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U(1) symmetry breaking is studied by introducing the flavor mixing interaction proposed by Kobayashi,
Maskawa, and 't Hooft. Combining the one gluon exchange interaction, the rainbowlike Schwinger-Dyson
equation and the ladderlike Bethe-Salpeter equation are derived. The anomalous PCAC relation in the frame-
work of this approximation is considered. The masses of the pseudoscalar mesgpnand »’ are calculated.

It is found that the pion mass is not sensitive to the strength of the flavor mixing interaction. On the other hand,
the masses ofy and ' are reproduced by a relatively weak flavor mixing interaction, for which the chiral
symmetry breaking is dominantly induced by the soft-gluon exchange interaction. The decay constants are
calculated and the anomalous PCAC relation is numerically checked. It is found that the flavor structures of the
7 andz’ mesons significantly depend on their masses and therefore it is questionable to define a flavor mixing
angle fory and n'.

PACS numbes): 11.10.St, 11.30.Rd, 12.38t, 14.65.Bt

[. INTRODUCTION associated with fermionic zero modes which give rise to the
Ua(1) symmetry breaking. In the dilute instanton gas ap-
It is known that the classical QCD Lagrangian is invariantproximation, theU,(1) breaking six-quark flavor determi-
under theU (3)XUg(3) symmetry except for the quark nant interaction was derived in the three flavor da@deThis
mass term, and this symmetry is broken down toUkg3) approach has been developed to the instanton liquid picture
spontaneously in the low-energy QCD. In this case, the numef the QCD vacuuni8]. In this picture, the instanton plays a
ber of the Nambu-Goldstone bosons should be 9. Howevecrucial role in understanding not only thé¢,(1) anomaly
the number of the observed light pseudoscalar mesons is But also the spontaneous breaking of the chiral symmetry
The ninth pseudoscalar mesoji, meson, is heavier than the itself.
other octet pseudoscalar mesons’( 7+, 7~, K¥, K™, In the third approach, the effective low-energy quark
KO K°, and ») which are well identified with the Nambu- Mmodels of QCD were used to study the structure of the had-
Goldstone bosons. This is the well-knowis(1) problem  rons. The introduction of the instanton induced six-quark in-
[1]. It is solved by realizing that th&) (1) symmetry is teraction to the effective quark model is one of the handy
broken by the anomaly. The phenomena related tathel) ~ Ways to incorporate th&l4(1) breaking effects in the low-
anomaly in the low-energy QCD have been studied in theénergy effective quark model of QCD. The Nambu-—Jona-
following approaches. The first one is theNg/ expansion ~ Lasinio (NJL) model[9] is one of the simplest and widely
approach{2,3]. The key point is that the effect of thé,(1) ~ Useéd models in studying the structure of the Nambu-
anomaly is higher order in theN{ expansion and the low- Goldstone bosons. Using the three-flavor NJL model with
energy effective Lagrangian of QCD has been derijgld  the instanton induced six quark interaction, properties of the
Recently, the expansion in powers oN}/, momenta and honet pseudoscalar mesons were investigtéfi A short-
quark masses was extended to the first nonleading ¢der coming of this approach is that thg¢’ mass has unphysical
and the reasonable description of the nonet pseudoscalar migaginary part associated with the unphysical decay channel
sons was obtained. 7' —qq. Recent study of the radiative decays of thene-
The second is the instanton appro&6h The instanton is  son in the NJL model has shown that the observed values of
a classical solution of the Euclidean Yang-Mills equationthe mass and radiative decay amplitudes are reproduced well
and may contribute a large weight in the Feynman path inwith a rather strondJ (1) breaking interactionl11]. Such
tegration. In the presence of the light quarks, instantons arstrongU 5(1) breaking may be consistent with the instanton
liquid picture of the QCD vacuum.
In contrast with the instanton liquid model, the study of
*Electronic address: kenichi@th.phys.titech.ac.jp the QCD Schwinger-Dysor{SD) equation for the quark
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propagator in the improved ladder approximatitipA ) has  of the BS equation is derived and the anomalous PCAC re-
shown that the spontaneous breaking of the chiral symmetriation is discussed in Sec. VIII. Section IX is devoted to the

is explained by simply extrapolating the running couplingnumerical results. Finally, summary and concluding remarks
constant from the perturbative high-energy region to the loware given in Sec. X.

energy regiof12].

Then, the Bethe-SalpetefBS) equation for theJP° . MODEL
=0"" gq channel has been solved in the ILA and the exis- )
tence of the Nambu-Goldstone pion has been confirfihaH We use the flavor threeNg=3) effective model whose

The numerical predictions of the pion decay consfgnand ~ L@grangian density is given by

the quark condensate/y) are rather good. It has been also _ _ _
shown that the BS amplitude shows the correct asymptotic L[ ¢, ¢]:=¢f (%) (i6—mg) b+ Lod &, ]+ Lenl ¥, 4],

behavior as predicted by the operator product expansion (1)
(OPBE in QCD[14]. The masses and decay constants for the
lowest lying scalar, vector and axial-vector mesons have Y=(u,d,s)T, 2

been evaluated by calculating the two point correlation func-

tions for the composite operatoIeM . The obtained values : . .
are in good agreement with the observed driés. wheref(¢) is a cutoff function defined bjA16]

Recently, the current quark mass term has been intro-
duced in the studies of the BS amplitudes in the I[¥6] f(H)=1+MO(E-ATy), M- 3
and the reasonable values of the pion mass, the pion decay
constant and the quark condensate have been obtained with@y denotes a diagonal quark mass matriry,

rather largeA ocp. It has been also shown that the pion mass— diag(my,my,ms) under the assumption of the isospin in-

square and the pion decay constant are almost proportional {gyriance.. ¢ denotes a gluon exchange interaction
the current quark mass up to the strange quark mass region.

