
PHYSICAL REVIEW C, VOLUME 61, 067305
Cluster states in nuclei as representations of a U„n¿1… group
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We propose a description of cluster states in nuclei in terms of representations of unitary algebras U(n
11), wheren is the number of space degrees of freedom. Within this framework, a variety of situations
including both vibrational and rotational spectra, soft and rigid configurations, identical and nonidentical
constituents can be described. As an example, we show how the method can be used to studya clustering
configurations in12C with point group symmetryD3h .

PACS number~s!: 21.60.Gx, 21.60.Fw, 27.20.1n
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The purpose of this Brief Report is to point out that t
algebra U(n11), which has been suggested to be the sp
trum generating algebra for a quantum mechanical prob
with n space degrees of freedom@1#, might provide a frame-
work for a unified description of cluster states in nuclei. W
note that the main properties of clustering in nuclei are~i! the
softness of the cluster configuration which makes nuclei
pear more like liquid structures rather than rigid molecu
structures in which the constituents sit at some definite lo
tion in space,~ii ! the near equality of vibrational and rota
tional energies which does not allow a clearcut distinct
between these two types of motion,~iii ! the fact that the
constituents are not pointlike objects but particles with a s
tial extent comparable to that of the overall structure, a
~iv! the fact that the constituents are often identical wh
implies that permutation symmetry must be imposed. A u
fied description of clustering in nuclei should be able to
comodate all these properties.

To illustrate the uselfuness of the algebra U(n11) in de-
scribing the variety of observed situations, we consider
specific case of a cluster composed of three particles@a de-
scription of two-body cluster configurations in nuclei
terms of U~4! was suggested long ago@2# and has been use
to describe resonances in heavy ion scattering@3##. For a
three-body problem, the number of space degrees of free
~after removal of the center of mass! is n53n2356. @We
do not consider in this article constituents with an inter
0556-2813/2000/61~6!/067305~4!/$15.00 61 0673
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structure. For such situations the algebraic structure mus
enlarged to U(n11)^ U(V) whereV is the number of in-
ternal degrees of freedom.# The space degrees of freedo
can be taken as the Jacobi coordinatesrW 5(rW12rW2)/A2 and
lW 5(rW11rW222rW3)/A6, whererW i ( i 51,2,3) are the coordi-
nates of the three particles. The corresponding algebr
U~7!. The algebra of U~7! is constructed by introducing two
vector bosonsbr , bl together with an auxiliary scalar boso
s. It was introduced in@4# where it was used to describ
three-quark configurations in baryons. The 49 bilinear pr
ucts of creation and annihilation operators generate the
algebra U~7!,

br,m
† ,bl,m

† ,s†[ca
† ~m50,61! ~a51, . . . ,7!,

G:Gab5ca
†cb ~a,b51, . . . ,7!. ~1!

The creation and annihilation operators for vector bos
(br,m

† , bl,m
† andbr,m , bl,m) represent the second quantize

form of the Jacobi coordinates and their canonically con
gate momenta, while the auxiliary scalar boson is introdu
in order to construct the spectrum generating algebra.~The
method of embedding the problem in a larger dimensio
space@1# is similar to that used in Kaluza-Klein theories o
particle physics.! The energy levels can be obtained by d
agonalizing the Hamiltonian
H5H01ess
†s̃2ep~br

†
•b̃r1bl

†
•b̃l!1u0~s†s†s̃s̃!2u1s†~br

†
•b̃r1bl

†
•b̃l!s̃

1v0@~br
†
•br

†1bl
†
•bl

†!s̃s̃1s†s†~ b̃r•b̃r1b̃l•b̃l!#1 (
l 50,2

cl@~br
†3br

†2bl
†3bl

†!( l )
•~ b̃r3b̃r2b̃l3b̃l!( l )

14~br
†3bl

†!( l )
•~ b̃l3b̃r!( l )#1c1~br

†3bl
†!(1)

