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Single boson images via an extended Holstein-Primakoff mapping
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The Holstein-Primakoff mapping for pairs of bosons is extended in order to accommodate single boson
mapping. The proposed extension allows a variety of applications and especially puts the formalism at finite
temperature on firm ground. The new mapping is applied to theO(N11) anharmonic oscillator with global
symmetry broken down toO(N). It is explicitly demonstrated thatN-Goldstone modes appear. This result
generalizes the Holstein-Primakoff mapping for interacting bosons as developed by Aouissat, Schuck, and
Wambach@Nucl. Phys.A618, 402 ~1997!#.

PACS number~s!: 11.15.Pg, 12.39.Fe, 13.75.Lb
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Boson expansion theory~BET! has played a significan
role over the past decades in our understanding of the nuc
many-body problem. Starting with the pioneering work
Marumori and co-workers @1#, and of Belyaev and
Zelevinsky@2#, the interest in this subject has culminated
the 1980’s through the formulation of the interacting bos
model@3#. Of particular interest, not only for the many-bod
problem, but also, as has become apparent, for quantum-
theory~QFT!, is the perturbative boson expansion~PBE! ap-
proach. Extensive use of it has been made in nuclear phy
in order to extract anharmonicities beyond the random-ph
approximation~RPA! ~see Refs.@4,5# for reviews!. Up until
very recently its application to QFT has not attracted mu
attention and, therefore, has not been fully developed so
The Holstein-Primakoff mapping for boson pairs, first intr
duced in@6,7#, was recently applied, however, to theO(N)
vector model@8#. It was demonstrated that the mapping
able to systematically classify the dynamics according to
1/N expansion, rendering a promising and efficient alter
tive to the well-known functional methods. Furthermo
considering the model in the phase of spontaneously bro
symmetry, the powerful machinery of the PBE approach
developed for deformed nuclear systems could be transcr
to QFT. As a consequence the Goldstone theorem as we
the whole hierarchy of Ward identities were exactly satisfi
@8#.

However, the PBE in general, and the Holstein-Primak
mapping~HPM! in particular@9#, rely on the bosonization o
pairs of particles. Thereby, images for particle pairs are g
erated in an ideal Fock space, while single particle ima
are absent after mapping. This problem has been apprec
for the fermionic case in the early days of the boson exp
sion theory. Marshalek has proposed an extension of H
for fermions in order to allow for a perturbative boson e
pansion for both even and odd nuclei@10#. In the present
Rapid Communication, we point out the occurrence of
same problem in the case of the PBE for purely boso
models.

The need for an extended bosonic HPM to include sin
bosons clearly revealed itself in@8# where the lack of idea
single-boson states was an obstacle for defining unamb
ously the two-point function for the Goldstone mode. Wh
to leading order in the 1/N expansion this problem was cir
0556-2813/2000/62~1!/012201~5!/$15.00 62 0122
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cumvented in@8#, a next-to-leading order calculation make
an extended version of the HPM mandatory.

Finite-temperature applications of the PBE approach
another issue where an extended HPM to include sin
bosons is definitely called for. In the following, we wish
sketch a derivation of an extended version of HPM
bosons. We will also discuss an application to theO(N
11) anharmonic oscillator where it will be demonstrat
explicitly that this new method is capable of includin
single-boson images with the correct asymptotic energy.

As a starting point let us consider a system with two typ
of bosonic creation and annihilation operators:a1, a and
b1, b. Pairing these in all possible ways leads to ten gro
generators of the noncompactSp(4) group. The pairsa1a,
aa, a1a1, and analogously the pairs ofb operators form
two commutingSp(2) subgroups. The number conservin
bilinears a1a, b1b, a1b, and ab1 span a closedU(2)
algebra. There remain the bilinearsa1b1 andab which do
not belong to any nontrivial subgroup ofSp(4).

