-BODY . . . PHYSICAL REVIEW C62 014303
different. The ensemble is now TBRE. The dominant angu
momentum of the ground state is determined by the sha
of the level distributions as a function of the angular mom
tum, in particular by the tails, i.e., the higher moments, of
distributions ~all have the same centroid!. The distribution
whose tail extends furthest is the most likely to provide
ground state. For a semicircular~GOE! or a Gaussian distri-
bution ~TBRE in the nuclear shell model@12–14#! the shape
is completely determined by the width. In these two cas
the dominance ofLP501 ground states can be correlated
the widths of the distributions@5,7#. However, for a system
of interacting bosons the TBRE distribution of eigenvalues
neither semicircular~except forN5k) nor Gaussian@15#.
There is no relation between the width~second moment! and
higher moments of the distribution, which determine t
dominant angular momentum of the ground state. Tab
shows that the width increases with angular momentu
whereas the most likely value of the ground state ang
momentum isLP501. In fact, the probability that the
ground state has a certain value of the angular momentu
not really fixed by the full distribution of eigenvalues, b
rather by that of the lowest one. Work is in progress to e
cidate the form of these distributions in a schematic exa
solvable model@16#.

Despite the different shapes of the TBRE level distrib
tions for fermions and bosons we find, just as in the ferm
case@2–5#, a dominance (;60%) of LP501 ground states
in the IBM with 3<N<16. This fraction is large compare
to the percentage ofLP501 states in the model space~solid
and dashed-dotted lines in Fig. 1!. The oscillations with
maxima atN53n ~multiple of 3! are due to the ‘‘unphysi-
cal’’ region of parameter space for which the energy rati

R5
E~41

1!2E~01
1!

E~21
1!2E~01

1!
, ~7!

TABLE I. Percentage of ground states with angular moment
L and corresponding widths of TBRE level distributions. The
sults are obtained for 1000 runs andN516 bosons. The widths ar
divided byN(N21).

L Dim TBRE Width L Dim TBRE Width

0 30 60.5% 0.45 17 23 0.0% 0.45
2 51 12.9% 0.44 18 31 0.7% 0.46
3 21 0.0% 0.43 19 16 0.0% 0.46
4 64 0.0% 0.43 20 23 1.3% 0.47
5 35 0.0% 0.42 21 11 0.0% 0.48
6 70 0.1% 0.43 22 16 0.8% 0.49
7 42 0.0% 0.42 23 7 0.0% 0.51
8 71 0.4% 0.43 24 11 0.9% 0.52
9 44 0.0% 0.42 25 4 0.0% 0.54
10 67 0.1% 0.43 26 7 1.1% 0.56
11 42 0.0% 0.42 27 2 0.0% 0.58
12 60 0.2% 0.43 28 4 0.7% 0.60
13 37 0.0% 0.43 29 1 0.0% 0.63
14 51 0.3% 0.44 30 2 0.6% 0.64
15 30 0.0% 0.44 32 1 18.6% 0.71
16 41 0.8% 0.45
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is less than 1~dashed line! corresponding to a level sequenc
01

1 ,41
1,21

1, rather than 01
1,21

1,41
1 for R.1 ~dotted line!.

The enhancement forN53n can be attributed to the exis
tence of a 01 state in which alld bosons are organized int
nD5N/3 triplets. This state has theU(5) quantum numbers
uN,nd ,v,nD ,L&5uN,N,0,N/3,0& and can become the groun
state if the vibrational spectrum is turned ‘‘upside down.’

For the cases with aLP501 ground state we present i
Fig. 2 the probability distributionP(R) of the energy ratioR
of Eq. ~7!. This energy ratio has very characteristic values
the harmonic vibrator and the rotor,R52 andR510/3, re-
spectively. The Hamiltonian matrix ofH2 depends on seven
independent random two-body matrix elements. For sm
values ofN there is little correlation among the matrix ele
ments ofH, and as a consequence the probability distribut
P(R) shows little structure forN53 ~dash-dotted curve!.
For increasing values ofN there is a correspondingly highe
correlation between the different matrix elements ofH,
which results in the development of two peaks inP(R). We
first see the development of a maximum atR;1.9 for N
56 ~dotted curve!, followed by another one atR;3.3 for
N510 ~dashed curve!. ForN516 the probability distribution
P(R) has two very pronounced peaks, one atR;1.95 and a
narrower one atR;3.35 ~solid curve!. These values corre
spond almost exactly to those for the harmonic vibrator a
the rotor. The two maxima correspond to the two ba
phases that characterize the collective region: a spherical
with R;2.0 and an axially deformed one withR;3.3. There
is no peak forg-unstable nuclei@SO~6! limit #, since this
requires that the matrix element ofz212

