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Collective states in nuclei and many-body random interactions
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Low-lying collective states in nuclei are investigated in the framework of the interacting boson model using
an ensemble of random many-body interactions. It is shown that whenever the number of bosons is sufficiently
large compared to the rank of the interactions, the spectral properties are characterized by a dominance of
LP=0" ground states and the occurrence of both vibrational and rotational band structures. This indicates that
these features represent a general and robust property of the collective model space.

PACS numbgs): 21.10.Re, 21.60.Ev, 21.60.Fw, 24.60.Lz

I. INTRODUCTION ingredients of the calculations are the preservation of funda-

Rand i bl id ful tool t mental symmetries of the Hamiltoniafhermiticity, rota-
andom matrix ensembies provide a poweriul 100l 10,4, invariance, time-reversal invariancghe one- and

study generic spectral properties of complex many-body SySgy_pody nature of the Hamiltonian, a given number of ac-
tems[1]. Most applications in the literature have centered onyjye narticles, and the structure of the model space. In Ref,
global cheractepsucs_such as first ne!ghbor energy d|str|bt{-5] it was shown that the preponderancelf=0" ground
tions, which typically involve states with the same quantumstates in the nuclear shell model is not due to the time-
numbers (angular momentum, parity, isospin.). Re-  reversal symmetry of the interactions. The purpose of this
cently, the relation between low-lying states in even-everpaper is to address explicitly the role of the particle number
nuclei with different quantum numbers was examined USingind the rank of the random many-body interactions on the
Hamiltonians with random interactions in the nuclear shellsystematics of collective states in nuclei.
model (SM) [2-5] and the interacting boson modéBM )
[6,7]. These studies have given rise to several surprising re-
sults. In both cases it was found that for a large variety of
conditions there is a dominance60%) of L°=0" ground To study the global features of low-lying collective states
states despite the random nature of the interactions. In addi? nuclei we carry out an analysis of the IBM with random
tion, in the SM Strong evidence was found for the occurrencénteraCtionS. In the IBM, collective nuclei are described as a
of pairing propertie$4], and in the IBM for both vibrational System ofN interacting monopole and quadrupole bosons
and rotational band structurg8]. These results are not only [10]. We consider all possible one-, two-, and three-body
based on energies, but also involve the behavior of the wavidteractions. The one-body Hamiltonian contains the boson
functions via the pair transfer amplitudes in the case of pair€nergies
ing, and the quadrupole transitions for the collective bands.
The use of random interactioripoth in size and in sign
show that these regular features arise for a much wider class
of Hamiltonians than are usually considered to be realisitic.
These re'sults are in qualitative agreement with the empiricatpe two-body interactions can be expressed as
observations of very robust features in the low-lying spectra
of medium and heavy even-even nuclei and a tripartite clas- b~ b=
sification in terms of a seniority, vibrator, and rotor regime Ho— PLi' PLJ+ PLJ' Py, 5
[8,9]. The conventional wisdom in nuclear structure physics 2 a2 gl‘ij 1+ & ' @
is that the observed properties of nuclei can be explained by
specific features of the SNbr IBM) Hamiltonian. The stud-
ies with random interactions, however, seem to imply tha
some of the generic characteristics of these systems may &
ready be encoded in the corresponding shell md¢delsd
boson modelspace. This is particularly striking in the case
of the IBM, for which the model space corresponds to a
drastic truncation of the origindkhell model Hilbert space
to that composed of like-nucleon pairs with angular momen-
tum L=0 andL=2 [10,11. The selection of such a re-
stricted subspace seems to impose strong constraints on the
possible spectral properties.

These considerations lead naturally to the question of
what are the specific causes of this behavior, given that the

Il. RANDOM INTERACTIONS IN THE IBM

Hi=eys's+e,>, didp,. (1)
m

ith PLy=(—1)-"MP_ _\. HereP| denotes the creation
perator of a pair of bosons coupled to angular momertum

Py, = —=(s"™xsh O,

il =

1
szzﬁ(dedT)(o),

P}, =(s"xd"®,
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1

P} = \/E(d'fxd*)(z),
Pl = i(o|T><o|*)<4> (3
4 \/E .

Similarly, the three-body interactions are given by

PIi-F’Lj-ﬁ- P[j~|~3Li

Ha= L=02.346 i=] &, 1+ 6 ’ @
with

Pgl= %(STXSTXST)(O),
P} = %(sTxdTXdT)(O),
P53= %(d*x dfxd")©,
Pgl=%(sT><sT><dT)<2>,
szz%(sTxdedT)@),
P} = %(d*x d"xd")@),
P} = %(d“‘x d"xd"®,
PZI=%(sTxdedT)<4>,
Py = %(de dfxdhH®,
Pgl=%(d‘fxd*xd*)<6>. (5)
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FIG. 1. Percentage @f°=0" ground states as a function of the
boson numbeN for H=H, for which the energy ratio of Eq7) is
given by 0<KR<1 (dashed ling R=1 (dotted ling, and R>0
(solid line). The dashed-dotted line shows the percentagé "of
=0" states in the model space.