Since then and ' system is expected to be sensitive to
theU (1) anomaly, the study of thg and %’ structure may Lo l//,l](x):— EJ Kmm’,nn’(p,p/;q,qr)
give us information on the roles of thg, (1) anomaly in the 2)pp'qq’
low-energy QCD. The purpose of this paper is to study the — = )
properties of they and ' mesons by solving the coupled X thm((P) Y (P") Q) Y (9”)
channel BS equation in the ILA. The effect of thg(1) X e i(p+p’ +a+a)x
anomaly is introduced by the instanton induced six-quark ’
determinant interaction. The instanton size effects are taken
into account by the form factor of the interaction vertices. It . —[(Pe—ag\? [de—Pe|?
guarantees the right asymptotic behavior of the solutions of K™ " (p,p’;0,q")=g° 5 173
the SD and BS equations.

4

There have been many studies of the pion BS amplitude i ptp’ qg+q’
using the effective models of QCD and/or the approximation X'D”V(T T2 )
schemes of QCIP17]. As for the and %’ system, Jain and
Munczek model[18] has been applied to thefd9]. They X(y, TH™™ (y, T, 5

have introduced the effect of thé,(1) anomaly by simply

adding the additional mass term in the flavor singlet pseudo-

scalar meson channel by hand and the reasonable values\%

the masses and decay constants have been obtained. ¢
It is known that the introduction of the two gluon ex-

change diagrams in the calculation of theand »' BS am-

plitudes beyond the ladder approximation do not break the

U (1) symmetry with the perturbative gluon propagator. Re- rkr\ —1

cently, it has been shown that if the gluon propagator has the iD#¥(k)= ( g*’= 2 )F (6)

strong infrared singularity, the 5(1) symmetry breakg20].

The relation between this approach and the instanton ap-

proach is not clear. and the Higashijima-Miransky-type running coupling con-
The paper is organized as follows. In Sec. Il we explainstan@2 defined as follows:

the model Lagrangian we have used in the present study. In

Sec. Il the Conwall-Jackiw-Tombouli€CJT) effective ac- e T I N R N 5 2\ 2, 2

tion [21] calculated from our model Lagrangian is presented. 9 (Pg,dg) = 6(Pe—dg)9°(Pe) + #(de—Pe)9~(de),

The SD and BS equations are derived from the CJT effective )

action in Secs. IV and V. In Sec. VI the meson decay con-

stant is derived. In Sec. VII the Nambu-Goldstone solutionwith

pere denotesf[d*p/(2)*] and pe represents the Eu-
idean momentum. The indices,n, . .., represent com-
bined indices in the color, flavor, and Dirac spaces. In(&p.
we employ the Landau gauge gluon propagator
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E 1_+t fort,,:$t,

92(pg):={

1 3t||:_t0+2
k ZBO (1+t||:)2

t:=1In 2 -1, 9
AQep
1 1INg—2N;
BO::(47T)2 3 . (10)

In Eqg. (8) the infrared cutofft,c is introduced. Above g,

gz(pé) develops according to the one-loop result of the QCD

renormalization group equation and beltyy gz(pé) is kept
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fortost<tg,

®

fort<tg,

and 't Hooft instanton induced interaction. In the rainbow-
ladder approximation, these two interactions give the same
effects on thep— ' system.

We introduce a weight functioﬁ(- --) which is neces-
sary so that FMI is turned off at the high energy. We use the
following separable Gaussian form:

W(&Xl; ayl ; axz; ayz; axs; ays)

2 2 2 2 2 2
. (?X1+ ayl+ aX2+ (?y2+ 3X3+ &y3 w2

constant. These two regions are connected by the quadratic 2

polynomial so thag?(p2) becomes a smooth function. Here

N¢ is the number of colors and; is the number of active
flavors. We useN-=N;=3 in our numerical studies.

w(p?)= exp(— ku?). (13

It should be noted here that the quark confinement is nof his weight function is convenient for a numerical calcula-
realized by this simple infrared form of the running coupling tion as it satisfies the association rule
constant. For the low-lying pseudoscalar mesons, we expect
that the dynamics of the spontaneous breaking of chiral sym-
metry plays a primary role and the quark confinement play
a somewhat minor role. As reported in REf6], the present
approach is rather successful in describing the pion prope

w(—p?=g?—k3)=w(—pHw(—gd)Hw(—k?). (14

SBut this particular set of the momenta in the argument of the
Iv_\/eight function modifies the form of the Noether current for

ties.
Ley is theU (1) symmetry breaking flavor mixing inter-
action (FMI), our interest, given by

Lewl w.wx)%GDefﬂszegﬂz%
XW(dy 3y dhys By iy
X{[ g, (x0) s (YD) [ g, (X2) thr,(¥2) ]
X[ g, (Xa) Yt (Y2) 1+ 3L g, (X1) 1 (¥1)]
X[ g, (X2) ysibs,(Y2)]
X[g,(X8) ysihi,(Ya) IH » (11)

wheref;,g4, ..., areflavor indices,e denotes the antisym-

metric tensor withe"9S=1 and the asterisk at the end of the

equation meang,,y;,- - -,—Xx after all derivatives are op-
erated. This type of the),(1) symmetry breaking six-quark
interaction has been introduced in RE22] before the dis-

covery of the instanton induced interactipfi. There is a

minor difference of the flavor-spin structure betweép,

the axial-vector transformation. This is the same problem
that occurred in the Higashijima-Miransky approximation in
the Le term discussed extensively in REL6]. The explicit
form of the Noether axial-vector current in this model is very
complicated and we do not show it. We treat the exact No-
ether axial-vector current within the ladderlike approxima-
tion. We will show that thémodified Ward-Takahashi iden-
tity for axial-vector current and the PCAC relation holds.
This approach is studied in R¢23].