@(s†3d†)(2)
•(d̃

3d̃)(2)1H.c.# vanishes identically, effectively correspond
ing to a zero-measure case for the random sample. Any o
value ofz212

(Þ0) gives rise to an axially symmetric roto
@17,18#.

In a second calculation we take the HamiltonianH3 of Eq.
~4! with random three-body interactions. Figure 3 shows
same qualitative behavior as Fig. 2 although the peak st
ture is far less pronounced. ForN516 we see again two
maxima at the vibrator and rotor values of the energy ratioR.
The case of three-body interactions in the IBM is of spec

-

FIG. 2. Probability distributionsP(R) of the energy ratioR of
Eq. ~7! with *P(R)dR51 in the IBM with random two-body in-
teractions forN53 ~dash-dotted!, 6 ~dotted!, 10 ~dashed!, and 16
~solid!.
3-3
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R. BIJKER AND A. FRANK PHYSICAL REVIEW C62 014303
interest, since it can give rise to stable triaxial deformatio
@19#, which are absent in the case of Hamiltonians includ
one- and two-body interactions only. We note, however, t
in the neutron-proton version of the IBM, triaxial deform
tion can be obtained from Hamiltonians with one- and tw
body interactions only@20#. Figure 3 shows no clear sign o
a ‘‘triaxial’’ peak ~e.g., a triaxially deformed rotor withg
530° has R58/3), nor of a ‘‘g unstable’’ one withR
55/2.

After these two model studies, we now turn to a mo
realistic case. It has been shown@10# that the phenomenol
ogy of low-lying collective states in nuclei is well describe
by an IBM Hamiltonian consisting of both one- and tw
body interactions

H125
1

N FH11
1

N21
H2G . ~8!

In order to remove theN dependence of the matrix elemen
of k-body interactions, we have scaledHk by ) i 51

k (N11
2 i ). In Fig. 4 we show the corresponding probability dist
bution P(R) of the energy ratioR of Eq. ~7! for different
values of the number of bosons. The results are very sim
to those of Fig. 2 which were obtained with pure two-bo
interactions. With increasing values ofN the many-body ma-
trix elements ofH12 become increasingly correlated, whic

FIG. 3. As in Fig. 2, but for random three-body interactions

FIG. 4. As in Fig. 2, but for random one- and two-body inte
actions.
01430
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results in the development of two maxima inP(R). The
curve for N516 is identical to the calculation discussed
Ref. @6#. The occurrence of two basic phases for the coll
tive region is further exemplified in Fig. 5 in which we plo
the energy ratioR for the consistent-Q formulation @21# of
the IBM

H5en̂d2kQ̂~x!•Q̂~x!,

Q̂m~x!5~s†d̃1d†s!m
(2)1x~d†d̃!m

(2) , ~9!

with realistic values of the interactions, i.e., a positived bo-
son energy (e.0) and an attractive quadrupole-quadrupo
interaction (k.0). The results in Fig. 5 are plotted as
function of the scaled parametersx522x/A7 andy5e/@e
14k(N21)#, which have been used as control paramet
in a study of phase transitions in the IBM@18,22,23#. For y
51 we recover the vibrational orSU~5! limit of the IBM,
whereas fory50 andx51 one finds the rotational orSU~3!
limit, and for y50 andx50 theg unstable orSO~6! limit.
We clearly see two planes corresponding toR;2.0 andR
;3.3, respectively, which are separated by a sharp tra
tional region, in agreement with the observation in Re
@22,23# that the collective region is characterized by tw
phases~spherical and deformed! connected by a sharp phas
transition.

