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Cluster states in nuclei as representations of a (>+1) group
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We propose a description of cluster states in nuclei in terms of representations of unitary algebras U(
+1), wherev is the number of space degrees of freedom. Within this framework, a variety of situations
including both vibrational and rotational spectra, soft and rigid configurations, identical and nonidentical
constituents can be described. As an example, we show how the method can be used to dtigigring
configurations in'?C with point group symmetr{g, .

PACS numbegs): 21.60.Gx, 21.60.Fw, 27.28n

The purpose of this Brief Report is to point out that the structure. For such situations the algebraic structure must be
algebra Up+ 1), which has been suggested to be the specenlarged to Up+1)®U(L) where(} is the number of in-
trum generating algebra for a quantum mechanical problenternal degrees of freedoinThe space degrees of freedom
with v space degrees of freeddthl, might provide a frame-  can be taken as the Jacobi coordingies(r;—r,)/y2 and
work for a unlfle_d descrlpt_lon of cluste_r states in n_u_cle|. WeX=(F1+F2—2F3)/\/6, Whereﬂ (i=1,2,3) are the coordi-
note that the main properties of clustering in nuclei@réhe 505" of the three particles. The corresponding algebra is
softness of the cluster configuration which makes nuclei apU(7) The algebra of () is constructed by introducing two
pear more like liquid structures rather than rigid molecularVector boson®,, b, together with an auxiliary scalar boson
structures in which the constituents sit at some definite locaz It was introgI;Jced 4] where it was used to describe
tion in space(ii) the near equality of vibrational and rota- three-quark configurations in baryons. The 49 bilinear prod-

tional energies which does not al_loyy a clearcut distinction s of creation and annihilation operators generate the Lie
between these two types of motiofii) the fact that the algebra W7)

constituents are not pointlike objects but particles with a spa-
tial extent comparable to that of the overall structure, and bt b sTEcL (m=0+1) (a=1,....7,

(iv) the fact that the constituents are often identical which pymrEN,m?
implies that permutation symmetry must be imposed. A uni- .
fied description of clustering in nuclei should be able to ac- G:Gp=cC,Cp (@,B=1,....,7. 1

comodate all these properties.

To illustrate the uselfuness of the algebravd(1) in de-  The creation and annihilation operators for vector bosons
scribing the variety of observed situations, we consider theéb;m, bI,m andb, ,, b, ) represent the second quantized
specific case of a cluster composed of three partidede- form of the Jacobi coordinates and their canonically conju-
scription of two-body cluster configurations in nuclei in gate momenta, while the auxiliary scalar boson is introduced
terms of U4) was suggested long aj@] and has been used in order to construct the spectrum generating algeirae
to describe resonances in heavy ion scattef®ld. For a  method of embedding the problem in a larger dimensional
three-body problem, the number of space degrees of freedospace[1] is similar to that used in Kaluza-Klein theories of
(after removal of the center of mass v=3n—3=6.[We  particle physic9. The energy levels can be obtained by di-

do not consider in this article constituents with an internalagonalizing the Hamiltonian

H=Ho+ es's—ey(b!-B,+b) -by) +ug(s's"ss)—u;s'(b!- b, +bl-by)s

+uo[(b!-bl+b]-blyss+ sTsT(Bp-BP+BA-BA)]+|22 ci[(b!xb!—blxbl)®.(b,xb,~b,xb,)"

+4(b!x b)) (byxb,)M]+cy(b] x b{)(1)~(EAXBP)(1)+|:OZW|(bZ>< b+blxbH)®-(b,xDb,+b,xb),