•~ b̃l3b̃r!(1)1 (
l 50,2

wl~br
†3br

†1bl
†3bl

†!( l )
•~ b̃r3b̃r1b̃l3b̃l!( l ),

~2!
en-
ions
within the space of the totally symmetric representations@N#
of U~7!. The coefficientses , ep , u0 , u1 , v0 , c0 , c1 , c2 , w0

and w2 parametrize the interactions. The HamiltonianH is
the most general Hamitonian that preserves angular mom
tum and parity, transforms as a scalar under permutat
~we consider here the case of three identical particles! and is
©2000 The American Physical Society05-1
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BRIEF REPORTS PHYSICAL REVIEW C 61 067305
at most quadratic~two-body interactions!. Associated with
the HamiltonianH, there are transition operators,T. Electro-
magnetic transition rates and form factors can all be ca
lated by considering the matrix elements of the operator

T5e2 iqbDl,z /XD,

Dl,z5~bl
†3 s̃2s†3b̃l!z

(1) , ~3!

which is the algebraic image of the operator exp(iqr3z) ob-
tained from the full operator( i 51

3 eiqW •rW i by choosing the mo-

mentum transferqW in the z direction and considering identi
cal particles~the coefficientXD is a normalization factor!.

The Hamiltonian of Eq.~2! has two dynamic symmetrie
corresponding to the breakings of U~7! onto U~6! and SO~7!

U~7!.H U~6!,

SO~7!.
~4!

When the Hamiltonian contains only Casimir operators
these chains, the eigenvalue problem can be solved in cl
analytic form. The corresponding solutions describe t
situations sometimes encountered in the three body prob
~i! six-dimensional vibrational spectra U~6!, and ~ii ! an un-
usual situation which we callv-unstable or SO~7! limit.
Both situations will be described in a longer publicatio
Here instead, as an example of application of the algeb
method, we discuss another situation that is appropriat
three particles at the vertices of an equilateral triangle. T
spectrum of an equilateral triangle configuration can be
tained from the Hamiltonian of Eq.~2! by setting some co-
efficients equal to zero and taking specific combinations
others@4#

H5H01j1~s†s†2br
†
•br

†2bl
†
•bl

†!~ s̃s̃2b̃r•b̃r2b̃l•b̃l!

1j2@~br
†
•br

†2bl
†
•bl

†!~ b̃r•b̃r2b̃l•b̃l!14~br
†
•bl

†!

3~ b̃l•b̃r!#1j3~br
†b̃r1bl

†b̃l!(1)
•~br

†b̃r1bl
†b̃l!(1)

1j4~br
†b̃l2bl

†b̃r!(0)
•~bl

†b̃r2br
†b̃l!(0). ~5!

This spectrum does not correspond to a dynamic symme
since it cannot be written in terms of invariants of a chain
algebras originating from U~7!. However, an approximate
expression for the energy levels can be obtained by ma
use of the method of intrinsic or coherent states~valid in the
limit of large N). The energy eigenvalues are then given
@4,5#

E~v1 ,v2
l ,L,K,M !5E01Av11Bv21CL~L11!

1D~K62l !2, ~6!

where A'4Nj1 , B'2Nj2 , C5j3/2 and D5j4/3. The
quantum numbers have the following meaning:v1 , v2 are
vibrational quantum numbers; for three identical partic
one of the vibration (v1) is singly degenerate, while th
other (v2) is doubly degenerate;l 5v2 ,v222, . . . ,1 or 0 is
the vibrational angular momentum of the doubly degene
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vibration; L is the angular momentum,M its projection on a
laboratory fixed axis andK its projection on a body fixed
axis. We note the particular angular momentum composit
of the rotation-vibration bands. The vibrationless grou
state band (v1 ,v2

