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The Holstein-Primakoff mapping for pairs of bosons is extended in order to accommodate single boson
mapping. The proposed extension allows a variety of applications and especially puts the formalism at finite
temperature on firm ground. The new mapping is applied talfi+1) anharmonic oscillator with global
symmetry broken down t®(N). It is explicitly demonstrated thatl-Goldstone modes appear. This result
generalizes the Holstein-Primakoff mapping for interacting bosons as developed by Aouissat, Schuck, and
Wambach Nucl. Phys.A618, 402(1997)].

PACS numbses): 11.15.Pg, 12.39.Fe, 13.75.Lb

Boson expansion theor{BET) has played a significant cumvented if8], a next-to-leading order calculation makes
role over the past decades in our understanding of the nuclean extended version of the HPM mandatory.
many-body problem. Starting with the pioneering work of  Finite-temperature applications of the PBE approach is
Marumori and co-workers[1], and of Belyaev and another issue where an extended HPM to include single
Zelevinsky[2], the interest in this subject has culminated inbosons is definitely called for. In the following, we wish to
the 1980’s through the formulation of the interacting bosonsketch a derivation of an extended version of HPM for
model[3]. Of particular interest, not only for the many-body bosons. We will also discuss an application to BéN
problem, but also, as has become apparent, for quantum-field 1) anharmonic oscillator where it will be demonstrated
theory(QFT), is the perturbative boson expansi®*BE) ap-  explicitly that this new method is capable of including
proach. Extensive use of it has been made in nuclear physicsingle-boson images with the correct asymptotic energy.
in order to extract anharmonicities beyond the random-phase As a starting point let us consider a system with two types
approximation(RPA) (see Refs[4,5] for reviews. Up until  of bosonic creation and annihilation operatoas:, a and
very recently its application to QFT has not attracted muctb™, b. Pairing these in all possible ways leads to ten group
attention and, therefore, has not been fully developed so fagenerators of the noncompa8p(4) group. The paira*a,

The Holstein-Primakoff mapping for boson pairs, first intro-aa, a*a™, and analogously the pairs f operators form
duced in[6,7], was recently applied, however, to tl{N)  two commutingSp(2) subgroups. The number conserving
vector model[8]. It was demonstrated that the mapping isbilinearsa®a, b*b, a*b, andab® span a closedJ(2)
able to systematically classify the dynamics according to theigebra. There remain the bilineasb™ andab which do
1/N expansion, rendering a promising and efficient alternanot belong to any nontrivial subgroup 8f(4).

tive to the well-known functional methods. Furthermore, Our goal will be to first set up the boson images of the ten
considering the model in the phase of spontaneously brokegiroup generators, replacing in the end theperators byc
symmetry, the powerful machinery of the PBE approach asumbers(the condensaje This will lead us to the boson
developed for deformed nuclear systems could be transcribéghage of the semidirect product gro®p(2)@N(1) made

to QFT. As a consequence the Goldstone theorem as well ag of the elementa*a, aa, a*a™, a,a™, and 1, respec-
the whole hierarchy of Ward identities were exactly satisfiectively. The latter is the desired system because it involves
[8]. even and odd numbers of boson operators.

However, the PBE in general, and the Holstein-Primakoff We will follow earlier work for interacting fermions by
mapping(HPM) in particular[9], rely on the bosonization of Evans and Kraugll], Klein, Rafelski, and Rafelskj12],
pairs of particles. Thereby, images for particle pairs are genand Klein, Cohen, and L[iL3] in which a mapping for the ten
erated in an ideal Fock space, while single particle imagegenerators of thesO(5) group was derived. Use is made
are absent after mapping. This problem has been appreciatedpecially of the work of the latter groups of authors to de-
for the fermionic case in the early days of the boson expanrive, this time, the mapping of the ten generators of the non-
sion theory. Marshalek has proposed an extension of HPMompactSp(4) group mentioned above. Since there is no
for fermions in order to allow for a perturbative boson ex-room to go into detail§which will be presented elsewhgre
pansion for both even and odd nuc[di0]. In the present we essentially will only give the result here.