)

within the space of the totally symmetric representatidfis  the most general Hamitonian that preserves angular momen-
of U(7). The coefficientss, €, Ug, Uy, v, Co, C1, C2, Wy tum and parity, transforms as a scalar under permutations
andw, parametrize the interactions. The Hamiltonidnis  (we consider here the case of three identical parfides is
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at most quadratictwo-body interactions Associated with EMeV) 0 __ . . —a -
. . .. — -3 ot — 9+
the HamiltoniarH, there are transition operatoi®, Electro- o PENCED
magnetic transition rates and form factors can all be calcu- 2or —2* g0 —at —e _F
lated by considering the matrix elements of the operator — 3 (Tlf) 0.2 0,2)
— 0t — 9+ '
T=e 19020, E E——
10 —_3"
- - _ 0,19
D}\’z:(bIXS_STX b)\)gl)v (3) r —2t il Og;
which is the algebraic image of_ghge operator egpg) ob- I A
tained from the full operatoE?>_,e'9 " by choosing the mo- 0,09

mem“”? transfeq in the.z dlrec;tlon and cqns@erlng identi- FIG. 1. Spectrum of an equilateral triangle configuratisimown
cal partlcles(_the _coeff|C|entXD is a normallza'_uon factor _ in the inset calculated using Eq(6) with A=7.0, B=9.0, C
The Hamlltonlan of Eq(2_) has two dynamic symmetries =0.8, andD=0.0 MeV (only the levels withE<25 MeV are
corresponding to the breakings ofZ) onto U6) and SQ7)  ghown. The levels are characterized by angular momentum and
U6 parity LP, and the vibrational labels/g ,u'z). Note the doubling and
(6), tripling of rotational states. The degeneracies are removed by using
u(7)o (4)
SQ(7). a valueD #0.

When the Hamiltonian contains only Casimir operators of . . . . L
these chains, the eigenvalue problem can be solved in clos égratlon, L is the angular momenturM its projection on a
analytic form. The corresponding solutions describe twgaooratory fixed axis ank its projection on a body fixed
situations sometimes encountered in the three body problerdiS- We note the particular angular momentum composition
(i) six-dimensional vibrational spectra(6), and (i) an un- of the rotation-vibration bands. The vibrationless ground
usual situation which we calio-unstable or SQ) limit.  state bandd;,v5)=(0,0°) hask=3n (n=0,1,2...) with
Both situations will be described in a longer publication.L=0,2,4 ... for K=0 andL=K,K+1K+2,... for K
Here instead, as an example of application of the algebraiet0. The parity is given by?=(—)“. The stretching vibra-
method, we discuss another situation that is appropriate tton (1,0) contains the same angular momebfa=0", 2,

three particles at the vertices of an equilateral triangle. Th@ , 47, ..., as theground state band, while the bending
spectrum of an equilateral triangle configuration can be obvibration (0,%) hasKk=3n+1,31+2 (n=0,1,2...) with
tained from the Hamiltonian of Eq2) by setting some co- L=K,K+1K+2,... . Theangular momentum content of
efficients equal to zero and taking specific combinations othe bending vibration is thenl, 2=, 3%, ... . Since we do
others[4] not consider the excitation of the particles themselves, the
wave functions describing the relative motion have to be
H=Ho+ & (s's"=b’-b!—bl-bl)(ss—b, b,~b,-b,) symmetric. As a consequence, the relative sign in the last
o term of Eq.(6) is such thatK = 2I|=3m, a multiple of 3[5].
+&[(b}-bl—bl-b])(b,-b,~b,-by)+4(b}-b)) [The energy formula obtained from the Hamiltonidrof Eq.
- - N - (5) contains a Coriolis term which do not discuss here, since
X( x'bp)]+§3(b,f5p+ bib,)®- (b:)’Bp+ bib,)® a detailed treatment of this term requires the use of the full
e 2 (0) (T = (0 Hamiltonian of Eq{(2), rather than the simplified form of Eq.
+E&4(byby—byb,)™ - (byb, —b,by)™. (5) (5)]. In Fig. 1 we show the energy spectrum corresponding to

This spectrum does not correspond to a dvnamic svmmetr Eq. (6). The importance of this figure is the particular nature
since iﬁ) cannot be written in terr%s of invarignts of a Zhain of)éjf the rotation-vibration spectrum of a triangular configura-
algebras originating from (). However, an approximate tion with D3, symmetry. If a physical system is claimed to

. ' ' ; . be composed of three identical structureless particles at the
expression for the energy levels can be obtained by mak'ngertices of an equilateral triangle, then its spectmnstbe

use of the method of intrinsic or coherent staesid |n'the as in Fig. 1. The algebraic framework produces this spectrum
limit of large N). The energy eigenvalues are then given byautomatically by an appropriate choice of parameters.