l )5(0,00) hasK53n (n50,1,2, . . . ) with
L50,2,4, . . . for K50 and L5K,K11,K12, . . . for K
Þ0. The parity is given byP5(2)K. The stretching vibra-
tion (1,00) contains the same angular momentaLP501, 21,
32, 46, . . . , as theground state band, while the bendin
vibration (0,11) hasK53n11,3n12 (n50,1,2, . . . ) with
L5K,K11,K12, . . . . Theangular momentum content o
the bending vibration is then 12, 26, 36, . . . . Since we do
not consider the excitation of thea particles themselves, th
wave functions describing the relative motion have to
symmetric. As a consequence, the relative sign in the
term of Eq.~6! is such thatuK62l u53m, a multiple of 3@5#.
@The energy formula obtained from the HamiltonianH of Eq.
~5! contains a Coriolis term which do not discuss here, sin
a detailed treatment of this term requires the use of the
Hamiltonian of Eq.~2!, rather than the simplified form of Eq
~5!#. In Fig. 1 we show the energy spectrum corresponding
Eq. ~6!. The importance of this figure is the particular natu
of the rotation-vibration spectrum of a triangular configur
tion with D3h symmetry. If a physical system is claimed
be composed of three identical structureless particles at
vertices of an equilateral triangle, then its spectrummustbe
as in Fig. 1. The algebraic framework produces this spect
automatically by an appropriate choice of parameters.

Another consequence of using the compact algebra Un
11) as a spectrum generating algebra is that one can ev
ate all observables in exact form. For example, by tak
matrix elements of the operatorT between the eigenstates o
H obtained by matrix diagonalization, one can evaluate fo
factors. When the Hamiltonian has a dynamic symme
these can be derived in closed form. Although the Ham
tonian of Eq.~5! does not correspond to a dynamic symm
try, the form factors can still be obtained in explicit form
the limit of largeN. For transitions among the lowest stat
they are given by

FIG. 1. Spectrum of an equilateral triangle configuration~shown
in the inset! calculated using Eq.~6! with A57.0, B59.0, C
50.8, andD50.0 MeV ~only the levels withE<25 MeV are
shown!. The levels are characterized by angular momentum
parity LP, and the vibrational labels (v1 ,v2

l ). Note the doubling and
tripling of rotational states. The degeneracies are removed by u
a valueDÞ0.
5-2
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F~01
1→01

1 ;q!5 j 0~qb!,

F~01
1→21

1 ;q!5
1

2
A5 j 2~qb!,

F~01
1→31

2 ;q!52 iA35

8
j 3~qb!,

F~01
1→41

1 ;q!5
9

8
j 4~qb!,

F~01
1→02

1 ;q!52x1qb j 1~qb!,

F~01
1→11

2 ;q!52 ix2

1

2
A3qb j 2~qb!. ~7!

Hereq is the momentum transfer andb is the distance of the
particles from the center~the first three form factors wer
already given in@6#!. The last two form factors correspond
vibrational excitations. The coefficientsx1 and x2 are pro-
portional to the intrinsic matrix elements for each type
vibration (v1 and v2). Electromagnetic transition rates ca
be calculated from theB(EL) values, which in turn can be
obtained from the long wavelength limit of the form factor
In the case in which the constituents of the cluster are
tended objects~as in nuclei! the form factors andB(EL)
values can be obtained by folding the point-like distributi
with the charge distribution~and eventually magnetic mo
ment distribution! of the constituents. In the case of cluste
composed ofa particles, the folding can be done in
straightforward way, since the charge distribution of thea
particle can be taken to a very good approximation
exp(2ar2) . The form factors for an extended distribution a
then obtained from those in Eq.~7! by multiplying by
exp(2q2/4a). They are a crucial ingredient in understandi
whether a cluster configuration is present or not. WhenN is
finite ~the situation encountered in nuclei! the energy spec
trum and form factors can be evaluated numerically usin
computer program written by one of us@7#. In this case,
vibrational bands are no longer decoupled, but instead s
an appreciable mixing between them and, as a result,
spectrum is considerably distorted from the energy form
of Eq. ~6!.