<§Lij§Li’,j,>: Sy (1468 0j) v2,
<€L'§Lij>:<€L'§Lij>:<§Lij§|_i’,j,>:0- (6)

The choice of the ensembles is such that they are invariant
under orthogonal basis transformations. The variance of the
Gaussian distributiom? sets the overall energy scale. The
ensemble defined by Ed6) for Hy is called thek-body
random ensemblek¢(BRE) [12]. For two-body interactions
H=H, it reduces to the Wo)BRE[12,13. When the num-

ber of bosons is equal to the rank of the interactibhsk,

the Hamiltonian matrix is entirely random and the ensemble
coincides with the Gaussian orthogonal ensemi@©E).

For N>k the many-body matrix elements &f, are corre-
lated via the appropriate reduction formulas and depend, in
principle, on all randonk-body matrix elements.

Ill. RESULTS

In Ref. [6] we used random one- and two-body interac-
tions with N=16 to study the systematics of low-lying col-
lective states in the IBM. Here we wish to study how these
results depend on the boson number and the rank of the
random interactions.

We first analyze the dependence on the total number of
bosons. Hereto we take the Hamiltonidp of Eq. (2) with
random two-body matrix elements. In all calculations we
make 1000 runs. For each set of randomly generated two-
body matrix elements we calculate the entire energy spec-
trum and theB(E2) values between the yrast states. In Fig.

The coefficientse, , £, and &, correspond to the tWO 1 we show the percentage &=0" ground states as a
one-body, seven two-body, and 17 three-body matrix elefunction of N (solid line). For N=2 the Hamiltonian matrix
ments, respectively. They are chosen independently from g a real-symmetric random matrix. For each value of the
Gaussian distribution of random numbers with zero mearangmar momentunL the ensemble Corresponds to GOE,

and variance? as
_ 2
<ELEL!>_6LL!20 y

<§Lij§|‘ilrjr>: 5|_|_/ (1+ 5ij,i'j’) UZ,

whose level distribution is a semicircle with radiygdu?
and width \(d+1)v? [1]. In this case, the percentage of
ground states for a given value &fis determined by the
dimensiond of the Hamiltonian matrixd=2 forL=0,2 and
d=1 for L=4. For 3=N=<16 the situation is completely
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TABLE I. Percentage of ground states with angular momentum 4 F
L and corresponding widths of TBRE level distributions. The re-
sults are obtained for 1000 runs aNd- 16 bosons. The widths are
divided byN(N—1). 3t
L Dim TBRE Width L Dim TBRE Width ) 5
0 30 605% 0.45 17 23 0.0% 0.45 =
2 51 12.9% 0.44 18 31 0.7% 0.46
3 21 0.0% 0.43 19 16 0.0% 0.46 Ly
4 64 0.0% 0.43 20 23 1.3% 0.47
5 35  0.0% 042 21 11  0.0% 048 o0 Ll
6 70 0.1% 0.43 22 16 0.8% 0.49 0
7 42 0.0% 0.42 23 7 0.0% 0.51
8 71 0.4% 0.43 24 11 0.9% 0.52 FIG. 2. Probability distribution®(R) of the energy ratidR of
9 44  0.0% 042 25 4 0.0% 054 EQ (7) with JP(R)dR=1 in the IBM with random two-body in-
10 67 0.1% 0.43 26 7 1.1% 0.56 teractions forN=3 (dash-dottey 6 (dotted, 10 (dashed and 16
11 42 0.0% 042 27 2 00% o058 (Soid
g gg g.ézﬁ) 8'32 ;g i’ 8'(7)3) 8'22 is less than I1dashed lingcorresponding to a level sequence
e O'S(VO 0'44 %0 o 0.60/0 0.64 07 ,4{,2;, rather than §,2,,4, for R>1 (dotted ling.
=7 ' 070 : The enhancement fdi=23n can be attributed to the exis-
15 30 0.0% 0.44 32 1 18.6%  0.71  tence of a 0 state in which alld bosons are organized into
16 41 0.8% 0.45