Rapid Communication, we point out the occurrence of the One first realizes that the six generators of the two com-
same problem in the case of the PBE for purely bosonianuting Sp(2) algebras can be mapped via the usual HPM.
models. The difficult task lies in finding an adequate mapping for the

The need for an extended bosonic HPM to include singlegeneratorsa*b™ andab, which allows one to close of the
bosons clearly revealed itself [8] where the lack of ideal full Sp(4) algebra. The reader is invited to consult R&2]
single-boson states was an obstacle for defining unambigder a similar derivation. Introducing a set of three new
ously the two-point function for the Goldstone mode. While bosonic operatora, A;, andA,, one can show that the net
to leading order in the ¥ expansion this problem was cir- result for the complete mapping reads
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(ata’),=A{ V2+4(n,+m), traction of the generatoms*b*,_ ab, _a*_b, (_'al_ndab_+ down
to the generators and a*. With this intuitive picture in
(aa);=((a"a™))", (a'a)=2ny+m, mind, one can show that the following mapping for the five
relevant generators constitutes a realization of the algebra in
(bb") =A; V2+4(ny+m), Eq. (4):

(bb);=((b"b™))™, (b*b);=2n,+m,

(aa);=+v2+4(n;+m)A;, (a*a’)=(aa),

(a*ta);=2n;+m,

(a*b*),=a"2+4(n;+m)\2+4(ny,+m)d(m)

+4D(M)A; A a,
(a);=v2+4(n;+m)I'y(m)ya+2a* AT (M),

(ab)y=((@"b"))", N N
(@)=, (5

1
+h) — +ht +4) — + +
(a b)'_z[(bb)' (@™b™), ], (bra)=((a’b))”, @) where the occupation number operators are, as before, given
by n;=A]A;, m=a"«, while the functionl'; reads
whereny, n,, andm are occupation humber operators de-

fined by 1/2

z,+m?
I'y(m)=

m=ata, nizAi*Ai, (i=1,2. 2 2(m+1)(2m+1)(2m—1) ©)

The “+" in the Holstein-Primakoff square root indicates the Hgre t00,z, is a constant which will be fixed by using
noncompact character of the group at hand. Finally, the funcypysical conditions as will be explained. It is straightforward

tion @ is given by to verify, through a direct evaluation of the commutators in
2 1/2 Eq. (4), that this is indeed a proper realization. This com-
r+m ; : . .
= pletes our considerations concerning the mapping. In the fol-
e (m) ; () : . : ; | .
4(m+1)(2Zm+1)(2m—1) lowing, the formalism will be applied to the interesting case

h : hich is fixed usi hvsical diti of N oscillators and used to develop théNléxpansion.
wherer Is a constant which is fixed using physical conditions  aq an application, let us consider the anharmonic oscilla-

as_mll be dlscILtjssed Tttf:e nelxt Se(.:t'fn' diate step t or with anO(N+1) symmetry broken down t@(N). The
1eS€ resufis constitute only an intermediate step towar operly scaled Hamiltonian of the system is given by
our final goal. As stated earlier, one wishes to extend th

usual HPM for boson pairs, in such a way as to allow the

mapping of single bosons as well. In other words, and fol- '537 Pi w? 52 u2e . o2, w22 N
lowing the original Belyaev-Zelevinsky approach, one needs H=Z5+5+ T[XWJF Xol+ N[XW+ Xo]"= VN7 X,
to achieve a realization of the following algebra: (7)

+a+7— +
[aa,a"a"]=2+4a"a, Here we have considered an explicif£0) and a spontane-

ous (X,)#0) symmetry breaking along th€, mode. The

[aa,a"a]=2aa, . 5 . . -
variablesX ., X, and their conjugate moment,.,P, are

[a,ata*]=2a", expressed in second quantization as
[a,aTa]=a, (4 . 1 . . . \/5 - -
X,=——(a+a"), P_.=i\/=(a"—a),

where all other possible commutators are assumed but not \/Z 2

explicitly shown here. This is nothing but the algebra of the

semidirect product grouBp(2)®N(1). Thefirst two com- 1 <

mutation relations in Eq(4) remind us of theSp(2) algebra, X,=—=(b+b"), P, =i \/;(b+—b). (8)
and as such, one can propose the bosonic HPM as a second \/2_50 2

realization for it. Here again, the difficulty lies in finding an

adequate mapping for the single bosons so as to close tfiéhe frequency&,, of the modeX, will be fixed later. The
algebra above. A way out is to notice that, by considering thesubscripts and o are used in analogy with the linear

limit in which the operatord andb™ are transformed into model in QFT, where these modes represent the pion and
the identity operator, one can ultimately contract the wholesigma fields, respectively.

Sp(4) group to a nonisomorphic semidirect groGp(2) To sort out the dynamics according to thé&l&xpansion,
®N(1). This singular transformation, which can be thoughtone needs to adapt the mapping derived previously to the
of as a contractiora la Inont-Wigner or Saletar{14,15, situation ofN oscillators. This can be done in a straightfor-
gives a clear hint on how to proceed with the desired extenward way. It can be shown that the mapping in this case
sion. Indeed, the single bosons can be deduced from the cotakes the form
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(aa);=\2N+4(n,+ mA;, where we have introduced for convenience the rescaled con-
o o B densates=(1/yN) (X,), d=2/N (A).
(a*ta);=2n,+m, (a*a’),=(aa),, The coherent ground state is fully determined by requiring
that the values taken by the two condensates above lead to
(aj);=V2N+4(n,+ m)rN(m)aiJrzai*AlFN(m), the minimum ofH,. The minimization procedure with re-
N N spect tos andd gives the following two coupled BCS equa-
(@ =), , (9 tions:
whereN is an integern;=A; A;, andm==,a; a;, while 5
I'y is a generalization of th&, function, of the last section w?+ 492+ _g(d+ m)zz 2,
to the case oN oscillators. It reads @ S
2 _ 1/2
Fy(m)= Zytm+m(N-1) o 2d I+ a2+ (d+ V1T d2)?A=0, (19)
N 2(m+1)(2m+N)(2m+N-2)