Our goal will be to first set up the boson images of the
group generators, replacing in the end theb operators byc
numbers~the condensate!. This will lead us to the boson
image of the semidirect product groupSp(2)^ N(1) made
up of the elementsa1a, aa, a1a1, a, a1, and 1d , respec-
tively. The latter is the desired system because it invol
even and odd numbers of boson operators.

We will follow earlier work for interacting fermions by
Evans and Kraus@11#, Klein, Rafelski, and Rafelski@12#,
and Klein, Cohen, and Li@13# in which a mapping for the ten
generators of theSO(5) group was derived. Use is mad
especially of the work of the latter groups of authors to d
rive, this time, the mapping of the ten generators of the n
compactSp(4) group mentioned above. Since there is
room to go into details~which will be presented elsewhere!
we essentially will only give the result here.

One first realizes that the six generators of the two co
muting Sp(2) algebras can be mapped via the usual HP
The difficult task lies in finding an adequate mapping for t
generatorsa1b1 and ab, which allows one to close of the
full Sp(4) algebra. The reader is invited to consult Ref.@12#
for a similar derivation. Introducing a set of three ne
bosonic operatorsa, A1, andA2, one can show that the ne
result for the complete mapping reads
©2000 The American Physical Society01-1
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~a1a1! I5A1
1A214~n11m!,

~aa! I5~~a1a1! I !
1, ~a1a! I52n11m,

~b1b1! I5A2
1A214~n21m!,

~bb! I5~~b1b1! I !
1, ~b1b! I52n21m,

~a1b1! I5a1A214~n11m!A214~n21m!F~m!

14F~m!A2
1A1

1a,

~ab! I5~~a1b1! I !
1,

~a1b! I5
1

2
@~bb! I ,~a1b1! I #, ~b1a! I5~~a1b! I !

1, ~1!

wheren1 , n2, and m are occupation number operators d
fined by

m5a1a, ni5Ai
1Ai , ~ i 51,2!. ~2!

The ‘‘1’’ in the Holstein-Primakoff square root indicates th
noncompact character of the group at hand. Finally, the fu
tion F is given by

F~m!5F r 1m2

4~m11!~2m11!~2m21!G
1/2

, ~3!

wherer is a constant which is fixed using physical conditio
as will be discussed in the next section.

These results constitute only an intermediate step tow
our final goal. As stated earlier, one wishes to extend
usual HPM for boson pairs, in such a way as to allow
mapping of single bosons as well. In other words, and
lowing the original Belyaev-Zelevinsky approach, one nee
to achieve a realization of the following algebra:

@aa, a1a1#5214 a1a,

@aa, a1a#52 aa,

@a, a1a1#52 a1,

@a, a1a#5a, ~4!

where all other possible commutators are assumed but
explicitly shown here. This is nothing but the algebra of t
semidirect product groupSp(2)^ N(1). Thefirst two com-
mutation relations in Eq.~4! remind us of theSp(2) algebra,
and as such, one can propose the bosonic HPM as a se
realization for it. Here again, the difficulty lies in finding a
adequate mapping for the single bosons so as to close
algebra above. A way out is to notice that, by considering
limit in which the operatorsb and b1 are transformed into
the identity operator, one can ultimately contract the wh
Sp(4) group to a nonisomorphic semidirect groupSp(2)
^ N(1). This singular transformation, which can be thoug
of as a contractionà la Inönü-Wigner or Saletan@14,15#,
gives a clear hint on how to proceed with the desired ext
sion. Indeed, the single bosons can be deduced from the
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traction of the generatorsa1b1, ab, a1b, andab1 down
to the generatorsa and a1. With this intuitive picture in
mind, one can show that the following mapping for the fi
relevant generators constitutes a realization of the algebr
Eq. ~4!:

~aa! I5A214~n11m!A1 , ~a1a1! I5~aa! I
1 ,

~a1a! I52 n11m,

~a! I5A214~n11m!G1~m!a12a1A1G1~m!,

~a1! I5~a! I
1 , ~5!

where the occupation number operators are, as before, g
by n15A1

1A1 , m5a1a, while the functionG1 reads

G1~m!5F z11m2

2~m11!~2m11!~2m21!G
1/2

. ~6!