[4.5] Another consequence of using the compact algebra U(
E(vl,vlz,L,K,M)= Eo+Av;+Bu,+CL(L+1) +1) as a spectrum generatmg algebra is that one can e\_/alu—
ate all observables in exact form. For example, by taking
+D(K=*2l)?, (6)  matrix elements of the operatdrbetween the eigenstates of

H obtained by matrix diagonalization, one can evaluate form
where A=~4N¢;, B~2N¢,, C=¢&3/2 and D=¢§,/3. The factors. When the Hamiltonian has a dynamic symmetry
guantum numbers have the following meaning; v, are  these can be derived in closed form. Although the Hamil-
vibrational quantum numbers; for three identical particlestonian of Eq.(5) does not correspond to a dynamic symme-
one of the vibration ;) is singly degenerate, while the try, the form factors can still be obtained in explicit form in
other (v,) is doubly degeneraté=v,,v,—2,...,1 0r 0 is the limit of largeN. For transitions among the lowest states
the vibrational angular momentum of the doubly degenerat¢hey are given by
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F(0; —01;a)=jo(aB), ol _ I .
E(MeV) . _ o —2
1 . | _ _(2 )_ o+ 1- | — 2 —1-
F(07 =27 ;0)=5V5]2(aB), op s T —_,
5F —or T —ot
. - [35,
F(0; —3;:;q)=—i §J3(q,8), of —ot EXP + —o* TH

FIG. 2. Comparison between the low-lying experimental spec-
trum of 2C [12] and that calculated using E65) with A=7.0, B
=9.0,C=0.7, andD =0.0 MeV. States with uncertain spin-parity
assignment are in parentheses.