The constantzy will be fixed below. One can also easily WhereA=(2gs/w)+g/w?(d+ 1+d*)? is the gap param-
verify that this mapping leads to a realization of the follow- eter -

ing algebra: To gather the full dynamics of the leading order in the
1/N expansion one needs to generate the téfimandH, of
[(aa), (a*a*)]=2N+4(a*a), the Hamiltonian. This can be done by using the parameter
differentiation technique¢see Ref[8] for detaily. The net
[(55), (5+5)]:2(5é), result for bothH,; andH, then reads
[a;,(ata™)]=2a;, 1 (d+y1+dH)2 | o .
Hi=—=| 20d+ ————A|(A1+A])
. V2 JV1+d?
[a,(a"a)]=4;. (11 ) (8% +8)
gs
For a finiteN, the O(N+ 1) anharmonic oscillator is purely + T(d+ V1+d?)2+ wis+4gsi— 7/}?
guantum mechanical. For an infinite number of degrees of a
freedomN—, on the other hand, it can be used to mimic
the quantum-field situation of the breaking and restoration of Ad
a continuous symmetry. Hy=Ho+EB B+|w+A+ —Zlm
Using the mapping in Eq9), one can expand the Hamil- 1+d
tonian of the system in powers of the operatarsy, b and Ad
their Hermitian conjugates. One then arrives at an expansion L 20+ 2A 4+ ——— ﬁﬁ@ﬁz\f)z
of the form H=HO@O+HD+H@+H @O+ ®4 ... Vi+d?

where the superscripts indicate powers of operators without
normal ordering. This expansion is in fact not unique and

Ad(2+d?) g (d+ ¢1+—d2)41

therefore the preservation of the symmetries is not necessar- x 4\(1+d?%)3 * 2 w? 1+d2
ily guaranteed. A more useful approach consists in organiz-
ing the expansion in powers of the paramétersuch that (,8++,8)(,3\1+K1+) (d+/1+d?)?
H=NHo+ VNH;+Hy+ (LYN)Ha+ (LIN)H 4+, - -. +2gs NG e W
This is possible if one chooses a coherent state as the ONCo
variational ground state for the model
Here, Hy is a constant. Since one is not particularly inter-
|y =exd (A)A] +(b) b*]]0). (120  ested in the ground-state energy, the latter will not be further

o specified. The shifted operatord\;=A;—(A;), B=b
This trial vacuum state must accommodate two condensates,

: : 2(b), andn,=A; A, annihilate the coherent stgt#). The
respectively, for theX, mode and the newly introduced bo- o .
sonA, (see Ref[8] for detaily. The modea, on the other frequencyé, of the X, mode is fixed such that the bilinear

hand, is not allowed to condense. The ground-state energ art of H in the § operators is diagonal. It is purely of

NHo= (({H|#))/(#| 9, calculated on the coherent state, berturbatwe character, and the frequency is explicitly given
takes the following form: y

§ 2
H0=g(2d2+1)+%(d+ JI+d)? £2=w?+ 1292+ zg(d+ JI+d)2, (16

2
+ i(dJr [1+d?)4+ wTS+gs4— »s, (13  Using the gap equatiorid4) and the easily verifiable iden-
4w? ’ tities
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A=—2dV1+dw(d—V1+d?)?], (RPA[5Q,,[H,, Q, 1IRPA
w+A=(1+2d%)[w(d—V1+d?)?], (17 =0, (RPA[SQ,, Q. ]|RPA), (21)

one can establish thai, vanishes at the minimum. From where [RPA), the full ground state of the theory at this
H,, and more precisely from the coefficient ah order, is a random-phase approximati&PA) ground state,

—SN o' a, one can deduce the existencefotincoupled  d€fined byQ,/[RPA=0. The Hamiltonian can then be writ-
modes. The common frequency of these modes is denoted fi§" In the RPA phonon basiy)=Q, |RPA), as follows:
&, and is given by N
H = NHO+ ERPA+57TE aﬁai
=1