In order to investigate the effect of higher order intera
tions we now add three-body interactions to the Hamilton

H1235
1

N FH11
1

N21 FH21
1

N22
H3G G . ~10!

In this case the Hamiltonian matrix depends on 26 indep
dent random matrix elements~two one-body, seven two
body, and 17 three-body!. Therefore, for a fixed value ofN
there is less correlation between theN-body matrix elements
of H123 than forH12, which results in broader peaks in th
probability distributionP(R). A comparison of Figs. 4 and 6
shows that the probability distributionP(R) behaves in a
very similar way, and that the addition of three-body inte
actions does not change the results in a significant w
WhenN is sufficiently large compared to the maximum ra
k of the interactions~2 and 3, respectively! the results be-
come independent ofk.

This result is qualitatively very similar to that of Re
@12#, in which the transition from a Gaussian to a semicirc

FIG. 5. The energy ratioR of Eq. ~7! as a function ofx andy in
the consistentQ formulation of the IBM.
3-4
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COLLECTIVE STATES IN NUCLEI AND MANY-BODY . . . PHYSICAL REVIEW C62 014303
lar level distribution was studied in the nuclear shell mo
for a fixed particle numberN57 with increasing values o
the rank 2<k<7. The characteristic features of the e
semble depend on the ratio of the number of particles and
rank of the interactions. ForN sufficiently large compared to
k there is a saturation, and the properties of the ensembl
longer depend onk.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied global properties of lo
lying collective levels using the interacting boson mod
with random interactions. In particular, we addressed the
pendence of the dominance ofLP501 ground states and th
occurrence of vibrational and rotational band structures
the boson numberN and the rankk of the interactions.

Just as for the nuclear shell model it was found that
spite the randomness of the interactions~both in size and
sign! the ground state hasLP501 in approximately 60% of
the cases. The oscillation in the percentage ofLP501

ground states withN was shown to be entirely due to cases
which the level sequence is given by 01,41,21 (R,1).
For the cases withR.1 there is a very smooth dependen
on N.

The vibrational and rotational band structures app
gradually asN/k increases. ForN;k there is little or no
evidence for such bands. AsN grows we first see evidenc
for the development of vibrational structure, followed lat
by the appearance of rotational bands. IfN increases further
these band structures become more and more pronoun

FIG. 6. As in Fig. 2, but for random one-, two-, and three-bo
interactions.
. A

e

y

01430
l

he

no

-
l
e-

n

-

r

r

ed.

Essentially the same behavior is found for random two- a
three-body interactions. In realistic applications to collect
nuclei the IBM Hamiltonian consists of a combination
one- and two-body interactions. A study with random e
sembles of one- and two-body interactions shows similar
sults to the case of pure two-body terms. The inclusion
random three-body interactions does not significantly cha
the basic features.

In conclusion, we find that the dominance ofLP501

ground states and the occurrence of vibrational and rotatio
features are independent of the boson number, as long asN is
sufficiently large compared with the maximum rank of t
interactions. We can conclude that these features repre
general and robust properties of the interacting boson mo
space, and are a consequence of the many-body dynam
which enters via the reduction formulas for theN-body ma-
trix elements ofk-body interactions~angular momentum
coupling, coefficients of fractional parentage, etc.!. Since the
structure of the model space is completely determined by
corresponding degrees of freedom, these results empha
the importance of the selection of the relevant degrees
freedom. In this context, a relevant question is whether
brational and rotational collective behavior can be direc
observed in the shell model with random interactions if
appropriate truncation of the~shell model! Hilbert space is
carried out.

It is important to stress that these properties do not a
as an artifact of a particular model of nuclear structure.
empirical studies of the low-lying collective states of m
dium and heavy even-even nuclei very regular and rob
features have been observed, such as the tripartite class
tion into seniority, anharmonic vibrator, and rotor regim
@8,9#, and the systematics of excitation energy andM1
strength of the scissors mode@24#. Finally, we remark that
the use of random interactions to study the generic beha
of low-lying states has also found useful applications
many-body quantum systems of a different nature, such
quantum dots or small metallic particles@25#.
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