Here, too,z1 is a constant which will be fixed by usin
physical conditions as will be explained. It is straightforwa
to verify, through a direct evaluation of the commutators
Eq. ~4!, that this is indeed a proper realization. This co
pletes our considerations concerning the mapping. In the
lowing, the formalism will be applied to the interesting ca
of N oscillators and used to develop the 1/N expansion.

As an application, let us consider the anharmonic osci
tor with anO(N11) symmetry broken down toO(N). The
properly scaled Hamiltonian of the system is given by

H5
PW p

2

2
1

Ps
2

2
1

v2

2
@XW p

2 1Xs
2 #1

g

N
@XW p

2 1Xs
2 #22ANhXs .

~7!

Here we have considered an explicit (hÞ0) and a spontane
ous (̂ Xs&Þ0) symmetry breaking along theXs mode. The
variablesXW p ,Xs and their conjugate momentaPW p ,Ps are
expressed in second quantization as

XW p5
1

A2v
~aW 1aW 1!, PW p5 iAv

2
~aW 12aW !,

Xs5
1

A2Es

~b1b1!, Ps5 iAEs

2
~b12b!. ~8!

The frequency,Es , of the modeXs will be fixed later. The
subscriptsp and s are used in analogy with the linears
model in QFT, where these modes represent the pion
sigma fields, respectively.

To sort out the dynamics according to the 1/N expansion,
one needs to adapt the mapping derived previously to
situation ofN oscillators. This can be done in a straightfo
ward way. It can be shown that the mapping in this ca
takes the form
1-2
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~aW aW ! I5A2N14~n11m!A1 ,

~aW 1aW ! I52n11m, ~aW 1aW 1! I5~aW aW ! I
1 ,

~ai ! I5A2N14~n11m!GN~m!a i12a i
1A1GN~m!,

~ai
1! I5~ai ! I

1 , ~9!

whereN is an integer,n15A1
1A1, andm5( ia i

1a i , while
GN is a generalization of theG1 function, of the last section
to the case ofN oscillators. It reads

GN~m!5F zN1m21m~N21!

2~m11!~2m1N!~2m1N22!G
1/2

. ~10!

The constantzN will be fixed below. One can also easil
verify that this mapping leads to a realization of the follo
ing algebra:

@~aW aW !, ~aW 1aW 1!#52 N14~aW 1aW !,

@~aW aW !, ~aW 1aW !#52~aW aW !,

@ai , ~aW 1aW 1!#52 ai
1 ,

@ai , ~aW 1aW !#5ai . ~11!

For a finiteN, the O(N11) anharmonic oscillator is purel
quantum mechanical. For an infinite number of degrees
freedomN→`, on the other hand, it can be used to mim
the quantum-field situation of the breaking and restoration
a continuous symmetry.

Using the mapping in Eq.~9!, one can expand the Hami
tonian of the system in powers of the operatorsA, a, b and
their Hermitian conjugates. One then arrives at an expan
of the form H5H (0)1H (1)1H (2)1H (3)1H (4)1,•••,
where the superscripts indicate powers of operators with
normal ordering. This expansion is in fact not unique a
therefore the preservation of the symmetries is not neces
ily guaranteed. A more useful approach consists in orga
ing the expansion in powers of the parameterN, such that
H5NH01ANH11H21(1/AN)H31(1/N)H41,•••.

This is possible if one chooses a coherent state as
variational ground state for the model

uc&5exp@^A1&A1
11^b& b1#u0&. ~12!