On the other hand, if one does not want to modify the
Noether current, one has to employ an appropriate form of
the argument of the running coupling constant, such as
PetPt detde|’
2 2

9%(--)=¢° (15)

in Lgg and similarly

S )=w (16)

2
O+ Oy, + Oy — Oy, — Iy~ ay3)

23

in Ley .
In our model, there are nine axial-vector curreds(«
=0,...,8),which satisfy the anomalous PCAC relation
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wa _ a a0

9#3g,(x) =2[ MeJ5]“(x) + 5°A(x), (17 ; G S0y @J@t@
—  F(3®) MmN+ \"mgf(5?) C = + +

[mode] o= 7o 2™ y o, a9

FIG. 1. The diagram for the SD equation.
where\“ denotes the Gell-Mann matrix in the flavor space.

A(x) corresponds to the explicii (1) symmetry breaking OI'[Sk] o 09
and is proportional t&p in Eq.(11). In QCD,A(x) is given 8Semn(X,Y) (22
by
3 The detailed procedure is the same as in RE]. Introduc-
_Sfuvpopav,:aa_ (19) ing the regularized propagatorSE(q) :=f(9%)Se(q) and
8w e Sg(q) :=i/(¢—my), the SD equation in momentum space be-
comes

lIl. EFFECTIVE ACTION

To derive the Schwinger-Dyson equation and the Bethe:SR_l( )—iSR_l( )= — Cr —2( 2 h2)
Salpeter equation, we use the Cornwall-Jackiw-Tomboulid >Fnm'9 onm{d f(—q?) pf(_pz)g Ge-Pe
(CJT) effective action formulation21]. In Ref. [16], we

have already derived the CJT effective action in the lowest X iD’“’(p—q)[yHSEmznz(p)yV]nm
order (rainbow-ladder approximation in the framework of
the ILA model. Here we add a new terffyy[ Sz] which +Gp 8 Sape?'112¢"9192
contains the lowest order effect of the flavor mixing interac-
tion (FMI) y f 1
pkf(—p?)f(—k?)

TSe]s=i TrLn[Se] =i Tr S *Se]+ Toel Sel+ Trul S ). 2> 2
(20 Xw(—g"=p°—k%)

I' s Se] corresponds to the two-lodjgyeglassdiagram us- X tr(Dc)[SEglfl(p)]tr(DC)[SEngz(k)]’
ing gluon exchange interaction and is defined by @) in (23)
Ref. [16]. Since FMI is a six-quark interaction, the lowest
two particle irreducible vacuum diagram of FMI is a three

loop (cloven diagram. For simplicity, we take only the domi- Wh(‘;r? f;hﬁ i(ntc)jijpzs)m,n, : .v.vithagir(;?:mi?ligiigs i:dbicesm
nant term in 1N expansion fod gy[ S¢] term as =l n)L = L4),
c &Xp Pl vl and color indices,j, .. ., andflavor indicesf,g, ... . This
G equation is shown diagramatically in Fig. 1. Generally the
el Sel= ?Df d*xef1f2f3€019293y quark propagator is parametrized by

2 2 2 2 2
02 + 32 + 32 + 92+ 02 + 02 i
1 V1 2 Y2 3 Y3 SE(q)= (24)
2 h ’

X{—=trPOSe¢ 4 (y1,%7)]tr(PO)
e where the indexh denotes the flavor. After the Wick rota-

X[Set,,(¥2: %) I Ser 4.(¥3,X3)] tion, we obtainA,(—qg2)=1. Then the resulting SD equa-
oo e tion reads
—3trl )[SFflgl(yLXl)]tr( )
(DC) 2 By(—
X[ ¥5Srt,g,(Y2.X2) IrO ¥5Set g, (V3. Xa) I} - By(—S)=mg+ SCFZJAUVdrgz(S,r) q(z r
2
In this approximation, the glob&U, (3) X SUg(3) symme- x{ O(r—s)+ [0(5_ r)] _ M
try is preserved. In fact, the total effective action is invariant S 87*
under the infinitesimal global chiral transformation except
for the quark bare mass term. y fAf’Vdrw(r) qu(z—f)
0 r+Bg(—r)
IV. SCHWINGER-DYSON EQUATION
2 IBg(—1
The Schwinger-Dyson equation is derived by the stability X J’AUVdIW(I)%), (25
condition of the CJT effective action 0 I+Bs(—1)
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3Cr (A2, — Bo(— (S
B~ s)=ms* 16WF2foAUVdrgz(S’r)ﬁ :]DE: - {}(_u_eg DE: + > @1D
s @ -
(s

r GpNZw(s
X 0(r—s)+—0(s—r)]—L4()
S 8 FIG. 2. The diagram for the BS equation.
A2 rBqy(—=r) S
Xf UVer(r)W the BS equation in momentum space becomes
0 r -r
q _ _
SIF:{nnll(q-#)Xﬁlml(q;PB)SEmllm(q—)
A2 IBo(—1)
xf UVo||w(|)m, (26)
0 + — . 202 L2\; v
q =—iC f— kg)iD#"(q—k
F kf(—ki)f(—k%)g (9g.kg) (q—k)

with SEqE. These integral equations are solvable numeri-

cally. X[y, xXR(k;Pg) ¥, Jom+ 2iGped €95,
Since the improved ladder approximati¢ittA) model

reproduces the asymptotic behavior of QCD, the quark mass 1

function can be renormalized so that the solution of the SD prkf(_ P2 f(—K2)f(—k2)

equation is matched with the QCD quark mass function in
the aymptotic region. We renormalize the quark mass func-

. . . . 2_ 22 PZB (DO)r R
tion properly in the manner described in R¢L6]. The Xw| —p°—q°—k T = Se ()]
renormalization constantZ, and Zm, defined by m,
=Zr;qlqu andmg=2Z,,'mgg are determind by the condition X{(')’5)batr(DC)[75X§If/(k;PB)]+1batr(DC)
X[ xgr1 (K Pe) 1} (32
2 2
M =1 and IBs(17) =1. (2 which is shown diagramatically in Fig. 2. For the pseudo-
IMgRr Myr=0 IMsg Meg=0 scalar stat¢Pg), the last term in the braces does not contrib-
ute.