The formalism introduced here can be used to study c
ter states in12 C. It was suggested long ago@8,9# that 12C in
its ground state can be viewed as threea particles at the
vertices of an equilateral triangle~point groupD3h). The
experimental spectrum of12C is shown in Fig. 2, where it is
compared with that given by Eq.~6!. One can see that thi
spectrum is indeed similar~if not identical! to that of a tri-
angular configuration. The crucial point is the sequence
angular momenta in the ground state rotational band:1,
21, 32, 41, . . . . This sequence is typical of a triangul
configuration. A linear configuration would not have neg
tive parity states, while a shell-model configuration wou
not have the 32 state as a member of the rotational band
rather as an octupole vibration, i.e., it would not form
rotational sequence with the 01, 21, 41 states. However
06730
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the rotational spectrum does not follow precisely what e
pected from a triangular configuration@oblate top,D,0 in
Eq. ~6!# but it shows rather a spherical or slightly prolate t
with D3h symmetry. The spectrum also shows an excited1

state at 7.65 MeV and an excited 12 state at 10.84 MeV
which could be interpreted as bandheads of the vibratio
~stretching and doubly degenerate bending! excitations.
Whether or not this is the case or rather those states repre
other types of configurations, such as threea particles on a
line as suggested by several authors, remains an open q
tion. To settle this question uniquely one would have to ide
tify the rotational sequences built on top of them which ha
a characteristic pattern for triangular configurations and
other pattern for linear configurations. In particular the n
ture of the 21 state at 11.16 MeV and 22 state at 11.83
MeV, which could form the rotational excitation of the dou
bly degenerate vibration, should be further investigated~the
role played by the 21 state in determining the cluster stru
ture of 12C has been emphasized before@10#!. We have also
calculated form factors and electromagnetic transition ra
@11#. All members of the ground rotational band are w
described by Eq.~7!, as well as the shape of the form facto
leading to the 01 state at 7.65 MeV and the 12 state at 10.84
MeV. This analysis will be presented in a forthcoming pu
lication @11#. The result of the simultaneous investigation
spectra, transition rates and form factors done within U~7! is
that ana clustering structure~albeit not a rigid one! with
D3h symmetry is a good description of the ground state c
figuration of 12C. However, in order to make this conclusio
stronger, we suggest to readdress the problem ofa clustering
in 12C by a remeasurement of the properties of the high-ly
states by (a,a8) and (e,e8) inelastic scattering. These ex
periments were done long ago and can benefit from new
improved techniques. We have predictions for all form fa
tors, transition rates and energies of cluster states in theD3h
configuration. They can be obtained from us upon reque

In conclusion, we have proposed a description of clus
states in nuclei in terms of the group U(n11) and shown
that within this algebraic structure one can describe m
situations. In particular, for the three-body problem, one c
recover the case of three particles at the vertices of a trian
a configuration of interest in12C. We have shown that U~7!
contains the main properties of clustering in nuclei: the so
ness of the cluster configuration, the near equality of vib
tional and rotational energies, the spatial extension of
constituents and the permutation symmetry. We can also

FIG. 2. Comparison between the low-lying experimental sp
trum of 12C @12# and that calculated using Eq.~6! with A57.0, B
59.0, C50.7, andD50.0 MeV. States with uncertain spin-parit
assignment are in parentheses.
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BRIEF REPORTS PHYSICAL REVIEW C 61 067305
scribe the situation of three particles on a line~not discussed
here! and of vibrational spectra, in other words the method
flexible enough that it can accomodate many situations
countered in nuclei. We have also constructed the alge
appropriate to four-body problems, U~10!, where additional
geometric arrangements can occur, such as four particle
the vertices of a tetrahedron~point groupTd) and used it to
study cluster configurations in16O. In other words, all clus-
ter structures up to four-body clusters can be studied with
algebraic method. The importance of using U(n11) for
cluster states lies in the possibility of describing the vari
of situations encountered in nuclei where clusters are
a-
.
th
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rigid structures but rather liquidlike structures arising fro
the nature of the nucleon-nucleon force~spin-isospin! and
the shell structure. The unitary algebra U(n11) can also be
of interest in the description of other quantum mechani
systems with nonrigid structure, such as atomic clust
floppy molecules, and trimers making the method of bro
applicability to a large class of problems.
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