This trial vacuum state must accommodate two condensa
respectively, for theXs mode and the newly introduced bo
sonA1 ~see Ref.@8# for details!. The modea, on the other
hand, is not allowed to condense. The ground-state ene
NH05(^cuHuc&)/^cuc&, calculated on the coherent stat
takes the following form:

H05
v

2
~2d211!1

gs2

v
~d1A11d2!2

1
g

4v2
~d1A11d2!41

v2s

2
1gs42hs, ~13!
01220
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where we have introduced for convenience the rescaled
densatess5(1/AN) ^Xs&, d5A2/N ^A&.

The coherent ground state is fully determined by requir
that the values taken by the two condensates above lea
the minimum ofH0. The minimization procedure with re
spect tos andd gives the following two coupled BCS equa
tions:

v214gs21
2g

v
~d1A11d2!25

h

s
,

2vdA11d21~d1A11d2!2D50, ~14!

whereD5(2gs2/v)1g/v2(d1A11d2)2 is the gap param-
eter .

To gather the full dynamics of the leading order in t
1/N expansion one needs to generate the termsH1 andH2 of
the Hamiltonian. This can be done by using the parame
differentiation techniques~see Ref.@8# for details!. The net
result for bothH1 andH2 then reads

H15
1

A2
F2vd1

~d1A11d2!2

A11d2
DG ~Ã11Ã1

1!

1F2gs

v
~d1A11d2!21v2s14gs32hG~b11b!

A2Es

,

H25H01Esb1b1Fv1D1
Dd

A11d2Gm

1F2v12D1
Dd

A11d2G ñ11~Ã11Ã1
1!2

3F Dd~21d2!

4A~11d2!3
1

g

2v2

~d1A11d2!4

11d2 G
12gs

~b11b!~Ã11Ã1
1!

vAEs

~d1A11d2!2

A11d2
. ~15!

Here, H0 is a constant. Since one is not particularly inte
ested in the ground-state energy, the latter will not be furt
specified. The shifted operatorsÃ15A12^A1&, b5b

2^b&, andñ15Ã1
1Ã1 annihilate the coherent stateuC&. The

frequencyEs of the Xs mode is fixed such that the bilinea
part of H2 in the b operators is diagonal. It is purely o
perturbative character, and the frequency is explicitly giv
by

E s
25v2112gs21

2g

v
~d1A11d2!2. ~16!

Using the gap equations~14! and the easily verifiable iden
tities
1-3
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D522dA11d2@v~d2A11d2!2#,

v1D5~112d2!@v~d2A11d2!2#, ~17!

one can establish thatH1 vanishes at the minimum. From
H2, and more precisely from the coefficient ofm
5( i 51

N a i
1a i , one can deduce the existence ofN uncoupled

modes. The common frequency of these modes is denote
Ep and is given by

E p
2 5v2~d2A11d2!45v214gs21

2g

Ep
5

h

s
. ~18!

TheseN modes are our first asymptotic states. Furthermo
it can be easily verified that they have Goldstone charac
In other words, their frequency vanishes in the exact sym
try limit ( h50), and for a finite condensate (sÞ0).

It is evident from the ansatz above that the model suff
from infrared divergences. However, since it is used
demonstration purposes only, we choose to disregard
difficulty here. Clearly the new and important result that h
been obtained shows up in the fact that the proposed m
ping provides asymptotic states in the ideal Fock sp
which correspond to the images of the single bosons
should be stressed that this is a nontrivial finding which,
shown above, is a direct consequence of the extended H
It reproduces the result anticipated earlier in this paper
clear departure from the HPM for boson pairs@8# and in
accordance with the Goldstone theorem.

So far, only the mapping of the bilinears in Eq.~9! was
involved in expanding the Hamiltonian. The single-bos
part of the mapping, on the other hand, was not directly us
The latter enters, however, in the definition of the two-po
function ^CuTXp,i(t)Xp,i(t8)uC&, where uC& is the coher-
ent ground state. To leading order in 1/N and after a Fourier
transform one obtains

Dp, i j ~s!5E dt eiAs(t2t8) ^CuTXp,i~ t !Xp, j~ t8!uC&

5d i j

2 N GN
2 ~0!

s2E p
2 1 ih

. ~19!