n,=N/3 triplets. This state has tH¢(5) quantum numbers
IN,ng,v,ns,L)=|N,N,0N/3,0) and can become the ground
different. The ensemble is now TBRE. The dominant angulastate if the vibrational spectrum is turned “upside down.”
momentum of the ground state is determined by the shapes For the cases with 8°=0" ground state we present in
of the level distributions as a function of the angular momen+ig. 2 the probability distributiof?(R) of the energy ratidR
tum, in particular by the tails, i.e., the higher moments, of theof Eq. (7). This energy ratio has very characteristic values for
distributions (all have the same centrgidThe distribution  the harmonic vibrator and the rotdR=2 andR=10/3, re-
whose tail extends furthest is the most likely to provide thespectively. The Hamiltonian matrix i, depends on seven
ground state. For a semicircule®BOE) or a Gaussian distri- independent random two-body matrix elements. For small
bution (TBRE in the nuclear shell modg12—14) the shape  yajyes ofN there is little correlation among the matrix ele-
is completely determined by the width. In these two casespents ofH, and as a consequence the probability distribution
the dominance oEP=0" ground states can be correlated to P(R) shows little structure foN=3 (dash-dotted curye

the widths of the distribution5,7]. However, for a system For i ; | o th ; dinalv hiah
of interacting bosons the TBRE distribution of eigenvalues is or Increasing vaiies ere 1S & COMresponaingly nigher

neither semicirculaexcept forN=k) nor Gaussiar{15] correlation between the different matrix elements Hf
There is no relation between the widfecond momentand which resuilts in the development of two peaksi(R). We

higher moments of the distribution, which determine thefirSt see the development of a maximumRt-1.9 for N

dominant angular momentum of the ground state. Table [ © (dotted curve, followed by another one @&~3.3 for

shows that the width increases with angular momentumlN= 10 (dashed curve ForN= 16 the probability distribution
whereas the most likely value of the ground state anguIaF)(R) has two very pronounced peaks, oneRat1.95 and a
momentum isLP=0". In fact, the probability that the narrower one aR~3.35 (solid curve. These vglugs corre-
ground state has a certain value of the angular momentum fPONd almost exactly to those for the harmonic vibrator and
not really fixed by the full distribution of eigenvalues, but the rotor. The two maxima correspond to the two basic
rather by that of the lowest one. Work is in progress to em_phases that characterl_ze the collective region: a spherical one
cidate the form of these distributions in a schematic exactiyVith R~2.0 and an axially deformed one wiltr-3.3. There
solvable mode[16]. is no peak fory-unstable nucle{SQ®) limit], since this
Despite the different shapes of the TBRE level distribu-requires that the matrix element af, [(s"xd")®.(d
tions for fermions and bosons we find, just as in the fermio
case[2-5], a dominance £ 60%) of L°=0" ground states
in the IBM with 3=N=<16. This fraction is large compared
to the percentage df°=0" states in the model spa¢solid
and dashed-dotted lines in Fig).1The oscillations with
maxima atN=3n (multiple of 3) are due to the “unphysi-
cal” region of parameter space for which the energy ratio,

Md)(?+H.c] vanishes identically, effectively correspond-
ing to a zero-measure case for the random sample. Any other
value of{, , (#0) gives rise to an axially symmetric rotor
[17,18.

In a second calculation we take the Hamiltonkgof Eq.
(4) with random three-body interactions. Figure 3 shows the
same qualitative behavior as Fig. 2 although the peak struc-

E(47)—E(07) ture is far less pronounced. Fdi=16 we see again two
= " et (7)  maxima at the vibrator and rotor values of the energy fatio
E(2;)—E(07) The case of three-body interactions in the IBM is of special
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P(R)

2
R

FIG. 3. As in Fig. 2, but for random three-body interactions.
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FIG. 5. The energy rati® of Eq. (7) as a function ok andy in
the consisten@ formulation of the IBM.

results in the development of two maxima R(R). The
curve forN=16 is identical to the calculation discussed in
Ref.[6]. The occurrence of two basic phases for the collec-

interest, since it can give rise to stable triaxial deformationgive region is further exemplified in Fig. 5 in which we plot
[19], which are absent in the case of Hamiltonians includingthe energy raticR for the consisten@ formulation[21] of
one- and two-body interactions only. We note, however, thathe IBM

in the neutron-proton version of the IBM, triaxial deforma-

tion can be obtained from Hamiltonians with one- and two-

body interactions only20]. Figure 3 shows no clear sign of
a “triaxial” peak (e.g., a triaxially deformed rotor with
=30° hasR=8/3), nor of a "y unstable” one withR
=5/2.

H=eng—«Q(x)-Q(x),
Q) =(s"d+d"'s) P+ x(d"d)?, (9)

with realistic values of the interactions, i.e., a positd/bo-

After these two model studies, we now turn to a moreson energy é>0) and an attractive quadrupole-quadrupole

realistic case. It has been shoWt0] that the phenomenol-
ogy of low-lying collective states in nuclei is well described
by an IBM Hamiltonian consisting of both one- and two-
body interactions

Hqpo= N (8)

H —1 H
1+N—1 2|

interaction >0). The results in Fig. 5 are plotted as a
function of the scaled parameters: —2y/\/7 andy=¢€/[ e
+4k(N—1)], which have been used as control parameters
in a study of phase transitions in the IBM8,22,23. Fory

=1 we recover the vibrational dU5) limit of the IBM,
whereas foly=0 andx=1 one finds the rotational BU>3)
limit, and fory=0 andx=0 the y unstable oISQ6) limit.