Note that the flavor mixing interaction does not disturb the For the pion, the BS amplitude can be written in terms of
asymptotic behavior of the ILA model and QCD because offour scalar amplitudes as in R¢fL6],
the Gaussian type weight function.

(N ) gt
Xam(KiP) = 8 = | ds(kiP) + dp(k; P)k+ (ki P) P
V. BETHE-SALPETER EQUATION
- i i - 1
. The homogeneous Bethe-Salpet&S) equation is de + 2 e (kP (PK—KP) | ys| (33)
rived by 2 ba

where\“ denotes the flavor structure of the pion state. For
5 T[Sk] example, the neutral pion is given hy=3. On the other
5 55 —Xnm (Y .X";Pg)=0, (28)  hand, for they and ' mesons, the BS amplitudes are writ-
Semn(X,Y) 8Senrme (Y’ X") ten in terms of eight scalar amplitudes
where (N394

B3k P)+ Rk Pk
Xorm (Y X" Pe) = (O T (Y ) by (X)|P)  (29)

denotes the BS amplitude. The normalization condition is ba

(Pg|Pg)=(27)°2Pg8*(Pg—Pg) and Pg:=(yM3+Pg, (34)
Pg) is the on-shell momentum of the meson. Introducing the
regularized BS amplitude by

+ ¢L(k; PP+ %qﬁq(k; P)(Pk— kp)} 75}

+ 6 ()\T%H s(k;P)+ ¢pk; P)k

R (4 P.)ief(— 2 ) — a2 1

P P _
g.:=q+ ?B, q_::q—;, (3D X (Pk kp)}’}’s ) (39

ba
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where the flavor matrices99,\%° are defined by

fB:

1 00 0 0 O
Nd9=| 0 1 0|, N\s=[{ 0 O O (36)

0 00 0 0 2
This is because thgg andss components of the BS ampli-
tude are mixed through the last term of the right hand side in
Eq. (32) which is FMI. The BS equations for the and »’
mesons are same. The ground state solution is identified with
the » meson and the first excited state solution is identified
with the " meson. Substituting E433) or Eq.(35) into Eq.
(32), we obtain the coupled integral equations. The explicit
form is rather complicated and we do not show it. Formally where

the equations can be written as

d4(q;Pg)= koAB(q,kJPB)CﬁB(k;PB)- (37

¢a Or ¢g denotes the set of amplitudess, dp , ¢q, ¢ for
the pion and$2?, ¢3¢, 63 5,05, o7 for the 7
and n’ meson. Instead of solving E(B7) directly, we solve
an eigenvalue problem

)\¢A(q;PB)=J'kMAB(qvk;PB)(ﬁB(k;PB) (38)

for a fixed P3=M3=—P3.= —M2<0. Then we plot and
extrapolate the eigenvalueas a function oiPé and search
for the on-shell poinb=1.

VI. DECAY CONSTANT

1

PHYSICAL REVIEW C 61 065201

i 1f 1
m-—=| —F——5
p_pgP?laf(—g*)f(—q%)

f(—9?)+f(—q?)
xtr| xR(a;Pg)ivs & > | > p
2 2 . 1
+[—f(—q_)+f(—q+)M] + lim —
P—»PBP

1
X | ——————r{xR(a;P
qu( i )(r{x(q )

X[E“(q;P)+F“(q;P)]1}), (41)

]Cn’n,mm’ —k q- E
1 21

—q—E k+P|—fcnmmm| —k q—E'
2! 1 2!

+Pk
_q E’

)\D(
](iy578§<k>)

+ ]Cn’n,mm

P
—k+P,q— X —-q-

_Kn’n,mm’ —k q+E
1 21

2
2

(42

Ropvi o M
XSF(k)|757 .

To obtain the decay constant, we need the normalization’ mn(9:P)=2Gp(¥s)and fk’|f(_k2)f(_|2)

of the BS amplitude which is derived from the inhomoge-
neous BS equation. In Rdf16] the normalization condition
in the momentum space is given by

PIiﬂrr;Bi qu Ixﬁlml((ﬁ Ps)ﬁznz(fﬁ Pg) _F;;z 8;:’“
e sﬁ;llmz(q—gﬂ=1, (39
where the integral region is
I={a| - (q=Pg)’<Af}. (40)

Using the normalized BS amplitude, the decay constant is
obtained by

065201-6
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3
—w( —g?- P2k 124 PI)

X e'f2f3¢99293 tr(DC){(Sﬁi%) (|)1
9fs

2
+1w

P
—(q+§ —k2_|2}
3
—w(—qz—ZPz—kz—lz—Pl))

Xeffzfzeggzgstr(Dc){(i%HS,B) (l)l) (43
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The term given in terms dE“(q; P) andF“(q;P) represents leads us to
the correction to the Noether axial-vector current due to the
momentum dependencies of the effective Lagrangian. For

the pion, we can choose the flavor structure matrbof the i A" S1(q)