2
£2=wl(d—IT D)=’ +4gs+ 2= 2. (19

0|3

+ 2 0,Q/Q,+O(N"12), (22)
2

v==*1+

TheseN modes are our first asymptotic states. Furthermore,

it can be easily verified that they have Goldstone characte%nd contains three terms of ord 2 (N (VN)O. re-
In other words, their frequency vanishes in the exact symme: &)” (VN (VN)°,

S . Spectively. The coefficient of the/N term vanishes. The
try limit ( =0), and for a finite condensats=0). 0o _ ; .
it is evident from the ansatz above that the model suffer$2n I PU1ON Erpa (RPAH,|RPA is the RPA correction

from infrared divergences. However, since it is used fo§0 the ground-state energy and will not be given explicitly

. . "here. The frequencieQ , are solutions of the characteristic
demonstration purposes only, we choose to disregard thlg

difficulty here. Clearly the new and important result that has quation of the RPA eigenvalues problem and given by

been obtained shows up in the fact that the proposed map- 8gs?

ping provides asymptotic states in the ideal Fock space Q§:2+—_ (23
which correspond to the images of the single bosons. It S 4g 1
should be stressed that this is a nontrivial finding which, as &, 02— 4£2

shown above, is a direct consequence of the extended HPM.

It reproduces the result anticipated earlier in this paper, Ny the exact symmetry limit 4=0), there exist a pair of

clear departure from the HPM for boson paj and in  zero-energy solutions among the four RPA eigenvalues
accordance with the Goldstone theorem. which correspond to two uncorrelated Goldstone mddes.
~So far, only the mapping of the bilinears in E§) was  This point is not the main purpose of the present Rapid Com-
involved in expanding the Hamiltonian. The single-bosonmynication and therefore will not be discussed further. The

part of the mapping, on the other hand, was not directly useqdeader may consider looking into Rd#] for a complete
The latter enters, however, in the definition of the two-pointyeatment of this question.

function (W[TX, ()X, i(t")[¥), where|¥) is the coher- We therefore see that the Hamiltonian in Eg2) is the
ent ground state. To leading order irN1and after a Fourier ggme as i8], however, augmented by the “single-pion”
transform one obtains term =N, o ;. This extra term arises necessarily in our
approach where single bosons and pairs of bosons are treated
(v i 5(t—t') _ et on the same footing. 18] the single boson state has been
D7, ij(S) f dte (WX () X (1)) treated on a heuristic level by neglecting exchange contribu-

tions to the self-energy. So implicitly, this amounts to the
same as using Eq22) at the order considered. The present
systematic scheme puts the treatment of R&f.on a firm
theoretical ground.

In this Rapid Communication we have extended previous
work on the Holstein-Primakoff boson expansion for boson

Besides the Goldstone modes there also exist other ex airs applied to a relativistic field theory of interacting

tations. They can be made explicit in diagonalizing the re- osons[8]. The aim was to treat simultaneously single
o y ade exphcit 9 9 bosons and pairs of bosons which is necessary to unambigu-
maining part ofH,. This is a straightforward procedure

. . 4 . ously define the two-point function for the Goldstone mode
which can be found if8]. In short, since the nondiagonal and to extend the formalism to finite temperature.

2NT?(0)
= (19
s—E&o+iny

The fact that the residue at the pole has to b‘d]?ﬁ(O)
=1, leads tazy=N—2.

part ofH, is at most bilinear in the operatofs ,AY ,B8,8", The mapping was applied to the anharmonic oscillator
a generalized Bogoliubov rotation of the type with broken O(N+1) symmetry. It was explicitly shown
Q,=X,8"=Y,B+U,A] -V, A, (20

IHere again, we disregard the infrared problem since the model is
can be performed and leads to uncoupled modes at the minnly used for demonstration purposes. The reader is referrg] to
mum of the action. The diagonalization is done by recallingfor a thorough study of these questions in four space-time dimen-
the usual Rowe equations of motiph sions.
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that the extension to accommodate single bosons indeed retemperature. These two points will be discussed in a forth-
ders, to leading order of the N/expansion,N uncoupled coming publication.

Goldstone as well as RPA phonon modes. This result is )

novel and inaccessible to the bosonic Holstein-Primakoff The author would like to thank G. Chanfray, P. Schuck,
mapping for boson pairs. The latter is only able to provideand J. Wambach for the fruitful collaboration and for their
RPA phonon modes as previously shown in R&f. The full  continuous support. | also would like to thank P. Schuck and
power of the formalism will reveal itself in working out the J. Wambach for discussions, for their interest in this work,
next-to-leading order of the M/ expansion by providing an and for their comments on the manuscript. Finally, | would
unambiguous computation of ati-point functions. It also like to thank the Gesellschaft fuSchwerionenforschung
allows for a natural and straightforward extension to finite(GSI) Darmstadt for the financial support.
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