The fact that the residue at the pole has to be 2N GN
2 (0)

51, leads tozN5N22.
Besides the Goldstone modes there also exist other e

tations. They can be made explicit in diagonalizing the
maining part of H2. This is a straightforward procedur
which can be found in@8#. In short, since the nondiagona
part ofH2 is at most bilinear in the operatorsÃ1 ,Ã1

1 ,b,b1,
a generalized Bogoliubov rotation of the type

Qn
15Xnb12Ynb1Un Ã1

12Vn Ã1 , ~20!

can be performed and leads to uncoupled modes at the m
mum of the action. The diagonalization is done by recall
the usual Rowe equations of motion@4#
01220
by

e,
r.

e-

s
r
is

s
p-
e
It
s
M.
in

d.
t

ci-
-

ni-
g

^RPAu†dQn , @H2 , Qn
1#‡uRPA&

5Vn^RPAu@dQn , Qn
1#uRPA&, ~21!

where uRPA&, the full ground state of the theory at th
order, is a random-phase approximation~RPA! ground state,
defined byQnuRPA&50. The Hamiltonian can then be writ
ten in the RPA phonon basis,un&5Qn

1uRPA&, as follows:

H5NH01ERPA1Ep(
i 51

N

a i
1a i

1 (
n561,62

VnQn
1Qn1O~N21/2!, ~22!

and contains three terms of order (AN)2,(AN)1,(AN)0, re-
spectively. The coefficient of theAN term vanishes. The
contributionERPA5^RPAuH2uRPA& is the RPA correction
to the ground-state energy and will not be given explici
here. The frequenciesVn are solutions of the characterist
equation of the RPA eigenvalues problem and given by

Vn
25

h

s
1

8gs2

12
4g

Ep

1

Vn
224E p

2

. ~23!

In the exact symmetry limit (h50), there exist a pair of
zero-energy solutions among the four RPA eigenval
which correspond to two uncorrelated Goldstone mode1

This point is not the main purpose of the present Rapid Co
munication and therefore will not be discussed further. T
reader may consider looking into Ref.@8# for a complete
treatment of this question.

We therefore see that the Hamiltonian in Eq.~22! is the
same as in@8#, however, augmented by the ‘‘single-pion
term ( i 51

N a i
1a i . This extra term arises necessarily in o

approach where single bosons and pairs of bosons are tre
on the same footing. In@8# the single boson state has be
treated on a heuristic level by neglecting exchange contr
tions to the self-energy. So implicitly, this amounts to t
same as using Eq.~22! at the order considered. The prese
systematic scheme puts the treatment of Ref.@8# on a firm
theoretical ground.

In this Rapid Communication we have extended previo
work on the Holstein-Primakoff boson expansion for bos
pairs applied to a relativistic field theory of interactin
bosons @8#. The aim was to treat simultaneously sing
bosons and pairs of bosons which is necessary to unamb
ously define the two-point function for the Goldstone mo
and to extend the formalism to finite temperature.

The mapping was applied to the anharmonic oscilla
with broken O(N11) symmetry. It was explicitly shown

1Here again, we disregard the infrared problem since the mod
only used for demonstration purposes. The reader is referred to@8#
for a thorough study of these questions in four space-time dim
sions.
1-4
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that the extension to accommodate single bosons indeed
ders, to leading order of the 1/N expansion,N uncoupled
Goldstone as well as RPA phonon modes. This resul
novel and inaccessible to the bosonic Holstein-Primak
mapping for boson pairs. The latter is only able to prov
RPA phonon modes as previously shown in Ref.@8#. The full
power of the formalism will reveal itself in working out th
next-to-leading order of the 1/N expansion by providing an
unambiguous computation of alln-point functions. It also
allows for a natural and straightforward extension to fin
or

rik

01220
n-

is
ff
e

temperature. These two points will be discussed in a fo
coming publication.
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