Noether current in the above formula to match that of the BS Ysp o o

amplitude. Then we obtain the decay constgnin the usual

sense. On the other hand, for theor »' mesons, the flavor iCg — o o
structure of the BS amplitude depends on the relative and = THC 2)f f— 2)9 (9g,pe)iD*(p—Qq)
total momenta in general. Therefore we cannot\fkxfrom (=) pf(=p

the flavor structure of the BS amplitude. Instead we only

consider the decay constants associated with the oatet ( X
=8) and singlet &=0) axial-vector currents for they or

n'mesons, i.e.ff, fJ, 7, andfg'. The fact that the fla- 1

vor structure of thep-»" meson BS amplitudes depend on Xegflfszglng ﬁw(_qz_pz_kz)
the relative and total momenta means that one cannot define Pk (=p9)T (=K%

nm

Vi

R A
SF(D);")’E? Yv

the »- " mixing angle. It can be defined only in the limit of N
neglecting these momentum dependences. Xtr(DC)[SEglfl(p)]tr(DC) 75( [ 7’57,S§(k)]
9,f2
VIl. NAMBU-GOLDSTONE SOLUTION (46)

A remark is given here about the Nambu-Goldstone solu-
tion. In the chiral limit, the effective action is invariant under Comparing this with Eq.(32), we obtain the Nambu-
the SU (3)XSUr(3)XUy(1) transformation. Under the Goldstone solution for=1,...,8
dynamical breakdown of this symmetry $J,,(3) X Uy(1),
we expect eight Nambu-GoldstoieG) solutions. This can
be proved by the same procedure as in R28]. However, R o\ ] A 2 R
we show here the existence of these NG solutions directly Xom( A P=0)=Njiys—-.f(=a")Se(a)(, (4D
from the SD equation (23) and the BS equation (32). Mul-
tiplying the ys\®/2 from left andys\“/2 from right to Eq.

(23), we obtain whereN is a normalization constant. It can be also shown
thatN equals to 1fly wherefg is a decay constant defined in
N o D R the previous section in the framework of the present ladder-
s St @ —1ivs5 .S (A) like approximation. It should also be noted that E4j) does
nm nm not hold for a singlet*=°.
iC I
=- sz —g%(q2,p2)iD*"(p—q)
f(—=g%) Jef(—p2) VIIl. ANOMALOUS PCAC RELATION

The matrix element of the PCAC relatigh?7) between a
meson stat€ P| and the vacuun0) in the ladderlike ap-
proximation becomes

X +GpJji Opa

nm

Yu

R A
SF(D)J?’S7 Y

x(%eg'flfszglgz_k egflfzef'mgz%
—fEM3=2[mEa]+ 60 Ag, (48)
1
Xf ﬁw(—qz—pz—kz) ) )
PkE(=p9)T(=k%) where fg is the decay constant,,fd,fJ,fg , or 7.
><IT(DC)[Sﬁglfl(p)]tr(DC)[SEQZfZ(k)]. (44 [Mmo€g] and Ag are defined by
In the chiral limit the second term of the left hand side van- f(_qz )+f(—q2) N
ishes. Furthermore ik* is an octet matrix, i.e., f(N“]=0,  [m,£4]:= lim if *2 2* tr ;R(q;p)moys_},
then a relation p-pg Ja2f(—qZ)f(—q?) 2
(49
ANgq" , N ¢
ﬂeg f1f2¢f0102 4 (Of1f2f 919, 2)f f B,1,50,1, 1
i “Rin- .
(A ) gy Ag:= lim Jf — o PR AP,
=—469f1f2¢5fglgztsglf1 2 = (45) P—Pg-d (=aDf(~a%) (50)
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TABLE |. Dependences of the solutions of the SD equations at
q§=0 and the quark condensates on the strength of FMI with two
sets of the quark massé$ mqgr=msg=0 and(ii) myr="5 [MeV],

msg=100[MeV]. Hereq represents the andd quarks.

Mgr Msr le Bq(o) Bs(0) (Hq)R <§S>R

[MeV] [MeV] [GeV '] [GeV] [GeV] [GeVf] [GeVe]
0 0 0.0 1.10 1.10 —(0.2598 —(0.259%
0 0 1.6 1.11 1.11 —(0.260® —(0.260%
0 0 2.0 1.11 1.11 —(0.262° —(0.262f
0 0 2.4 1.14 1.14 —(0.268° —(0.268)
5 100 0.0 1.11 1.22 —(0.259F —(0.245%
5 100 1.6 1.11  1.22 —(0.261F —(0.244)
5 100 2.0 1.13  1.23 —(0.266f —(0.241)
5 100 2.4 1.17 1.24 —(0.276f —(0.236)

1

Amn(q;P):=—3Gp( ')’5)ab5ij Jk lm

=] 2

)\a
% eff2f399293¢(DC) Ry
€''2'3¢ tr Sfi 5 (h
93f3

2
—k2—1?

} ,

i

93f3

respectively. This relation is obtained systematically usin
the method of Sec. Ill in Ref.23]. Of course, we can also

eff2f3¢99293¢,(DC)

(59)

obtain this relation48) directly from the SD equatiof23)

and the BS equatio(82). If we employ the BS amplitude in

the chiral limit similar to Eq(47), it holds that

[Mo€a]1=mg(aq)o/fe=Mar(aa)r/ 5.

Equation (48) with Eq. (52) leads us to the Gell-Mann,

Oakes, and Renner mass formula
M3f3=—2my(qq) for a+0.
For later use, we define the ratio

fa(P2)PE
2[MeER(PE) ]+ 6°° Ag(P2)’

Ra(PE)=

which is to be unity at the on-mass-shell point of the Bethe-
Salpeter solution. This condition is useful in checking the

numerical extrapolation procedure.

(52

(53

(54)
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1

B[GeV] |

0.5

FIG. 3. qé dependences of the solutions of the SD equation in
the SU(2) chiral limit with mgg=100 [MeV] and Ig
=0.0,1.6,2.0,2.4GeV1].