9
F(01 —41;0)=gia(ah),

F(07 —0;;0)=—x19B8i1(dB),
the rotational spectrum does not follow precisely what ex-
pected from a triangular configuratigoblate top,D<0 in
Eq. (6)] but it shows rather a spherical or slightly prolate top
with D5, symmetry. The spectrum also shows an excitéd 0
Hereq is the momentum transfer amglis the distance of the state at 7.65 MeV and an excited Istate at 10.84 MeV
particles from the centefthe first three form factors were which could be interpreted as bandheads of the vibrational
already given ir6]). The last two form factors correspond to (stretching and doubly degenerate bengirexcitations.
vibrational excitations. The coefficienfg, and x, are pro-  Whether or not this is the case or rather those states represent
portional to the intrinsic matrix elements for each type ofother types of configurations, such as thre@articles on a
vibration (v, andv,). Electromagnetic transition rates can line as suggested by several authors, remains an open ques-
be calculated from th&(EL) values, which in turn can be tion. To settle this question uniquely one would have to iden-
obtained from the long wavelength limit of the form factors. tify the rotational sequences built on top of them which have
In the case in which the constituents of the cluster are exa characteristic pattern for triangular configurations and an-
tended objectgas in nuclei the form factors andB(EL) other pattern for linear configurations. In particular the na-
values can be obtained by folding the point-like distributionture of the 2° state at 11.16 MeV and 2 state at 11.83
with the charge distributiorfand eventually magnetic mo- MeV, which could form the rotational excitation of the dou-
ment distribution of the constituents. In the case of clustersbly degenerate vibration, should be further investigatad
composed ofa particles, the folding can be done in a role played by the 2 state in determining the cluster struc-
straightforward way, since the charge distribution of the ture of °C has been emphasized befpt€]). We have also
particle can be taken to a very good approximation asalculated form factors and electromagnetic transition rates
exp(—ar?) . The form factors for an extended distribution are[11]. All members of the ground rotational band are well
then obtained from those in Ed7) by multiplying by  described by Eq(7), as well as the shape of the form factors
exp(—g¥4a). They are a crucial ingredient in understandingleading to the 0 state at 7.65 MeV and the 1state at 10.84
whether a cluster configuration is present or not. WNeis  MeV. This analysis will be presented in a forthcoming pub-
finite (the situation encountered in nugleéhe energy spec- lication [11]. The result of the simultaneous investigation of
trum and form factors can be evaluated numerically using &pectra, transition rates and form factors done with{i) lis
computer program written by one of g]. In this case, that ana clustering structurdalbeit not a rigid ong with
vibrational bands are no longer decoupled, but instead sho®,,, symmetry is a good description of the ground state con-
an appreciable mixing between them and, as a result, thigguration of 1C. However, in order to make this conclusion
spectrum is considerably distorted from the energy formulastronger, we suggest to readdress the problemdfistering
of Eq. (6). in 1%C by a remeasurement of the properties of the high-lying
The formalism introduced here can be used to study clusstates by &,«’) and (g,e’) inelastic scattering. These ex-
ter states in*? C. It was suggested long a8,9] that '°C in  periments were done long ago and can benefit from new and
its ground state can be viewed as thieeparticles at the improved techniques. We have predictions for all form fac-
vertices of an equilateral trianglgoint groupDsp). The  tors, transition rates and energies of cluster states ifDghe
experimental spectrum dfC is shown in Fig. 2, where itis configuration. They can be obtained from us upon request.
compared with that given by E@6). One can see that this  In conclusion, we have proposed a description of cluster
spectrum is indeed simildif not identica) to that of a tri-  states in nuclei in terms of the group &} 1) and shown
angular configuration. The crucial point is the sequence ofhat within this algebraic structure one can describe many
angular momenta in the ground state rotational band: 0 situations. In particular, for the three-body problem, one can
2%, 37, 4%, ... . This sequence is typical of a triangular recover the case of three particles at the vertices of a triangle,
configuration. A linear configuration would not have nega-a configuration of interest if’C. We have shown that (@)
tive parity states, while a shell-model configuration wouldcontains the main properties of clustering in nuclei: the soft-
not have the 3 state as a member of the rotational band buthess of the cluster configuration, the near equality of vibra-
rather as an octupole vibration, i.e., it would not form ational and rotational energies, the spatial extension of the
rotational sequence with the*Q 2, 4" states. However, constituents and the permutation symmetry. We can also de-

1
F(07 —1;50)=—ix2530B]2(qB). (7
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scribe the situation of three particles on a linet discussed rigid structures but rather liquidlike structures arising from
here and of vibrational spectra, in other words the method isthe nature of the nucleon-nucleon for¢spin-isospin and
flexible enough that it can accomodate many situations enthe shell structure. The unitary algebraid(1) can also be
countered in nuclei. We have also constructed the algebref interest in the description of other quantum mechanical
appropriate to four-body problems,(10), where additional  systems with nonrigid structure, such as atomic clusters,

geometric arrangements can occur, such as four particles appy molecules, and trimers making the method of broad
the vertices of a tetrahedrdpoint group7y) and used it to  applicability to a large class of problems.

study cluster configurations itfO. In other words, all clus-

ter structures up to four-body clusters can be studied with the ~ This work was supported in part by DGAPA-UNAM
algebraic method. The importance of usingud(1) for  under project IN101997, by CONACYT under project
cluster states lies in the possibility of describing the variety32416-E, and by U.S. DOE Grant No. DE-FGO02-
of situations encountered in nuclei where clusters are nd@1ER40608.
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