We clearly see two planes correspondingRe 2.0 andR

In order to remove th&l dependence of the matrix elements ~ 3.3, respectively, which are separated by a sharp transi-

of k-body interactions, we have scalét|, by IT*_,(N+1
—i). In Fig. 4 we show the corresponding probability distri-
bution P(R) of the energy ratidR of Eq. (7) for different

tional region, in agreement with the observation in Refs.
[22,23 that the collective region is characterized by two
phasegspherical and deformgadonnected by a sharp phase

values of the number of bosons. The results are very similairansition.

to those of Fig. 2 which were obtained with pure two-body

interactions. With increasing values Nfthe many-body ma-
trix elements ofH,, become increasingly correlated, which

PR)

FIG. 4. As in Fig. 2, but for random one- and two-body inter-
actions.

In order to investigate the effect of higher order interac-
tions we now add three-body interactions to the Hamiltonian

|

In this case the Hamiltonian matrix depends on 26 indepen-
dent random matrix elementéwo one-body, seven two-
body, and 17 three-boglyTherefore, for a fixed value dfl
there is less correlation between tRebody matrix elements
of Hqo3 than forH,, which results in broader peaks in the
probability distributionP(R). A comparison of Figs. 4 and 6
shows that the probability distributioR(R) behaves in a
very similar way, and that the addition of three-body inter-
actions does not change the results in a significant way.
WhenN is sufficiently large compared to the maximum rank
k of the interactiong2 and 3, respectivelythe results be-
come independent d¢

This result is qualitatively very similar to that of Ref.
[12], in which the transition from a Gaussian to a semicircu-

Haog= 5| Hat g | Ha T =3 s (10
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Essentially the same behavior is found for random two- and
three-body interactions. In realistic applications to collective
nuclei the IBM Hamiltonian consists of a combination of
one- and two-body interactions. A study with random en-
sembles of one- and two-body interactions shows similar re-
sults to the case of pure two-body terms. The inclusion of
random three-body interactions does not significantly change
the basic features.

In conclusion, we find that the dominance bf=0"
ground states and the occurrence of vibrational and rotational
features are independent of the boson number, as loNgsas
T4 sufficiently large compared with the maximum rank of the
interactions. We can conclude that these features represent
FIG. 6. As in Fig. 2, but for random one-, two-, and three_bodygeneral and robust properties of the interacting boson moo_lel

space, and are a consequence of the many-body dynamics,
which enters via the reduction formulas for tNebody ma-

lar level distribution was studied in the nuclear shell modeitfix elements ofk-body interactions(angular momentum

for a fixed particle numbeN=7 with increasing values of Ccoupling, coefficients of fractional parentage, et8ince the

the rank 2<k<7. The characteristic features of the en- Structure of the model space is completely determined by the
semble depend on the ratio of the number of particles and thgPrrésponding degrees of freedom, these results emphasize
rank of the interactions. Fax sufficiently large compared to (h€ importance of the selection of the relevant degrees of

k there is a saturation, and the properties of the ensemble fg€dom. In this context, a relevant question is whether vi-
longer depend ok. brational and rotational collective behavior can be directly

observed in the shell model with random interactions if an
appropriate truncation of theshell model Hilbert space is
carried out.

In summary, we have studied global properties of low- It is important to stress that these properties do not arise
lying collective levels using the interacting boson modelas an artifact of a particular model of nuclear structure. In
with random interactions. In particular, we addressed the desmpirical studies of the low-lying collective states of me-
pendence of the dominancelof=0" ground states and the dium and heavy even-even nuclei very regular and robust
occurrence of vibrational and rotational band structures offieatures have been observed, such as the tripartite classifica-
the boson numbeK and the rankk of the interactions. tion into seniority, anharmonic vibrator, and rotor regimes

Just as for the nuclear shell model it was found that def8,9], and the systematics of excitation energy avid
spite the randomness of the interactigih®th in size and strength of the scissors modi24]. Finally, we remark that
sign the ground state hds”=0" in approximately 60% of the use of random interactions to study the generic behavior
the cases. The oscillation in the percentagelL6t=0"  of low-lying states has also found useful applications in
ground states withl was shown to be entirely due to cases inmany-body quantum systems of a different nature, such as
which the level sequence is given by 87,27 (R<1). quantum dots or small metallic particlg25].

For the cases witlR>1 there is a very smooth dependence

P(R)

interactions.

IV. SUMMARY AND CONCLUSIONS
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