IX. NUMERICAL RESULTS

In the present model, there are seven input parameters.
Five of them are the parameters of the improved ladder ap-
proximation (ILA) model of QCD: the current quark mass
mqg for the up and down quarks, the scale parameter of QCD
Aqgcp, the infrared cutofft,z for the running coupling con-
stant, the smoothness parametegand the ultraviolet cutoff
Ayy . We take the value dof, from the result of Ref[13],
namely,to= —3. As explained there this smoothness param-
eterty is introduced just for the stability of the numerical
calculations and has no physical meanings. We takg
=100[GeV] because the physical observables depend on it
rather weakly after the renormalization as far as we use a
reasonably large value df;,, . The renormalization point

Ys taken asu=2 [GeV]. The infrared cutofft,c controls the
strength of the running coupling constant in the Iqg re-
gion. Therefore its value is directly related to the size of the
dynamical chiral symmetry breaking. We take= —0.5. It
corresponds t@?(q2=0)/47=11. In the case of no FMI,
tg=—0.5 gives —(y¥)§>=259 [MeV] with A cp=600
[MeV] in the chiral limit. See Figs. 1 and 2 of R¢{.6] for

TABLE Il. Dependences of the solutions of the pion BS equa-
tion on the strength of FMI with two sets of the quark mas@ges
Mgr=Msg=0 and(ii) meg=5 [MeV], myg=100[MeV].

Myr Msr e M, fr
[MeV] [MeV] [GeV'!'] [MeV] [MeV] R

0 0 0.0 0 86
0 0 1.6 0 87
0 0 2.0 0 89
0 0 2.4 0 95
5 100 0.0 159 88 1.06
5 100 1.6 158 90 1.06
5 100 2.0 157 94 1.05
5 100 24 152 103 1.05
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TABLE lll. Dependences of thei-meson solutions of the coupled channel BS equation on the strength of
FMI with two sets of the quark massé$ myg=msg=0 and(ii) meg=5 [MeV], myg=100[MeV]. The
values in the brace are obtained by the rational extrapolation.

MR MsRr lg M fd fd 0

[MeV] [MeV] Gev'! [Mev] [Mev] [Mev] [ded  RZ Ry
0 0 0.0 0 86 0 0
0 0 1.6 0 87 0 0
0 0 2.0 0 89 0 0
0 0 2.4 0 95 0 0
5 100 0.0 159 51 72 —54.7 1.05 1.05
5 100 1.6 258 57 69 —-50.4 1.02 1.03
5 100 2.0 387 75 58 —-37.7 1.00 1.05
5 100 2.4 511 113 19 -95 1.01 0.55(1.00)

the dependencies of on Agcp andte. This value corresponds to the form factor of the instanton of

We chooseA ocp=600 [MeV]. Although this value is the average sizg, about 1/3fm]. The instanton form factor
somewhat larger than the “standard” valukgcp=100 2
~300 [MeV], it is necessary for the rainbow gluon self- 1 ocl_x_EJr o (57)
energy to generate the dynamical chiral symmetry breaking x§+p2 p?
strongly[13,16. Of course if the dynamical chiral symmetry
breaking is caused by the flavor mixing interaction mainly,can be identified with the Fourier transformation of the
we may choose a smallérqcp. But in such a situation, a  weight function
careful analysis is necessary. Since the phase transition is of 2 )
the first order, there may exist multiple SD solutions. We 2\ E
will report such results elsewhef24]. Therefore in this pa- FTw(gg)=C ex;( - ﬂ) w1 PR 58
per we concentrate only on the case that the chiral symmetry
breaking is generated mainly by the gluon exchange interadvith
tion. o,

We have two new parameters associated with the flavor 4x=p". (59
mixing interaction(FMI), i.e.,Gp andk. Instead ofGp , we
use the parameteg; defined by

The values of the model parameters we use throughout this
article areA, =100 [GeV], Aqcp=600 [MeV], to=—3,
te=—0.5, =2 [GeV], andk=0.7[GeV 2].

Gp[GeV °]=:—(Ig[GeV ])°. (55) Let us now discuss the solutions of the SD equation. Our

numerical results are shown in Table | and Fig. 3. As can be

This parameter is chosen freely so that we study the effectseen from them, the chiral symmetry breaking is induced
of theU (1) anomaly on they- ' system. Thec parameter mainly by the gluon exchange interaction, and the effect of
is taken as FMI to the chiral quark condensate seems very small. When
I s increases from zero to 2.8,(0) increases only 4—-6 %,

k=0.7 [GeV 2]. (560 and (Eq)R changes by about 10 to 20 %. One may wonder

TABLE IV. Dependences of the’-meson solutions of the coupled channel BS equation on the strength
of FMI with two sets of the quark massé$ mqg=mgg=0 and(ii) myg="5 [MeV], mgz=100[MeV]. The
value in the brace is obtained by the rational extrapolation.

Mg MsRr lg M, fg' fg/ 0,
[MeV] [MeV] [GeV Y] [MeV] [MeV] [MeV] [deg] Ry RY

0 0 0.0 0 0 86 0

0 0 1.6 194 0 87 0 1.04
0 0 2.0 350 0 88 0 1.02
0 0 2.4 634 0 94 0 1.06
5 100 0.0 723 -101 72 —54.7 1.05 1.05
5 100 1.6 732 -98 77 -51.8 1.05 1.07
5 100 2.0 777 -86 90 —43.7 1.06 1.11
5 100 2.4 1060 -36 122 -16.4 1.09 1.33
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whether the range of variation is too small for its effects to Eigen Value and Ratios
be seen, but, as we will see later, thisgives a large mass B R
to » and »'. Since the perturbative quark mass contribution AR |: —]
|
|

{

’

/i
%

NG

to the quark condensate is subtracted in our definition, the
absolute value ofss)g is smaller than that ofqq)g (q

=u,d). Our results iMmgg=5 [MeV] andmyg=100[MeV] 0
are (ss)r/{qq)g=0.85 and 0.63 forlg=0 and 2.4

[GeV 1], respectively. These are in reasonable agreement

with the QCD sum rule resultgss)g/(uu)g=0.8+0.1[25] 1

and(ss)r/{uu)g=0.6=0.1[26]. The absolute value of the
u,d-quark condensate increased gsncreases, while that of
the ssquark condensate decreaseslgsincreases. It is an
interesting feature in the present model. In the case of the
Nambu—Jona-LasinioNJL) model with FMI, both conden-
sates increase. We do not find out the intuitive explanation of
the difference of this behavior between the NJL model and
the present model. FIG. 4. Extrapolation of the eigenvalue and the ratios for#he
Let us now turn to the discussion of the solutions of themeson withmgg="0, Meg=100[MeV], andlz=2.4[GeV 1].
BS equation. Our numerical results for the pion are summa-
rized in Tat_)lg II. Here we have not performed the Precis€ . .case as EMI becomes strong. In the casemgh—5
parameter fittings so as to reproduce the observed pion ma

. ) : MeV], msg=100[MeV], andl g=2.4[GeV '], the reason-
and decay constant since solving the BS equation of the no Xble values of the/, andM . are obtained, the calculated

local interaction requires the rather large computer resource .
. is 7% smaller than the observéd, and the calculated
We observe that the pion mass and decay constant are n%}” . 77 :

P y » is 11% larger than the observed,, . In this model

sensitive to the flavor mixing interaction. The deviation of = 7 L ]
parameters, the calculated mixing angle for the meson

2 . 2 :
the slopeM 7/ mg from the slope-2(qa)g/f7 derived from s e than 5/3 times of the calculated mixing angle for

S 7
Gell-Mann—Oakes—RennéGMOR) relation is about 16% e ,, mesond, . It means that the momentum dependences

—_ _ 1 H H
at mgr=>5 [MeV] and|g=2.4[GeV "]. We consider this o the flavor structures of they and 7' mesons are not so

amount of the deviation of the GMOR relation may comegn 5| and the momentum independent treatment ofthg’
from the Euclid— Minkowski extrapolation, since the ratio mixing angle is rather questionable.

R defined in Eq.(54) deviates from unity by 5%, which  rpg a5t column of Tables I1I-IV gives the ratio in Eq.
indicates the size of the numerical error ¢ andf . in the (54) for finite quark mass. As it should be 1 at the on-mass-
extrapolation procedure. ~ shell point identically, it is a good indicator of the ambiguity,

The BS solutions for the; and " mesons are given in o error, coming from the extrapolation from the Euclidean
Tables Ill and V. Since the BS equation is homogeneousyinematics to the Minkowski on-mass-shell kinematics. Here
the absolute sign of the BS amplitudes, and therefore thge carry out the quadratic extrapolations of the eigenvalue
decay constants, cannot be determined. We choose the Sigg the ratioR and the linear extrapolation of the decay
of fg (fo) to be positive forp (7'). The masses of andn’  constant from the Euclid region to the on-mass-shell point.
and their decay constants depend strongly on the flavor mixy, the case of the weak FMI, our extapolation procedure
ing interaction. Especially, the’ meson mass seems sensi-yorks rather well. For heavier meson massBsdeviates
tive to the flavor mixing interaction. This is in contrast to the from 1 significantly. This indicates an extrapolation error. In
pion resultUA(1) symmetry breaking gives a large effect on ¢t for Mg>700 [MeV] the extrapolation becomes very
the 7 and " sector. o _ difficult in the quadratic extrapolation. For instan@e/ for

In order to see the effects of the flavor mixing, we intro- | o=2.4[GeV1] shown in Table Il largely deviates from 1.
duce the mixing angles for thg and " mesons Figure 4 shows the extrapolation in this case, where the lines
of A andR { are almost straight but the curve Bf{ is not.

—=-= R, (rational)

A\
]

0.2
Euclid Mass Square [GeV?]

-

LI N e B
|
|
)
p
53

-0.2

’

—fg _ fg _ This may be a reason why J deviates from unity. We have
—=tand,,, — =tand,, . (60) . - . )
f7 £ performed the extrapolation & J by using a rational func-

tion which is shown in Fig. 4 by the dotted line and the result

The results are presented in Tables Ill and IV. Since thdS improved well. As for they" meson, the extrapolation of
flavor structure of they- »" meson BS amplitudes depend on the eigenvalue, the ratiori8¢ andR J are shown in Fig. 5.
the relative and total momenta, the above definitions of the From Table IV one can see that in the chiral limi;
mixing angles are the kinds of the averaged quantities.  state is a pure flavor singlet state and has finite mass. This

In the SU(3) symmetry limit, no flavor mixing occurs and mass is due to FMI and it meang is not the Goldstone
6,=0,,=0. On the other hand, in the broken @Ycase boson. One of the interesting questions is that how mwyich
without FMI, » and »' are in the ideally mixed states, i.e., loses the Goldstone boson nature. In the present range of the
9=arctan(-\2)=—54.7°. The mixing angleg, and ¢, UA(1) breaking interaction strength, the flavor singlet pseu-
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Eigen Value and Ratios in the present model and
f g8 et (62
0 a 9A® '
0 ~ in the NJL model. In this manndi;=2.4[GeV ] corre-

sponds toG&"=0.73, which is rather close to the value de-
termined in Ref.[11], G‘E,ﬁ=0.7. It means the strength of

—— Eigen Value ]
-1 ——- R . FMI is almost the same in both cases. It is not clear why the
""" Ro contribution from FMI to the dynamical quark mass is so

different in the two cases.

It should be noted here that as can be seen from Fig. 2,
FMI operates on the pseudoscalar meson states as the effec-
) o L] tive four-quark interaction reduced by contracting a quark-

—1 -0.5 0 . antiquark pair into a quark condensate. Therefore the effec-
Budlid Mass Square [GeV'] tive strength of FMI is noGp, but Gp(qq). In our present

FIG. 5. Extrapolation of the eigenvalue and the ratios forghe ~Model parameters, the dynamical chiral symmetry breaking
meson withmgg=0, Me=100[MeV], andlc=2.4[GeV ]. is mostly driven by the one-gluon exchange type interaction.
If one reduces the strength of the one-gluon type interaction
doscalar meson state has mass from IP%V] to 634 in the infrared _region, the quark condensate becomes smaller
[MeV]. On the other hand the decay constant changes onfgnd the effective strength of FMI on the meson states be-
less than 8%. Further studies of thé properties such as the comes weaker. Therefore there is a possibility of taking
decay amplitudes are necessary in order to understand tf@ther strong FMI without destroying the success of the
nature of then’ meson. present descrlptlt_)n of th@ an_d 7' meson masses. In the
We plot thes’ meson mass as a function of thi(1) case where FMI_ is dominant m_t_he infrared region, we ex-
breaking parametdrs in Fig. 6. The effect of the mixing of pect that the chlrfal phas_e transition becomes the f|r§t order
u,d quark component seems to be negligible and e and therg may exist multiple solutions of the SD equation. ]n
mass grows rapidly fronhg~2.0[GeV1]. SL_Jch a situation, more careful analyses are required, which
The 7-meson properties have been studied extensively ifVill e reported elsewheri24].
the three-flavor NJL model with the instanton induced
U (1) breaking flavor mixing interactioFMI) in Ref.[11] X. SUMMARY AND CONCLUSIONS
—
r;rf ;/t Tf /j)f ,egnsdhsﬁnﬂtohj; tgsctgssv?/?d{r?ssgasr,eﬂ:gprogzlc ed The imprpved ladder approximation of QQD has success-
well with the rather strong FMI. In this case the contributionfu"y descnbedi the. low-energy propertles of ?CD
from FMI to the dynamical mass of the up and down quark5[13’14’16' In this article, we have studied thg and »

is about 44% of that from the usud|_(3) X Ug(3) invariant mesonls |r; this qpproatch.t ItI'S. etxpectgd,that mﬁ(l)d
four-quark interaction. In contrast with it, the contribution anomaly plays an important role in theand " mesons an

from FMI to the dynamical quark mass is very small in the (N€"éfore we have introduced the instanton induted1)

present study. To make the situation clear, let us compare ﬂgeakmg six-quark determinant interactif®,7] in the im-

strength of FMI in the present case with that in the NJLproved ladder approximation model of QCD. We have de-

| “Th : is t the following t rived the Schwinger-Dyson{SD) equations for the light
mode_ _casg © naive way 1s fo compare the 1oflowing WOquark propagators and the Bethe-Salp€BS) equations for
quantities: ) > i
the pion,n and ' in the lowest ordefrainbow-ladder ap-

" proximation using the Cornwall-Jackiw-Tombou(S8JT) ef-
f dqe*"qzls , (61) fective action formulatiorf21].

0 Using the same model parameters of the running coupling

constant used in Ref16], we have obtained reasonable val-

uesofM_, M,, M, , f_, and(qq)r with a relatively weak
flavor mixing interaction, for which the chiral symmetry
breaking is dominantly induced by the soft-gluon exchange
interaction. It is in contrast with the Nambu—Jona-Lasinio
(NJL) model results, where about 1/3 of the dynamical quark
mass is due to FM[11].
—o——o , . . As far as we know, the;’ BS equation which includes
0.8 16 24 the running coupling aspect of QCD and the effect of the
la[GeV7) UA(1) anomaly has not been solved so far. In the case of the

FIG. 6. 15 dependence of the mass of thé meson withmgg NJL model, then" mass has unphysical large imaginary part
=0 andmgg=100[MeV]. associated with the unphysical decay channel-qg. On

M [MeV]
1000

900f

800f

700
0
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the other hand, the present model predicts a boghdl- The present result is our first step towards quantitative
though it may not perfectly confine quarks. The bound stateinderstanding of the flavor mixing interaction. With the BS
is obtained as the quark mass function becomes rather largsplutions in hand, we may calculate static properties and de-
B(—qZ)~1[GeV] atge=0, in this model, while it is inde- cay amplitudes ofy and »’. Our model is regarded as a
pendent of the momentum in the NJL model. low-energy effective theory, which is consistent with chiral

Since the flavor structure of thg-»" meson BS ampli- symmetry, its spontaneous breakdown and tHg(1)
tudes depend on the relative and total momenta, one cannghomaly. It should be stressed that the approximation used in
define then-»" mixing angle unambiguously. It can be de- solying and renormalizing the amplitudes also respect these
fined only in the limit of neglecting these momentum depen-symmetry properties. Thus our approach is suitable for fur-
dencies and it should be examined whether such an approXier studies of they and ' systems, which are desirable in
mation is rea_lsonable. Our numerical results |nd|cate_ that t_hSrder to clarify the role of thaJ (1) anomaly in the low-
momentum independent treatment of the flavor mixing 'Senergy QCD.
rather questionable.

In the chiral limit we can define the, decay constant,
without any ambiguity(Here 7, means the pure flavor sin-
glet state. Our numerical results show thatfg|—f,)/f .
=<0.012 in our parameter range thougmo changes from

194 [MeV] to 634[MeV]. There is no low-energy theorem M. Ishihara and K. Yazaki for their encouragement. This

for the 5, decay constant, since theU,(1) symmetry is . Co P
explicitl;]obroke%/ by the ar?omaly. Therefore the present reWork was supported in part by the Grant-in-Aid for Scientific

sult of f, should contain the information of the low-energy R€S€arch Nos(C)(2)08640356 andC)(2)11640261 of the
dynamics of QCD. Ministry of Education, Science, Sports and Culture of Japan.
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